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Abstract—How users in a dynamic system perform learning a probabilistic belief regarding the system state througtied
and make decision become more and more important in nu- |earning. In the social learning literatures| [4]-[8], difént
merous research fields. Although there are some works in the kinds of learning rules were studied where the essential

social learning literatures regarding how to construct beief on an biective is to | the t ¢ tat tually. Ist
uncertain system state, few study has been conducted on inpo- objective Is 1o learn the true system state eventually. 18tmo

rating social learning with decision making. Moreover, uses may Of these existing works, the learning problem is typically
have multiple concurrent decisions on different objects/esources formulated as a dynamic game with incomplete information

and their decisions usually negatively influence each oth&r and the main focus is to study whether users can learn the true
utility, which makes the problem even more challenging. In gy tem state at the equilibria. However, all of them assumed

this paper, we propose an Indian Buffet Game to study how Y - )
users in a dynamic system learn the uncertain system state that users’ utilities are independent of each other and difais

and make multiple concurrent decisions by not only consideng N0t consider the concept of network externality, which is a
the current myopic utility, but also taking into account the common phenomenon in dynamic systems and can influence
influence of subsequent users’ decisions. We analyze the pwsed ysers’ utilities and decision to a large extent.
Indian Buffet Game under two different scenarios: customes 14 sty dy the social learning problem with negative network
request multiple dishes without budget constraint and with L7 . g
budget constraint. For both cases, we design recursive besteXtema“ty' In our previous WO”_" [9]-[11],we have propdse
response algorithms to find the subgame perfect Nash equililum @ general framework called "Chinese Restaurant Game”. The
for customers and characterize special properties of the Ngh  concept is originated from Chinese Restaurant Process [12]
equilibrium profile under homogeneous setting. Moreover, v which is used to model unknown distributions in the non-
introduce a non-Bayesian social learning algorithm for CUBMETS 5 ametric learning methods in the field of machine learning
o leam the system state, and theoretically prove its convgence. In the Chinese Restaurant Game, there are finite tables with
Finally, we conduct simulations to validate the effectiveess and " i - ' . A
efficiency of the proposed algorithms. different sizes and finite customers sequentially reqogsti
tables for meal. Since customers do not know the exact size
of each table, they have to learn the table sizes according
to some external information. Moreover, when requesting on
table, each customer should take into account the subsequen
customers’ decisions due to the limited dining space in each
table, i.e., the negative network externality. Then, than€se

In a dynamic system, users are usually confronted witRestaurant Game is extended to a dynamic population setting
uncertainty about the system state when making decisioirs.[13], where customers arrive at and leave the restaurant
For example, in the field of wireless communications, whenith a Poisson process. With the general Chinese Restaurant
choosing channels to access, users may not know exactly @@me theoretic framework, we are able to analyze the social
channel capacity and quality. Besides, users have to cemsigarning and strategic decision making of rational usera in
others’ decisions since overwhelming users sharing a samatwork.
channel will inevitably decrease everyone’s average datta r  One underlying assumption in the Chinese Restaurant Game
and increase the end-to-end delay. Such a phenomenorisishat each customer can only choose one table. However,
known as negative network externalityi [1], i.e., the negatiin many real applications, users can have multiple concur-
influence of other users’ behaviors on one user’s reward, dient selections, e.g., mobile terminals can access meiltipl
to which users tend to avoid making the same decisions withannels and users can have multiple cloud storage services
others to maximize their own utilities. Similar phenomesonTo tackle this challenge, in this paper, we propose a new
can be found in our daily life such as selecting online clougame, calledndian Buffet Game, where each customer can
storage service and choosing WiFi access point. Thereforequest multiple dishes for a meal. It is worth pointing out
how users in a dynamic system learn the system state ahdt, there is an Indian Buffet process in machine learning,
make best decisions by considering the influence of othewghich defines a probability distribution over dishes for non
decisions becomes an important research issue in many figddsametric learning methods |14]. By introducing strategi
[2]-[8]. behaviors into the non-strategic Indian Buffet procesg, th

Although users in a dynamic system may only have limitegroposed Indian Buffet game is an ideal framework to study
knowledge about the uncertain system state, they can cohstmultiple dishes selection problem by incorporating social

Index Terms—Indian Buffet Game, non-Bayesian social learn-
ing, negative network externality, decision making, gameheory.
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learning into strategic decision making with negative reatw where each strategy is a combination of dishes and
externality. We will discuss two cases: Indian Buffet game ( means no dish is requested. Obviously, customers’
without budget constraint and with budget constraint, wher  strategy set is finite witi2’ elements. We denote the
with budget constraint, the number of dishes each customer strategy of customef asd; = (dl-_yl,dm, ...,dl-_,M)ﬂ,
can require is limited, and vice versa. The main contrimsio whered; ; = 1 represents customerrequests dishr;
of this paper can be summarized as follows. and otherwise we have; ; = 0. The strategy profile of
1) We propose a general framework, Indian Buffet Game, all customers can be denoted byl x N matrix as
to study how users make multiple concurrent selections follow
under uncertain system state. Specifically, such a frame- diy  dyy
work can reveal how users learn the uncertain system diy  doo
state through social learning and make optimal decisions D =(d;,ds,...,dx)=| .
to maximize their own expected utilities by considering : : : :
negative network externality. div dev -0 dnm
2) In the learning stage of the Indian Buffet Game, we , iility function: The utility of each customer is deter-
propose a non-Bayesian social learning algorithm for  mined by both the quality of the dish and the number of
customers to learn the dish states. Moreover, we prove . stomers who share the same dish due to the negative
theoretically the convergence of the proposed non- nenwork externality. The quality of one dish can be
Bay_eS|an social learning algorithm and show with sim- interpreted as the deliciousness or the size. d,e€ Q
ulations the fast convergence rate. denote the quality of dish; whereQ is the quality space,

3) For the case without budget constraint, we show that 4,4 v, denote the total number of customers requesting
the multiple concurrent dishes selection problem can be jish r;. Then, we can define the utility function of

decoupled to a series of independent elementary Indian ~,stomeri requesting dishr; as
Buffet Game. We then design a recursive best response
algorithm to find the subgame perfect Nash equilibrium wi (g5, Nj) = 9i,j(q5, Nj) — cij(q;, N;j),  (3)
of the elementary Indian Buffet Game. We show that,
under the homogeneous setting, the Nash equilibrium
profile exhibits a threshold structure.

4) For the case with budget constraint, we design a recur-
sive best response algorithm to find the corresponding

dn1
dn,2

(2)

whereg; ;(-) is the gain function and; ;(-) is the cost
function. Note that the utility function is an increasing
function in terms of;, and a decreasing function in terms
of N;, which can be regarded as the characteristic of

subgame perfect Nash equilibrium. We then show that, negative network externality since the more customers

under the homogeneous setting, the Nash equilibrium request dls_h’" the I?SS utility customer can obtain.

profile exhibits an equal-sharing property. We here define the dish sta&a_: {91,9_27 .0}, where
The rest of this paper is organized as follows. The systéfy € © denotes the state of dish,. © is the set of all
model is described in Section Il. While, the Indian BuﬁePOSS'ble states, which is assumed to be finite. The dish state

Game without budget constraint and with budget constraet 6{<eeps unchanged along with time until th? whole Indllan huﬁe
discussed in details in Section Il and Section IV, respeti restaurgnt is remodeled. The aforemenugned quallty df dis
In Section V, we give the theoretical proof of the convergendi» % IS assumed to be a random variable following the

of the proposed non-Bayesian learning rule. Finally, wenshd!iStribution f;(-|6;), which means that the state of the digh
simulation results in Section VI and draw conclusions iﬂetermmesthe distribution of the dish qualjfy The dish state

Section VII. 0 ¢ ©M is unknown to all customers, i.e., they do not know
exactly whether the dish is delicious or not before reqogsti
Il. SYSTEM MODEL Nevertheless, they may have received some advertisements o
A. Indian Buffet Game Formulation gathered some reviews about the restaurant. Such infamati

gan be regarded as some kinds of signals related to the true
state of the restaurant. In such a case, customers can efima
IIhrough those available information, i.e., the informattbey

Let us consider an Indian buffet restaurant which provid
M dishes denoted by, rs,...,r). There areN customers
labeled with 1,2,..., N sequentially requesting dishes fo 4
meal. Each dish can be shared among multiple customers 5” W in ad""?‘”ce and/or gather from other (_:u_stomers.
each customer can select multiple dishes. We assume that all’ .the 'Pd'a” Buffet Game model, we O.“V'de th_e system
N customers are rational in the sense that they will selet,&g1e into time slo_ts e}nd assume that the_ dish qua;ll;tywth
dishes which can maximize their own utilities. In such a casg 1,2,..., M varies independently from time slot to time slot

the multiple dishes selection problem can be formulated 8llowing the corresponding conditional distributiofig-|6; ).

be a non-cooperative game, callediian Buffet Game, as In each time slot, customers make sequential decisions on
follows: ’ ’ which dishes to request. There are mainly two aspects needed

. , to be addressed in the Indian Buffet Game. Firstly, since the
« Players N rational customers in the restaurant. o . . .
. . . _states are unknown, it is very important to design an effecti
« Strategies Since each customer can request multiple

dishes, the strategy set can be defined as 1In the paper, the bold symbols represent vectors, the bglataymbols

represent matrixes, the subscriptienotes the customer index, subscrjpt
X =10, {r1}, . {ri,m2}, o {ri,m2orart 1 (1) denotes the dish index and the supersctiptdenotes time slot index.
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Fig. 1. Time slot structure of the Indian Buffet Game.
social learning rule for customers to learn from others &ttt p?

previous outcomes. Secondly, given customers’ knowledge
about the states, we shall characterize the equilibriunh t
rational customers will adopt in each time slot. In this pape
to ensure fairness among customers, we assume that customer

have different orders of selecting dishes at different taoes. 2) Phase 2 - dish sharingin the second phase, each

In such a case, it is sufficient for customers to only considgf,siomer requests his/her desired dishes and receivelita uti

the expected utilities at current time slot. u;.;(q;, N;) according to the dish quality; and the number of
Moreover, although each customer can request more thfktomersV, sharing the same dish as defined[ih (3). Notice

one dish, the total number of requests is subject t0 theat sinceN, is known to all customers after the decision

ig. 2. Non-Bayesian learning rule for each dish.

following budget constraint: making phase, the customers who requested:disthtime slot
M t can infer the dish quality; from the received utility. Let us
de <L, Vi=12,..,N. (4) denote such inferred information agj)- € Q,si5~ fi(:10;),
j=1 which will serve as the signal in the learning procedure. On

the other hand, the customers who have not requeste

A special case of{4) is that > M, which is equivalent to the time slot ¢, cannot infer the dish quality; and thus have

case without budget constraint where customers can regsesy, jnforreqd signals. Such an asymmetric structure, i.et, no

many dishes as possible. In Section Ill and IV, we will dls;:usevery customer receives signals, makes the learning proble

the Indllan Buffet Game un_der two scenarios. without bUdgaﬁ‘ferent from the traditional social learning settingslahus
constra!nt { = M) and with budget constraint( < M), poses more challenges on learning the true state.
respectively. 3) Phase 3 - social learningWith the observed/inferred
signals in the second phase, customers can update belief
B. Time Slot Structure of Indian Buffet Game through the proposed non-Bayesian social learning rule. As
i ) M illustrated in Figl2, there are mainly two steps in the pigzb
Since the dish staté < ©* is unknown to customers, socjal learning rule. In the first step, each customer ugdate
we introduce the concept of belief to describe customelgis/ner local intermediate belief oy 1Y, and then reveals
1 i — . . . . ! Y
unc(:grtglnty about the state. L?tt) us de(rg)ote the beli@@85= is intermediate belief to others. In the second step, each
{p;’.i= 1,2,..7,JV[},.wh(.erepj = {p; (0).0 69} repré-  customer combines his/her intermediate belief with others
sents customers’ estimation about the probability distidn .y stomers’ intermediate beliefs in a linear mafAn&ased on

of the state of dish; at time slott. Since customers can obtainne Bayes’ theoreni [15], the customiés intermediate belief
some prior information about the dish state, we assume that&, the state of dish-. ') — {M(-t)-(9) § € O}, can be
%,J ? !

: . . v My
customers start with a prior beh@ﬁo)(e) for every statd); . calculated by 7
In this subsection, we will discuss the proposed sociahiear

algorithm, i.e., how customers update their belf) at each Y fj(85f3|9)1?§t71)(9) Voco 5
time slot, and leave the convergence and performance énalys “i,j( )= > f_(S(t)|9)p(t_1)(9)v € 0. (5)
in Section V. e Ji\%ijIYIP;

In Fig.[d, we illustrate the time slot structure of the progss From [3), we can see that when customéas requested;
Indian Buffet Game. At each time slote {1,2...}, there are attime slot¢, he/she will incorporate the corresponding signal
three phases: decision making phase, dish sharing phase igkRihis/her intermediate be|l¢fz(,t7) Otherwise he/she will use
social learning phase. the previous belieb(.t) instead. Then, each customer linearly

1) Phase 1 - decision makindn this first phase, customerscombines his/her intermediate belief with others cust@mer
sequentially make decisions on which dishes to request a@ntermediate beliefs as follow
broadcast their decisions to others. For customehnis/her L&
decision is to maximize his/her expected utility at current ‘" (g) :NZ [d(t) ) 9) + (1 _dz(.t))p(tfl)(o)} . (6)

time slot, based on the belief at current time sRt), the ! il A
decisions of the previous — 1) customerqd;, ds, ...,d;—1}, Voeo, andj=1,2,.., M,

and his/her predictions of the subsequéht— ¢) customers’ .

decisions. Whered;} is the strategy of customeérat time slott.

2|n the sequel, the customer ind&x2, ..., N means the dish request order 3Note that the state learning processes, i.e., the beliedtepdf all dishes
of them, i.e., customei means the-th customer. are independent.



[1l. I NDIAN BUFFET GAME WITHOUT BUDGET A. Recursive Best Response Algorithm

CONSTRAINT . .
In this subsection, we study how to solve the best response

In this section, we study the Indian Buffet Game withOWefined in [(T1L) for each customer. Frof](11), we can see that
budget constraint, which is corresponding to the case Whefigstomeri needs to know:_; to calculate the expected utility
L > M in @). When there is no budget constraint, customers to decide whether to request the dish or not. However, since
should request all dishes that can give them positive eRfdectystomers make decisions sequentially, custoinéoes not
ut|||ty to maximize their total eXpeCted utilities. We wifirst know the decisions of those who are after him/her and thus
show that without budget constraint, whether to requessi dineeds to predict the subsequent customers’ decisions based
is independent of other dishes, i.e. the Indian Buffet Géme t he pelief and known information.
select multiple concurrent dishes is decoupled to a sefies 0| o m; denote the number of customers that will request the

elementary Indian Buffet Game that select a single dishnThgish after customer, then we can write the recursive form of
we present a recursive algorithm that characterize thessubg m; as

perfect equilibrium of the Indian Buffet Game without budge
constraint. Finally, we discuss the homogeneous case where
customers have the same form of utility function to gain more .
insights y 9 Let m;|q,—0 and m;|q4,—1 representm; under the condition
. i—1
To show the independence among different dishes, we figtd; = 0 andd; = 1, respectively. Denote by; = > dx,
define the best response of a customer given other custom k
actions. Let us defina_; = {n_;1,n_;2,...,n_; pr} With

m; = Mit1 + diy1. (12)

) =1
& number of customers choosing the dish before customer
i. Then, the estimated number of customers choosing the dish

n_ij = de (7) excluding customet can be written as follows:
ki .

) ) ) N—i|d;=0 = Ty + My|d; =0, (13)
being the number of customers except custoinehoosing Al g+ i) (14)
.Tj. Let P = {pl,Pg,...,pM}, Wherepj = {p7(9),9 S 9} —ildi=1 =1 ildi=1-
is customers’ belief regarding the state of dishat current Note thati_; |4, o andi_;|4,_1 are different fromm_, in that

time slofl. GivenP andn_;, the best response of customier

d; = (d,d},,....d; 5,)', can be written as the values ofd;;1,d; 1o, ...,dy are estimated instead of true
i 7,19 Y4,29 0 Y N 1

observations.
M According to [(1#), we can compute the expected utility of
d; =BR;(P,n_;) = argmax Z di ;- Uij, (8) customeri whend; =1 as
die{O,l}M j=1
whereU; ; is customeri’s expected utility of requesting dish Uila=1 = Z Z“i(q’”i +mila=1 +1)f(q|0)p(6). (15)
r; given beliefP, which can be calculated by © Q

Since the utility of customer is zero whend; = 0, the best
U, i = ci(gim_i i+ di ) Fi(ai10)p:(0:), (9 ’ _ i '
7 Z Zu @y iy + dig) £3(a3165)p305), - (9) response of customercan be obtained as

o Q
where@ is the quality/signal set ang; € Q. g 1, if Uia,=1 > 0; (16)
From [8) and[(P), we can see that the optimal decision on i 0, otherwise.

one dish is irrelevant to the decisions on others, whichdead _ _
to the independence among different dishes. In such a caséVith (18), we can find the best response of custorer

we have given beliefp, current observation; and predicted number of
dy; = argmax d; ;- Us ;. (10) subsequent customers choosing the dishl,;,—1. To predict
T dige{0,1} ' m;|a,=1, customeri needs to predict the decisions of all

The independence property enables us to simplify our aisaly§Ustomers from + 1 to N. When it comes to custome¥,
by breaking the origin Indian Buffet Game inid elementary SInce he/she knows exactly the decisions of all the previous
Indian Buffet Game, each of which involves only one disRustomers, he/she can find the best response without making
selection. In the remaining of this section, we will focus oRNY Prediction, i.eqny = 0. Along this line, it is intuitive to
the analysis of the elementary Indian Buffet Game and dr8§Sign & recursive algorithm to predit|4,—, by considering

the dish index; for notation simplification. As a result, we &ll possible decisions of customers from+- 1 to N and
can rewrite the best response of custores updatingm; = miy1 + diy1. In Algorithm 1, we show the
recursive algorithm BREIBG(p, n;,) that describes how to

di = BR;(p,n_;) = argmaxd,; - U; (11)  predictm;|4,—; and find the best respongg for customeri,
di€{0,1} given current beliep and observatiom;. Moreover, in order
L if Ui=32%uilg,n—; +1)f(q|0)p(0) >0; to give a correct prediction af:; in the recursion procedure,
= 0, © @ otherwise. we calculate and returm;|qs,—o when the best response of

customer; is 0. In the following, we will prove that the action

4Since we discuss the Indian Buffet Game in one time slot, tperscript profile spggifigd in BREIBG(p, n;, i) is a subgame perfect
(t) is omitted in Section Il and IV. Nash equilibrium for the elementary Indian Buffet Game.



Algorithm 1 BR_EIBG(p, n;, 7)
if Customeri == N then
[[F***%% Eor customer [N******//

if Uy = %:ZUN((],RN +1)f(q|0)p(8) > 0 then
dN +—1 N
else
dy < 0
end if
my < 0
else
[[¥****=% Eor customer 1,2, ..., N — 1*x***x//
[[*** Predicting™**//
(di+17 mi+1) — BR_E|BG(I), n; + 1,71+ 1)
My <= Mip1 + dig1
[[*** Making decisiof**//

if U; =>> wi(q,ni +m;+1)f(q|0)p() > 0 then
e Q
di + 1
else

(dl’Jrl, mi+1) — BR_E'BG(p, N, 1+ 1)
My <= Mig1 + dig1
end if
end if

return (d;, m;)

B. Subgame Perfect Nash Equilibrium

i1 <k<N.
If K = N, we can see that BEEIBG(p, ny, N) assigns the
value ofd},; directly as

{ 1, if Un=>]
(17)

©
07

Sinceny = n_y, we haved; = BRy(p,n_x) in the case
of k = N according to[(Il1), i.ed; is the best response of
customerk.

If & < N, supposed;, is the best response of custorier
derived by BREIBG(p, nk, k). If d; = 0, denotingd), = 1
as the contradiction, we can see from ERBG(p, ni, k) that

Urlaz1=3_ 3 un(g, mutmi+ D (@0)p(6) > 0 = Uil o,

e @

(18)
which means that customgrhas no incentive to deviate from
di = 1 given the prediction of other customers’ decisions. If
d; = 1, denotingd;, = 0 as the contradiction, we can see
from BR_EIBG(p, ng, k) that

ar=1=y > u(g, ni+mi+1)f(ql0)p(9),

e Q
(19)
which means that customgrhas no incentive to deviate from
d; = 0 given the prediction of other customers’ decisions.
Therefore,d; = BR_EIBG(p, nx, k) is the best response of
customerk in the subgame of the elementary Indian Buffet
Game starting with customer Moreover, since the statement

% un(g,nn +1)f(al0)p(6) > 0;

otherwise.

%

N =

Ukla; =0 = 0> Uy

In this subsection, we will show that Algorithid 1 leadss true for vV k satisfyingi < k < N, we know that

to the subgame perfect Nash equilibrium for the elementafy

*d*

¥,di,,...,dy} is the Nash equilibrium for the subgame

Indian Buffet Game. In the following, we first give the formaktarting from customei. Finally, according to the definition
definitions of Nash equilibrium, subgame and subgame perfe¢ subgame perfect Nash equilibrium, we can conclude that

Nash equilibrium as follows.
Definition 1: Given the beliefp = {p(d),0 € O}, the
action profiled* = {d7,d;, ...,d% } is a Nash equilibrium of

Theorem 1is true. [ |

C. Homogeneous Case

the N-customer elementary Indian Buffet Game if and only if

) ) From the previous subsection, we know that a recursive
Vie{l,2,..,N}, df =BR; <p, > d,’;) as given in[(Il).

procedure is needed to determine the best responses of the
ki ) .
Definition 2: A subgame of theN-customer elementary elementary Indian Buffet Game. This is due to the fact that

Indian Buffet Game consists of the following three elementy® need to predict the decisions of all subsequent customers
1) it starts from customer with i = 1,2, ..., N: 2) it has the to determine the best response of a certain customer. In this

belief at current time slotp: 3) it has current observation,, SuPsection, we simplify the game with homogeneous setting

which are the decisions of previous customers. to derive more concise best response.
Definition 3: A Nash equilibrium is a subgame perfec In the homogeneous case, we assume that all customers

Nash equilibrium if and only if it is a Nash equilibrium for "ave the same form of utility function, i.e.:(¢,n) = u(g,n),
every subgame. for all i,¢,n. Under such a setting, the equilibrium can be

With the above definitions, we show in the foIIowingChﬁraCte”Zf? mtr? m]sCh S|tmpler w;’:\y. i Indi Buffet
theorem that the action profile derived by Algoritiiih 1 is emmad t? € /¥-cus om(tet_r ee*.r?_en sfyd*n 'a;* ute
subgame perfect Nash equilibrium of the elementary Indi%rame undernomogeneous se mgsl = .{. i,d5, ..., div} is
Buffet Game. the Nash equilibrium action profile specified by BRBG(),

Theorem 1:Given the beliefp = {p(9), 6 € ©}, the action then V\]I\,e haved; 1if and only if 0 < i < n”, where

profile d* = {d},ds,...,dy}, with d} being determined by n* = Y dj.
i—1

k=1
Proof: Suppose the best response of custoinei = 0.
Then, according to Algorithm 1, we have

a=1+1)f(q0)p(0) < 0.

BR_EIBG(p,n;,i) andn; = ) dj, is a subgame perfect

k=1
Nash equilibrium for the elementary Indian Buffet Game.
Proof: We first show thatdj is the best response of [/, — Zzu(qvm‘ +my
customerk in the subgame starting from customel/ 1 < © 0

(20)



The prediction ofm; under the condition ofl; = 1 relies IV. INDIAN BUFFET GAME WITH BUDGET CONSTRAINT

on _th_e recursive _estimations of all subsequent customersjp, this section, we study the Indian Buffet Game with budget

decisions. In particular, we havei;lq,—1 = dit1la,=1 + constraint, which is corresponding to the case with< M

mii1la,=1, Where the value ofl;[q,—1 can be computed i, @). Unlike previous case, when there is budget constrain

as follows for each customer, the selection among different dishe®is n

|1, if Uitila;=1 > 0; 21) longer independent but coupled. In the following, we will

4=, otherwise, first discuss a recursive algorithm that can characteriee th
subgame perfect Nash equilibrium of the Indian Buffet Game
with budget constraint. Then, we discuss a simplified casie wi

Uit1la,=1 = Z Zu(q,ni + 14+ mip1la,=1 + 1) f(ql0)p(f). homogeneous setting to gain more insights.

e @

diJrl

with

(22) . :
Sincen; + 1+ musi|ar +1 > 1y +mila.—1 + 1 andu(g, n) A. Recursive Best Res!oonse Algorithm
is a decreasing function in terms of we haved;_ 1 |4,—1 = 0 In the budget constraint case, we assume that each customer

according to[(20) and(22). Following the same argument, %@n at most request dishes at each time slot with < M.
can show thatdy|q,—; = 0 for all k = i +1,i 4+ 2,...,N. Insuch a case, the best response of custanean be found

Therefore, we have by the following optimization problem.
N M
df =BR;(P,n_;) = dii Ui, (27
milg=1= Y dilg,=1 = 0. (23) ; (P,n_;) Jrgmax J; g Uigs (27)
k=i+1 N
Then, let us consider the best response of custamet, st. > di; <L <M,
which can be calculated by =1
1, if Uiy > 0; where
d* — ’ i+1 ) ) 24
s { 0, otherwise. (24) Uij =Y uij(g5,ni; +diy) f5(¢;10;)p;(6;).  (28)
© Q

where

From [27), we can see that customés decision on dish

U1 = > Y ul@nis1 + misilaz,=1 + 1)/ (al0)p(0). r; is coupled with all other dishes, and th{is](27) cannot be
© @ (25) decomposed intd/ subproblems. Nevertheless, we can still

. find the best response of each customer by comparing all

Slnceni+1 =n;+d;, mi|di:1 =0 andmi+1|di+1:1 >0, we . . K . .

haven 1 + misild,.,1 +1 > n; +mila,_1 + 1. According possible combinations df dishes. Le® = {¢1, ¢2, ..., du }

to (20), [25) and the decreasing property of utility funotia denote the set of all Comb|nat|2)ns bl SLZ < L) dishes
terms of number of customers sharing the same dish, we haxe of M dishes, whered = > C}, = % and
di,, =0. Lo =1 L= .
i+1 _ /

Following the same argument, we can show thatif= 0, Z:h »_ré¢?éls:e¢r?t’i2n’ v’vf\}ét]ﬁgr Iji On?sproessLIJth é:grr;blnatlon with
thend; = 0forall k € {i+1,i+2,..., N}. Since all decisions h.j 1€P 9 s q 0 €8

can take values of eithér or 1, we haved; = 1 if and only on =(1,1,...,1,0,0,...,0) (29)
if 0 <4< 3 di. This completes the proof. [ | l M-l

From Lemma 1 we can see that there exists a threshof#€ans the customer requests dishr, ..., (1 <1< L). In
structure in the Nash equilibrium of elementary India Buffedther words @ is the candidate strategy set of each customer
Game with homogeneous setting. The threshold structureW§h constraintL.
embodied in the fact that ifly = 0, thend; = 0,V k € Let us dgfi_ne customei’s observation of previous cus-
{i+1,i+2,..,N}, and ifd¥ = 1, thend} = 1,V k ¢ tomers’ decisions as
{1,2,...i—1}. The result can be easily extended to the Indian
Buffet Game without budget constraint under the homoge-

. . . i—1
neous setting as shown in the following theorem. wheren;; = 3" di; is the number of customers choosing
Theorem 2:In the M-dish andN-customer Indian Buffet k=1 ,
Game without budget constraint, if all the customers hagsh 7; before customer. Let m; denote the subsequent
same utility functions, there exists a threshold structire CUStomers’ decisions after customgrwe have its recursive

the Nash equilibrium matriD* denoted by[(R), i.e., for any form as

n; = {Ni1,M2, ..., i M} (30)

row j € {1,2,.., M} of D*, there is aTj € {1,2,...,N} m; = m;y1 + diqr. (31)
satisfying that Then, let
di ;= { (1)’ z ’ i ?’ (26) m|a, =g, = {Mi1ldi=¢n, i 2|di=gy» -+ M M |di=p, }»
5 1 = g- (32)

Proof: This theorem directly follows by extendingmma with m; ;|a,—¢, being the predicted number of subsequent
1 into M independent dishes case. B customers that will request disty under the condition that




d, = ¢h, whered; = (di,ladi,17---7di,M)/ and ¢h c P,

Algorithm 2 BR_IBG(P, n;, )

In such a case, the predicted number of customers choosing Customer; == N then

different dishes excluding customeis
(33)

fl_ildi:¢71 =n; + mi|di:¢h'

According to above definitions, we can write custonisr
expected utility by obtaining dish; whend; = ¢;, as

Uijlai=gn = ®nj Y Y i (@5, mi 5 +mijlai=g, + ons)
o Q

fi(a;105)p;(0;). (34)

Then, the total expected utility customércan obtain with
d; = ¢y is the sum ofU; j|qa,—4, Over all M dishes, i.e.,

M
di=¢n = E Ui
j=1

In such a case, we can find the optingg] which maximizes
customeri’s expected utilitylU; |q,=¢, as follow

U,

di:¢h : (35)

¢, = argmax{U; (36)

brEP

d;=¢p }7

which is the best response of custonier

To obtain the best response [n36), each customer needs to
calculate the expected utilities defined [n](34), which imtu
d,=¢,, I.€., the number of customers

requires to predictn; ;
who choose dishr; after customeri. When it comes to

customerN who has already known all previous customers’

decisions, no prediction is required. Therefore, simiteilgo-
rithm 1, given beliefP = {p1, p2, ..., pas } at current time slot
and current observation; = {n; 1,12, ..., n; a }, We design
another recursive best response algorithm B&(p, n;, )

for solving the Indian Buffet Game with budget constraint return

in Algorithm 2. As we can see, customéf only needs to
compare the expected utilities of requesting/lldishes and

[[F***%% Eor customer N******//
for j =1to M do

Uij = %: ZQ: un j(qj,nn,j + 1) fi(q;105)p;(0;)
end for

i={j1.j2, - jr} + argmax® {U, ;}
je{1,2,....M}
for j =1to M do

if (Ui_’j > O)&& (_] S j) then
dN,j +—1
else
dN,j +~0
end if
end for
mpy = 0
else
[[¥****=% Eor customer 1,2, ..., N — 1*x***x//
[[*** Predicting™**//
for ¢, = ¢1 t0 ¢y do
(de’Jrl, mi+1) — BR_'BG(P, n; + ¢h,i + 1)
m; < m;i1 +dip

Ui(én) = 3 bn,j 2 > wij (g5, mig +mij + bn,j)
M 0 Q
-fi(4;105)p; (6;)
end for

[[*** Making decisiof**//
b« argmax{Us(én)}
S

(dis1,miv1) — BRUBG(P,m; + ¢}, i + 1)
d; < ¢j,
m; < m;y1 +dipq

end if

(ds, my)

chooseL or less thanl dishes with highest positive expected

utilities. Note thatmax” means finding the highesgt values.

For other customers, each one needs to first recursivelygbred pased orDefinition 3, 4 and Swe show in the following
the following customers’ decisions, and then make his/ReT 0 theorem that the action profile obtained by Algorithm 2 is a
decision based on the prediction and current observations.syhgame perfect Nash equilibrium of the Indian Buffet Game

B. Subgame Perfect Nash Equilibrium

Similar to the elementary Indian Buffet Game, we first givgction profileD* = {dr, ds,
formal definitions of the Nash equilibrium and subgame of

Indian Buffet Game with budget constraint.
Definition 4: Given the beliefP = {pi,p2,...,pm}, the
action profileD*

constraintZ, if and only if d} = BR; (P, >~ d; | as defined

k#i
in 22) for all 4. g
Definition 5: A subgame of thelM-dish and N-customer
Indian Buffet Game with budget constraihtconsists of the
following three elements: 1) it starts from customewith
i = 1,2,...,N; 2) it has the belief at current time sld;

{d3,ds, ...,d%} is a Nash equilibrium of
the M-dish andN-customer Indian Buffet Game with budget

with budget constraint.

Theorem 3:Given the beliefP = {pi,p2,...,pam}, the
...,dy}, whered; determined

1—1
by BR_IBG(P,n;,i) andn; = > dj, is a subgame perfect

k=1
Nash equilibrium for the elementary Indian Buffet Game.

Proof: The proof of this theorem is similar to that of
Theorem 1 the details of which are omitted due to page
limitation. The proof outline is that first to show ¢, £ such
thatl < i < N andi < k < N, dj is the best response
of customerk in the subgame starting from customeby
analyzing two casesk = N and k < N. Then, we can
know that {d;,d; ,,...,d}} is the Nash equilibrium for

the subgame starting from customerFinally, according to

3) it has current observatiom,;, which are the decisions of the definition of subgame perfect Nash equilibrium, we can

previous customers.

conclude thafTheorem 3is true. [ |



C. Homogenous Case with Z dy;, < |5F| and a dishr;, with Z dr,, > [5F]-
In the homogenous case, we assume that all customers’ =!

utility functions are the same, i.eu; ;(g,n) = u(g,n); and all In such a case, we havE di ;, > Z d; ;, +1, which leads

dishes are in the same state, i.e., the dish &ate{0, 6, ..., 6}. to i=1

Under such circumstances, we can find some special property

in the Nash equilibrium action profil®* of the Indian Buffet a

Game with budget constraint. First, let us define a parameter Z Zu(q’ Zd ) (a/0)p(9) >

nr which satisfies =t

23wl n)f(al0)p(®) > 0, 1 n < s ZZ (q,Zd”2) (al0)p(6), (39)

Z Zu(q,n)f(q|9)p(9) <0, if n>ng. (37)
From [39), we can see that the customer who has requested

From [37), we can see thai- is the critical value such that thedish 75, can obtain higher utility by unilaterally deviating

utility of nr customers sharing a certain dish is positive bifis’her decision to requesting dist, . Therefore,D* is not

becomes non-positive with one extra customer, i.e., easin df Nash equilibrium of the Indlan Buffet Game with budget

can be requested by at masi customers. In the following constraintZ, and thus we havez di; = | NL| or [NL],

theorem, we will show that, under the homogeneous settihg, a

dishes will be requested by nearly equal number of customeppennr > [5E]. This completes the proof of the theorem.

i.e., the equal-sharing is achieved. u
Theorem 4:In the M-dish andN-customer Indian Buffet

Game with budget constrait, if all M dishes are in the same V. NON-BAYESIAN SOCIAL LEARNING

states and allV customers have the same utility function, the

Nash equilibrium matrixD* denoted by[(2) satisfies that, for

all dishes{r;,j =1,2,...,M},

In the previous two sections, we have analyzed the pro-
posed Indian Buffet Game and characterized the correspgndi
equilibrium. From the analysis, we can see that the equilib-

N nr, if np< {%J, rium highly depends on customers’ beli® = {p,,j =
Zd;‘ = 1,2,..., M}, i.e., the estimated distribution of the dish state
L%J or [%1 , if np > [N_H . 0 ={0;,7 =1,2,..,M}. The more accurate the belief, the

(38) better best response customers can make and thus the better
Proof: We prove this theorem by contradiction as followsutility customers can obtain. Therefore, it is very impatta
. Case Ly < |NE|. for customers to improve their belief by exploiting from ithe
received signals. In this section, we will discuss the lean
process in the proposed Indian Buffet Game. Specifically, we
propose an effective hon-Bayesian social learning algarit
Z di > np or Z d; ;» < np. From [37), we know that that can guarantee customers to learn the true system state.
each dISh can be requested by at mm;stcustomers which Note that since the learning process of different dish state
are independent of each other, in the rest of this section, we
means that 0”'YZ d; ;< nrp may hold. If Z di j» < omit the dish index for notation simplification.

i=1

Suppose that there exists a Nash equilibriddi that
contradlcts with [(3]8) That is, there is a dish such that

nr < [5£], we havez Z df ; < NL, which means that
j=1i=1 A. Strong Convergence and Weak Convergence

there eX|sts at least one custoniethat requests less thah Suppose the true dish statedis given customers’ belief at

dishes, i.e. Z d;,; < L. However, according td (87), we havetime slott, p(*) = {p(t (0),V 0 € O}, their belief at time slot
t+1, ptth = {p(t+1)(0),V 6 € O}, can be updated by

ZZ (q, Z d; ,+1) (g|9)p(0) > 0, which means that the

(t+1 t+1) (t+1) D) (1)
ut|I|ty of customerz can increase if he/she requests dish P - Z { (6) + (1 d; )p (9)} ’
i.e., his/her utility is not maximized unled3* is not a Nash =t 40
equnlbrlum This contradicts with our assumption. Theref Whered(t“) =1 or 0 is customer’s decision, and.! t+1)(6.)
we havez d; ; = ny for all dishes whemy < LNMLJ is the mtermedlate belief updated by Bayesian learning rul
for customers who have requested the dish and received some

. Case Z.nT > [NL], signal s\ ~ £(-|6%),

Similar to the arguments in case 1 we cannot have (t4+1)
% f; d;; < NL, which means tha@ Z di; = NL. Let u (o) = Jlo 10 0(6) voeo. (41)
=r= Yo f(s10)p0)(0)
us assume that there eX|sts a Nash equlllbr]Dmthat con-
tradicts with [3). Smcez Z d:; = NI, there is a dish; Definition 6: A learning rule has thestrong convergence

1= ' property if and only if the learning rule can learn the true



state in probability as follows: Proof: From [40) and[{41), we can see thapit) (6) > 0
O(6) 1 thenp(t“_)(t?) > 0. Since the prior belief satisfigg? (6*) > _
{ Oy g £ g* ’ 0 ast — oo. (42) 0, according to the method of induction, we have the belief
POV OF£07) — sequencegp® (6*)} > 0.
By re-organizing some terms, we can re-write the non- According to [43B), for the true dish staf&, we have
Bayesian learning rule in_(#0) as

+1) g
(D) (%)= 0 e S8 o0
N (t+1) (0%)=p" (0" )‘*‘ Zd p™(67).

1 f(si716) (o

(t+1) (g) — (1) - (t+1) i _ (t) A(s; )
PO =p (0)+ Z;d < YRGE 1 p'(0), (46)
B ’ 43) By taking expectation oveF; on both sides of(46), we have

(43)

with »
AGUHD) Zf (1) 19)5(0 (9). (44) E? [p(t+1)(9*)|}—t} = pW(6*)+

1 wrn) [ F(s8 0107 (t)
- ) (S5 0) ) | 7| p00r). @47
From [43), we can see thats\" ™) is the estimation of the NV ; ‘ A(s{) (| PO ()

1
probablhty distribution of the signad; (1) at next time slot. ] ) . .
With A(s t+1)) we can define a weak convergence compar ce customer’s deusmfﬁ and the signal he/she receives
L) +1)

with the strong convergence in{42), as follows. are independent of each other ov&r, we can separate
Definition 7: A learning rule has thaveak convergence the expectation in the second term [ofl(47) as
roperty if and only if the learning rule can learn the true 1

property y g v [d(t’“l)- (f( (t+ )|9 ) _1> ]__t] _

state in probability as follows: W
= Zf(sw)p(t)(e) — f(s]6%),V s € Q, ast — oo. ' s t+1)|9*
o EY” [d@*l)pﬂ B L1 ‘]—"t . (48)
(45) v )\( £t+1))
Notice that the weak convergence is sufficient for the pro-
posed Indian Buffet Game since the objective of learning hein (48), EY {d(t“)\}"} >0 smced(t+ ) can only bel or 0.
is to find an accurate estimate of the expected utilities sf cuMoreover, sincgy(z) = 1/x is a convex function, according
tomers and thus derive the true best response. Accordif,to (o Jensen’s inequality, we have
we can see that the signal distributi®dry, f;(q;10;)p;(6;) is a

i

sufficient statistic of the expected utility function. Théare, if oo | £ 16%) 2| (g A(sTD) '
we can show that the proposed social learning algorithm have )\(S(Hl)) b= f(s t+1)|9 ) Fi

the weak convergence property, then we are able to derive ! 1

the true best response for customers in the proposed Indian ,\(S(f“))

. . . — % (t+1)) = _
Buffet Game. In the following, we will prove theoretically = Wf(s- 0%) | =1. (49)
that the proposed learning algorithm {n(40) indeed has the Q i
weak convergence property. We will also show with simulatioin such a case, the equation [n(48) is non-negative, which
that the proposed learning algorithm [n40) have the stromgeans that in{47),

convergence property. X
E” [p0 (07|17 = p0(6"). (50)

B. Proof of Weak Convergence Since customers’ beliep*)(*) is bounded within interval
Let us first define a probability tripléQ, 7, P?) for some [0,1], according to the martingale convergence theoreri, [16
specific dish staté € ©, where( is the space containingwe can conclude that the belief sequefip&) (4*)} converges
sequences of realizations of the signaj@ € Q, F is the to a positive number as— oo. [ |
o-field generated by, i.e., a set of subsets @?, and P! Theorem 5:In an Indian Buffet restaurant, suppose that the
is the probability measure induced over sample path€,in true dish state i*, all customers update their belipfusing
ie., P’ = @, f(-|0). Moreover, we us&’[-] to denote the (@0) and their prior beliep(©) satisfiesp®)(6*) > 0, then, the
expectation operator associated with meastfteand define belief sequencép(® (9)} ensures a weak convergence, i.e., for
F: as the smallest-field generated by the past history off s € Q,
all customers’ observations up to time slotTo prove the t)
weak convergence if_(#5), we start by showing that the bellef Z F(sl0)p
sequencdp® (6*)} converges to a positive numberias; oo
by the following lemmas. Proof: Let N'(**1) denote the set of customers who
Lemma 2:Suppose the true dish statedis, all customers request the dish at time slot+ 1. In such a case, we can
update their beliep according to the non-Bayesian learninge-write [46) as
rule in (40) and their prior beliep©) satisfiesp(® (6*) > 0, (4D g
then, the belief sequencp™® (6*)} converges to a positive pY(0%) = Z f(s 197
number as — co. |N(t+1)| END) ftﬂ))

— f(s|60"), ast— 0. (51)

(o), (52)
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where| - | means the cardinality. By taking logarithmic operThe parameterv can be interpreted as the quality of the
ation on both sides of (62) and utilizing the concavity of theignal or customers’ detection probability. When the signa

logarithm function, we have quality w is close to1, the customers’ received signal is
(t+1) g more likely to reflect the true dish state. Note thatshould
10gp(t+1)(9*)zlogp(t)(e*ﬂ-% Zlog%. satisfy w > 1/5; otherwise, the true state can never be
W LeN(M) As; ) learned correctly. With the signals, customers can updhatie t

(53) belief P cooperatively at the next time slot and then make
Then, by taking expectation ové, on both sides of(33), we their decisions sequentially. Once tligh customer makes
have the dishes selection, he/she reveals his/her decisionth&s o
o (t+41) [ o 3 (1) (g customers. After all customers make their decisions, tlegyrb
E [Ing (0 ”E} logp™(¢7) to share the corresponding dishes they have requested. The

(t+1) | gx customeri’s utility of requesting dishr; is given b
1 . ‘ 0 y q g g Yy
SO S o [ AG i L v Y ’
|N(t+1)| )\(S(»t+1)) s R
Nt ‘ Uij = i ZZ\; — G5 (61)
As to the left hand of{{34), according temma 2 we know J
that p(*) (9*) will converge ast — oo, and thus where~; is a utility coefficient for customei since different

o (441 ox ) e customers may have different utilities regarding same réwa
E [10317 (0 )|-7:t} —logp™(0%) = 0. (55) g, is arealization of dish quality, as well as the signal irdeirr
. . by customeri, R is the basis award of requesting each dish
As to the right hand ofl(34), it follows as R =10, N; is the overall number of customers requesting

B 1] F(s8D19%) 2l w |y A(s$TY) - dishr; ande; is the cost of requesting dish as{c; = 1,Vj}.
08 1) t == 08 G Ut From [60) and[{61), we can see that by requesting dish with
Alsi ) 7(s; 167) higher level of state, e.gd,; = 5, customers can obtain higher
(t+1)) 9 SIS g
A(s;

> —log EY”

7 utilities. Howeve.r, custgmers are unk_nown ab_out the diatest
f(s§t+1)|9*) and have to estimate it through social learning. On the pther
—o. (56) hand, we can also see _t_hat the more customers reqqestmg the

same dish, the less utility each customer can obtain, which
In such a case, combining(55) and](56),tas co, we have embodies the negative network externality.

(t+1)) g«
0> Ly llogﬂsi w))

Z [
|N(t+l)| ieEN (t+1) /\(Sz('t+1)

}—t] >0. (57) A, Indian Buffet Game without Budget Constraint

In this subsection, we evaluate the performance of the pro-
By squeeze theorem [117], we have fori € N(**1), ast — posed best response algorithm for Indian Buffet Game withou

00, budget constraint. We first simulate the homogenous case to
o f(s(_tﬂ)'e*) yerify the threshold prqperty of the Nash equilil_ari_um mat_ri
E” |log % Fi|l = i.e., Theorem 2and the influence of different decision making
Alsi ™) orders on customers’ utilities, i.e., making decisionsliear

(S(t+1> 60%) may have advantage. Then, we compare the performance of the
: -0, (58) proposed best response algorithm, i.e., Algorithm 1, whih t
performances of other algorithms under heterogenousgstti
According to Gibbs' inequality [18], thd_(b8) convergesto  For the homogenous case, we set all customers’ utility
if and only if ast — oo, coefficients asy; = 1. The customers’ prior belief(g)egarding
t+1 E41)) 0k t+1 the dish state starts with a uniform distribution, ifg;” (6) =
)‘(SE )) - f(sg )|9 ), v SE ‘e Q. (59) 0.2,V4,0}. The dish state is set a® = [1,2,3,{4?5](, i).e.,

(t+1)) = f
%f(SiH |0 )logW

i

This completes the proof of the theorem. m 0; = j, in order to verify different threshold structures for
different dish states as illustrated Tiheorem 2 At each time
VI. SIMULATION RESULTS slot, we let customers sequentially make decisions aacgrdi

In this section, we conduct simulations to verify the pert_o Algorithm 1 and then update their belief according to the

) . : on-Bayesian learning rule. The game is played time slot by
formance of the proposed non-Bayesian social learning rule . s el (1) .
: ) . ime slot until customers’ belieP'*) converges. In the first
and recursive best response algorithms. We simulate aarindi

Buffet restaurant with five dishe§, ra, s, 74,75} and five Simulation, we set the number of customersMs= 10 to
1,72,73,74,75 T H i
possible dish state#; € {1,2,3,4.5}. Each dish is randomly specifically verify the threshold structure of Nash equiliin

assigned with a state. After requesting some specific ish matrix. Tabldll shows the Nash equilibrium matfix derived

) . . ; . ) qy Algorithm 1 after customers’ beli@(*) converges, where
customer can infer the quality of the dish and receive a signal, .1 column contains one customer’s decisiplis, ¥} and
si; €4{1,2,3,4,5} obeying the conditional distribution that 3> VJ

each row contains all customers’ decisions on one specific
dishr;, i.e., {d; ;,Vi}. From the table, we can see that once
some customer does not request some specific dish, all the

w, if Sij = 6‘]';

fj(si’j'ej) = { (1 — ’LU)/4, |f Si,j 7§ Gj. (60)
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TABLE | : . .
NASH EQUILIBRIUM MATRIX D* 20":&?‘52:”‘)“6 1
1’| =—&—Random
1 23456 7 8 9 10 | g | e T
10 L o
1 11 0 0 0 00O O O O 2 —
9 11 1 1 0 0 0 0 0 o = S
3 11 1 1 1 0 0 00 O z A
T4 11 1 1 1 1 0 0 0 O § 0 —t—"
5 11 1 1 1 1 1 1 0 O »
5
A
_ TZW -10
E 0.5 0.6 0.7 0.8 0.9
Signal Quality w

Fig. 4. Social welfare comparison without budget constrain

as {p§0)(9) = 0.2,Vj,0}. In this simulation, we compare the

5 performance in terms of customers’ social welfare, which is
S;WWF\\M defined as the total utilities of all customers, among dfifier

e P s o = w  kinds of algorithms listed as follows:

E o Best ResponseThe proposed recursive best response

2 algorithm in Algorithm 1 with non-Bayesian learning.
IS — ‘ ‘ » Myopic: At each time slot, customer requests dishes

according to current observatian = {n, ;,vj} without

social learning.
\N\,-»"/_'/ o Learning: At each time slot, each customer requests

ke = = et dishes purely based on the updated béié€f using non-
Time Slotndex Bayesian learning rule without considering the negative
Fig. 3. Each customer's utility in homogenous case withaulget constraint. network externality.

« Random: Each customer randomly requests dishes.
For the myopic and learning strategies, custoiseexpected

subsequent customers will not request that dish, which uglity of requesting dish-; can be calculated by
consistent with the conclusion ifheorem 2 Moreover, since m _ (0)
requesting the dish with higher level of state, ef.,= 5, Uij = ze:zui’j(qj’m’j *dis)f3(a5163)p;7(65), - (62)
can obtain higher utilities, we can see that most customers @
decided to request dish;. From Tablel, we can see that Ui; = ZZUm‘(%‘adi,j)fj(flj|9j)P§-t)(9j)- (63)
customers who make decisions earlier have advantage, e.g., e Q
customer 1 can request all dishes while customer 8 can omth these expected utilities, both myopic and learning al-
request one dish. Therefore, in the second simulation of therithm can be derived by](8). We can see that the myopic
homogenous case, we dynamically adjust the order of decisigirategy does not consider social learning while the learni
making to ensure the fairness. In this simulation, we assumategy does not involve negative network externalitythie
that there are 5 customers with a common utility coefficiegimulation, we average these four algorithms over hundoéds
v = 0.4. In Fig[3, we show all customers’ utilities alongrealizations. Fig.4 shows the performance comparisoritresu
with the simulation time, where the order of decision makinghere the x-axis is the signal quality varying from0.5 to
changes every 100 time slots. In the first 100 time slots, hey.95 and y-axis is the social welfare averaged over hundred
the order of decision making is— 2 — 3 — 4 — 5, we can of time slots. From the figure, we can see with the increase
see that customer 1 obtains the highest utility and cust@mesf signal quality, the social welfare keeps increasing fior a
and 5 receive 0 utility since they have not requested any. disfigorithms. Moreover, we can also see that our best response
In the second 100 time slots, we reverse the decision makigigorithm performs the best while the learning algorithm
order asb — 4 — 3 — 2 — 1, which leads to that customerperforms the worst. This is because, with the learning algo-
1 and 2 receive 0 utility. Therefore, by periodically chargi rithm, customers can gradually learn the true dish states an
the order of decision making, we can expect that the expectédn request the dish without considering other customers’
utilities of all customers will be the same after a period adecisions. In such a case, too many customers may request
time. the same dishes and each customer’s utility is dramatically
For the heterogenous case, we randomize each customéesreased due to the negative network externality. For the
utility coefficient~; between 0 and 1 and set their prior beliemyopic algorithm, although customers can not learn the true
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TABLE I 1% [——Best Response
NASH EQUILIBRIUM MATRIX D* 1.} —e—Myopic
—&— Rand
1 2 3 45 6 7 8 9 10 10| —v— Loarming —
- 1111 11000 0 o
| 111100 1 10 O g s S S e
111110000 1 1 = ’ —
r,/ 0 0 00 1 1 1 1 1 1 3, 4"
s 00001 1 1 1 1 1 A | p———
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’ "
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Fig. 6. Social welfare comparison with budget constraint.

Indian Buffet Game with Budget Constraint
Indian Buffet Game without Budget Constraint]

Difference with Ture Belief

Time Slot Index

Fig. 5. Each customer’s utility in homogenous case with letidgpnstraint.

Time Slot Index

. . , . Fig. 7. Performance of the non-Bayesian social learning. rul
dish states, by considering other customers’ decisionsh ea

customer can avoid requesting dishes which have been over-

requested. Therefore, we can conclude that our proposgidour proposed best response algorithm, i.e., Algorithm
best response algorithm achieve the best performanceghrog, with myopic, learning and random algorithms in terms
considering the negative network externality and usingasocof customers’ social welfare. For the myopic, learning and

learning to estimate the dish state. random algorithms, same budget constraint is adopted, i.e.
each customer can at most requéstishes. Fid.6 shows
B. Indian Buffet Game with Budget Constraint the performance comparison result, from which we can see

ﬁ%at our best response algorithm performs the best while the

In this subsection, we evaluate the performance of t ; .
Jgarnmg algorithm performs the worst.

proposed best response algorithm for Indian Buffet Gamie w
budget constrainf. = 3. Similar to the previous subsection, ) ) )
we start from the homogenous case, where all customefs’ Non-Bayesian Social Learning Performance
utility coefficients are set ag, = 1. In the first simulation, we  In this subsection, we evaluate the performance of the pro-
set all dish states & = 5 to verify the property of the Nash posed non-Bayesian social learning rule. At the beginning o
equilibrium matrix illustrated inTheorem 4 Table[Il shows the simulation, we randomize the states of 5 dishes andrassig
the Nash equilibrium matriD* derived by Algorithm 2. We customers’ prior belief regarding each dish state with amif
can see that each dish has been requested/byL/M = distribution, i.e.,{p;(§ = 0.2),Vj,0}. After requesting the
10x3/5 = 6 customers, which is consistent with the conclusiochosen dishes, each customer can receive signals following
in Theorem 4 In the second simulation, we dynamicallythe conditional distribution defined i _(60) with signal tjtya
change the order of customers’ sequential decision makidg av = 0.6. Fig[4 shows the learning curve of the Indian Buffet
illustrate each customer’s utility along with simulatiomé in  Game without and without budget constraint, respectividhg
Fig.[H, from which we can see similar phenomenons as Indigraxis is the difference between customers’ belief at ech t
Buffet Game without budget constraint. slot P(*) and the true belieP?, which can be calculated by
For the heterogenous case, we randomize each customgPs$?) — P°||,. From the figure, we can see that customers
utility coefficient~; within [0, 1] and compare the performancecan learn the true dish states withif time slots. Moreover,
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the convergence rate of the case without budget constiintii7] J. StewartChapter 15.2 Limits and Continuity, Multivariable Calcalu

faster than that of the case with budget constraint. This is Key Curriculum Press, 2008. - _

b d to the budaet constraint. each customer te JéSé L. M. Surhone, M. T. Tennoe, and S. F. Hensson®ihbs’ Inequality
ecaus_e’ ueto - 9 J . .q Betascript Publishing, 2010.

fewer dishes at each time slot and thus receives fewer signal

regarding the dish state, which will inevitably slow dowre th

customers’ learning speed.

VII. CONCLUSION

In this paper, we we proposed a general framework, called
Indian Buffet Game, to study how users make multiple con-
current selections under uncertain system state. We studie
the game under two different scenarios: customers request
multiple dishes without budget constraint and with budget
constraint, respectively. We designed best responseithgmr
for both cases to find the subgame perfect Nash equilibrium,
and discussed the simplified homogeneous cases to better
understand the proposed Indian Buffet Game. We also de-
signed a non-Bayesian social learning rule for customers to
learn the dish state and theoretically prove its convergenc
Simulation results show that our proposed algorithms &ehie
much better performance than myopic, learning and random
algorithms. Moreover, the proposed non-Bayesian learning
algorithm can help customers learn the true system state wit
a fast convergence rate.
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