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Abstract—How users in a dynamic system perform learning
and make decision become more and more important in nu-
merous research fields. Although there are some works in the
social learning literatures regarding how to construct belief on an
uncertain system state, few study has been conducted on incorpo-
rating social learning with decision making. Moreover, users may
have multiple concurrent decisions on different objects/resources
and their decisions usually negatively influence each other’s
utility, which makes the problem even more challenging. In
this paper, we propose an Indian Buffet Game to study how
users in a dynamic system learn the uncertain system state
and make multiple concurrent decisions by not only considering
the current myopic utility, but also taking into account the
influence of subsequent users’ decisions. We analyze the proposed
Indian Buffet Game under two different scenarios: customers
request multiple dishes without budget constraint and with
budget constraint. For both cases, we design recursive best
response algorithms to find the subgame perfect Nash equilibrium
for customers and characterize special properties of the Nash
equilibrium profile under homogeneous setting. Moreover, we
introduce a non-Bayesian social learning algorithm for customers
to learn the system state, and theoretically prove its convergence.
Finally, we conduct simulations to validate the effectiveness and
efficiency of the proposed algorithms.

Index Terms—Indian Buffet Game, non-Bayesian social learn-
ing, negative network externality, decision making, game theory.

I. I NTRODUCTION

In a dynamic system, users are usually confronted with
uncertainty about the system state when making decisions.
For example, in the field of wireless communications, when
choosing channels to access, users may not know exactly the
channel capacity and quality. Besides, users have to consider
others’ decisions since overwhelming users sharing a same
channel will inevitably decrease everyone’s average data rate
and increase the end-to-end delay. Such a phenomenon is
known as negative network externality [1], i.e., the negative
influence of other users’ behaviors on one user’s reward, due
to which users tend to avoid making the same decisions with
others to maximize their own utilities. Similar phenomenons
can be found in our daily life such as selecting online cloud
storage service and choosing WiFi access point. Therefore,
how users in a dynamic system learn the system state and
make best decisions by considering the influence of others’
decisions becomes an important research issue in many fields
[2]-[3].

Although users in a dynamic system may only have limited
knowledge about the uncertain system state, they can construct

a probabilistic belief regarding the system state through social
learning. In the social learning literatures [4]-[8], different
kinds of learning rules were studied where the essential
objective is to learn the true system state eventually. In most
of these existing works, the learning problem is typically
formulated as a dynamic game with incomplete information
and the main focus is to study whether users can learn the true
system state at the equilibria. However, all of them assumed
that users’ utilities are independent of each other and thusdid
not consider the concept of network externality, which is a
common phenomenon in dynamic systems and can influence
users’ utilities and decision to a large extent.

To study the social learning problem with negative network
externality, in our previous work [9]-[11],we have proposed
a general framework called ”Chinese Restaurant Game”. The
concept is originated from Chinese Restaurant Process [12],
which is used to model unknown distributions in the non-
parametric learning methods in the field of machine learning.
In the Chinese Restaurant Game, there are finite tables with
different sizes and finite customers sequentially requesting
tables for meal. Since customers do not know the exact size
of each table, they have to learn the table sizes according
to some external information. Moreover, when requesting one
table, each customer should take into account the subsequent
customers’ decisions due to the limited dining space in each
table, i.e., the negative network externality. Then, the Chinese
Restaurant Game is extended to a dynamic population setting
in [13], where customers arrive at and leave the restaurant
with a Poisson process. With the general Chinese Restaurant
Game theoretic framework, we are able to analyze the social
learning and strategic decision making of rational users ina
network.

One underlying assumption in the Chinese Restaurant Game
is that each customer can only choose one table. However,
in many real applications, users can have multiple concur-
rent selections, e.g., mobile terminals can access multiple
channels and users can have multiple cloud storage services.
To tackle this challenge, in this paper, we propose a new
game, calledIndian Buffet Game, where each customer can
request multiple dishes for a meal. It is worth pointing out
that, there is an Indian Buffet process in machine learning,
which defines a probability distribution over dishes for non-
parametric learning methods [14]. By introducing strategic
behaviors into the non-strategic Indian Buffet process, the
proposed Indian Buffet game is an ideal framework to study
multiple dishes selection problem by incorporating social
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learning into strategic decision making with negative network
externality. We will discuss two cases: Indian Buffet game
without budget constraint and with budget constraint, where
with budget constraint, the number of dishes each customer
can require is limited, and vice versa. The main contributions
of this paper can be summarized as follows.

1) We propose a general framework, Indian Buffet Game,
to study how users make multiple concurrent selections
under uncertain system state. Specifically, such a frame-
work can reveal how users learn the uncertain system
state through social learning and make optimal decisions
to maximize their own expected utilities by considering
negative network externality.

2) In the learning stage of the Indian Buffet Game, we
propose a non-Bayesian social learning algorithm for
customers to learn the dish states. Moreover, we prove
theoretically the convergence of the proposed non-
Bayesian social learning algorithm and show with sim-
ulations the fast convergence rate.

3) For the case without budget constraint, we show that
the multiple concurrent dishes selection problem can be
decoupled to a series of independent elementary Indian
Buffet Game. We then design a recursive best response
algorithm to find the subgame perfect Nash equilibrium
of the elementary Indian Buffet Game. We show that,
under the homogeneous setting, the Nash equilibrium
profile exhibits a threshold structure.

4) For the case with budget constraint, we design a recur-
sive best response algorithm to find the corresponding
subgame perfect Nash equilibrium. We then show that,
under the homogeneous setting, the Nash equilibrium
profile exhibits an equal-sharing property.

The rest of this paper is organized as follows. The system
model is described in Section II. While, the Indian Buffet
Game without budget constraint and with budget constraint are
discussed in details in Section III and Section IV, respectively.
In Section V, we give the theoretical proof of the convergence
of the proposed non-Bayesian learning rule. Finally, we show
simulation results in Section VI and draw conclusions in
Section VII.

II. SYSTEM MODEL

A. Indian Buffet Game Formulation

Let us consider an Indian buffet restaurant which provides
M dishes denoted byr1, r2, ..., rM . There areN customers
labeled with 1, 2, ..., N sequentially requesting dishes for
meal. Each dish can be shared among multiple customers and
each customer can select multiple dishes. We assume that all
N customers are rational in the sense that they will select
dishes which can maximize their own utilities. In such a case,
the multiple dishes selection problem can be formulated to
be a non-cooperative game, calledIndian Buffet Game, as
follows:

• Players: N rational customers in the restaurant.
• Strategies: Since each customer can request multiple

dishes, the strategy set can be defined as

X =
{

∅, {r1}, ..., {r1, r2}, ..., {r1, r2, ..., rM}
}

, (1)

where each strategy is a combination of dishes and
∅ means no dish is requested. Obviously, customers’
strategy set is finite with2M elements. We denote the
strategy of customeri as di =

(
di,1, di,2, ..., di,M

)′1,
wheredi,j = 1 represents customeri requests dishrj
and otherwise we havedi,j = 0. The strategy profile of
all customers can be denoted by aM × N matrix as
follow

D=(d1,d2, ...,dN )=








d1,1 d2,1 · · · dN,1

d1,2 d2,2 · · · dN,2

...
...

. . .
...

d1,M d2,M · · · dN,M







.(2)

• Utility function: The utility of each customer is deter-
mined by both the quality of the dish and the number of
customers who share the same dish due to the negative
network externality. The quality of one dish can be
interpreted as the deliciousness or the size. Letqj ∈ Q
denote the quality of dishrj whereQ is the quality space,
andNj denote the total number of customers requesting
dish rj . Then, we can define the utility function of
customeri requesting dishrj as

ui,j(qj , Nj) = gi,j(qj , Nj)− ci,j(qj , Nj), (3)

wheregi,j(·) is the gain function andci,j(·) is the cost
function. Note that the utility function is an increasing
function in terms ofqj , and a decreasing function in terms
of Nj , which can be regarded as the characteristic of
negative network externality since the more customers
request dishrj , the less utility customeri can obtain.

We here define the dish stateθ = {θ1, θ2, ...θM}, where
θj ∈ Θ denotes the state of dishrj . Θ is the set of all
possible states, which is assumed to be finite. The dish state
keeps unchanged along with time until the whole Indian buffet
restaurant is remodeled. The aforementioned quality of dish
rj , qj , is assumed to be a random variable following the
distributionfj(·|θj), which means that the state of the dishθj
determines the distribution of the dish qualityqj . The dish state
θ ∈ ΘM is unknown to all customers, i.e., they do not know
exactly whether the dish is delicious or not before requesting.
Nevertheless, they may have received some advertisements or
gathered some reviews about the restaurant. Such information
can be regarded as some kinds of signals related to the true
state of the restaurant. In such a case, customers can estimateθ
through those available information, i.e., the information they
know in advance and/or gather from other customers.

In the Indian Buffet Game model, we divide the system
time into time slots and assume that the dish qualityqj with
j = 1, 2, ...,M varies independently from time slot to time slot
following the corresponding conditional distributionsfj(·|θj).
In each time slot, customers make sequential decisions on
which dishes to request. There are mainly two aspects needed
to be addressed in the Indian Buffet Game. Firstly, since the
states are unknown, it is very important to design an effective

1In the paper, the bold symbols represent vectors, the bold capital symbols
represent matrixes, the subscripti denotes the customer index, subscriptj

denotes the dish index and the superscript(t) denotes time slot index.
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Fig. 1. Time slot structure of the Indian Buffet Game.

social learning rule for customers to learn from others and their
previous outcomes. Secondly, given customers’ knowledge
about the states, we shall characterize the equilibrium that
rational customers will adopt in each time slot. In this paper,
to ensure fairness among customers, we assume that customers
have different orders of selecting dishes at different timeslots2.
In such a case, it is sufficient for customers to only consider
the expected utilities at current time slot.

Moreover, although each customer can request more than
one dish, the total number of requests is subject to the
following budget constraint:

M∑

j=1

di,j ≤ L, ∀ i = 1, 2, ..., N. (4)

A special case of (4) is thatL ≥M , which is equivalent to the
case without budget constraint where customers can requestas
many dishes as possible. In Section III and IV, we will discuss
the Indian Buffet Game under two scenarios: without budget
constraint (L ≥ M ) and with budget constraint (L < M ),
respectively.

B. Time Slot Structure of Indian Buffet Game

Since the dish stateθ ∈ ΘM is unknown to customers,
we introduce the concept of belief to describe customers’
uncertainty about the state. Let us denote the belief asP(t) =
{
p
(t)
j , j = 1, 2, ..,M

}
, wherep(t)

j =
{
p
(t)
j (θ), θ ∈ Θ

}
repre-

sents customers’ estimation about the probability distribution
of the state of dishrj at time slott. Since customers can obtain
some prior information about the dish state, we assume that all
customers start with a prior beliefp(0)j (θ) for every stateθj .
In this subsection, we will discuss the proposed social learning
algorithm, i.e., how customers update their beliefP(t) at each
time slot, and leave the convergence and performance analysis
in Section V.

In Fig. 1, we illustrate the time slot structure of the proposed
Indian Buffet Game. At each time slott ∈ {1, 2...}, there are
three phases: decision making phase, dish sharing phase and
social learning phase.

1) Phase 1 - decision making:In this first phase, customers
sequentially make decisions on which dishes to request and
broadcast their decisions to others. For customeri, his/her
decision is to maximize his/her expected utility at current
time slot, based on the belief at current time slotP(t), the
decisions of the previous(i−1) customers{d1,d2, ...,di−1},
and his/her predictions of the subsequent(N − i) customers’
decisions.

2In the sequel, the customer index1, 2, ...,N means the dish request order
of them, i.e., customeri means thei-th customer.

Signal Signal Signal

(t)µ
1j

(t)µ
2j

(t)µ
Nj

p
(t-1)

j

p
(t)

j

p
(t-1)

j
p
(t-1)

j

Fig. 2. Non-Bayesian learning rule for each dish.

2) Phase 2 - dish sharing:In the second phase, each
customer requests his/her desired dishes and receives a utility
ui,j(qj , Nj) according to the dish qualityqj and the number of
customersNj sharing the same dish as defined in (3). Notice
that sinceNj is known to all customers after the decision
making phase, the customers who requested dishrj at time slot
t can infer the dish qualityqj from the received utility. Let us
denote such inferred information ass(t)i,j ∈ Q, si,j ∼ fj(·|θj),
which will serve as the signal in the learning procedure. On
the other hand, the customers who have not requestedrj at
time slot t, cannot infer the dish qualityqj and thus have
no inferred signals. Such an asymmetric structure, i.e., not
every customer receives signals, makes the learning problem
different from the traditional social learning settings and thus
poses more challenges on learning the true state.

3) Phase 3 - social learning:With the observed/inferred
signals in the second phase, customers can update belief
through the proposed non-Bayesian social learning rule. As
illustrated in Fig. 2, there are mainly two steps in the proposed
social learning rule. In the first step, each customer updates
his/her local intermediate belief onθj , µ

(t)
i,j , and then reveals

this intermediate belief to others. In the second step, each
customer combines his/her intermediate belief with others
customers’ intermediate beliefs in a linear manner3. Based on
the Bayes’ theorem [15], the customeri’s intermediate belief
on the state of dishrj , µ

(t)
i,j = {µ

(t)
i,j(θ), θ ∈ Θ}, can be

calculated by

µ
(t)
i,j (θ) =

fj(s
(t)
i,j |θ)p

(t−1)
j (θ)

∑

Θ fj(s
(t)
i,j |θ)p

(t−1)
j (θ)

, ∀ θ ∈ Θ. (5)

From (5), we can see that when customeri has requestedrj
at time slott, he/she will incorporate the corresponding signal
into his/her intermediate beliefµ(t)

i,j . Otherwise he/she will use

the previous beliefp(t)
j instead. Then, each customer linearly

combines his/her intermediate belief with others customers’
intermediate beliefs as follow

p
(t)
j (θ) =

1

N

N∑

i=1

[

d
(t)
i,jµ

(t)
i,j (θ) +

(

1− d
(t)
i,j

)

p
(t−1)
j (θ)

]

, (6)

∀ θ ∈ Θ, andj = 1, 2, ...,M,

whered(t)i,j is the strategy of customeri at time slott.

3Note that the state learning processes, i.e., the belief update, of all dishes
are independent.
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III. I NDIAN BUFFET GAME WITHOUT BUDGET

CONSTRAINT

In this section, we study the Indian Buffet Game without
budget constraint, which is corresponding to the case where
L ≥M in (4). When there is no budget constraint, customers
should request all dishes that can give them positive expected
utility to maximize their total expected utilities. We willfirst
show that without budget constraint, whether to request a dish
is independent of other dishes, i.e. the Indian Buffet Game that
select multiple concurrent dishes is decoupled to a series of
elementary Indian Buffet Game that select a single dish. Then
we present a recursive algorithm that characterize the subgame
perfect equilibrium of the Indian Buffet Game without budge
constraint. Finally, we discuss the homogeneous case where
customers have the same form of utility function to gain more
insights.

To show the independence among different dishes, we first
define the best response of a customer given other customers’
actions. Let us definen−i = {n−i,1, n−i,2, ..., n−i,M} with

n−i,j =
∑

k 6=i

dk,j (7)

being the number of customers except customeri choosing
rj . Let P = {p1,p2, ...,pM}, wherepj = {pj(θ), θ ∈ Θ}
is customers’ belief regarding the state of dishrj at current
time slot4. GivenP andn−i, the best response of customeri,
d∗
i = (d∗i,1, d

∗
i,2, ..., d

∗
i,M )′, can be written as

d∗
i = BRi(P,n−i) = argmax

di∈{0,1}M

M∑

j=1

di,j · Ui,j , (8)

whereUi,j is customeri’s expected utility of requesting dish
rj given beliefP, which can be calculated by

Ui,j =
∑

Θ

∑

Q

ui,j(qj , n−i,j + di,j)fj(qj |θj)pj(θj), (9)

whereQ is the quality/signal set andqj ∈ Q.
From (8) and (9), we can see that the optimal decision on

one dish is irrelevant to the decisions on others, which leads
to the independence among different dishes. In such a case,
we have

d∗i,j = argmax
di,j∈{0,1}

di,j · Ui,j . (10)

The independence property enables us to simplify our analysis
by breaking the origin Indian Buffet Game intoM elementary
Indian Buffet Game, each of which involves only one dish
selection. In the remaining of this section, we will focus on
the analysis of the elementary Indian Buffet Game and drop
the dish indexj for notation simplification. As a result, we
can rewrite the best response of customeri as

d∗i = BRi(p, n−i) = argmax
di∈{0,1}

di · Ui (11)

=

{
1, if Ui=

∑

Θ

∑

Q

ui(q, n−i + 1)f(q|θ)p(θ)>0;

0, otherwise.

4Since we discuss the Indian Buffet Game in one time slot, the superscript
(t) is omitted in Section III and IV.

A. Recursive Best Response Algorithm

In this subsection, we study how to solve the best response
defined in (11) for each customer. From (11), we can see that
customeri needs to known−i to calculate the expected utility
Ui to decide whether to request the dish or not. However, since
customers make decisions sequentially, customeri does not
know the decisions of those who are after him/her and thus
needs to predict the subsequent customers’ decisions basedon
the belief and known information.

Let mi denote the number of customers that will request the
dish after customeri, then we can write the recursive form of
mi as

mi = mi+1 + di+1. (12)

Let mi|di=0 and mi|di=1 representmi under the condition

of di = 0 and di = 1, respectively. Denote byni =
i−1∑

k=1

dk,

the number of customers choosing the dish before customer
i. Then, the estimated number of customers choosing the dish
excluding customeri can be written as follows:

n̂−i|di=0 = ni +mi|di=0, (13)

n̂−i|di=1 = ni +mi|di=1. (14)

Note thatn̂−i|di=0 andn̂−i|di=1 are different fromn−i in that
the values ofdi+1, di+2, ..., dN are estimated instead of true
observations.

According to (14), we can compute the expected utility of
customeri whendi = 1 as

Ui|di=1 =
∑

Θ

∑

Q

ui(q, ni +mi|di=1 + 1)f(q|θ)p(θ). (15)

Since the utility of customeri is zero whendi = 0, the best
response of customeri can be obtained as

d∗i =

{
1, if Ui|di=1 > 0;
0, otherwise.

(16)

With (16), we can find the best response of customeri
given beliefp, current observationni and predicted number of
subsequent customers choosing the dish,mi|di=1. To predict
mi|di=1, customeri needs to predict the decisions of all
customers fromi + 1 to N . When it comes to customerN ,
since he/she knows exactly the decisions of all the previous
customers, he/she can find the best response without making
any prediction, i.e.,mN = 0. Along this line, it is intuitive to
design a recursive algorithm to predictmi|di=1 by considering
all possible decisions of customers fromi + 1 to N and
updatingmi = mi+1 + di+1. In Algorithm 1, we show the
recursive algorithm BREIBG(p, ni, i) that describes how to
predictmi|di=1 and find the best responsedi for customeri,
given current beliefp and observationni. Moreover, in order
to give a correct prediction ofmi in the recursion procedure,
we calculate and returnmi|di=0 when the best response of
customeri is 0. In the following, we will prove that the action
profile specified in BREIBG(p, ni, i) is a subgame perfect
Nash equilibrium for the elementary Indian Buffet Game.
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Algorithm 1 BR EIBG(p, ni, i)

if Customeri == N then
//****** For customer N******//
if UN =

∑

Θ

∑

Q

uN (q, nN + 1)f(q|θ)p(θ) > 0 then

dN ← 1
else
dN ← 0

end if
mN ← 0

else
//****** For customer 1, 2, ..., N − 1******//
//*** Predicting***//
(di+1,mi+1)← BR EIBG(p, ni + 1, i+ 1)
mi ← mi+1 + di+1

//*** Making decision***//
if Ui =

∑

Θ

∑

Q

ui(q, ni +mi + 1)f(q|θ)p(θ) > 0 then

di ← 1
else
(di+1,mi+1)← BR EIBG(p, ni, i+ 1)
mi ← mi+1 + di+1

di ← 0
end if

end if
return (di,mi)

B. Subgame Perfect Nash Equilibrium

In this subsection, we will show that Algorithm 1 leads
to the subgame perfect Nash equilibrium for the elementary
Indian Buffet Game. In the following, we first give the formal
definitions of Nash equilibrium, subgame and subgame perfect
Nash equilibrium as follows.

Definition 1: Given the beliefp = {p(θ), θ ∈ Θ}, the
action profiled∗ = {d∗1, d

∗
2, ..., d

∗
N} is a Nash equilibrium of

theN -customer elementary Indian Buffet Game if and only if

∀ i ∈ {1, 2, ..., N}, d∗i = BRi

(

p,
∑

k 6=i

d∗k

)

as given in (11).

Definition 2: A subgame of theN -customer elementary
Indian Buffet Game consists of the following three elements:
1) it starts from customeri with i = 1, 2, ..., N ; 2) it has the
belief at current time slot,p; 3) it has current observation,ni,
which are the decisions of previous customers.

Definition 3: A Nash equilibrium is a subgame perfect
Nash equilibrium if and only if it is a Nash equilibrium for
every subgame.

With the above definitions, we show in the following
theorem that the action profile derived by Algorithm 1 is a
subgame perfect Nash equilibrium of the elementary Indian
Buffet Game.

Theorem 1:Given the beliefp = {p(θ), θ ∈ Θ}, the action
profile d∗ = {d∗1, d

∗
2, ..., d

∗
N}, with d∗i being determined by

BR EIBG(p, ni, i) and ni =
i−1∑

k=1

d∗k, is a subgame perfect

Nash equilibrium for the elementary Indian Buffet Game.
Proof: We first show thatd∗k is the best response of

customerk in the subgame starting from customeri, ∀ 1 ≤

i ≤ k ≤ N .
If k = N , we can see that BREIBG(p, nN , N) assigns the

value ofd∗N directly as

d∗N =

{
1, if UN =

∑

Θ

∑

Q

uN(q, nN + 1)f(q|θ)p(θ)>0;

0, otherwise.
(17)

SincenN = n−N , we haved∗k = BRk(p, n−k) in the case
of k = N according to (11), i.e.d∗k is the best response of
customerk.

If k < N , supposed∗k is the best response of customerk
derived by BREIBG(p, nk, k). If d∗k = 0, denotingd′k = 1
as the contradiction, we can see from BREIBG(p, nk, k) that

Uk|d∗

k
=1=

∑

Θ

∑

Q

uk(q, nk+mk+1)f(q|θ)p(θ) > 0 = Uk|d′

k
=0,

(18)
which means that customerk has no incentive to deviate from
d∗k = 1 given the prediction of other customers’ decisions. If
d∗k = 1, denotingd′k = 0 as the contradiction, we can see
from BR EIBG(p, nk, k) that

Uk|d′

k
=0 = 0 > Uk|d∗

k
=1=

∑

Θ

∑

Q

uk(q, nk+mk+1)f(q|θ)p(θ),

(19)
which means that customerk has no incentive to deviate from
d∗k = 0 given the prediction of other customers’ decisions.
Therefore,d∗k = BR EIBG(p, nk, k) is the best response of
customerk in the subgame of the elementary Indian Buffet
Game starting with customeri. Moreover, since the statement
is true for ∀ k satisfying i ≤ k ≤ N , we know that
{d∗i , d

∗
i+1, ..., d

∗
N} is the Nash equilibrium for the subgame

starting from customeri. Finally, according to the definition
of subgame perfect Nash equilibrium, we can conclude that
Theorem 1is true.

C. Homogeneous Case

From the previous subsection, we know that a recursive
procedure is needed to determine the best responses of the
elementary Indian Buffet Game. This is due to the fact that
we need to predict the decisions of all subsequent customers
to determine the best response of a certain customer. In this
subsection, we simplify the game with homogeneous setting
to derive more concise best response.

In the homogeneous case, we assume that all customers
have the same form of utility function, i.e.,ui(q, n) = u(q, n),
for all i, q, n. Under such a setting, the equilibrium can be
characterized in a much simpler way.

Lemma 1: In the N -customer elementary Indian Buffet
Game under homogeneous settings, ifd∗ = {d∗1, d

∗
2, ..., d

∗
N} is

the Nash equilibrium action profile specified by BREIBG(),
then we haved∗i = 1 if and only if 0 ≤ i ≤ n∗, where

n∗ =
N∑

k=1

d∗k.

Proof: Suppose the best response of customeri, d∗i = 0.
Then, according to Algorithm 1, we have

Ui =
∑

Θ

∑

Q

u(q, ni +mi|di=1 + 1)f(q|θ)p(θ) ≤ 0. (20)
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The prediction ofmi under the condition ofdi = 1 relies
on the recursive estimations of all subsequent customers’
decisions. In particular, we havemi|di=1 = di+1|di=1 +
mi+1|di=1, where the value ofdi+1|di=1 can be computed
as follows

di+1|di=1 =

{
1, if Ui+1|di=1 > 0;
0, otherwise,

(21)

with

Ui+1|di=1 =
∑

Θ

∑

Q

u(q, ni + 1 +mi+1|di=1 + 1)f(q|θ)p(θ).

(22)
Sinceni+1+mi+1|di=1+1 ≥ ni+mi|di=1+1 andu(q, n)
is a decreasing function in terms ofn, we havedi+1|di=1 = 0
according to (20) and (22). Following the same argument, we
can show thatdk|di=1 = 0 for all k = i + 1, i + 2, ..., N .
Therefore, we have

mi|di=1 =
N∑

k=i+1

dk|di=1 = 0. (23)

Then, let us consider the best response of customeri + 1,
which can be calculated by

d∗i+1 =

{
1, if Ui+1 > 0;
0, otherwise.

(24)

where

Ui+1 =
∑

Θ

∑

Q

u(q, ni+1 +mi+1|di+1=1 + 1)f(q|θ)p(θ).

(25)
Sinceni+1 = ni+ di, mi|di=1 = 0 andmi+1|di+1=1 ≥ 0, we
haveni+1 +mi+1|di+1=1 +1 ≥ ni +mi|di=1 +1. According
to (20), (25) and the decreasing property of utility function in
terms of number of customers sharing the same dish, we have
d∗i+1 = 0.

Following the same argument, we can show that ifd∗i = 0,
thend∗k = 0 for all k ∈ {i+1, i+2, ..., N}. Since all decisions
can take values of either0 or 1, we haved∗i = 1 if and only

if 0 ≤ i ≤
N∑

k=1

d∗k. This completes the proof.

From Lemma 1, we can see that there exists a threshold
structure in the Nash equilibrium of elementary India Buffet
Game with homogeneous setting. The threshold structure is
embodied in the fact that ifd∗i = 0, then d∗k = 0, ∀ k ∈
{i + 1, i + 2, ..., N}, and if d∗i = 1, then d∗k = 1, ∀ k ∈
{1, 2, ...i−1}. The result can be easily extended to the Indian
Buffet Game without budget constraint under the homoge-
neous setting as shown in the following theorem.

Theorem 2:In the M -dish andN -customer Indian Buffet
Game without budget constraint, if all the customers have
same utility functions, there exists a threshold structurein
the Nash equilibrium matrixD∗ denoted by (2), i.e., for any
row j ∈ {1, 2, ...,M} of D∗, there is aTj ∈ {1, 2, ..., N}
satisfying that

d∗i,j =

{
1, ∀ i < Tj ;
0, ∀ i ≥ Tj .

(26)

Proof: This theorem directly follows by extendingLemma
1 into M independent dishes case.

IV. I NDIAN BUFFET GAME WITH BUDGET CONSTRAINT

In this section, we study the Indian Buffet Game with budget
constraint, which is corresponding to the case withL < M
in (4). Unlike previous case, when there is budget constraint
for each customer, the selection among different dishes is no
longer independent but coupled. In the following, we will
first discuss a recursive algorithm that can characterize the
subgame perfect Nash equilibrium of the Indian Buffet Game
with budget constraint. Then, we discuss a simplified case with
homogeneous setting to gain more insights.

A. Recursive Best Response Algorithm

In the budget constraint case, we assume that each customer
can at most requestL dishes at each time slot withL < M .
In such a case, the best response of customeri can be found
by the following optimization problem.

d∗
i = BRi(P,n−i) = argmax

di∈{0,1}M

M∑

j=1

di,j · Ui,j , (27)

s.t.
N∑

i=1

di,j ≤ L < M,

where

Ui,j =
∑

Θ

∑

Q

ui,j(qj , n−i,j + di,j)fj(qj |θj)pj(θj). (28)

From (27), we can see that customeri’s decision on dish
rj is coupled with all other dishes, and thus (27) cannot be
decomposed intoM subproblems. Nevertheless, we can still
find the best response of each customer by comparing all
possible combinations ofL dishes. LetΦ = {φ1,φ2, ...,φH}
denote the set of all combinations ofl (1 ≤ l ≤ L) dishes

out of M dishes, whereH =
L∑

l=1

Cl
M =

L∑

l=1

M !
l!(M−l)! and

φh = (φh,1, φh,2, ..., φh,M )′ is one possible combination with
φh,j representing whether dishrj is requested, e.g.,

φh = (1, 1, ..., 1
︸ ︷︷ ︸

l

, 0, 0, ..., 0
︸ ︷︷ ︸

M−l

)′ (29)

means the customer requests dishr1, r2, ..., rl (1 ≤ l ≤ L). In
other words,Φ is the candidate strategy set of each customer
with constraintL.

Let us define customeri’s observation of previous cus-
tomers’ decisions as

ni = {ni,1, ni,2, ..., ni,M}, (30)

whereni,j =
i−1∑

k=1

dk,j is the number of customers choosing

dish rj before customeri. Let mi denote the subsequent
customers’ decisions after customeri, we have its recursive
form as

mi = mi+1 + di+1. (31)

Then, let

mi|di=φh
= {mi,1|di=φh

,mi,2|di=φh
, ...,mi,M |di=φh

},
(32)

with mi,j |di=φh
being the predicted number of subsequent

customers that will request dishrj under the condition that
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di = φh, wheredi = (di,1, di,1, ..., di,M )′ and φh ∈ Φ.
In such a case, the predicted number of customers choosing
different dishes excluding customeri is

n̂−i|di=φh
= ni +mi|di=φh

. (33)

According to above definitions, we can write customeri’s
expected utility by obtaining dishrj whendi = φh as

Ui,j |di=φh
= φh,j

∑

Θ

∑

Q

ui,j(qj , ni,j +mi,j |di=φh
+ φh,j)

fj(qj |θj)pj(θj). (34)

Then, the total expected utility customeri can obtain with
di = φh is the sum ofUi,j |di=φh

over allM dishes, i.e.,

Ui|di=φh
=

M∑

j=1

Ui,j |di=φh
. (35)

In such a case, we can find the optimalφ∗
h which maximizes

customeri’s expected utilityUi|di=φh
as follow

φ∗
h = argmax

φh∈Φ

{Ui|di=φh
}, (36)

which is the best response of customeri.
To obtain the best response in (36), each customer needs to

calculate the expected utilities defined in (34), which in turn
requires to predictmi,j |di=φh

, i.e., the number of customers
who choose dishrj after customeri. When it comes to
customerN who has already known all previous customers’
decisions, no prediction is required. Therefore, similar to Algo-
rithm 1, given beliefP = {p1,p2, ...,pM} at current time slot
and current observationni = {ni,1, ni,2, ..., ni,M}, we design
another recursive best response algorithm BRIBG(p,ni, i)
for solving the Indian Buffet Game with budget constraint
in Algorithm 2. As we can see, customerN only needs to
compare the expected utilities of requesting allM dishes and
chooseL or less thanL dishes with highest positive expected
utilities. Note thatmaxL means finding the highestL values.
For other customers, each one needs to first recursively predict
the following customers’ decisions, and then make his/her own
decision based on the prediction and current observations.

B. Subgame Perfect Nash Equilibrium

Similar to the elementary Indian Buffet Game, we first give
formal definitions of the Nash equilibrium and subgame of
Indian Buffet Game with budget constraint.

Definition 4: Given the beliefP = {p1,p2, ...,pM}, the
action profileD∗ = {d∗

1,d
∗
2, ...,d

∗
N} is a Nash equilibrium of

theM -dish andN -customer Indian Buffet Game with budget

constraintL, if and only if d∗
i = BRi

(

P,
∑

k 6=i

d∗
k

)

as defined

in (27) for all i.
Definition 5: A subgame of theM -dish andN -customer

Indian Buffet Game with budget constraintL consists of the
following three elements: 1) it starts from customeri with
i = 1, 2, ..., N ; 2) it has the belief at current time slot,P;
3) it has current observation,ni, which are the decisions of
previous customers.

Algorithm 2 BR IBG(P,ni, i)

if Customeri == N then
//****** For customer N******//
for j = 1 to M do
Ui,j =

∑

Θ

∑

Q

uN,j(qj , nN,j + 1)fj(qj |θj)pj(θj)

end for
j = {j1, j2, ..., jL} ← argmaxL

j∈{1,2,...,M}
{Ui,j}

for j = 1 to M do
if (Ui,j > 0)&& (j ∈ j) then
dN,j ← 1

else
dN,j ← 0

end if
end for
mN = 0

else
//****** For customer 1, 2, ..., N − 1******//
//*** Predicting***//
for φh = φ1 to φH do
(di+1,mi+1)← BR IBG(P,ni + φh, i+ 1)
mi ←mi+1 + di+1

Ui(φh) =
∑

M

φh,j

∑

Θ

∑

Q

ui,j(qj , ni,j +mi,j + φh,j)

·fj(qj |θj)pj(θj)
end for
//*** Making decision***//
φ∗

h ← argmax
φh∈Φ

{Ui(φh)}

(di+1,mi+1)← BR IBG(P,ni + φ∗
h, i+ 1)

di ← φ∗
h

mi ←mi+1 + di+1

end if
return (di,mi)

Based onDefinition 3, 4 and 5, we show in the following
theorem that the action profile obtained by Algorithm 2 is a
subgame perfect Nash equilibrium of the Indian Buffet Game
with budget constraint.

Theorem 3:Given the beliefP = {p1,p2, ...,pM}, the
action profileD∗ = {d∗

1,d
∗
2, ...,d

∗
N}, whered∗

i determined

by BR IBG(P,ni, i) andni =
i−1∑

k=1

d∗
k, is a subgame perfect

Nash equilibrium for the elementary Indian Buffet Game.

Proof: The proof of this theorem is similar to that of
Theorem 1, the details of which are omitted due to page
limitation. The proof outline is that first to show∀ i, k such
that 1 ≤ i ≤ N and i ≤ k ≤ N , d∗

k is the best response
of customerk in the subgame starting from customeri by
analyzing two cases:k = N and k < N . Then, we can
know that {d∗

i ,d
∗
i+1, ...,d

∗
N} is the Nash equilibrium for

the subgame starting from customeri. Finally, according to
the definition of subgame perfect Nash equilibrium, we can
conclude thatTheorem 3is true.
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C. Homogenous Case

In the homogenous case, we assume that all customers’
utility functions are the same, i.e.,ui,j(q, n) = u(q, n); and all
dishes are in the same state, i.e., the dish stateθ = {θ, θ, ..., θ}.
Under such circumstances, we can find some special property
in the Nash equilibrium action profileD∗ of the Indian Buffet
Game with budget constraint. First, let us define a parameter
nT which satisfies







∑

Θ

∑

Q

u(q, n)f(q|θ)p(θ) > 0, if n ≤ nT ;
∑

Θ

∑

Q

u(q, n)f(q|θ)p(θ) ≤ 0, if n > nT .
(37)

From (37), we can see thatnT is the critical value such that the
utility of nT customers sharing a certain dish is positive but
becomes non-positive with one extra customer, i.e., each dish
can be requested by at mostnT customers. In the following
theorem, we will show that, under the homogeneous setting, all
dishes will be requested by nearly equal number of customers,
i.e., the equal-sharing is achieved.

Theorem 4:In the M -dish andN -customer Indian Buffet
Game with budget constraintL, if all M dishes are in the same
states and allN customers have the same utility function, the
Nash equilibrium matrixD∗ denoted by (2) satisfies that, for
all dishes{rj , j = 1, 2, ...,M},

N∑

i=1

d∗i,j =







nT , if nT ≤
⌊
NL
M

⌋
;

⌊
NL
M

⌋
or
⌈
NL
M

⌉
, if nT ≥

⌈
NL
M

⌉
.

(38)
Proof: We prove this theorem by contradiction as follows.

• Case 1:nT ≤
⌊
NL
M

⌋
.

Suppose that there exists a Nash equilibriumD∗ that
contradicts with (38). That is, there is a dishrj′ such that
N∑

i=1

d∗i,j′ > nT or
N∑

i=1

d∗i,j′ < nT . From (37), we know that

each dish can be requested by at mostnT customers, which

means that only
N∑

i=1

d∗i,j′ < nT may hold. If
N∑

i=1

d∗i,j′ <

nT ≤
⌊
NL
M

⌋
, we have

M∑

j=1

N∑

i=1

d∗i,j < NL, which means that

there exists at least one customeri′ that requests less thanL

dishes, i.e.,
M∑

j=1

d∗i′j < L. However, according to (37), we have

∑

Θ

∑

Q

u
(

q,
N∑

i=1

d∗i,j′ +1
)

f(q|θ)p(θ) > 0, which means that the

utility of customeri′ can increase if he/she requests dishrj′ ,
i.e., his/her utility is not maximized unlessD∗ is not a Nash
equilibrium. This contradicts with our assumption. Therefore,

we have
N∑

i=1

d∗i,j = nT for all dishes whennT ≤
⌊
NL
M

⌋
.

• Case 2:nT ≥
⌈
NL
M

⌉
.

Similar to the arguments in case 1, we cannot have
M∑

j=1

N∑

i=1

d∗i,j < NL, which means that
M∑

j=1

N∑

i=1

d∗i,j = NL. Let

us assume that there exists a Nash equilibriumD∗ that con-

tradicts with (38). Since
M∑

j=1

N∑

i=1

d∗i,j = NL, there is a dishrj1

with
N∑

i=1

d∗i,j1 <
⌊
NL
M

⌋
and a dishrj2 with

N∑

i=1

d∗i,j2 >
⌈
NL
M

⌉
.

In such a case, we have
N∑

i=1

d∗i,j2 >
N∑

i=1

d∗i,j1 + 1, which leads

to

∑

Θ

∑

Q

u
(

q,
N∑

i=1

d∗i,j1 + 1
)

f(q|θ)p(θ) >

∑

Θ

∑

Q

u
(

q,

N∑

i=1

d∗i,j2

)

f(q|θ)p(θ), (39)

From (39), we can see that the customer who has requested
dish rj2 can obtain higher utility by unilaterally deviating
his/her decision to requesting dishrj1 . Therefore,D∗ is not
a Nash equilibrium of the Indian Buffet Game with budget

constraintL, and thus we have
N∑

i=1

d∗i,j =
⌊
NL
M

⌋
or
⌈
NL
M

⌉
,

whennT ≥
⌈
NL
M

⌉
. This completes the proof of the theorem.

V. NON-BAYESIAN SOCIAL LEARNING

In the previous two sections, we have analyzed the pro-
posed Indian Buffet Game and characterized the corresponding
equilibrium. From the analysis, we can see that the equilib-
rium highly depends on customers’ beliefP = {pj , j =
1, 2, ...,M}, i.e., the estimated distribution of the dish state
θ = {θj , j = 1, 2, ...,M}. The more accurate the belief, the
better best response customers can make and thus the better
utility customers can obtain. Therefore, it is very important
for customers to improve their belief by exploiting from their
received signals. In this section, we will discuss the learning
process in the proposed Indian Buffet Game. Specifically, we
propose an effective non-Bayesian social learning algorithm
that can guarantee customers to learn the true system state.
Note that since the learning process of different dish stateθj
are independent of each other, in the rest of this section, we
omit the dish indexj for notation simplification.

A. Strong Convergence and Weak Convergence

Suppose the true dish state isθ∗, given customers’ belief at
time slott, p(t) = {p(t)(θ), ∀ θ ∈ Θ}, their belief at time slot
t+ 1, p(t+1) = {p(t+1)(θ), ∀ θ ∈ Θ}, can be updated by

p(t+1)(θ) =
1

N

N∑

i=1

[

d
(t+1)
i µ

(t+1)
i (θ) +

(

1− d
(t+1)
i

)

p(t)(θ)
]

,

(40)
whered(t+1)

i = 1 or 0 is customeri’s decision, andµ(t+1)
i (θ)

is the intermediate belief updated by Bayesian learning rule
for customers who have requested the dish and received some
signals(t+1)

i ∼ f(·|θ∗),

µ
(t+1)
i (θ) =

f(s
(t+1)
i |θ)p(t)(θ)

∑

Θ f(s
(t+1)
i |θ)p(t)(θ)

, ∀ θ ∈ Θ. (41)

Definition 6: A learning rule has thestrong convergence
property if and only if the learning rule can learn the true
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state in probability as follows:
{

p(t)(θ∗)→ 1,
p(t)(∀ θ 6= θ∗)→ 0,

as t→∞. (42)

By re-organizing some terms, we can re-write the non-
Bayesian learning rule in (40) as

p(t+1)(θ)=p(t)(θ)+
1

N

N∑

i=1

d
(t+1)
i

(

f(s
(t+1)
i |θ)

λ(s
(t+1)
i )

− 1

)

p(t)(θ),

(43)
with

λ(s
(t+1)
i ) =

∑

Θ

f(s
(t+1)
i |θ)p(t)(θ). (44)

From (44), we can see thatλ(s(t+1)
i ) is the estimation of the

probability distribution of the signals(t+1)
i at next time slot.

With λ(s
(t+1)
i ), we can define a weak convergence, compared

with the strong convergence in (42), as follows.
Definition 7: A learning rule has theweak convergence

property if and only if the learning rule can learn the true
state in probability as follows:

λ(s) =
∑

Θ

f(s|θ)p(t)(θ)→ f(s|θ∗), ∀ s ∈ Q, as t→∞.

(45)
Notice that the weak convergence is sufficient for the pro-

posed Indian Buffet Game since the objective of learning here
is to find an accurate estimate of the expected utilities of cus-
tomers and thus derive the true best response. According to (9),
we can see that the signal distribution

∑

Θ fj(qj |θj)pj(θj) is a
sufficient statistic of the expected utility function. Therefore, if
we can show that the proposed social learning algorithm have
the weak convergence property, then we are able to derive
the true best response for customers in the proposed Indian
Buffet Game. In the following, we will prove theoretically
that the proposed learning algorithm in (40) indeed has the
weak convergence property. We will also show with simulation
that the proposed learning algorithm in (40) have the strong
convergence property.

B. Proof of Weak Convergence

Let us first define a probability triple(Ω,F ,Pθ) for some
specific dish stateθ ∈ Θ, whereΩ is the space containing
sequences of realizations of the signalss

(t)
i ∈ Q, F is the

σ-field generated byΩ, i.e., a set of subsets ofΩ, and P
θ

is the probability measure induced over sample paths inΩ,
i.e., Pθ =

⊗∞
t=1 f(·|θ). Moreover, we useEθ[·] to denote the

expectation operator associated with measureP
θ, and define

Ft as the smallestσ-field generated by the past history of
all customers’ observations up to time slott. To prove the
weak convergence in (45), we start by showing that the belief
sequence{p(t)(θ∗)} converges to a positive number ast→∞
by the following lemmas.

Lemma 2:Suppose the true dish state isθ∗, all customers
update their beliefp according to the non-Bayesian learning
rule in (40) and their prior beliefp(0) satisfiesp(0)(θ∗) > 0,
then, the belief sequence{p(t)(θ∗)} converges to a positive
number ast→∞.

Proof: From (40) and (41), we can see that ifp(t)(θ) > 0,
thenp(t+1)(θ) > 0. Since the prior belief satisfiesp(0)(θ∗) >
0, according to the method of induction, we have the belief
sequence{p(t)(θ∗)} > 0.

According to (43), for the true dish stateθ∗, we have

p(t+1)(θ∗)=p(t)(θ∗)+
1

N

N∑

i=1

d
(t+1)
i

(

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

− 1

)

p(t)(θ∗).

(46)
By taking expectation overFt on both sides of (46), we have

E
θ∗

[

p(t+1)(θ∗)|Ft

]

= p(t)(θ∗)+

1

N

N∑

i=1

E
θ∗

[

d
(t+1)
i

(

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

− 1

)∣
∣
∣
∣
Ft

]

p(t)(θ∗). (47)

Since customer’s decisiond(t+1)
i and the signal he/she receives

s
(t+1)
i are independent of each other overFt, we can separate

the expectation in the second term of (47) as

E
θ∗

[

d
(t+1)
i ·

(

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

− 1

)∣
∣
∣
∣
Ft

]

=

E
θ∗

[

d
(t+1)
i

∣
∣Ft

]

· Eθ∗

[(

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

− 1

)∣
∣
∣
∣
Ft

]

. (48)

In (48), Eθ
[

d
(t+1)
i

∣
∣Ft

]

≥ 0 sinced(t+1)
i can only be1 or 0.

Moreover, sinceg(x) = 1/x is a convex function, according
to Jensen’s inequality, we have

E
θ∗

[

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

∣
∣
∣
∣
Ft

]

≥

(

E
θ∗

[

λ(s
(t+1)
i )

f(s
(t+1)
i |θ∗)

∣
∣
∣
∣
Ft

])−1

=




∑

Q

λ(s
(t+1)
i )

f(s
(t+1)
i |θ∗)

f(s
(t+1)
i |θ∗)





−1

= 1. (49)

In such a case, the equation in (48) is non-negative, which
means that in (47),

E
θ∗

[

p(t+1)(θ∗)|Ft

]

≥ p(t)(θ∗). (50)

Since customers’ beliefp(t)(θ∗) is bounded within interval
[0,1], according to the martingale convergence theorem [16],
we can conclude that the belief sequence{p(t)(θ∗)} converges
to a positive number ast→∞.

Theorem 5:In an Indian Buffet restaurant, suppose that the
true dish state isθ∗, all customers update their beliefp using
(40) and their prior beliefp(0) satisfiesp(0)(θ∗) > 0, then, the
belief sequence{p(t)(θ)} ensures a weak convergence, i.e., for
∀ s ∈ Q,

λ(s) =
∑

Θ

f(s|θ)p(t)(θ)→ f(s|θ∗), as t→∞. (51)

Proof: Let N (t+1) denote the set of customers who
request the dish at time slott + 1. In such a case, we can
re-write (46) as

p(t+1)(θ∗) =
1

|N (t+1)|

∑

i∈N (t+1)

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

p(t)(θ∗), (52)
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where| · | means the cardinality. By taking logarithmic oper-
ation on both sides of (52) and utilizing the concavity of the
logarithm function, we have

log p(t+1)(θ∗)≥ log p(t)(θ∗)+
1

|N (t+1)|

∑

i∈N (t+1)

log
f(s

(t+1)
i |θ∗)

λ(s
(t+1)
i )

.

(53)
Then, by taking expectation overFt on both sides of (53), we
have

E
θ∗

[

log p(t+1)(θ∗)|Ft

]

− log p(t)(θ∗)

≥
1

|N (t+1)|

∑

i∈N (t+1)

E
θ∗

[

log
f(s

(t+1)
i |θ∗)

λ(s
(t+1)
i )

∣
∣
∣
∣
Ft

]

. (54)

As to the left hand of (54), according toLemma 2, we know
that p(t)(θ∗) will converge ast→∞, and thus

E
θ∗

[

log p(t+1)(θ∗)|Ft

]

− log p(t)(θ∗)→ 0. (55)

As to the right hand of (54), it follows

E
θ∗

[

log
f(s

(t+1)
i |θ∗)

λ(s
(t+1)
i )

∣
∣
∣
∣
Ft

]

= −Eθ∗

[

log
λ(s

(t+1)
i )

f(s
(t+1)
i |θ∗)

∣
∣
∣
∣
Ft

]

≥ − logEθ∗

[

λ(s
(t+1)
i )

f(s
(t+1)
i |θ∗)

∣
∣
∣
∣
Ft

]

= 0. (56)

In such a case, combining (55) and (56), ast→∞, we have

0 ≥
1

|N (t+1)|

∑

i∈N (t+1)

E
θ∗

[

log
f(s

(t+1)
i |θ∗)

λ(s
(t+1)
i )

∣
∣
∣
∣
Ft

]

≥ 0. (57)

By squeeze theorem [17], we have for∀ i ∈ N (t+1), ast →
∞,

E
θ∗

[

log
f(s

(t+1)
i |θ∗)

λ(s
(t+1)
i )

∣
∣
∣
∣
Ft

]

=

∑

Θ

f(s
(t+1)
i |θ∗) log

f(s
(t+1)
i |θ∗)

λ(s
(t+1)
i )

→ 0, (58)

According to Gibbs’ inequality [18], the (58) converges to0
if and only if ast→∞,

λ(s
(t+1)
i )→ f(s

(t+1)
i |θ∗), ∀ s

(t+1)
i ∈ Q. (59)

This completes the proof of the theorem.

VI. SIMULATION RESULTS

In this section, we conduct simulations to verify the per-
formance of the proposed non-Bayesian social learning rule
and recursive best response algorithms. We simulate an Indian
Buffet restaurant with five dishes{r1, r2, r3, r4, r5} and five
possible dish statesθj ∈ {1, 2, 3, 4, 5}. Each dish is randomly
assigned with a state. After requesting some specific dishrj ,
customeri can infer the quality of the dish and receive a signal
si,j ∈ {1, 2, 3, 4, 5} obeying the conditional distribution that

fj(si,j |θj) =

{
w, if si,j = θj;
(1− w)/4, if si,j 6= θj.

(60)

The parameterw can be interpreted as the quality of the
signal or customers’ detection probability. When the signal
quality w is close to1, the customers’ received signal is
more likely to reflect the true dish state. Note thatw should
satisfy w ≥ 1/5; otherwise, the true state can never be
learned correctly. With the signals, customers can update their
belief P cooperatively at the next time slot and then make
their decisions sequentially. Once thei-th customer makes
the dishes selection, he/she reveals his/her decisions to other
customers. After all customers make their decisions, they begin
to share the corresponding dishes they have requested. The
customeri’s utility of requesting dishrj is given by

ui,j = γi
si,jR

Nj

− cj , (61)

whereγi is a utility coefficient for customeri since different
customers may have different utilities regarding same reward,
si,j is a realization of dish quality, as well as the signal inferred
by customeri, R is the basis award of requesting each dish
asR = 10, Nj is the overall number of customers requesting
dishrj andcj is the cost of requesting dishrj as{cj = 1, ∀j}.
From (60) and (61), we can see that by requesting dish with
higher level of state, e.g.,θj = 5, customers can obtain higher
utilities. However, customers are unknown about the dish state
and have to estimate it through social learning. On the other
hand, we can also see that the more customers requesting the
same dish, the less utility each customer can obtain, which
embodies the negative network externality.

A. Indian Buffet Game without Budget Constraint

In this subsection, we evaluate the performance of the pro-
posed best response algorithm for Indian Buffet Game without
budget constraint. We first simulate the homogenous case to
verify the threshold property of the Nash equilibrium matrix,
i.e.,Theorem 2, and the influence of different decision making
orders on customers’ utilities, i.e., making decisions earlier
may have advantage. Then, we compare the performance of the
proposed best response algorithm, i.e., Algorithm 1, with the
performances of other algorithms under heterogenous settings.

For the homogenous case, we set all customers’ utility
coefficients asγi = 1. The customers’ prior belief regarding
the dish state starts with a uniform distribution, i.e.,{p(0)j (θ) =
0.2, ∀j, θ}. The dish state is set asΘ = [1, 2, 3, 4, 5], i.e.,
θj = j, in order to verify different threshold structures for
different dish states as illustrated inTheorem 2. At each time
slot, we let customers sequentially make decisions according
to Algorithm 1 and then update their belief according to the
non-Bayesian learning rule. The game is played time slot by
time slot until customers’ beliefP(t) converges. In the first
simulation, we set the number of customers asN = 10 to
specifically verify the threshold structure of Nash equilibrium
matrix. Table I shows the Nash equilibrium matrixD∗ derived
by Algorithm 1 after customers’ beliefP(t) converges, where
each column contains one customer’s decisions{di,j , ∀j} and
each row contains all customers’ decisions on one specific
dish rj , i.e., {di,j , ∀i}. From the table, we can see that once
some customer does not request some specific dish, all the



11

TABLE I
NASH EQUILIBRIUM MATRIX D

∗

1 2 3 4 5 6 7 8 9 10

r1 1 1 0 0 0 0 0 0 0 0
r2 1 1 1 1 0 0 0 0 0 0
r3 1 1 1 1 1 0 0 0 0 0
r4 1 1 1 1 1 1 0 0 0 0
r5 1 1 1 1 1 1 1 1 0 0
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Fig. 3. Each customer’s utility in homogenous case without budget constraint.

subsequent customers will not request that dish, which is
consistent with the conclusion inTheorem 2. Moreover, since
requesting the dish with higher level of state, e.g.,θ5 = 5,
can obtain higher utilities, we can see that most customers
decided to request dishr5. From Table I, we can see that
customers who make decisions earlier have advantage, e.g.,
customer 1 can request all dishes while customer 8 can only
request one dish. Therefore, in the second simulation of the
homogenous case, we dynamically adjust the order of decision
making to ensure the fairness. In this simulation, we assume
that there are 5 customers with a common utility coefficient
γi = 0.4. In Fig. 3, we show all customers’ utilities along
with the simulation time, where the order of decision making
changes every 100 time slots. In the first 100 time slots, where
the order of decision making is1→ 2→ 3→ 4→ 5, we can
see that customer 1 obtains the highest utility and customer4
and 5 receive 0 utility since they have not requested any dish.
In the second 100 time slots, we reverse the decision making
order as5 → 4 → 3 → 2 → 1, which leads to that customer
1 and 2 receive 0 utility. Therefore, by periodically changing
the order of decision making, we can expect that the expected
utilities of all customers will be the same after a period of
time.

For the heterogenous case, we randomize each customer’s
utility coefficientγi between 0 and 1 and set their prior belief
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Fig. 4. Social welfare comparison without budget constraint.

as{p(0)j (θ) = 0.2, ∀j, θ}. In this simulation, we compare the
performance in terms of customers’ social welfare, which is
defined as the total utilities of all customers, among different
kinds of algorithms listed as follows:

• Best Response: The proposed recursive best response
algorithm in Algorithm 1 with non-Bayesian learning.

• Myopic: At each time slot, customeri requests dishes
according to current observationni = {ni,j , ∀j} without
social learning.

• Learning: At each time slot, each customer requests
dishes purely based on the updated beliefP(t) using non-
Bayesian learning rule without considering the negative
network externality.

• Random: Each customer randomly requests dishes.
For the myopic and learning strategies, customeri’s expected
utility of requesting dishrj can be calculated by

Um
i,j =

∑

Θ

∑

Q

ui,j(qj , ni,j + di,j)fj(qj |θj)p
(0)
j (θj), (62)

U l
i,j =

∑

Θ

∑

Q

ui,j(qj , di,j)fj(qj |θj)p
(t)
j (θj). (63)

With these expected utilities, both myopic and learning al-
gorithm can be derived by (8). We can see that the myopic
strategy does not consider social learning while the learning
strategy does not involve negative network externality. Inthe
simulation, we average these four algorithms over hundredsof
realizations. Fig. 4 shows the performance comparison result,
where the x-axis is the signal qualityw varying from0.5 to
0.95 and y-axis is the social welfare averaged over hundred
of time slots. From the figure, we can see with the increase
of signal quality, the social welfare keeps increasing for all
algorithms. Moreover, we can also see that our best response
algorithm performs the best while the learning algorithm
performs the worst. This is because, with the learning algo-
rithm, customers can gradually learn the true dish states and
then request the dish without considering other customers’
decisions. In such a case, too many customers may request
the same dishes and each customer’s utility is dramatically
decreased due to the negative network externality. For the
myopic algorithm, although customers can not learn the true
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TABLE II
NASH EQUILIBRIUM MATRIX D

∗

1 2 3 4 5 6 7 8 9 10

r1 1 1 1 1 1 1 0 0 0 0
r2 1 1 1 1 0 0 1 1 0 0
r3 1 1 1 1 0 0 0 0 1 1
r4 0 0 0 0 1 1 1 1 1 1
r5 0 0 0 0 1 1 1 1 1 1
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Fig. 5. Each customer’s utility in homogenous case with budget constraint.

dish states, by considering other customers’ decisions, each
customer can avoid requesting dishes which have been over-
requested. Therefore, we can conclude that our proposed
best response algorithm achieve the best performance through
considering the negative network externality and using social
learning to estimate the dish state.

B. Indian Buffet Game with Budget Constraint

In this subsection, we evaluate the performance of the
proposed best response algorithm for Indian Buffet Game with
budget constraintL = 3. Similar to the previous subsection,
we start from the homogenous case, where all customers’
utility coefficients are set asγi = 1. In the first simulation, we
set all dish states asθj = 5 to verify the property of the Nash
equilibrium matrix illustrated inTheorem 4. Table II shows
the Nash equilibrium matrixD∗ derived by Algorithm 2. We
can see that each dish has been requested byN ∗ L/M =
10∗3/5 = 6 customers, which is consistent with the conclusion
in Theorem 4. In the second simulation, we dynamically
change the order of customers’ sequential decision making and
illustrate each customer’s utility along with simulation time in
Fig. 5, from which we can see similar phenomenons as Indian
Buffet Game without budget constraint.

For the heterogenous case, we randomize each customer’s
utility coefficientγi within [0, 1] and compare the performance
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Fig. 7. Performance of the non-Bayesian social learning rule.

of our proposed best response algorithm, i.e., Algorithm
2, with myopic, learning and random algorithms in terms
of customers’ social welfare. For the myopic, learning and
random algorithms, same budget constraint is adopted, i.e.,
each customer can at most request3 dishes. Fig. 6 shows
the performance comparison result, from which we can see
that our best response algorithm performs the best while the
learning algorithm performs the worst.

C. Non-Bayesian Social Learning Performance

In this subsection, we evaluate the performance of the pro-
posed non-Bayesian social learning rule. At the beginning of
the simulation, we randomize the states of 5 dishes and assign
customers’ prior belief regarding each dish state with uniform
distribution, i.e.,{pj(θ = 0.2), ∀j, θ}. After requesting the
chosen dishes, each customer can receive signals following
the conditional distribution defined in (60) with signal quality
w = 0.6. Fig. 7 shows the learning curve of the Indian Buffet
Game without and without budget constraint, respectively.The
y-axis is the difference between customers’ belief at each time
slot P(t) and the true beliefPo, which can be calculated by
||P(t) − Po||2. From the figure, we can see that customers
can learn the true dish states within15 time slots. Moreover,
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the convergence rate of the case without budget constraint is
faster than that of the case with budget constraint. This is
because, due to the budget constraint, each customer requests
fewer dishes at each time slot and thus receives fewer signals
regarding the dish state, which will inevitably slow down the
customers’ learning speed.

VII. C ONCLUSION

In this paper, we we proposed a general framework, called
Indian Buffet Game, to study how users make multiple con-
current selections under uncertain system state. We studied
the game under two different scenarios: customers request
multiple dishes without budget constraint and with budget
constraint, respectively. We designed best response algorithms
for both cases to find the subgame perfect Nash equilibrium,
and discussed the simplified homogeneous cases to better
understand the proposed Indian Buffet Game. We also de-
signed a non-Bayesian social learning rule for customers to
learn the dish state and theoretically prove its convergence.
Simulation results show that our proposed algorithms achieve
much better performance than myopic, learning and random
algorithms. Moreover, the proposed non-Bayesian learning
algorithm can help customers learn the true system state with
a fast convergence rate.
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