
1

Value Function Discovery in Markov Decision

Processes with Evolutionary Algorithms
Martijn Onderwater, Sandjai Bhulai, and Rob van der Mei

Abstract—In this paper we introduce a novel method for
discovery of value functions for Markov Decision Processes
(MDPs). This method, which we call Value Function Discovery
(VFD), is based on ideas from the Evolutionary Algorithm field.
VFD’s key feature is that it discovers descriptions of value
functions that are algebraic in nature. This feature is unique,
because the descriptions include the model parameters of the
MDP. The algebraic expression of the value function discovered by
VFD can be used in several scenarios, e.g., conversion to a policy
(with one-step policy improvement) or control of systems with
time-varying parameters. The work in this paper is a first step
towards exploring potential usage scenarios of discovered value
functions. We give a detailed description of VFD and illustrate its
application on an example MDP. For this MDP we let VFD discover
an algebraic description of a value function that closely resembles
the optimal value function. The discovered value function is
then used to obtain a policy, which we compare numerically
to the optimal policy of the MDP. The resulting policy shows
near-optimal performance on a wide range of model parameters.
Finally, we identify and discuss future application scenarios of
discovered value functions.

Index Terms—Markov Decision Processes, Evolutionary Algo-
rithms, Value Function, Genetic Programming.

I. INTRODUCTION

M
ARKOV Decision Processes (MDPs) form a popular

modelling framework for scenarios involving sequential

decision making under uncertainty. It has been applied to a

wide range of stochastic control problems, such as inventory

management, telephone call admission in a call center, routing

in telecommunication networks, and financial portfolio man-

agement.

Once a scenario is modelled with an MDP, various tech-

niques are available to, e.g., obtain optimal policies for

decision making. These techniques fall into two categories,

namely numeric and algebraic techniques. In the former

category, the most well-known methods are value iteration,

policy evaluation, and policy iteration [1]. Value iteration is

an iterative technique for finding an optimal control policy and

the corresponding costs. With policy evaluation one can find

the costs of a given policy, and policy iteration improves and

evaluates policies iteratively.

This work is part of the project Realisation of Reliable and Secure Resi-
dential Sensor Platforms of the Dutch program IOP Generieke Communicatie,
number IGC1020, supported by the Subsidieregeling Sterktes in Innovatie.

Martijn Onderwater and Rob van der Mei are at the Center for Mathematics
and Computer Science (CWI), Science Park 123, 1098 XG Amsterdam, The
Netherlands. E-mail: {m.onderwater,r.d.van.der.mei}@cwi.nl

Sandjai Bhulai, and the other two authors, are at VU University Amsterdam,
Faculty of Sciences , De Boelelaan 1081a, 1081 HV Amsterdam, The
Netherlands. E-mail: s.bhulai@vu.nl

The aforementioned techniques are numeric in nature, so

when, e.g., the model parameters change they have to be

reapplied to the updated scenario. Ideally, one would like to

solve an MDP algebraically and obtain the optimal policy (with

the model parameters included). This approach is, however,

often not feasible due to complexities of the model. In those

cases, algebraic techniques might be used to show structural

properties of the value function, which in turn give information

about the structure of the optimal policy. For instance, a

convex value function might imply that the optimal policy is

a switching curve (see [2] for an example).

If the optimal policy cannot be obtained algebraically, a

near-optimal policy is often sufficient for practical purposes. In

this context, a technique called one-step policy improvement,

introduced in [3], can be applied. It starts with a policy for

which the MDP can be solved algebraically, yielding the corre-

sponding value function. Then, by applying one step of policy

iteration algebraically, this results in an improved policy. Since

policy iteration typically makes the largest improvements in

the first steps (see [4]), this improved policy is often near-

optimal.

In this paper we describe a novel method (dubbed VFD,

for value function discovery) that is aimed at obtaining an

algebraic description of a value function. VFD is based on

a numeric technique from the Evolutionary Algorithm (EA)

family known as Genetic Programming (GP). One of the stan-

dard applications of GP is discovering algebraic descriptions of

functions based on samples of this function at various points.

To be precise, suppose a function V (x) is unknown, but that

we do have samples V (si) at various points si. Applying GP

allows discovery of an approximate algebraic expression for

V (x) (denoted by Ṽ (x)) such that V (si) ≈ Ṽ (si) for all

sample points (si, V (si)). VFD applies GP to sample points

of the optimal value function of an MDP, thereby allowing

discovery of an algebraic description of the optimal value

function.

The aim of the current paper is to introduce the concept of

value function discovery using GP, and to illustrate its potential

with a simple use case. For this use case, we convert the value

function discovered by VFD to a policy and show that it has

near-optimal performance. Then, we discuss other scenarios

where we expect discovered value functions to be of use.

In the remainder of this paper we describe VFD and illustrate

it by applying VFD to an example MDP. We start with an

review of related work in Section II, and an introduction to GP

in Section III. Then, we continue with a detailed description

of VFD in Section IV and of the example MDP in Section V.

Numerical results are presented in Section VI, followed by

2

a discussion in Section VII and concluding remarks in Sec-

tion VIII.

II. RELATED WORK

VFD is based on GP, details about which can be found in the

books [5], [6], and Section III contains a short description as

well. Other members of the EA family are described in various

textbooks, such as [5] and [7]. An introduction to MDPs is

given in, e.g., books [4] and [8].

The literature combining EAs and MDPs mostly uses EAs

to learn policies, whereas VFD learns value functions. In [9]

the authors introduce evolutionary policy iteration, where the

policy improvement step is integrated with an EA to itera-

tively obtain better policies. This procedure is shown to have

monotone convergence for finite action spaces. The authors

of [10] enhance the work in [9] by generating policies in the

population via sub-MDPs, thereby speeding up convergence.

From an application perspective, [11] provides an example

of how EAs and MDPs can be used in a practical scenario.

[12] compares an EA to policy iteration, and provides a useful

reminder that policy iteration typically converges quickly and

thus often outperforms an EA-approach.

Closest to our research is [13] by Lin et al., where the

authors construct a piecewise linear approximation of the value

function. In this approach, the linear elements are learned

using a Genetic Algorithm. Like VFD, Lin’s approach results

in an approximation of the value function. However, the

value function discovered by VFD is a closed-form expression,

whereas [13] finds a piecewise linear approximation. Having

a closed-form expression is preferable when, e.g., studying

the structure of the MDP using the discovered value function.

Also, [13] focuses on convex value functions, and VFD does

not make any assumptions about the structure of the value

function. Another difference is the type of EA that is used: [13]

employs a Genetic Algorithm, whilst VFD is based on a GP.

In particular, [13] does not use the tree-based representation

inherent to GP. Finally, [13] does not allow for the placement

of model parameters in the approximate value function.

A paper that does use GP in an MDP-context is [14]. The

authors loosely explore the combination of GP and MDPs on

an example of a war game and show that it performs well

compared to a pure MDP-based technique. Their approach

differs from the one described in this paper, because they use

GP to learn policies and not value functions, as VFD does.

Summarizing, the distinguishing feature of VFD is its focus

on discovering value functions. Although existing methods in

literature choose to learn policies, learning value functions has

significant advantages as well. In particular, VFD has the

following benefits:

• VFD applied to optimal value functions yields policies

with near-optimal performance.

• For MDPs that allow for an explicit closed-form expres-

sion of the optimal value function, VFD can find this

optimal value function with arbitrary precision. Thus, it

can also find the optimal policy for such MDPs.

• VFD produces an algebraic expression of a policy that

includes the parameters of the MDP. Consequently, this

policy is still applicable if the parameters of the model

change in value. This allows for dynamic control in time-

varying systems, without making the underlying model

time-dependent.

• Value functions discovered by VFD can help gain an un-

derstanding of the structure of the optimal value function,

policy, and model.

• Alternative techniques for analyzing MDPs often require

knowledge of structural properties of the value function

(e.g., gradient-based method such as local search). These

properties can be discovered by VFD.

• For many MDPs a near-optimal policy does not require

a very accurate fit of the optimal value function. Thus,

learning value functions can quickly result in good poli-

cies.

• VFD works with any MDP without requiring any changes

to the algorithm.

III. GENETIC PROGRAMMING

Since VFD is based on GP, we give a short description of

this technique in this section. GP maintains a population of

individuals and iteratively attempts to improve this population

over several generations. In each generation, the current popu-

lation generates new offspring by combining individuals. The

underlying idea of GP is that combining good individuals leads,

over time, to offspring that are better than their predecessors.

As mentioned in the introduction, one of the standard appli-

cations of GP is finding an algebraic description of a function

based on numeric approximations. Hence, the individuals in

the population used by GP have a specific representation that

allow them to be interpreted as functions. This representation

is discussed in more detail in Section III-A. The two operators

involved in generating offspring are described in Sections III-B

and III-C. Determining the quality of an individual is related

to VFD’s application of GP to MDPs, so we postpone it until

Section IV.

A. GP representation

GP uses trees to represent a function, and several of these

trees together form the population. Fig. 1a illustrates a tree

representation of the function V (x) = x(x+1)
2µ(1−ρ) . The operators

(/, ∗,+,−) from this expression are in the internal nodes of

the tree, whereas the leafs contain the variables (x), parameters

(ρ, µ), and constants (1, 2). In this paper we only use the oper-

ators (/, ∗,+,−) shown in the example, but the representation

is flexible and also allows for, e.g., exponents, square roots,

and logarithms. Finally, note that a representation of a tree is

not unique: the tree in Fig. 1b is also a valid representation

of V (x) = x(x+1)
2µ(1−ρ) . Unicity of representation is, however, not

required by VFD. In fact, this feature is used by VFD to include

a preference for short trees.

3

/

*

+

x 1

x

*

2 *

−

1 ρ

µ

(a)

/

*

+

1 x

x

*

*

−

1 ρ

µ

2

(b)

Fig. 1. Two trees, each a representation of V (x) =
x(x+1)
2µ(1−ρ)

/

∗

+

x 1

x

∗

2 ∗

−

1 ρ

µ

(a) Tree 1 before recombination

+

∗

x /

1 µ

+

x 3.3

(b) Tree 2 before recombi-
nation

/

∗

+

x 1

x

∗

2 /

1 µ

(c) Tree 1 after recombination

+

∗

x ∗

−

1 ρ

µ

+

x 3.3

(d) Tree 2 after recombination

Fig. 2. The recombination operator illustrated on the two trees in Figs. 2a
and 2b. The encircled subtrees are exchanged, resulting in the trees in Figs. 2c
and 2d

/

∗

+

x 1

x

∗

2 ∗

−

1 ρ

µ

(a) Before mutation

/

∗

+

x 1

x

∗

2 x

(b) After mutation

Fig. 3. Mutation removes the subtree of the encircled node in Fig. 3a
(representing the term µ(1 − ρ)) and replaces it by a randomly generated
subtree. The new subtree contains, in this case, only the element x and is
encircled in Fig. 3b

B. GP recombination operator

GP uses the recombination operator to generate two new

offspring from two parents. The recombination operator takes

the following two steps:

1) Randomly select a node in each of the two trees.

2) Exchange the two subtrees.

The procedure is applied in Fig. 2 to the two trees in Figs. 2a

and 2b. The subtree with the encircled ∗ as root in Fig. 2a

is exchanged with the subtree with root / (also encircled),

resulting in the trees in Figs. 2c and 2d. This combines the

functions V (x) = x(x+1)
2µ(1−ρ) and V (x) = x 1

µ
+ x + 3.3 to

V (x) = x(x+1)

2 1

µ

and V (x) = x(1− ρ)µ+ x+ 3.3.

C. GP mutation operator

Applying the GP paradigm with only the recombination

operator already results in the desired improvement of the

population over time. This improvement is, however, limited

by the information present in the population at the start of the

algorithm. The mutation operator discussed in this section is

used by GP to insert new information into the population. The

performance of GP is determined partly by carefully balancing

the application of the mutation and recombination operators.

Mutation of trees is done via the following procedure:

1) Select one of the nodes of the tree uniformly at random.

2) Remove this node and the subtree attached to it.

3) Randomly generate a new subtree.

4) Insert this new subtree in the place of the old subtree.

Fig. 3 illustrates the procedure for the tree for V (x) = x(x+1)
2µ(1−ρ)

which we saw earlier, displayed again in Fig. 3a. The circled

node is selected for mutation and removed from the tree, to-

gether with its subtree. It is replaced by a randomly generated

subtree, in this case a simple tree with only one element

(x). The result is shown in Fig. 3b, with the newly added

tree encircled. Thus, mutation changes V (x) from
x(x+1)
2µ(1−ρ) to

x(x+1)
2x .

IV. VALUE FUNCTION DISCOVERY

The previous section illustrated how GP learns an algebraic

description of a function. VFD relies on this technique to learn

the value function of an MDP. To describe the algorithm we

introduce some notation. The number of parameters of the

MDP is denoted by m, the optimal value function of the MDP

by V (·), and the VFD discovered function by Ṽ (·).

A. Preparing input from the MDP

Before VFD starts, it requires input from the MDP in the form

of sample point sets. Here, we describe how value iteration is

used to generate sample points, but, generally speaking, other

methods can be used as well. Sample points are generated

using the following steps:

1) Generate random values for each of the m parameters.

2) Run value iteration for the MDP.

3) Select several sample points that together capture the

shape of the value function. Each sample point is de-

noted by s, and the pairs (s, V (s)) together form the

sample point set Sq . The selection of sample points

typically depends on the MDP.

4

4) Save these sample points into a file.

5) Repeat steps 1–4 for several combinations of the m
parameters. Choosing the number of combinations is

again MDP-specific, but we denote it by Q for now. This

results in sample point sets Sq , with q ∈ [0, Q− 1].

The purpose of having multiple sets is to allow VFD to position

the parameters of the model. If we would only use one set, VFD

could use the value of a parameter instead of the parameter

itself and still discover a good value function. VFD would,

however, most likely perform poorly on a set generated with

different parameters.

Note that VFD starts by running value iteration on the

MDP, which yields an optimal policy. So why not use this

policy instead of running VFD? Well, the policy found by

value iteration is numeric in nature, whereas VFD produces an

algebraic policy. Consequently, the policy resulting from VFD

can be applied to parameters that are not used to generate the

sample points. This feature is illustrated later in this paper in

Section VI-C.

If it is not possible to run value iteration, for instance when

the MDP is too large, other techniques can be used to generate

sample points as well. An example of this is TD-learning (see

[8]), which provides numerical approximations of the value

function using simulations.

B. Overview

A pseudo code listing of VFD is shown in Algorithm 1, and

in the following paragraphs we describe the steps involved. We

start with a high-level description of Algorithm 1, and then

move on to a detailed description of the functions involved

(Algorithms 2 and 3). During these descriptions we encounter

the first of several parameters of VFD, which are listed in

Table I (together with assigned values that we use later in

an example MDP in Section V). Functions and parameters are

written in SMALLCAPS throughout the text, including trailing

brackets () for functions.

The algorithm starts on line 2 by loading the sample point

sets of the MDP from the files. These are used later to

determine the error of a tree. Next, the population is initialized

by filling it with LAMBDA randomly generated trees. Lines

4–20 describe the steps taken by GP: first, MU children are

generated using mutation and recombination (lines 6–11).

Then, their error is calculated, they are added to the population,

and the population is sorted from smallest error to largest (lines

13-15). Survivor selection removes LAMBDA trees from the

population, leaving MU individuals (line 16). This procedure

is repeated until convergence (line 4).

Repeating the GP-like procedure described above eventually

leads to a population where most trees are the same or similar.

When this happens, the algorithm loses its ability to learn and

evolve, and the population is said to have lost diversity. VFD

deals with this by checking the level of diversity in each gener-

ation (with the ISPOPULATIONDIVERSE() function in line 17).

When this check indicates that too much diversity has been

lost, VFD reinitializes the population (line 18) with random

Algorithm 1 Value function discovery (VFD)

1: function VFD()

2: samplePointSets ← readSamplePointSets()

3: population ← initPopulation()

4: while not isConverged() do

5: repeat

6: if apply mutation then

7: children ← mutate(selectParent());

8: else

9: children ←recombine(selectParent(),

10: selectParent());

11: end if

12: until MU children generated

13: setError(children)

14: population ← population + children

15: sort(population)

16: survivorSelection()

17: if not isPopulationDiverse() then

18: initPopulation()

19: end if

20: end while

21: return population[0]

22: end function

trees and restarts the search process. Upon convergence VFD

returns the discovered tree (line 21).

C. Mutation, recombination, diversity, and convergence

The remaining paragraphs in this section describe the func-

tions used in Algorithm 1 in more detail. We start with the

MUTATE() function on line 1 of Algorithm 2. Mutation occurs

according to the GP paradigm, as described in Section III-C:

a random point in the tree is selected (line 2) and the subtree

at that point is replaced by a randomly generated subtree

(lines 3 and 4). Similarly, the recombination operator from

Section III-B is reflected in the RECOMBINE() method. Both

functions rely on a numbering of the nodes in a tree, which

VFD assigns using a root-left-right walk of the tree.

Every time that VFD generates one or two new individuals,

it decides whether to use mutation or recombination. This is

done probabilistically via the command line parameters AP-

PLYMUTATIONPROB: with probability APPLYMUTATIONPROB

VFD uses mutation, with probability 1-APPLYMUTATIONPROB

it uses recombination.

Checking for diversity is done in ISPOPULATIONDI-

VERSE(). It finds the error of the best tree (the first in the

population) and the worst tree (the last in the population)

at lines 26 and 27 respectively. Diversity is then calculated

via “error of worst tree - error of best tree”/ “error of best

tree” at line 28, which is then compared to a threshold DI-

VERSITY_THRESHOLD, another parameter of VFD. If diversity

drops below the threshold, diversity is considered to be lost

(line 29).

The next function is INITPOPULATION(), which periodi-

cally reinserts diversity into the population. The entire pop-

ulation is cleared (line 17) and reinitialized with randomly

5

generated trees (lines 18–20). The final steps in lines 21 and

22 calculate the error of each tree and sort the population (on

error). Readers familiar with GP most likely notice that VFD’s

treatment of diversity differs from common practice in GP.

We added a paragraph on the reasons for this difference in

Section VII-A.

The final function in Algorithm 2 is the ISCONVERGED()

function, which determines whether the current best individual

is good enough to allow stopping of VFD. If its error is lower

than the threshold value MIN_ERROR (specified by the user),

VFD stops.

D. Bloat in GP

Note that if recombination exchanges, for instance, the

root of the first tree with the leaf of the second tree, the

second tree can increase in depth and in number of elements.

Over time, this typically leads to very large and deep trees,

with negative effects on both speed and memory usage. This

problem, common to all GP instances, is called bloat and must

be dealt with by VFD. It does this by enforcing a maximum

on the number of elements in the tree, as specified by the

command line parameter MAXELEMENTSINTREE. This feature

is not shown in the MUTATE() and RECOMBINE() functions

in Algorithm 2 to keep the listing readable, but it is present in

the implementation of VFD. Additionally, the SORT() function,

which sorts a given set of trees by error in ascending order, has

a built-in preference for trees with a small number of elements.

Specifically, if two trees have equal error, the sort function puts

the tree with the fewest elements in front. This gives VFD a

slight inclination to discover short trees and prevent bloat.

E. Parent selection and survivor selection

We continue with the SELECTPARENT() function in Algo-

rithm 3, which is used by the mutation and recombination

operators to determine which parent(s) to act upon. Following

convention in the GP community, VFD relies on a strategy

called over-selection when selecting parents. In this strategy

the population is split into two groups, one containing ‘good’

parents and the other with ‘bad parents’. The two groups are

determined by taking the sorted population and defining the

first ‘GOODPCT’ percent individuals as good parents, and the

remaining trees as bad parents.

The parameter GOODPCT is automatically determined by

VFD from the size of the population MU. For this, VFD again

relies on GP-conventions and uses values ranging from 4 −
32%, as described in [5, Table 6.4]. Once the split point z1 is

known (line 2), a parent is selected from the good parents with

probability SELECTFROMGOODPROB and from the bad parents

otherwise. The selection is done in lines 4 and 6. Note that for

recombination the SELECTPARENT() function is called twice.

The SURVIVORSELECTION() function is used by VFD in

each generation after the LAMBDA children have been gener-

ated. Its purpose is to select MU survivors from among the

MU+LAMBDA individuals currently in the population. VFD

uses a greedy approach and simply removes the LAMBDA

Algorithm 2 VFD continued

1: function MUTATE(parent)

2: z ← randint [0,numElements(parent)−1]

3: newSubtree ← generateRandomTree()

4: parent→setSubtree(z, newSubtree)

5: end function

6:

7: function RECOMBINE(parent1, parent2)

8: z1 ← randint [0,numElements(parent1)−1]

9: z2 ← randint [0,numElements(parent2)−1]

10: subTree1 ← parent1→getSubtree(z1)

11: subTree2 ← parent2→getSubtree(z2)

12: parent1→setSubtree(z1, subtree2)

13: parent2→setSubtree(z2, subtree1)

14: end function

15:

16: function INITPOPULATION()

17: population ← List()

18: for k ← 0, . . . ,LAMBDA−1 do

19: population[k] ← generateRandomTree()

20: end for

21: setError(population)

22: sort(population)

23: end function

24:

25: function ISPOPULATIONDIVERSE(population)

26: min ← population[0]→getError()

27: max ← population[MU−1]→getError()

28: div ← (max-min)/min

29: return div > DIVERSITY_THRESHOLD

30: end function

31:

32: function ISCONVERGED()

33: return population[0]→getError() < MIN_ERROR

34: end function

children with the worst error from the population (line 12).

F. Goodness of fit (error)

So far we have not yet discussed how the error of a tree

is defined. This definition ties the GP approach of VFD to the

MDP setting of finding a good value function. The error of a

tree must be chosen in such a way that a low error corresponds

to a good fit of the function described by the tree on the sample

points obtained from the MDP. For VFD the error Eq on sample

point set q is calculated via

Eq = max
(s,V (s))∈Sq

|Ṽ (s)− V (s)|

V (s)
. (1)

Here, Ṽ (·) is the function discovered by VFD and V (·) the

optimal value function found by value iteration. The error

Eq is calculated in the function CALCERROR() in line 19 in

Algorithm 3. The error of a tree is then defined as

E = max
q∈[0,Q−1]

Eq,

6

Algorithm 3 VFD continued

1: function SELECTPARENT()

2: z1 ← floor(MU·GOODPCT)

3: if select from good then

4: z2 ← randint[0, z1 − 1]

5: else

6: z2 ← randint[z1, MU−1]

7: end if

8: return population[z2]

9: end function

10:

11: function SURVIVORSELECTION(population)

12: remove population[MU:MU+LAMBDA−1]

13: end function

14:

15: function SETERROR(trees)

16: for tree in trees do

17: maxError ← 0
18: for q ← 0, . . . , Q− 1 do

19: err ← calcError(samplePointSets[q], tree)

20: maxError ← max (err, maxError)

21: end for

22: tree→setError(maxError)

23: end for

24: end function

i.e., the error of the tree is its worst error achieved on

all the sample point sets (see also steps 15-24 of function

SETERROR() in Algorithm 3).

The error in Eq. (1) uses a relative measure of error by

dividing by V (s), contrary to, e.g., the mean squared error.

This ensures that sample points that naturally have large values

for V (s) do not dominate the search process of VFD. Also,

we use “max(s,V (s))∈Sq
” rather than “mean(s,V (s))∈Sq

” (i.e.,

MAPE). With MAPE, a large relative error for a small sample

point s can be mitigated by a small relative error of large

sample points. In the context of MDPs, however, small states

are usually visited more often, so we require a better fitting

value function in such states. At larger states we want to allow

larger errors. Therefore, using “max(s,V (s))∈Sq
” in VFD is

preferable over MAPE.

V. EXAMPLE MDP

We illustrate the configuration, application, and output of

VFD on an example MDP. This MDP is suitable for demon-

strating VFD because

• No known expression for the optimal policy or value

function exists, so we have no prior knowledge that VFD

can capture the optimal value function.

• The system resembles a combination of an M/M/1 and

M/M/2 system, which helps us when generating sample

point sets and when choosing MAXELEMENTSINTREE.

• The system is relatively simple and easy to understand.

• The state space is small, which keeps run times of VFD

short.

λ
µ1

µ2

Fig. 4. An M/M/2 system with control, where jobs (arriving with rate λ)
from the queue have to be assigned to either a fast server S1 (with service
rate µ1) or to a slow server S2 (with service rate µ2 < µ1)

In the following paragraphs we describe how VFD is con-

figured and, in doing so, we have to choose the parameters of

VFD. Table I contains all parameters available to VFD, and the

values we assign to them in this section. When choosing these

values, the aim is to discover a value function for the system

with the objective to obtain a near-optimal policy. Thus, in

particular, we are not looking for the best parameter settings

(which we postpone to future research).

A. Model formulation

Fig. 4 shows a queue with Poisson arrivals (rate λ) and two

servers with exponential service rates µ1 and µ2 (µ1 > µ2).

The jobs in the queue have to be assigned non-preemptively to

either the fast server (S1) or the slower server (S2), assuming

one is available. This decision is taken after a job completion,

as well as after a job arrival. We model this scenario as an

MDP, with state (x, i) ∈ X = N×{0, 1}. Here, x denotes the

number of jobs in the queue and S1, and i the number of jobs

in S2. Our aim is to minimize the average number of jobs in

the system. From [15] we have the optimality equation

g + V (x, i) = x+ i

+ λW (x+ 1, i)

+ µ1W ((x− 1)+, i)

+ µ2W (x, 0),

(2)

with

W (x, 0) = min{V (x, 0);V (x− 1, 1)} if x > 0,

W (0, i) = V (0, i),

W (x, 1) = V (x, 1).

(3)

The function W (x, i) reflects the decision to be taken after

the occurrence of an event. In particular, if S2 is empty the

decision is between leaving the job in the queue (V (x, 0)) or

moving one job from the queue to S2 (V (x−1, 1)), as shown

in Eq. (3). If the queue and S1 are empty then moving a job

is not possible and the state of the system does not change

(W (0, i) = V (0, i)). Also, if the second server is busy the

state does not change (W (x, 1) = V (x, 1)). In Eq. (2), the

first line reflects the number of jobs in the system (x+ i). The

second, third, and fourth line correspond to the decision upon

a job arrival, a job completion at S1, and a job completion

at S2, respectively. Finally, the constant g is the time-average

costs of the system.

Note that this formulation allows preemptive behavior, since

W (1, 0) = min{V (1, 0);V (0, 1)} can result in moving a

job in service at S1 to S2. However, since µ1 > µ2 and

rates are exponential, such a move would result in a longer

7

TABLE I
THE PARAMETERS AVAILABLE TO VFD, THE VALUES ASSIGNED TO THEM

FOR THE EXAMPLE MDP IN SECTION V, AND THE VALUES ALLOWED BY

VFD

Parameters Name In example Allowed values

Command line

SEED 3151492 [0,MAXINT]

MU 1000 [1,MAXINT]

LAMBDA 500 [1,MAXINT]

MAXELEMENTSINTREE 125 [1,MAXINT]

MIN_ERROR 0.2 [0,1]

APPLYMUTATIONPROB 0.2 [0,1]

DIVERSITY_THRESHOLD 0.01 [0,MAXDOUBLE]

Parent selection

GOODPCT 0.32 [0,1]

SELECTFROMGOODPROB 0.8 [0,1]

Random tree creation

PROB_PLUS 0.3 [0,1]

PROB_MINUS 0.3 [0,1]

PROB_MULTIPLY 0.3 [0,1]

PROB_DIVIDE 0.1 [0,1]

PROB_PARAMETER 0.45 [0,1]

PROB_VARIABLE 0.45 [0,1]

PROB_CONSTANT 0.1 [0,1]

MAXCONSTANTVALUE 1 [0,MAXDOUBLE]

expected service time for the job than when it is left at

S1. Hence, the optimal policy automatically enforces non-

preemptive behavior. Finally, in Eq. (2) and (3) we assume

that the parameters are normalized such λ+ µ1 + µ2 = 1.

B. Generating sample point sets

The first step to running VFD is preparing the sample point

sets. The steps were described in Section IV-A and we repeat

them here for convenience:

1) Generate random values for each of the 3 parameters.

2) Run value iteration for the MDP.

3) Select sample points that together capture the shape of

the value function.

4) Save these sample points into a file.

5) Repeat steps 1–4 for Q pairs of the 3 parameters.

First we decide upon the number of sample point sets Q that

we intend to generate, and on the parameters used to generate

these sets. The purpose of having multiple sets is to allow

VFD to position the parameters of the model in the discovered

value function. If we would only use one set, VFD could use

the value of a parameter instead of the parameter itself and

still achieve a good fit on the single set. VFD would, however,

most likely perform poorly on a set generated with different

parameters.

For the current MDP, we make our choice for a worst-case

scenario where S2 is never used (i.e., a M/M/1 system) and

choose parameters for the sample point sets based on the load

TABLE II
MODEL PARAMETERS PER SAMPLE POINT SET

Set ρ1 λ µ1 µ2

0 0.100 0.0814 0.8135 0.1051

1 0.400 0.2688 0.6719 0.0594

2 0.525 0.3158 0.6015 0.0827

3 0.650 0.3701 0.5693 0.0606

4 0.775 0.4028 0.5198 0.0774

5 0.900 0.4662 0.5180 0.0159

6 0.950 0.4804 0.5057 0.0139

ρ1 = λ/µ1 ∈ [0, 1]. In the region 0 ≤ ρ1 ≤ 0.4 the load on

the system is low, and possible wrong decisions in a policy

have little impact. Hence, we expect that an accurate value

function in that region is not required, and we cover it by

just two sample point sets: one at ρ1 = 0.1 and another at

ρ1 = 0.4. Short experiments with VFD indicate that this is

indeed sufficient. Following similar reasoning, we choose two

sample point sets ‘close together’ at ρ1 = 0.9 and ρ1 = 0.95
to cover scenarios with a high load. The region 0.4 < ρ1 < 0.9
is then covered by Q− 4 sample sets distributed evenly over

the interval. We did short experiments with Q ranging from

5 until 9, and using Q = 7 yielded the best policies. The

resulting ρ1-values are {0.1, 0.4, 0.525, 0.65, 0.775, 0.9, 0.95}.
Then, we generate parameters µ1 and µ2 uniformly from [0, 1],
and set λ1 = ρ1µ1. In generating these values we also ensure

that µ1 > µ2 and that λ + µ1 + µ2 = 1. The parameters of

each set are shown in Table II.

Note that, generally speaking, using many sample point

sets (i.e., a large Q) ensures that VFD discovers a well-fitting

value function. On the other hand, the points in each sample

point set are used many times to evaluate trees, contributing

significantly to the computational complexity. Moreover, VFD

has to discover a value function that closely fits each sample

point set, so using many sets increases the time needed by

VFD to discover such a function. Consequently, choosing Q is

a trade-off between the goodness of fit of the discovered value

function, and the run time of VFD.

Now that the number of sets is chosen, the sample points in

each set can be found by value iteration. To run value iteration

we must decide on a boundary for the first dimension of the

state space X = N × {0, 1}. We use a value L to limit the

state space to X̂ = [0, L] × {0, 1}, where L is the smallest

value such that P(x > L) < 0.001 in the worst case (M/M/1)

scenario. For each sample set we then take 2×10 points, with

10 x-values evenly distributed over [0, 0.75·L] and i both 0 and

1. Here, (x, i) ∈ X̂ is a point in the state space. These sample

points easily capture the shape of the value function and avoid

boundary effects of value iteration (by using ⌈0.75 ·L⌉ instead

of L). If 0.75 · L < 10 then we take only ⌈0.75 · L⌉ points

instead of 10. Finally, we stop value iteration once the span

of two consecutive iterations is less than 10−6.

With this choice of sample points, the part of the state

space outside X̂ is not covered by sample points. Most likely,

VFD will not discover a value function that extrapolates well

8

outside X̂ . By choosing L such that P(x > L) < 0.001, we

ensure that it is unlikely that the system reaches states outside

X̂ , and thus we minimize the effects of VFD’s inability to

extrapolate. In general, when applying VFD to an MDP, the

user should keep in mind that VFD is good at interpolating

between sample points, and not at extrapolating. Hence, the

sample points should cover the area in the state space that the

user is most interested in. A similar argument holds for the

placement of the Q sample point sets in the parameter space.

C. Determining command line parameters

The next step towards running VFD is determining the

command line parameters, as listed in the first part of Table I.

The first of these, SEED, can be set to any desired integer

value, as its only purpose is to initialize the random number

generator. For the population size MU and the number of

children LAMBDA we follow current trends in GP and choose

them such that LAMBDA<MU. The authors of [5] suggest

populations with several thousands of individuals, but since

our MDP is fairly small we conservatively set MU to 1000 and

LAMBDA to 500.

For the parameter MAXELEMENTSINTREE we manually

count the number of elements needed for the M/M/1 value

function (13) and the M/M/2 value function (≈ 90), based on

the expressions in [16]. Then, we set MAXELEMENTSINTREE

to a value somewhat higher than 90 (125), and ran some short

experiments to see how large the resulting trees where. These

experiments suggest that using 125 elements is sufficient. In

general it is wise to set MAXELEMENTSINTREE to a slightly

bigger value than expected, since that gives VFD some more

freedom. Also, the SORT() function prefers smaller trees,

so this tends to counteract a possibly too large value of

MAXELEMENTSINTREE.

Next is MIN_ERROR, which influences the stopping criterion

of VFD. Large values for MIN_ERROR let VFD stop quickly

(but with a badly fitting tree), smaller values allow VFD to

search longer (with a better fitting tree). Note that for the

current MDP the performance of a discovered value function

depends on the decision min{Ṽ (x, 0); Ṽ (x − 1, 1)}. Even

if Ṽ (x, i) is not very accurate, the decision can still be

correct. Hence, we choose MIN_ERROR quite large and set

MIN_ERROR= 0.20.

The value of DIVERSITY_THRESHOLD is determined by

visually observing the progress made by VFD in terms of error

in several short experimental runs. VFD should have sufficient

time to discover good functions in between reinitialisations of

the population, but should stop as soon as error stops decreas-

ing significantly. This means that DIVERSITY_THRESHOLD

should not be too high. After some experiments we set it to

0.01, i.e., diversity is lost when the worst tree differs by at

most 1% from the best tree (in terms of error).

Finally, we discuss the parameter APPLYMUTATIONPROB,

which is used by VFD to decide between using the mutation or

recombination operators. The GP literature (see [5, Sec. 6.4]

and the references therein) suggests using a small mutation

probability in the order of 0.05. However, experiments on

the current MDP (see Section VI-E) indicate that setting

APPLYMUTATIONPROB to 0.2 yields better results.

D. Parent selection parameters

As described, parent selection utilizes a strategy called over-

selection which relies on parameters GOODPCT and SELECT-

FROMGOODPROB. For these we rely on conventions from

the GP community, as specified in [5]. Parameter GOODPCT

depends on the population size, which for our MDP results in

0.32, and SELECTFROMGOODPROB is typically set to 0.8.

E. Random tree generation parameters

Generating random trees depends on parameters for deter-

mining the type of operator and the contents of leafs (model

parameter, variable, or constant). Test runs indicate that the

operator / does not need to occur that often, so the values

in Table I reflect this (PROB_DIVIDE=0.1, whereas the others

are set to 0.3). Similar test runs suggest that constants are

needed less often, so PROB_CONSTANT is set to 0.1 and the

two others are set to 0.45. Parameter MAXCONSTANTVALUE

is set to 1, since by combining constants using the operators

/, ∗,+,− each value in R can be attained.

VI. NUMERICAL RESULTS

A. Sample points

Section V-B describes how the sample points for our MDP

example are generated. The values for the model parameters

per sample set are outlined in Table II. For each of the model

parameters in Table II we then run value iteration to find

the sample points. Fig. 5 shows the resulting sample points

for several of the sets. Note that the system with high load

(Fig. 5c) the optimal value function attains values in the order

of 104, whereas for lower loads in Figs. 5a and 5b these

values are significantly smaller. Also, in Fig. 5a the boundary

⌈0.75 · L⌉ for value iteration is smaller than the number of

desired sample points (10), in which case only ⌈0.75 · L⌉
sample points are retained. This results in 3 sample points

for both i = 0 and i = 1 (i.e., 6 sample points in total).

B. The discovered value function

Having specified all the input for VFD, it is ready to run.

The value function Ṽ (x, i) discovered by VFD is shown in

Eq. (4). In Fig. 6 it is plotted (dash-dotted line) together

with the sample points for the same sets as in Fig. 5. The

discovered Ṽ (x, i) resembles V (x, i) well. Additionally, the

figure contains two lines (dotted) above and below the sample

points that indicate how much Ṽ (x, i) is allowed to differ

from the sample points, as specified by the error criterion in

Eq. (1) and by the parameter MIN_ERROR. When running, VFD

continues looking for a value function until one is found that

lies completely between this upper and lower bound. Fig. 6

demonstrates that Ṽ (x, i) indeed lies between the specified

bounds. By modifying the parameter MIN_ERROR, the user

of VFD can control the distance between the upper and lower

bounds, and thus the accuracy of Ṽ (x, i). Also, observe that

the distance between the upper and lower bound increases as

x gets larger, as a consequence of our choice for a relative

error criterion (as discussed in Section IV-F).

9

Ṽ (x, i) =
i

0.28µ2(2λµ2(i+ µ1)(2λ+ µ1)− i+ µ2)
(
(i+ λ)

(
λ2

µ1

+ µ2

)
+ i− µ1

)
+ µ2

+ x . . .

− λ
(
λ2 + 1

)
x


−λ



λ2

(
3.58iλ
µ1

+ 3.58λ2x+ x
)

µ2
+ x


+ λ2 − 3.58(λ+ µ1)− 3.58λx− µ1x− 2µ2 − x




(4)

0 0.5 1 1.5 2
0

1

2

3

4

5

x

V
(x

,0
)

V(x,0) for ρ=0.1

Value iteration

Sample points

0 0.5 1 1.5 2
9

10

11

12

13

14

V(x,1) for ρ=0.1

x

V
(x

,1
)

(a) Set 0

0 2 4 6 8
0

20

40

60

80

100

120

x

V
(x

,0
)

V(x,0) for ρ=0.525

Value iteration

Sample points

0 2 4 6 8
0

50

100

V(x,1) for ρ=0.525

x

V
(x

,1
)

(b) Set 2

0 20 40 60 80 100
0

5

10

x 10
4

x

V
(x

,0
)

V(x,0) for ρ=0.95

Value iteration

Sample points

0 20 40 60 80 100
0

5

10

x 10
4 V(x,1) for ρ=0.95

x

V
(x

,1
)

(c) Set 6

Fig. 5. Sample points of sets 0, 2, and 6

0 0.5 1 1.5 2
0

1

2

3

4

5

x

V
(x

,0
)

V(x,0) for ρ=0.1

Value iteration

Sample points

VFD function

Max error allowed

0 0.5 1 1.5 2
6

8

10

12

14

16

18

V(x,1) for ρ=0.1

x

V
(x

,1
)

(a) Set 0

0 2 4 6 8
0

50

100

x

V
(x

,0
)

V(x,0) for ρ=0.525

Value iteration

Sample points

VFD function

Max error allowed

0 2 4 6 8
0

50

100

150

V(x,1) for ρ=0.525

x

V
(x

,1
)

(b) Set 2

0 20 40 60 80 100
0

5

10

15
x 10

4

x

V
(x

,0
)

V(x,0) for ρ=0.95

Value iteration

Sample points

VFD function

Max error allowed

0 20 40 60 80 100
0

5

10

15
x 10

4 V(x,1) for ρ=0.95

x

V
(x

,1
)

(c) Set 6

Fig. 6. Ṽ (x, i) for sets 0, 2, and 6

10

TABLE III
POLICY DERIVED FROM THE VALUE FUNCTION IN EQ. (4) DISCOVERED

BY VFD. THE TABLE INDICATES FOR WHICH STATES (x, 0) A JOB SHOULD

BE ASSIGNED TO SERVER S2

Set ρ1 Policy

0 0.100 Use S2 if x > 25.5719
1 0.400 Use S2 if x > 10.2648
2 0.525 Use S2 if x > 5.9715
3 0.650 Use S2 if x > 6.4751
4 0.775 Use S2 if x > 4.6315
5 0.900 Use S2 if x > 15.5992
6 0.950 Use S2 if x > 17.4802

TABLE IV
TIME-AVERAGE COSTS g̃ FOR THE POLICY BASED ON THE VALUE

FUNCTION IN EQ. (4) DISCOVERED BY VFD. THESE COSTS ARE

COMPARED TO COSTS g OF THE OPTIMAL POLICY

Set ρ1 g g̃
0 0.100 0.1107 0.1107

1 0.400 0.6643 0.6643

2 0.525 1.0589 1.0665

3 0.650 1.7107 1.7368

4 0.775 2.4684 2.5085

5 0.900 7.3973 7.7279

6 0.950 12.8241 13.5369

Next, we convert Ṽ (x, i) to a (algebraic) policy using one-

step policy improvement. Observe that for states (x, 1) it is not

possible to assign a job to server S2, so the policy is trivial in

these states. Therefore, we focus on states (x, 0). To obtain the

policy, we take the term min{V (x, 0);V (x−1, 1)} in Eq. (3)

and substitute Ṽ (x, i) for V (x, i). Evaluating the minimum

results in an action for each state (x, 0), i.e., server S2 is

used when Ṽ (x, 0) > Ṽ (x−1, 1). Unfortunately, the resulting

inequality is lengthy and challenging to interpret. Instead, we

simplify the inequality for parameters λ, µ1, µ2 of the sample

point sets in Table II, and show the policies in Table III. The

policies indicate for which states (x, 0) the second server S2

should be used. All policies are of threshold type, and the

same structure holds for the optimal policy (see [15] for a

proof).

For the policy derived from Ṽ (x, i) we can find the time-

average costs g̃ with policy evaluation for each parameter

combination from Table II. The results are in Table IV, and

show that the policy consistently yields good results for the

various model parameter values.

C. Performance on different model parameters

The time-average costs in Table IV are based on the model

parameters in Table II, which were given to VFD. To further

investigate the performance of VFD, we again compute the

time-average costs g̃ of the policy based on Ṽ (x, i), but now

for model parameters that VFD has not seen before. To this

end, we fix new values for ρ1 (the second column in Table V)

TABLE V
TIME-AVERAGE COSTS g̃ FOR THE POLICY BASED ON THE VALUE

FUNCTION DISCOVERED BY VFD, COMPARED TO COSTS g OF THE

OPTIMAL POLICY. THE MODEL PARAMETERS (λ, µ1, µ2) AND LOADS (ρ1)
ARE DIFFERENT FROM THE ONES VFD WAS GIVEN AS INPUT

Set ρ1 λ µ1 µ2 g g̃
0 0.010 0.0088 0.8832 0.1080 0.0101 0.0101

1 0.200 0.1533 0.7663 0.0805 0.2496 0.2496

2 0.300 0.2094 0.6981 0.0924 0.4270 0.4270

3 0.450 0.2848 0.6329 0.0823 0.8067 0.8100

4 0.600 0.3686 0.6143 0.0171 1.4930 1.4930

5 0.700 0.3823 0.5462 0.0715 1.9669 2.0080

6 0.825 0.4443 0.5385 0.0172 4.3761 4.4744

7 0.875 0.4567 0.5219 0.0215 5.7497 5.9840

8 0.925 0.4571 0.4942 0.0487 5.8536 6.0514

and generate new values for the model parameters λ, µ1, and

µ2 (columns 3− 5). Then, we rerun value iteration to get the

costs g of the optimal policy, and apply policy evaluation to

find the costs g̃ of the policy based on Ṽ (x, i) from Eq. (4).

The last two columns of Table V shows that g and g̃ are

consistently close and that VFD performs well on these new

model parameters. We repeated this experiment several times

for several values of the parameter SEED, and VFD continually

yielded similar good results.

D. Computational complexity

With the model parameter values from Table II and the

sample point sets from Fig. 5 VFD requires 2 minutes and

7 seconds to discover Ṽ (x, i) from Eq. (4). Since VFD relies

on several sources of randomness (controlled via command

line parameter SEED), we inspect whether this run time is

representative of VFD in general. To this end, we run VFD for

25 different values of SEED, record the run times, and compute

the median of these run times. This results in a median run

time of 2 minutes and 21 seconds, which corresponds well

with the previously observed run time.

For the MDP in this paper the run time is quite short, which

is mainly due to the small state space of the MDP in Eq. (2).

On MDPs with larger state spaces the run time will be longer,

but we feel that this is well worth the effort. Obtaining near-

optimal policies for large MDPs via mathematical procedures is

very challenging, time consuming, and does not always yield

results. VFD, however, is easy to set up and run.

E. Sensitivity analysis of APPLYMUTATIONPROB

For the experiments in this paper we use APPLYMUTA-

TIONPROB= 0.2, even though the GP literature suggest a

lower value of 0.05. To illustrate why we deviate from GP

conventions, we analyze the effect of changing APPLYMU-

TATIONPROB on VFD. Note that APPLYMUTATIONPROB only

affects the run time of VFD, but not the goodness of fit

of the discovered value function. The latter is controlled

with parameter MIN_ERROR, and with the sample point sets.

Therefore, we analyze the effect of APPLYMUTATIONPROB

11

TABLE VI
MEDIAN AND STANDARD DEVIATION (σ) OF THE RUN TIME OF VFD OVER

25 RUNS, FOR SEVERAL DIFFERENT VALUES OF APPLYMUTATIONPROB.

value median σ value median σ
0 4.93 6.07 0.30 5.40 5.51

0.05 5.57 7.18 0.40 6.07 6.91

0.10 11.90 6.56 0.50 11.02 8.65

0.15 3.37 4.42 0.60 6.02 16.21

0.20 2.35 3.57 0.70 5.62 9.66

0.25 3.18 2.31 0.80 6.34 7.95

on the run time of VFD. We vary APPLYMUTATIONPROB

from 0 to 0.8, as seen in the first and fourth column of

Table VI. Then, for each value of APPLYMUTATIONPROB we

run VFD 25 times and record the median run time (second

and fifth column) and the standard deviation σ (third and

sixth column). The lowest median run time is achieved for

APPLYMUTATIONPROB= 0.2, and the corresponding standard

deviation is low as well. Hence, APPLYMUTATIONPROB= 0.2
is the value we use in this paper.

F. VFD applied to M/M/1

In Section II we claimed that for MDPs that allow for an

explicit closed-form expression of the optimal value function,

VFD can find this optimal value function. To illustrate this,

we let VFD discover the value function of a M/M/1 queue.

Thereto, we set µ2 = 0, regenerate the sample point sets, and

run VFD with parameter MIN_ERROR set to 0.0001 (slightly

bigger than 0 to allow for small numerical inaccuracies in

value iteration). VFD discovers the function

Ṽ (x) =
x(λ+ µ+ x)

−2λ+ 2µ
,

which simplifies to

Ṽ (x) =
x(x+ 1)

2(µ− λ)
.

This is indeed the value function of a M/M/1 queue.

VII. DISCUSSION

A. Improvements to VFD

The paragraphs below contain several potential improve-

ments to VFD. In this paper we showed the value function

discovered by VFD in Eq. (4), but we did not analyze it

further. It can, however, provide useful insights. For instance,

Ṽ (x, i) in Eq. (4) contains the element λ/µ1, the load of

an M/M/1 system. It does, however, not contain λ
µ1+µ2

,

the load on an M/M/2 system. At the moment it is quite

difficult to interpret the discovered value function, because

the expression in Eq. (4) is somewhat long. We even expect

that it is acceptable to sacrifice some accuracy in return for

shorter trees.

VFD does not utilize any prior knowledge about the structure

of the value function in the population. However, it might

speed up the search process or result in better value functions

if this knowledge is included. For the MDP in this paper,

we could for instance add several elements of the M/M/1
and M/M/2 value function to the population: λ/µ1 (the

load of an M/M/1 system), λ/(µ1 + µ2) (the load of an

M/M/2 system), and x2 (both the M/M/1 and M/M/2
value functions are quadratic in x).

A modification of VFD might eliminate the need for sample

point sets before the start of the algorithm. If we make VFD

work directly with the MDP optimality equations and construct

a suitable error measure, then VFD does not need sample points

anymore.

The current version of VFD uses only operators /, ∗,+,−,

but the representation of a function in GP is flexible enough to

also allow for, e.g., exponents, square roots, logarithms, and

rounding. Additionally, we could add other genetic operators

besides mutation and recombination, such as dropping and

inserting nodes.

In Section V we determined values for the parameters of

VFD. We wanted to set the parameters of VFD to values that

yield good policies. In particular, we were not looking for

the best parameter settings. The current, basic, MDP does not

require too much consideration for the VFD parameters, but

for larger systems we expect the parameter values to be more

important. A potential improvement is to use a parameter

tuning tool such as Bonesa [17] to select good parameters,

or to learn parameters on the go with, e.g., a co-evolutionary

algorithm (see [18] for an example).

The current setup of VFD reinitializes the entire population

when diversity is lost, so it does not attempt to maintain

diversity of a population. Upon loss of diversity the search

is simply restarted elsewhere. With the basic MDP we used in

this paper, such a naive attitude towards diversity is sufficient

to get a good value function quickly. However, for MDPs

with larger state spaces, or MDPs that require a smaller error,

this approach will most likely not yield a sufficiently good

value function in a reasonable amount of time. Traditionally,

GP algorithms employ a diversity maintenance scheme, e.g.,

a temporary increase of APPLYMUTATIONPROB upon loss

of diversity. We expect that VFD will also need a diversity

maintenance strategy, as we continue our experiments with

VFD in the near future. For the current paper we decided not

to include such a scheme, because that would have resulted in

even more parameters for VFD. This would have clouded our

focus on discovery of value functions in the context of MDPs.

B. Applications of VFD

Recall that VFD yields an algebraic expression for a value

function, and consequently for a policy as well. As stated in the

introduction, this is particularly useful for large time-varying

systems that require a control policy, since there is no need

to make and analyze a time-dependent model. An example of

such a system is presented in [19].

VFD discovers a value function, which is then turned into a

policy. For the current MDP, however, another approach might

speed VFD up. In [15] the author proves that the optimal policy

is a switching curve, i.e., there exists a threshold T such that

only S1 is used for x ≤ T and both S1 and S2 are used

12

for x > T . We can thus apply VFD to sample points of this

threshold T and learn an expression for T in terms of the

model parameters. Note that this requires only one sample

point per set and thus significantly improves the run time of

VFD. Initial experiments suggest that this approach works well.

Applying VFD can also be convenient in other situations

than when searching for a value function. For instance, in

[20] the authors of the current paper apply one-step policy

improvement to an MDP, starting with a Bernoulli policy. This

policy includes a parameter α that must be determined after

policy improvement, ideally such that the time-average costs

g′(α) are minimized. An expression for g′(α) is, however,

not available so the minimization is done using a numerical

heuristic. VFD can be applied in this scenario to sample points

of g′(α) and thus help discover an expression for g′(α), which

can then be minimized with respect to α.

VIII. CONCLUSIONS

In this paper we introduced VFD, a novel method for discov-

ering algebraic descriptions of value functions of MDPs using a

GP approach. We started with a description of GP, in particular

of the representation used in GP, and of the mutation and

recombination operators. Then we gave a high-level overview

of the workings of VFD, followed by a more detailed treatment

of the algorithm. We applied VFD to a basic yet interesting

MDP, and let it discover a value function. To illustrate how a

discovered value function can be used, we obtained a policy

from it via one-step policy improvement. Numerical experi-

ments showed that this policy has near-optimal performance,

both for model parameters that VFD was given a priori, and for

new parameters. We identified several opportunities for future

research, containing both improvements to VFD and alternative

applications of the algorithm.

ACKNOWLEDGMENT

We thank SURFsara [21] for the support in using the

LISA Compute Cluster, and the reviewers for their in-depth

comments during the peer-review process.

REFERENCES

[1] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
1994.

[2] J. Walrand, An introduction to queueing networks. Prentice Hall
Englewood Cliffs, N.J, 1988.

[3] J. M. Norman, Heuristic procedures in dynamic programming. Manch-
ester University Press, 1972.

[4] H. Tijms, A First Course in Stochastic Models. Wiley, 2003.

[5] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Berlin Heidelberg New York: Springer, 2003.

[6] R. Poli and J. Koza, Genetic Programming. Springer, 2014.

[7] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons,
2013.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[9] H. S. Chang, H. Lee, M. C. Fu, and S. I. Marcus, “Evolutionary policy
iteration for solving Markov decision processes,” IEEE Transactions on

Automatic Control, vol. 50, no. 11, pp. 1804–1808, 2005.

[10] J. Hu, M. C. Fu, V. R. Ramezani, and S. I. Marcus, “An evolutionary
random policy search algorithm for solving Markov decision processes,”
INFORMS Journal on Computing, vol. 19, no. 2, pp. 161–174, 2007.

[11] A. Yener and C. Rose, “Genetic algorithms applied to cellular call
admission: local policies,” IEEE Transactions on Vehicular Technology,
vol. 46, no. 1, pp. 72–79, 1997.

[12] D. Barash, “A genetic search in policy space for solving Markov
decision processes,” in AAAI Spring Symposium on Search Techniques

for Problem Solving under Uncertainty and Incomplete Information,
1999.

[13] Z. Lin, J. C. Bean, and C. C. White, “A hybrid genetic/optimization algo-
rithm for finite-horizon, partially observed Markov decision processes,”
INFORMS Journal on Computing, vol. 16, no. 1, pp. 27–38, 2004.

[14] C. Gearhart, “Genetic programming as policy search in Markov decision
processes,” Genetic Algorithms and Genetic Programming at Stanford,
pp. 61–67, 2003.

[15] G. Koole, “A simple proof of the optimality of a threshold policy in a
two-server queueing system,” Systems & Control Letters, vol. 26, no. 5,
pp. 301–303, 1995.

[16] S. Bhulai and G. Koole, “On the structure of value functions for
threshold policies in queueing models,” Journal of Applied Probability,
pp. 613–622, 2003.

[17] S. Smit and A. Eiben, “Multi-problem parameter tuning using
BONESA,” in Artificial Evolution, 2011, pp. 222–233.

[18] C. M. Fernandes, J. J. Merelo, and A. C. Rosa, “Controlling the
parameters of the particle swarm optimization with a self-organized
criticality model,” in Parallel Problem Solving from Nature-PPSN XII.
Springer, 2012, pp. 153–163.

[19] D. Roubos and S. Bhulai, “Approximate dynamic programming tech-
niques for the control of time-varying queuing systems applied to call
centers with abandonments and retrials,” Probab. Eng. Inf. Sci., vol. 24,
no. 1, pp. 27–45, Jan. 2010.

[20] M. Onderwater, S. Bhulai, and R. D. v. d. Mei, “On the control of a
queueing system with aging state information,” Stochastic Models (under

review), 2014.
[21] SURFsara, “http://www.surfsara.nl,” 2013.

