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Abstract—Components are often subject to multiple competing 

degradation processes. This paper presents a reliability 

assessment framework for multi-component systems whose 

component degradation processes are modeled by multi-state and 

physics-based models with limited statistical degradation/failure 

data. The piecewise-deterministic Markov process modeling 

approach is employed to treat dependencies between the 

degradation processes within one component or/and among 

components. A computational method combining binary decision 

diagrams (BDDs) and Monte Carlo simulation (MCS) is 

developed to solve the model. A BDD is used to encode the fault 

tree of the system and obtain all the paths leading to system 

failure or operation. MCS is used to generate random 

realizations of the model and compute the system reliability. A 

case study is presented, with reference to one branch of the 

residual heat removal system of a nuclear power plant. 

 
Index Terms—System reliability analysis, degradation 

dependency, piecewise-deterministic Markov process, binary 

decision diagrams, Monte Carlo simulation. 

 

ACRONYMS 

PBMs   Physics-based models 

MSMs   Multi-state models 

FTA    Fault tree analysis 

CCFs   Common cause failures 

BDDs   Binary decision diagrams 

MCS   Monte Carlo simulation 

RHRS    Residual heat removal system  

WDFLM   Weighting depth-first left-most 
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NOTATIONS 

𝐶      Number of components in the system 

𝑳      Group of degradation processes modeled by  

PBMs 

𝑲      Group of degradation processes modeled by  

MSMs 

𝑫𝑂𝑐      Degradation state of component 𝑂𝑐  

𝑋𝐿𝑚
         𝑡    Time-dependent continuous variables of  

degradation process 𝐿𝑚  

𝑋𝐿𝑚
𝑫         𝑡     Non-decreasing degradation variables vector 

𝑋𝐿𝑚
𝑷         𝑡     Physical variables vector 

𝓕𝐿𝑚      Set of failure states of degradation process 𝐿𝑚  

𝑌𝐾𝑛  𝑡     State variable of degradation process 𝐾𝑛  

𝑺𝐾𝑛      Finite state set of degradation process 𝐾𝑛  

𝓕𝐾𝑛      Set of failure states of degradation process 𝐾𝑛  

𝑍  𝑡      Degradation state of the system 

𝜽𝐾𝑛      Environmental and operational factors in 𝐾𝑛  

𝜆𝑖 𝑗|𝜽𝐾𝑛     Transition rate from state 𝑖 to 𝑗 

𝜽𝐿𝑚      Environmental and operational factors in 𝐿𝑚  

𝑓𝐿𝑚
       (∙,∙ |𝜽𝐿𝑚 ) Physics equations of degradation process 𝐿𝑚  

𝑍𝑝 ,𝑞
         𝑡    Stochastic process of one group of  

interdependent degradation processes 

𝑁 ∙,∙,∙ |𝜽𝐾𝑛    Semi-Markov kernel 
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I. INTRODUCTION 

ost components undergo degradation processes before 

failure. A number of degradation models have been 

proposed in the field of reliability engineering based on the 

available information/data, which can be mainly classified into 

the following groups: statistical distributions (e.g. Bernstein 

distribution [1]), stochastic processes (e.g. Gamma process 

[2]), multi-state models (MSMs) (e.g. semi-Markov model 

[3]) and physics-based models (PBMs) (e.g. probabilistic 

superposition model [4]). Among the existing degradation 

models, PBMs [5-7] and MSMs [8-10] can be used to describe 

the evolution of degradation in structures, systems and 

components, for which statistical degradation/failure data are 

insufficient, e.g. the highly reliable devices in the nuclear and 

aerospace industries. A PBM gives an integrated mechanistic 

description of the component life consistent with the 

underlying real degradation mechanisms (e.g. wear, corrosion, 

fatigue, etc.) by using physics knowledge and equations [4], 

whereas a MSM describes the degradation process in a 

discrete way, supported by material science knowledge, 

degradation and/or failure data from historical field collection 

or degradation tests [11, 12].  

In reality, components are often subject to multiple 

competing degradation processes. The dependencies among 

these processes within one component (e.g. the wear of 

rubbing surfaces influenced by the environmental stress shock 

within a micro-engine [13]), or/and among different 

components (e.g. the degradation of the pre-filtrations stations 

leading to a lower performance level of the sand filter in a 

water treatment plant [14]) need to be considered. 

Components can be dependent due to functional dependence, 

where the failure of a trigger component causes other 

components to become inaccessible or unusable [15, 16]. 

Competing failure propagation and failure isolation effects 

have been studied in [17, 18], where a failure not only causes 

outage to the component from which the failure originates, but 

also propagates through all other system components causing 

the entire system failure and failure isolation occurs when the 

failure of one component causes other components within the 

same system to become isolated from the system.    

Recently, the authors have employed the piecewise-

deterministic Markov process (PDMP) modeling framework 

to integrate PBMs and MSMs for treating the dependencies 

among degradation processes [19] for a system with a small 

number of components, where the whole system is modeled 

by one PDMP. For systems of larger size, the high dimension 

of its PDMP can lead to very heavy computational burdens, 

because solving the PDMP of a small system is already time 

consuming due to the combinatorial nature of MSMs and the 

need to simulate the trajectory between any two system states 

[19]. In addition, the dependencies may only exist within 

certain groups of components and leave different groups being 

independent [20], and the causes of systems failure are not 

easy to be identified.    

Fault tree analysis (FTA) [21] is typically used to identify 

the combinations of events leading to system failure and 

compute its probability by using minimal cut sets found from 

the fault tree structure. For real systems, this can be 

computationally intensive, when the tree structure is large and, 

especially, if it contains repeated basic events [22]. In 

addition, all basic events are usually assumed statistically 

independent.   

Common cause failures (CCFs) of components have been 

considered in [23-25]: implicit and explicit methods have been 

developed to evaluate the system reliability. In binary-state 

systems, components failures with dependent propagation 

effects have been studied in [26], within a dynamic FTA 

framework. The statistical dependence of component states 

across different phases of phased-mission systems has been 

treated by using multiple-valued decision diagrams to encode 

fault trees in [27, 28].   

On the contrary, the dependencies of the degradation 

processes leading to failure of different components need to be 

considered which render certain basic events under different 

gates being dependent. To the knowledge of the authors, there 

is no published research work to tackle this problem, of 

practical reference [29]. 

To take into account such dependencies at a relatively low 

computational cost for systems of larger size, a system 

reliability assessment method is proposed combining binary 

decision diagrams (BDDs) [30] and Monte Carlo simulation 

(MCS) [31]. Instead of modeling the degradation of the whole 

system by one PDMP as in [19], the proposed method can 

identify the groups of components being dependent and 

decompose the original PDMP into a group of smaller ones 

which are independent from each other and easier to be 

solved. Besides, the states of these PDMPs leading to the 

systems failure can be easily obtained. Firstly, a fault tree is 

transformed to a BDD from which all paths leading to the 

system failure or operation can be efficiently obtained. BDDs 

[30] are directed acyclic graphs, encoding Shannon’s 

decomposition of a formula, and have been implemented in 

many domains; they possess the feature of sharing equivalent 

subgraphs and hence can reduce the computational time and 

memory requirements [32]. An algorithm based on BDD has 

been developed for reliability analysis of phased-mission 

systems with multimode failures in [33] to improve the 

efficiency and reduce the computational complexity. BDD has 

also been employed for network reliability and sensitivity 

analysis in [34]. Secondly, MCS is used to estimate the 

probability of each path to compute the system reliability 

taking into account the dependencies between basic events, 

since analytically solving the PDMPs is difficult, if not 

impossible, due to the large size and complex behavior of the 

system [35]. 

The rest of this paper is organized as follows. Section 2 

provides the assumptions and model descriptions. The 

proposed reliability assessment method is presented in Section 

3. Section 4 presents one case study on one branch of a 

residual heat removal system (RHRS) of a nuclear power 

plant. Section 5 concludes the work. 

 

M 
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II. ASSUMPTION AND MODEL DESCRIPTION 

A. General Assumptions 

We consider a multi-component system, made of 𝐶 

components denoted by 𝑶 = {𝑂1, 𝑂2, … , 𝑂𝐶}. 

The following assumptions are made: 

 The fault tree of the system is available and contains 𝑄 

basic events denoted by 𝒆 = {𝑒1, 𝑒2, … , 𝑒𝑄} which 

include the failures of components and other events such 

as erroneous operation caused by human errors. The 

component-failure type of events are determined by their 

underlying degradation processes. 

 Each component may be affected by multiple degradation 

processes, possibly dependent. The degradation processes 

can be separated into two groups: (1) 𝑳 = {𝐿1, 𝐿2, … , 

𝐿𝑀} modeled by M PBMs; (2) 𝑲 = {𝐾1, 𝐾2, … , 𝐾𝑁} 

modeled by N MSMs, where 𝐿𝑚 ,𝑚 = 1, 2,… ,𝑀 and 

𝐾𝑛 ,𝑛 = 1, 2,…  ,𝑁 are the indexes of the degradation 

processes. The degradation state of a component 

𝑂𝑐 ∈ 𝑶, 𝑐 = 1, 2,… ,𝐶, is determined by its degradation 

processes 𝑫𝑂𝑐 ⊆ 𝑳 ∪ 𝑲 and the component fails when its 

degradation processes enter its failure state space (see the 

two bullets below for its definition). 

 A degradation process 𝐿𝑚 ∈ 𝑳 in the first group is 

described by d𝐿𝑚  time-dependent continuous variables 

𝑋𝐿𝑚
         𝑡 =  𝑋𝐿𝑚

𝑫         𝑡 ,𝑋𝐿𝑚
𝑷         𝑡  ∈ ℝ𝑑𝐿𝑚  in terms of: (1) the 

non-decreasing degradation variables vector X𝐿𝑚
𝑫         t  (e.g. 

crack length) representing the component degradation 

condition; (2) the physical variables 𝑋𝐿𝑚
𝑷         𝑡  (e.g. 

velocity) influencing X𝐿𝑚
𝑫         t  and vice versa.𝑑𝐿𝑚  is the 

number of non-decreasing degradation variables and 

physical variables for a degradation process 𝐿𝑚 . Their 

evolution is characterized by a system of first-order 

differential equations 𝑋𝐿𝑚
          𝑡 = 𝑓𝐿𝑚

         𝑋𝐿𝑚
         𝑡 , 𝑡 𝜽𝐿𝑚  , i.e. 

physics equations, where 𝜽𝐿𝑚  represents the 

environmental factors to 𝐿𝑚  (e.g. temperature and 

pressure) and the parameters used in 𝑓𝐿𝑚
       . The evolution 

of physical variables can be characterized by physics 

equations. The environmental factors are the parameters 

of the physics equations and their evolution is 

notcharacterized by physics equations. If any 

environmental or operational factoris modeled by physics 

equations and influencing the degradation variables, then, 

it is considered as one physical variable.𝐿𝑚  fails when 

one 𝑥𝐿𝑚
𝑖  𝑡 ∈ 𝑋𝐿𝑚

𝑫         𝑡  reaches or exceeds its 

corresponding failure threshold denoted by 𝑥𝐿𝑚
𝑖 ∗

. The 

failure state set of 𝐿𝑚  is denoted by 𝓕𝐿𝑚 . An example of 

𝐿1 is shown in Fig. 1.  

 A degradation process 𝐾𝑛 ∈ 𝑲 in the second group is 

described by the state variable 𝑌𝐾𝑛  𝑡 , which takes values 

from a finite state set 𝑺𝐾𝑛 = {0𝐾𝑛 , 1𝐾𝑛 ,… ,𝑑𝐾𝑛 }, where 

‘𝑑𝐾𝑛 ’ is the perfect functioning state and ‘0𝐾𝑛 ’ is the 

complete failure state. All intermediate states are 

functioning or partially functioning. The transition rates 

𝜆𝑖 𝑗 | 𝜽𝐾𝑛  ,∀ 𝑖, 𝑗 ∈ 𝑺𝐾𝑛 , 𝑖 > 𝑗 characterize the 

degradation transition probabilities from state 𝑖 to state 𝑗, 

where 𝜽𝐾𝑛  represents the environmental factors to 𝐾𝑛  and 

the related coefficients of 𝜆𝐾𝑛 . The failure state set of 𝐾𝑛  

is denoted by 𝓕𝐾𝑛 = {0𝐾𝑛 }. An example of 𝐾1 is shown 

in Fig. 2. 

 

Dependencies between degradation processes may exist 

both within and across groups 𝑳 and 𝑲. The degradation levels 

of the components in the first group may influence the 

transition times and transition directions of the degradation 

processes of the second group and the degradation states of the 

second group may influence the evolution trajectories of the 

continuous variables in the first group [19]. PDMPs are 

employed to model this dependency, the detailed formulations 

are shown in eqs. (1) and (2).  

B. PDMPs for Dependent Degradation Processes 

Let us consider one group of interdependent degradation 

processes 𝑳𝑝 = {𝐿𝑝1
, … , 𝐿𝑝𝑛 } and 𝑲𝑞 = {𝐾𝑞1

, … , 𝐾𝑞𝑚 }, 

which have no dependencies with the other degradation 

processes. Their degradation states are represented by  

 

 
 
Fig. 1.  An illustration of 𝐿1. 

 

 
 

Fig. 2.  An illustration of 𝐾1. 
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𝑍𝑝 ,𝑞
         𝑡 =

 

 
 
 
 
  

𝑋𝐿𝑝1
          𝑡 

⋮

𝑋𝐿𝑝𝑛
          𝑡 

 = 𝑋𝑝      𝑡 

 

𝑌𝑞1
 𝑡 

⋮
𝑌𝑞𝑚  𝑡 

 = 𝑌𝑞     𝑡 

 

 
 
 
 
 

 

∈ 𝑬𝑝 ,𝑞 = ℝ
𝑑𝑳𝑝 × 𝑺𝑲𝑞 ,∀𝑡 ≥ 0(1) 

where 𝑬𝑝 ,𝑞  is the space combining ℝ
𝑑𝑳𝑝  (𝑑𝑳𝑝 =  𝑑𝐿𝑝𝑘

𝑛
𝑘=1 ) 

and 𝑺𝑲𝑞 = {0, 1,… ,𝑑𝑲𝑞 } denotes the state set of process 

𝑌𝑞     𝑡 . 

The evolution of the vector of degradation states 𝑍𝑝 ,𝑞
         𝑡  

involves (1) the stochastic transition process of 𝑌𝑞     𝑡  and (2) 

the deterministic progression of 𝑋𝑝      𝑡 , between successive 

transitions of 𝑌𝑞     𝑡  , given 𝑌𝑞     𝑡 . The first process is governed 

by the transition rates of 𝑌𝑞     𝑡 , which depend on the 

degradation levels of the components in the first group, as 

follows:  

𝑙𝑖𝑚
∆𝑡  → 0

𝑃   𝑌𝑞     𝑡 + ∆𝑡 = 𝑗  𝑍𝑝 ,𝑞
         𝑡 = (𝑋𝑝      𝑡 ,𝑌𝑞     𝑡 = 𝑖 )𝑇 ,𝜽𝑲𝑞  

= 𝜆𝑖 
𝑞
 𝑗 |𝑋𝑝      𝑡 ,𝜽𝑲𝑞 ∆𝑡,∀ 𝑖 , 𝑗 ∈ 𝑺𝑲𝑞 , 𝑖 ≠ 𝑗     (2) 

where the parameter vector 𝜽𝑲𝑞  represents environmental and 

operational factors influencing the degradation processes in 

𝑲𝑞 . The second evolution process is described by the 

deterministic physics equations which depend on the 

degradation states of the second group as follows: 

𝑋𝑝 
      𝑡 =  

𝑋𝐿𝑝1
           𝑡 

⋮

𝑋𝐿𝑝𝑛
           𝑡 

 =  

𝑓𝐿𝑝1
          𝑍𝑝 ,𝑞

         𝑡 , 𝑡 𝜽𝐿𝑝1
 

⋮

𝑓𝐿𝑝𝑛
          𝑍𝑝 ,𝑞

         𝑡 , 𝑡 𝜽𝐿𝑝𝑛  

  

= 𝑓𝑳𝑝
        𝑍𝑝 ,𝑞

         𝑡 , 𝑡 𝜽𝑳𝑝 =  𝜽𝐿𝑝1
,…  ,𝜽𝐿𝑝𝑛   (3) 

where the parameter vector 𝜽𝐿𝑝𝑘
, 𝑘 = 1,2,…  ,𝑛  represents 

environmental and operational factors influencing the 

degradation processes in 𝐿𝑝𝑘 . It should be noted that the 

evolution of one degradation process in 𝑍𝑝 ,𝑞
         𝑡  depends on the 

states of all the degradation processes in 𝑍𝑝 ,𝑞
         𝑡 .  

III. METHODOLOGY 

In this section, a computational method combining BDDs 

and MCS is proposed. 

A. BDDs 

A BDD is a directed acyclic graph encoding Shannon’s 

decomposition of a formula.  A BDD has two terminal vertices 

labeled 1 and 0 to indicate the failure and operation of the 

system, respectively. Each non-terminal vertex is labeled with 

a variable and has two outgoing edges: 1-edge and 0-edge 

which indicate the occurrence and non-occurrence of the 

corresponding basic event, respectively.  

A BDD is employed to encode the fault tree of the system 

according to the given ordering of the indicator variable 

𝑋𝑖whichdenotes the occurrence or non-occurrence of the basic 

event 𝑖 (𝑋𝑖 = 1 indicating the occurrence of the basic event 𝑖 
and 𝑋𝑖 = 0 indicating the opposite). The size of the BDD 

largely depends on the given ordering and the problem of 

finding the global optimal ordering is an intractable task [36, 

37]. Several ordering heuristics have been developed, whose 

performances may vary on different problems. In this work, 

we employ the weighting depth-first left-most (WDFLM) 

ordering technique proposed in [38], which leads to 

satisfactory results according to the tests in [39, 40]. WDFLM 

first assigns weight 1 to each basic event. Then, it traverses the 

fault tree bottom-up to calculate the weight of each gate by 

adding the weights of all its inputs, i.e. gates and basic events. 

Fig. 3 shows an example of a fault tree where the weights of 

the gates are obtained through WDFLM. 

Finally, the depth-first left-most (DFLM) ordering 

technique [41] is applied to the fault tree to get the variable 

ordering. In this technique, the basic events are placed in the 

 

 
 
Fig. 3.  An illustration of fault tree labeled with weights. 

 

 
 

Fig. 4.  An illustration of fault tree with rearranged inputs of gates. 
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ordered list as soon as they are encountered during the DFLM 

traversal of the fault tree. Let < be a total ordering of 

variables, for the fault tree in Fig. 3,it is 𝑋3 < 𝑋4 < 𝑋1 < 𝑋2. 

Based on the variable ordering, the related BDD can be 

constructed using the bottom-up procedure. Firstly, all basic 

events 𝑖, 𝑖 ∈ 𝒆 are associated with the if-then-else (ite) 

structure [42] 𝑖𝑡𝑒(𝑋𝑖 , 1, 0), where 𝑖𝑡𝑒 𝑋𝑖 , 𝑓1, 𝑓2 =
(𝑋𝑖⋀𝑓1)⋁(¬𝑋𝑖⋀𝑓2)which means if the basic event 𝑖 occurs 

then consider function 𝑓1 else consider function 𝑓2. Then, 

work from the bottom to the top of the fault tree and obtain the 

ite structure for each gate by using the following principle: let 

us consider two variables  𝑋𝑎 < 𝑋𝑏  and four functions 

𝑓1, 𝑓2, 𝑓3, 𝑓4, let <> be any logic operation AND or OR, then: 

𝑖𝑡𝑒 𝑋𝑎 , 𝑓1 , 𝑓2 <> 𝑖𝑡𝑒 𝑋𝑎 , 𝑓3, 𝑓4  
= 𝑖𝑡𝑒 𝑋𝑎 , 𝑓1 <> 𝑓3, 𝑓2 <> 𝑓4 (4) 

and  

𝑖𝑡𝑒 𝑋𝑎 , 𝑓1, 𝑓2 <> 𝑖𝑡𝑒 𝑋𝑏 , 𝑓3, 𝑓4  

= 𝑖𝑡𝑒 𝑋𝑎 , 𝑓1 <> 𝑖𝑡𝑒 𝑋𝑏 , 𝑓3 , 𝑓4 , 𝑓2 <> 𝑖𝑡𝑒 𝑋𝑏 , 𝑓3, 𝑓4  (5) 

The ite structure of the top event of the fault tree in Fig. 3 can 

be obtained as 𝑖𝑡𝑒 𝑋3, 1, 𝑖𝑡𝑒(𝑋4, 1, 𝑖𝑡𝑒(𝑋1 , 1, 0)) . The 

associated BDD shown in Fig. 5 can be constructed by 

breaking down each ite structure into its left and right 

branches, and eliminating the vertexes that are not useful (a 

vertex is not useful when its two outgoing edges point to the 

same vertex or it is equivalent to another vertex) [43]. 

Finally, all the paths leading to system failure can be 

obtained as  1 𝑋3 = 1,  2 𝑋3 = 0,𝑋4 = 1,  3 𝑋3 = 0,𝑋4 =
0,𝑋1 = 1 and the path leading to system operation is 𝑋3 =
0,𝑋4 = 0,𝑋1 = 0. The exact system reliability is equal to the 

sum of the probability of occurrence of each path leading to 

system operation or 1 − the sum of the probability of 

occurrence of each path leading to system failure.  

B. MCS for PDMPs 

To derive the probability of occurrence of one path, all the 

PDMPs containing the variables involved in that path need to 

be solved. Since the PDMPs are independent from each other, 

the product of the probabilities of PDMPs being in the states 

indicated by the path equals the probability of occurrence of 

that path. Analytically solving the PDMPs is a difficult task, 

whereas MCS is well suited.  

We develop a MCS algorithm for solving the PDMPs. It 

consists of sampling the transition time and the arrival state 

for the MSMs and, then, calculating the behavior of the PBMs 

within the transition times using the physics equation. 

Refer to one PDMP presented in Section 2.2. Let 𝑍𝑝 ,𝑞
𝑘        =

𝑍𝑝 ,𝑞
         𝑇𝑘 =  

𝑋𝑝      𝑇
𝑘 

𝑌𝑞
𝑘     

 ∈ 𝑬𝑝 ,𝑞 , 𝑘 ∈  ℕ, where 𝑌𝑞
𝑘     ∈ 𝑆𝐾𝑞 , 𝑘 ∈ ℕ 

denotes the state of 𝑌𝑞     𝑡  after 𝑘 transitions from the 

beginning (a transition occurs as long as any one of the 

elements in 𝑌𝑞     𝑡   changes its state) and 𝑇𝑘  denotes the time 

of arrival at state 𝑌𝑞
𝑘     . Then,  𝑍𝑝 ,𝑞

𝑘        ,𝑇𝑘 
𝑘≥0

 is a Markov renewal 

process defined on the space𝑬𝑝 ,𝑞 × ℝ+ [44]. We can obtain 

that  

𝑃  𝑍𝑝 ,𝑞
𝑛+1          ∈ 𝐵,𝑇𝑛+1 ∈  𝑇𝑛 ,𝑇𝑛 + ∆𝑡 |𝑍𝑝 ,𝑞

𝑛        = 𝑖 ,𝜽𝐾𝑞   

=  𝑁 𝑖 ,𝑑𝑧     ,𝑑𝑠|𝜽𝐾𝑞 

𝐵∗[0,∆𝑡]

, 

∀ 𝑛 ≥ 0,∆𝑡 ≥ 0, 𝑖 ∈  𝑬𝑝 ,𝑞 ,𝐵 ∈ 𝜀(6) 

where 𝜀is a 𝜎-algebra of 𝑬𝑝 ,𝑞  and 𝑁  𝑖 ,𝑑𝑧     ,𝑑𝑠|𝜽𝐾𝑞  is a semi-

Markov kernel on 𝑬𝑝 ,𝑞 , which verifies that 

 𝑁 𝑖 ,𝑑𝑧     ,𝑑𝑠|𝜽𝐾𝑞 ≤ 1
𝑬𝑝 ,𝑞∗[0,∆ 𝑡]

,∀ ∆𝑡 ≥ 0, 𝑖 ∈  𝑬𝑝 ,𝑞 . It can 

be further developed as:  

𝑁  𝑖 ,𝑑𝑧     ,𝑑𝑠|𝜽𝐾𝑞 = 𝑑𝐹𝑖  𝑠|𝜽𝐾𝑞 𝛽  𝑖 ,𝑑𝑧
     |𝑠,𝜽𝐾𝑞 (7) 

where  

𝑑𝐹𝑖  𝑠|𝜽𝐾𝑞  (8) 

is the probability density function of 𝑇𝑛+1 − 𝑇𝑛  given 

𝑍𝑝 ,𝑞
𝑛        = 𝑖  and  

𝛽  𝑖 ,𝑑𝑧     |𝑠,𝜽𝐾𝑞 (9) 

is the conditional probability of state 𝑍𝑝 ,𝑞
𝑛+1           given 𝑇𝑛+1 − 𝑇𝑛 =

𝑠.  
The simulation procedure consists of sampling the transition 

time from (8) and the arrival state from (9) for 𝑌𝑞     𝑡 , then, 

calculating𝑋𝑝      𝑡  within the transition times, by using the 

physics equation eq. (3)until the time of system evolution 

reaches a certain mission time 𝑇𝑚𝑖𝑠𝑠 . 

To calculate the probability of occurrence of one path (let 

𝒁𝑝 ,𝑞
∗         indicate the state space, which contains all the states of 

𝑍𝑝 ,𝑞
         𝑡  that are consistent with the state of the path), the 

procedure of the MCS is presented as follows: 

 

Set𝑁𝑚𝑎𝑥  (the maximum number of replications) and 𝑘 = 0 

(index of replication) 

Set𝑘′ = 0 (number of trials that end in the state indicated by 

the path) 

While𝑘 < 𝑁𝑚𝑎𝑥  

Initialize the system by setting 𝑍𝑝 ,𝑞
′        (0) =  

𝑋𝑝      0 

𝑌𝑞
′    
  

(initial state), and the time 𝑇 = 0 (initial system time) 

 
 
Fig. 5.  BDD for fault tree in Fig. 3. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

Set𝑡 ′ = 0 (state holding time) 

While𝑇 ≤ 𝑇𝑚𝑖𝑠𝑠  

Sample a 𝑡 ′by using (8) 

Sample an arrival state 𝑌𝑞
′′       for stochastic process 𝑌𝑞     𝑡  

from all the possible states by using (9) 

Calculate𝑋𝑝      𝑠 ,∀𝑠 ∈  𝑇,𝑇 + 𝑡′  by using eq. (3) 

Set𝑍𝑝 ,𝑞
′         𝑠 =  

𝑋𝑝      𝑠 

𝑌𝑞
′    
 ,∀𝑠 ∈  𝑇,𝑇 + 𝑡′  

Set𝑇 = 𝑇 + 𝑡′, 𝑍𝑝 ,𝑞
′         𝑇 =  

𝑋𝑝      𝑇 

𝑌𝑞
′′      
  and 𝑌𝑞

′    = 𝑌𝑞
′′       

End While 

If𝑍𝑝 ,𝑞
′         𝑇𝑚𝑖𝑠𝑠  ∈ 𝒁𝑝 ,𝑞

∗         

Set𝑘′ = 𝑘′ + 1 

End if 

Set𝑘 = 𝑘 + 1 

End While □ 

 

The estimated probability of occurrence of one path at time 

𝑇𝑚𝑖𝑠𝑠  can be obtained by 

𝑃  𝑇𝑚𝑖𝑠𝑠  = 1 − 𝑘′/𝑁𝑚𝑎𝑥 (10) 

with the sample variance [45] as follows: 

𝑣𝑎𝑟𝑃  𝑇𝑚𝑖𝑠𝑠  = 𝑃  𝑇𝑚𝑖𝑠𝑠  (1 − 𝑃  𝑇𝑚𝑖𝑠𝑠  )/(𝑁𝑚𝑎𝑥 − 1)(11) 

C. MCS for PDMPs 

The flowchart of the whole proposed computational method 

combining BDDs and MCS is shown in Fig. 6. 

IV. CASE STUDY 

The illustrative case refers to one branch of the RHRS [46] 

of a nuclear power plant shown in Fig. 7. The fault tree is 

shown in Fig. 8. The definitions of the basic events are 

presented in Table I. 

By knowledge and experience of the field experts, the 

degradation dependency is described as follows: the 

degradation of the pump can lead it to vibrate [47], which will, 

in turn, cause the vibration of the other neighboring 

components (e.g. the valve) and therefore aggravate the 

degradation process of the latter [48]. The dependency exists 

between basic events 1,2,3,4 and 6, as indicated in Fig. 6. The 

component degradation models provided by the expert 

colleagues of Electricité de France are presented below. Some 

degradation processes are modeled by PBMs if their 

degradation data is unavailable and, thus, the physics 

equations have to be used, whereas the others are modeled by 

MSMs supported by the degradation and/or failure data from 

historical field collection. 

The circuit breaker, motor and pump contactor each have 

one degradation processmodeled by MSMs 𝐾1, 𝐾2 and 𝐾3 

respectively, as shown in Fig. 9. 

The pump has two degradation processes modeled by 

MSMs 𝐾4 and 𝐾5, as shown in Fig. 10. 𝐾4 relates to the failure 

on demand and 𝐾5 relates to the external leakage which can 

cause the pump to vibrate when 𝑌𝐾5
 𝑡  reaches the state 1𝐾5

. 

Closure due to human error follows one MSM 𝐾6, as shown 

in Fig. 11. 

The valve has one degradation process modeled by one 

PBM 𝐿1 related to the crack propagation due to manufacturing 

defects. 𝐿1 is based on a deterministic crack growth model, 

which follows Paris–Erdogan law [49]. For the phase of crack 

propagation, the threshold is defined as the number of cycles 

calculated as follows, 

𝑁𝑐 =
1/(

𝑚

2
−1)∗(1/𝑎0

 
𝑚
2 −1 

−1/𝑎𝑐
 
𝑚
2 −1 

)

𝐶(𝑓 𝑅 𝑀𝑎𝑥 𝑌𝑀𝑎𝑥  𝜋Δ𝜎𝑀𝑎𝑥 )𝑚
(12) 

where the definition of the parameters can be found in [50]. 

 
 
Fig. 6.  The flowchart of the computational method. 

 

 
 
Fig. 7.  The diagram of one branch of the RHRS. 

 

 
 

Fig. 8.  The fault tree of one branch of the RHRS. 

 

 

Degradation Dependency
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The valve fails when the number of solicitation exceeds 𝑁𝑐 . 
The equivalent number of solicitations executed per year is 

assumed to be constant and equal to 𝑑𝑐 . 
The diaphragm has one degradation process modeled by 

one PBM 𝐿2 related to the cavitation erosion mechanism, 

which can cause the thickness loss. The threshold is defined as 

the thickness required to ensure pressure resistance, which is 

calculated as follows, 

𝑡𝑚 = 𝑃𝐷0/2(𝑆 + 𝑦𝑃)(13) 

where 𝑃 is the estimated pressure for RHRS, 𝐷0 is the outside 

diameter of the pipe, 𝑦 is a coefficient and 𝑆 is the allowable 

stress in the pipe. The diaphragm fails when the thickness loss 

exceeds 𝑡𝑚 . The annual loss of thickness is assumed to be 

constant and equal to 𝑑𝑚 . 

The pneumatic valves VP1and VP2 each have one 

degradation processmodeled by MSMs 𝐾7 and 𝐾8 

respectively, as shown in Fig. 12. 

𝐾5 has impacts on 𝐾1, 𝐾2, 𝐾3, 𝐾4 and 𝐿1. When 𝑌𝐾5
 𝑡  

reaches the state 1𝐾5
 the transition rates of 𝐾1, 𝐾2, 𝐾3 and 𝐾4 

will increase to𝜆1
′ , 𝜆2

′ , 𝜆3
′  and 𝜆4

′ , respectively, and 𝑑𝑐  in 𝐿1 

will change to 𝑑𝑐
′
. All the parameter values in the degradation 

models are presented in Table II. For confidentiality, we use 

artificially scaled values; they are set in a way to simulate the 

system under accelerated aging conditions. 

Applying the WDFLM ordering heuristic [38], the variable 

ordering obtained is 𝑋5# < 𝑋6 < 𝑋1 < 𝑋2 < 𝑋3 < 𝑋4 < 𝑋8 <
𝑋9 < 𝑋7. The corresponding BDD is shown in Fig. 13. There 

are two paths leading to system operation: (1) 𝑋5# = 0,𝑋6 =
0,𝑋1 = 0,𝑋2 = 0,𝑋3 = 0,𝑋4 = 0,𝑋8 = 0,𝑋9 = 0 and (2) 

𝑋5# = 0,𝑋6 = 0,𝑋1 = 0,𝑋2 = 0,𝑋3 = 0,𝑋4 = 0,𝑋8 =
0,𝑋9 = 1,𝑋7 = 0. 

The degradation processes are divided into five groups: 

 𝐾6 ,  𝐿2 ,  𝐾7 ,  𝐾8  and  𝐾1 ,𝐾2 ,𝐾3,𝐾4 ,𝐾5 , 𝐿1 . Each of the 

TABLE I 
DEFINITIONS OF THE BASIC EVENTS 

Basic Event Definition 
1 Failure of the circuit breaker 

2 Failure of the motor 

3 Failure of the pump contactor 

4 Failure of the pump 

5# Closure due to human error 

6 Failure of the valve 

7 Failure of the diaphragm 

8 Failure of the pneumatic valve VP1 

9 Failure of the pneumatic valve VP2 

 

 

 
 

 
 

 
 

Fig.9. The representation of the degradation processes of the circuit breaker, 
motor and pump contactor. 

 

 
 

 
 

Fig.10. The representation of the degradation processes of the pump. 

 

 
 

Fig.11. The process of closure due to human error. 
 

 

 
 

 
 

Fig.12. The representation of the degradation processes of the pneumatic 
valves. 

 

TABLE II 
PARAMETER VALUES 

Parameter Value 
𝜆1 6.65e-8 /h 

𝜆2 1.8e-6 /h 

𝜆3 4.4e-7 /h 

𝜆4 1.3e-5 /h 

𝜆5
1  4.7e-5 /h 

𝜆5
2  1.3e-5 /h 

𝜆6 1.5e-5 /h 

𝜆7 1.95e-8 /h 

𝜆8 1.95e-8 /h 

𝑚 4 S.U. 

𝑎0 3.6 mm 

𝑎𝑐  9.3 mm 

𝐶 1.8e-12 S.U. 

𝑓 𝑅 𝑀𝑎𝑥  2 S.U. 

𝑌𝑀𝑎𝑥  1.18 S.U. 

𝛥𝜎𝑀𝑎𝑥  0 MPa 

𝑑𝑐  10 /yr 

𝑃 41 b 

𝐷0  273 mm 

𝑆 101 Mpa 

𝑦 0.4 S.U. 

𝑑𝑚  7 mm /yr 

𝜆1
′  9.31e-8 /h 

𝜆2
′  2.52e-6 /h 

𝜆3
′  6.16e-7 /h 

𝜆4
′  1.82e-5 /h 

𝑑𝑐
′  15 /yr 
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first four groups has only one degradation model. The PDMP 

related to the last group is presented as follows, 

𝑍1,5
        𝑡 =

 

 
 
 
 

𝑁 𝑡 

𝑌𝐾1
 𝑡 

𝑌𝐾2
 𝑡 

𝑌𝐾3
 𝑡 

𝑌𝐾4
 𝑡 

𝑌𝐾5
 𝑡  

 
 
 
 

∈ 𝑬1,5 = ℝ × 𝑺𝑲1
× …× 𝑺𝑲5

,∀𝑡 ≥ 0 

(14) 

where 𝑁 𝑡  denotes the number of solicitations applied till 𝑡, 

𝑁  𝑡 =  
𝑑𝑐 , 𝑖𝑓𝑌𝐾5

 𝑡 = 2𝐾5

𝑑𝑐
′ , 𝑖𝑓𝑌𝐾5

 𝑡 = 1𝐾5

  and 𝑌𝐾𝑞  𝑡 , 𝑞 = 1,2,… , 5 are 

characterized by the related transition rates. 

MCS over a time horizon of 8 years has been run 106 times 

to solve the PDMPs and, then, estimate the probability of 

occurrence of each path. The numericalexperimentsare carried 

out in MATLAB on a PC with an Intel Core 2 Duo CPU at 

3.06 GHz and a RAM of 3.07 GB. The estimated system 

reliability with and without dependency throughout the time 

horizon, under accelerated conditions, is shown in Fig. 14. The 

average computation time is 34.3 s. We can see from the 

Figure that neglecting dependency can lead to overestimation 

of the system reliability. The system reliability with 

dependency has experienced one rapid decrease after around 

6.2 year (point A), which is due tothe valve failure in some 

simulation trials caused by the vibration of the pump. This 

sharp decrease in system reliability relates to the sharp 

increase in the system failure time density function, as shown 

in Fig. 15. 

V. CONCLUSION 

In this paper, we have proposed a framework for the 

reliability assessment of systems whose components have 

dependent competing degradation processes. The modeling 

framework rests on MSMs and PBMs, and the PDMP 

modeling approach is employed to treat dependencies between 

the degradation processes within one component or/and 

among components. The numerical solution involves the 

translation of the system fault tree into a BDD, and the 

estimation of the probabilities of the paths of events 

occurrences by MCS. The case study demonstrates the 

relevance of degradation process dependencies for the system 

reliability.  

It is interesting to include failure isolation as future research 

in our proposed model. Failure detection and isolation can be 

used to mitigate degradation dependency by performing 

corresponding maintenance tasks or failure isolation actions. 

 

 
 
Fig. 13.  The BDD corresponding to the fault tree shown in Fig. 8. 

 

 

 
 
Fig. 14.  The estimated system reliability with/without dependency. 

 

 
 

Fig. 15.  The system failure time density function with/without dependency. 

 

 

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Year

R
e

lia
b

ili
ty

 

 

Without dependency

With dependency

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Year

F
a

ilu
re

 t
im

e
 d

e
n

s
it
y
 f

u
n

c
ti
o

n

 

 

Without dependency

With dependency



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

 

ACKNOWLEDGMENT 

The authors would like to thank Mrs. Dominique 

VASSEUR, Mr. Antoine DESPUJOLS and Mr. Emmanuel 

ARDILLON from the Department Industrial Risks 

Management (MRI), Electricité de France R&D for their 

insightful comments.  

 

REFERENCES 

[1] N. Gebraeel, A. Elwany, and J. Pan, "Residual life predictions in the 
absence of prior degradation knowledge," Reliability, IEEE Transactions 

on, vol. 58, pp. 106-117, 2009. 

[2] J. Lawless and M. Crowder, "Covariates and random effects in a gamma 
process model with application to degradation and failure," Lifetime 

Data Analysis, vol. 10, pp. 213-227, 2004. 

[3] M. Black, A. Brint, and J. Brailsford, "A semi-Markov approach for 
modelling asset deterioration," Journal of the Operational Research 

Society, vol. 56, pp. 1241-1249, 2005. 

[4] M. Chookah, M. Nuhi, and M. Modarres, "A probabilistic physics-of-
failure model for prognostic health management of structures subject to 

pitting and corrosion-fatigue," Reliability Engineering & System Safety, 

vol. 96, pp. 1601-1610, 2011. 
[5] M. Daigle and K. Goebel, "A model-based prognostics approach applied 

to pneumatic valves," International journal of prognostics and health 

management, vol. 2, p. 008, 2011. 
[6] S. Reggiani, S. Poli, M. Denison, E. Gnani, A. Gnudi, G. Baccarani, S. 

Pendharkar, and R. Wise, "Physics-Based Analytical Model for HCS 

Degradation in STI-LDMOS Transistors," Electron Devices, IEEE 
Transactions on, vol. 58, pp. 3072-3080, 2011. 

[7] E. Keedy and Q. Feng, "A physics-of-failure based reliability and 
maintenance modeling framework for stent deployment and operation," 

Reliability Engineering & System Safety, vol. 103, pp. 94-101, 2012. 

[8] R. Moghaddass and M. J. Zuo, "Multistate degradation and supervised 
estimation methods for a condition-monitored device," IIE Transactions, 

vol. 46, pp. 131-148, 2014. 

[9] A. Lisnianski and G. Levitin, Multi-state system reliability: assessment, 
optimization and applications: World scientific, 2003. 

[10] W. Li and H. Pham, "Reliability modeling of multi-state degraded 

systems with multi-competing failures and random shocks," Reliability, 
IEEE Transactions on, vol. 54, pp. 297-303, 2005. 

[11] M. Giorgio, M. Guida, and G. Pulcini, "An age-and state-dependent 

Markov model for degradation processes," IIE Transactions, vol. 43, pp. 
621-632, 2011. 

[12] Y.-F. Li, E. Zio, and Y.-H. Lin, "A multistate physics model of 

component degradation based on stochastic Petri nets and simulation," 
Reliability, IEEE Transactions on, vol. 61, pp. 921-931, 2012. 

[13] L. Jiang, Q. Feng, and D. W. Coit, "Reliability and maintenance 

modeling for dependent competing failure processes with shifting failure 
thresholds," Reliability, IEEE Transactions on, vol. 61, pp. 932-948, 

2012. 

[14] N. Rasmekomen and A. K. Parlikad, "Maintenance Optimization for 
Asset Systems With Dependent Performance Degradation," Reliability, 

IEEE Transactions on, vol. 62, pp. 362-367, 2013. 

[15] L. Xing, C. Wang, and G. Levitin, "Competing failure analysis in non-
repairable binary systems subject to functional dependence," 

Proceedings of the Institution of Mechanical Engineers, Part O: Journal 

of Risk and Reliability, vol. 226, pp. 406-416, 2012. 
[16] C. Wang, L. Xing, and G. Levitin, "Competing failure analysis in 

phased-mission systems with functional dependence in one of phases," 

Reliability Engineering & System Safety, vol. 108, pp. 90-99, 2012. 
[17] L. Xing and G. Levitin, "Combinatorial analysis of systems with 

competing failures subject to failure isolation and propagation effects," 

Reliability Engineering & System Safety, vol. 95, pp. 1210-1215, 2010. 
[18] C. Wang, L. Xing, and G. Levitin, "Reliability analysis of multi-trigger 

binary systems subject to competing failures," Reliability Engineering & 

System Safety, vol. 111, pp. 9-17, 2013. 
[19] Y.-H. Lin, Y. Li, and E. Zio, "Dynamic Reliability Models for Multiple 

Dependent Competing Degradation Processes," in ESREL 2014. 

[20] S. Song, D. W. Coit, and Q. Feng, "Reliability for systems of degrading 

components with distinct component shock sets," Reliability 
Engineering & System Safety, vol. 132, pp. 115-124, 2014. 

[21] W.-S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, "Fault Tree 
Analysis, Methods, and Applications ߝ A Review," Reliability, IEEE 

Transactions on, vol. 34, pp. 194-203, 1985. 

[22] R. M. Sinnamon and J. Andrews, "New approaches to evaluating fault 
trees," Reliability Engineering & System Safety, vol. 58, pp. 89-96, 1997. 

[23] C. Wang, L. Xing, and G. Levitin, "Explicit and implicit methods for 

probabilistic common-cause failure analysis," Reliability Engineering & 
System Safety, vol. 131, pp. 175-184, 2014. 

[24] J. K. Vaurio, "An implicit method for incorporating common-cause 

failures in system analysis," Reliability, IEEE Transactions on, vol. 47, 
pp. 173-180, 1998. 

[25] J. K. Vaurio, "Treatment of general dependencies in system fault-tree 

and risk analysis," Reliability, IEEE Transactions on, vol. 51, pp. 278-
287, 2002. 

[26] L. Xing, G. Levitin, C. Wang, and Y. Dai, "Reliability of systems 

subject to failures with dependent propagation effect," Systems, Man, 
and Cybernetics: Systems, IEEE Transactions on, vol. 43, pp. 277-290, 

2013. 

[27] Y. Mo, L. Xing, and S. V. Amari, "A Multiple-Valued Decision 
Diagram Based Method for Efficient Reliability Analysis of Non-

Repairable Phased-Mission Systems," Reliability, IEEE Transactions on, 

vol. 63, pp. 320-330, 2014. 
[28] Y. Mo, L. Xing, and J. B. Dugan, "MDD-Based Method for Efficient 

Analysis on Phased-Mission Systems With Multimode Failures," 

Systems, Man, and Cybernetics: Systems, IEEE Transactions on, vol. 44, 
pp. 757-769, 2014. 

[29] S. Song, D. W. Coit, Q. Feng, and H. Peng, "Reliability Analysis for 

Multi-Component Systems Subject to Multiple Dependent Competing 
Failure Processes," Reliability, IEEE Transactions on, vol. 63, pp. 331-

345, 2014. 

[30] R. E. Bryant, "Graph-based algorithms for boolean function 
manipulation," Computers, IEEE Transactions on, vol. 100, pp. 677-

691, 1986. 

[31] E. Zio, The Monte Carlo simulation method for system reliability and 
risk analysis: Springer, 2013. 

[32] A. Rauzy, "New algorithms for fault trees analysis," Reliability 

Engineering & System Safety, vol. 40, pp. 203-211, 1993. 

[33] Z. Tang and J. B. Dugan, "BDD-based reliability analysis of phased-

mission systems with multimode failures," Reliability, IEEE 

Transactions on, vol. 55, pp. 350-360, 2006. 
[34] L. Xing, "An efficient binary-decision-diagram-based approach for 

network reliability and sensitivity analysis," Systems, Man and 

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 
38, pp. 105-115, 2008. 

[35] M. Marseguerra and E. Zio, "Monte Carlo approach to PSA for dynamic 

process systems," Reliability Engineering & System Safety, vol. 52, pp. 
227-241, 1996. 

[36] B. Bollig and I. Wegener, "Improving the variable ordering of OBDDs is 

NP-complete," Computers, IEEE Transactions on, vol. 45, pp. 993-
1002, 1996. 

[37] S. J. Friedman and K. J. Supowit, "Finding the optimal variable ordering 

for binary decision diagrams," in Proceedings of the 24th ACM/IEEE 
Design Automation Conference, 1987, pp. 348-356. 

[38] S.-i. Minato, N. Ishiura, and S. Yajima, "Shared binary decision diagram 
with attributed edges for efficient Boolean function manipulation," in 

Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE, 

1990, pp. 52-57. 
[39] M. Bouissou, F. Bruyere, and A. Rauzy, "BDD based fault-tree 

processing: A comparison of variable ordering heuristics," in 

Proceedings of European Safety and Reliability Association Conference, 
ESREL’97, 1997. 

[40] Y. Mo, F. Zhong, H. Liu, Q. Yang, and G. Cui, "Efficient Ordering 

Heuristics in Binary Decision Diagram–based Fault Tree Analysis," 
Quality and Reliability Engineering International, vol. 29, pp. 307-315, 

2013. 

[41] R. Tarjan, "Depth-first search and linear graph algorithms," SIAM 
journal on computing, vol. 1, pp. 146-160, 1972. 

[42] K. S. Brace, R. L. Rudell, and R. E. Bryant, "Efficient implementation of 

a BDD package," in Proceedings of the 27th ACM/IEEE design 
automation conference, 1991, pp. 40-45. 

[43] N. Limnios, Fault trees vol. 675: John Wiley & Sons, 2010. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

[44] C. Cocozza-Thivent, "Processus de renouvellement markovien, 

Processus de Markov déterministes par morceaux," Online book 
available on the webpage: http://perso-math. univ-mlv. fr/users/cocozza. 

christiane/recherche-pageperso/PresentationRMetPDMP. html, 2011. 

[45] E. Lewis and F. Böhm, "Monte Carlo simulation of Markov unreliability 
models," Nuclear Engineering and Design, vol. 77, pp. 49-62, 1984. 

[46] R. Coudray and J. Mattei, "System reliability: An example of nuclear 

reactor system analysis," Reliability Engineering, vol. 7, pp. 89-121, 
1984. 

[47] S. Zhang, M. Hodkiewicz, L. Ma, and J. Mathew, "Machinery condition 

prognosis using multivariate analysis," in Engineering asset 
management: Springer, 2006, pp. 847-854. 

[48] P. Moussou, S. Cambier, D. Lachene, S. Longarini, L. Paulhiac, and V. 

Villouvier, "Vibration investigation of a French PWR power plant 
piping system caused by cavitating butterfly valves," ASME-

PUBLICATIONS-PVP, vol. 420, pp. 99-106, 2001. 

[49] P. Paris and F. Erdogan, "A critical analysis of crack propagation laws," 
Journal of Fluids Engineering, vol. 85, pp. 528-533, 1963. 

[50] S. Marie, S. Chapuliot, Y. Kayser, M. Lacire, B. Drubay, B. Barthelet, P. 

Le Delliou, V. Rougier, C. Naudin, and P. Gilles, "French RSE-M and 
RCC-MR code appendices for flaw analysis: Presentation of the fracture 

parameters calculation—Part III: Cracked pipes," International Journal 

of Pressure Vessels and Piping, vol. 84, pp. 614-658, 2007. 

 

 

Yan-Hui Linhas been a doctoral student at 

Chair System Science and the Energy 

Challenge, Fondation Electricité de France 

(EDF), CentraleSupélec, Université Paris-

Saclay, France since August 2012. He 

received the B.Sc. degree in Applied 

Mathematics from Beihang University, 

China, the M.Sc. degree in Applied Mathematics from Ecole 

Centrale Paris, France and the M.Sc. degree in Aircraft Design 

from Beihang University, China, in 2010, 2012 and 2013, 

respectively. His research interests are in reliability, 

degradation and maintenance modeling, Monte Carlo 

simulation, and optimization under uncertainty. 

 
 

Yan-Fu Liis an Assistant Professor at Chair 

System Science and the Energy Challenge, 

Fondation Electricité de France (EDF), 

CentraleSupélec, Université Paris-Saclay, 

France. Dr. Li completed his PhD research 

in 2009 at National University of 

Singapore, and went to the University of 

Tennessee as a research associate. His current research 

interests include reliability modeling, uncertainty analysis, 

evolutionary computing, and Monte Carlo simulation. He is 

the author of more than 30 publications, all in refereed 

international journals, conferences, and books.  

 

 

Enrico Zio received the Ph.D. degree in 

nuclear engineering from Politecnico di 

Milano and MIT in 1995 and 1998, 

respectively. He is currently Director of the 

Chair System Science and the Energy 

Challenge, Fondation Electricité de France 

(EDF), CentraleSupélec, Université Paris-

Saclay, France, and full professor at Politecnico di Milano, 

Italy. His research focuses on the characterization and 

modeling of the failure/repair/maintenance behavior of 

components, complex systems and their reliability, 

maintainability, prognostics, safety, vulnerability and security, 

Monte Carlo simulation methods, soft computing techniques, 

and optimization heuristics. 

 


