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Robust Sclera Recognition System with Novel
Sclera Segmentation and Validation Techniques

S. Alkassar,Student Member, IEEE,W. L. Woo, Senior Member, IEEE,S. S. Dlay,
and J. A. Chambers,Fellow, IEEE,

Abstract—Sclera blood veins have been investigated recently
as a biometric trait which can be used in a recognition system.
The sclera is the white and opaque outer protective part of
the eye. This part of the eye has visible blood veins which
are randomly distributed. This feature makes these blood veins
a promising factor for eye recognition. The sclera has an
advantage in that it can be captured using a visible-wavelength
camera. Therefore, applications which may involve the sclera
are wide ranging. The contribution of this paper is the design
of a robust sclera recognition system with high accuracy. The
system comprises of new sclera segmentation and occluded eye
detection methods. We also propose an efficient method for
vessel enhancement, extraction and binarization. In the feature
extraction and matching process stages, we additionally develop
an efficient method that is orientation, scale, illumination and
deformation invariant. The obtained results using UBIRIS.v1 and
UTIRIS databases show an advantage in terms of segmentation
accuracy and computational complexity compared with state-of-
art methods due to Thomas, Oh, Zhou and Das.

Index Terms—Biometrics, wavelet transforms, feature extrac-
tion, pattern recognition, sclera recognition

I. I NTRODUCTION

RECENT research on biometrics have shown an increased
interest in new human traits rather than the typical

biometrics [1]. Human recognition systems using blood vessel
patterns for instance have been investigated using the retina
[2], palms [3], fingers [4], conjunctival vasculature [5] and
sclera [6]. The sclera can be defined as the white and opaque
outer protective part of the eye. It consists of four tissue layers:
the episclera, stroma, lamina fusca and endothelium [7] which
surround the iris. The iris is the colored tissue around the pupil.
This is shown in Fig. 1. The sclera has visible blood veins
which are randomly distributed in different orientations and
layers making them a promising factor for the improvement
of an eye recognition system [8].

Typical sclera recognition systems involve sclera segmen-
tation, blood vessel enhancement, feature extraction and a
matching process which is shown in Fig. 2. In addition, a
summary of recent published work on single sclera modality
is given in Table I. Sclera segmentation has evolved from
the manual segmentation applied by Derakhshani et al. [5],
[9] which is an unreliable approach for real-time applica-
tions because of the human supervision required with the
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segmentation process and the expensive processing time. In
the semi-automated method suggested by Crihalmeanu et al.
[10] based on K-means clustering, the eyelids included in
the resulting sclera image were manually corrected. After
that, two automated strategies were suggested based on sclera
pixel thresholding and a sclera shape contour to extract sclera
regions. For the sclera pixel thresholding technique, Thomas
et al. [11] and Zhou et al. [6], [12], [13] converted the color
images into the HSV color space and the sclera region was
extracted as it has low hue, low saturation and high intensity
in the HSV space. Then, another mask was created from a
skin detection method and the convex hull of each mask was
calculated and fused for the final sclera mask. Oh and Toh [14]
used the HSV color space with histogram equalization and
lowpass filtering in order to extract the sclera. For grayscale
images, Otsu’s thresholding method was applied to detect
sclera regions as the intensity of the sclera area is different
from the background. In contrast, the sclera shape contour
technique was utilized in [15]–[17] which depends on the
convergence of the contours through the sclera region. A time-
adaptive active contour was used to extract the sclera regions.

For the enhancement of blood vessels, Derakhshani et al.
[5], [9] utilized Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) with a region growing method to extract the
binary network of the sclera blood vessels. A bank of Gabor
filters was used in [6], [12], [13] whereas adaptive histogram
equalization with the discrete Haar wavelet was used in [17]
to enhance the vessel patterns. While for the feature extraction
process, Zhou et al. [6], [12], [13] proposed a line segment
descriptor based on the iris centroid. Oh and Toh [14] used
an angular grid with Local Binary Patterns (LBP) whereas
Derakhshani et al. [5], [9] suggested minutiae detection and a
matching method for sclera recognition.

Several issues and challenges remain for sclera recognition
which may affect the system performance. These are: 1) sclera
segmentation with pixel thresholding could be affected by the

Fig. 1. Eye structure consisting of pupil, iris and sclera region.
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TABLE I
RECENT WORKS RELATED TO SCLERA-BASED RECOGNITION USING A SINGLE SCLERA MODALITY

Authors Year Sclera segmentation Vessels enhancement Feature Extraction Database(subj./img.) Learning-based The best
performance

Derakhshani
et al. [5] 2006 Manual

CLAHEa, region growing
method

Hu’s invariant moments,
minutiaeb

In-house
DB (6/12)

No 100% identification
rate

Derakhshani
et al. [9]

2007 Manual CLAHE CDF 9/7c In-house
DB(50/300)

Yes
3 TIPUd 4.3% EER

Crihalmeanu
et al. [10] 2009

Semi-automated
(pixel thresholding)

CLAHE, selective
enahncement filter Affine transform

In-house
DB(50/100)

No 25% EER

Thomas
et al. [11] 2010 Automated

(pixel thresholding)
Gabor filters
bank Line segments description UBIRIS.v1

(241/1205)
Yes
2 TIPU 3.38% EER

Oh and Toh [14] 2012
Automated
(pixel thresholding) - Angular grid, LBPe UBIRIS.v1

(241/1205)
No 0.47% EER

Zhou et al. [6] 2012 Automated
(pixel thresholding)

Gabor filters
bank Line segments description UBIRIS.v1

(241/1805)
Yes
2 TIPU 4.09% EER

Lin et al. [18] 2014 Automated
(pixel thresholding)

Gabor filters
bank

Line segments description UBIRIS.v1
(241/1168)

Yes
2 TIPU

3.05% EER

Das et al. [17] 2013
Automated
(shape contour)

AHE f , Haar wavelet
filters bank

D-SIFT g UBIRIS.v1
(241/1205)

Yes
3 TIPU 0.66% EER

Das et al. [19] 2014 Automated
(shape contour)

AHE, Descrete Meyer
wavelet filters bank LDP h UBIRIS.v1

(241/1350)
Yes
5 TIPU

3.95% EER

a CLAHE: Contrast-Limited Histogram Equalization.
b Minutiae detection and matching.
c CDF 9/7: Cohen-Daubeches-Feauveau 9/7 wavelet.
d TIPU: Training images per user.
e LBP: Local Binary Pattern.
f AHE: Adaptive Histogram Equalization.
g D-SIFT: Dense Scale Invariant Feature Transform.
h LDP: Local Directional Pattern.

Fig. 2. Typical sclera recognition system design.

noise and distortion present in sclera images; 2) the effects
of the sclera boundary on the convergence of the sclera shape
contour; 3) occluded or partial occluded and noisy images
are discarded manually; 4) the enhancement of blood vessels
and the feature extraction algorithm should be invariant to
nonlinear blood vessel movement [6]; 5) robust user template
registration and an efficient matching procedure are required.
To mitigate these limitations, we propose the following novel
contributions to achieve a practical sclera recognition system
based only on visible-wavelength illumination:

• Occluded eye image detection;
• Adaptive sclera shape contour segmentation based on

active contours without edges;
• Efficient image enhancement and vessel map extraction;
• Robust sclera feature extraction with template registration

and matching.

The organization of the paper is as follows: in Section II, we
propose a new unsupervised sclera segmentation and occluded
eye detection method. Section III discusses the enhancement,
extraction, and mapping of blood vessels. Section IV includes
the feature extraction process and user template registration
while Section V discusses the matching and decision steps. In
Section VI, we introduce our evaluation results and finally we
present the conclusions in Section VII.

II. PROPOSEDSCLERA SEGMENTATION

Sclera segmentation is the initial and the most challenging
step in a sclera recognition system. The accuracy of the sclera
recognition system could be degraded if the segmentation
process fails to extract the correct sclera regions from an eye
image. Some incorrect sclera segmentation scenarios include
segmenting the sclera with some parts of the iris, eyelids
and eyelashes. Table I shows sclera segmentation techniques
developed from both manual and automated segmentation
processes. Two strategies, sclera pixel thresholding and sclera
shape contour, have been adopted each having their advantages
and disadvantages. We will focus on the sclera shape contour
technique in this paper as the sclera pixel thresholding involves
multiple steps to remove noise and segmenting sclera region,
thus increasing the complexity and processing time. We pro-
pose an adaptive approach for unsupervised fully automated
sclera segmentation by using active contours without edges
[20] with a novel occluded eye detection method.

A. Iris Segmentation

Iris center estimation has an essential role in our proposed
sclera segmentation method. Although the sclera recognition
system does not depend directly on the iris for the system
implementation. However, locating the position of the iris
center within the eye image plays a crucial part in our proposed
sclera segmentation. There is a significant amount of literature
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on iris segmentation [21]–[25] for which the iris region is
modeled as circular boundaries and it is not our focus area
to improve these methods rather than to extract the iris center
and radius. We use the integro-differential operator suggested
by Daugman [21] which acts as a circular edge detector. The
integro-differential operator is defined as

arg max
(r,x0,y0)

∣

∣

∣

∣

Gσ (r) ∗
∂

∂r

∮

r,x0,y0

I (x, y)

2πr
ds

∣

∣

∣

∣

, (1)

where I (x, y) is the grayscale level of the eye image,
(r, x0, y0) are the iris radius and center coordinates, the
symbol∗ is the convolution operator andGσ (r) is a Gaussian
smoothing function of scaleσ. The colored image is first
converted into grayscale format and down-sampled by factor
of 0.25 to enhance the processing time. This is shown in Fig.
3.

Fig. 3. Iris segmentation process.

B. Occluded Eye Detection For Sclera Validation

One major challenge in the sclera segmentation process
is the sclera validation where the segmented sclera is auto-
matically verified without any supervision from the human.
There are some factors such as an occluded eye image and
small sclera area which will affect the automation process
and increase error rate. Many researchers have discarded
these images manually or applied sclera validation after the
sclera segmentation step. However, if the sclera image has an
occluded eye, then validating the sclera after segmentation is
inefficient. Therefore, we propose a sclera validation process
by isolating the poor samples in the enrollment and verifi-
cation stages. The proposed method is applied before sclera
segmentation to detect partial or fully occluded eye image,to
make a validation decision of a sufficient sclera region.

Based on the iris radius and center coordinates(r, x0, y0),
two arc areas of intensities are specified according to the
following

Arc = RGB (x0 + r cos θ, y0 + r sin θ) , (2)

where θ ∈ [−π/3 : π/3] ∪ [−2π/3 : 2π/3] with uniform
increment steps of 0.1 degree and is set in this range to
check the status where eyelids are partially closed. Then, the
RGB intensities of each pixel in these two arc areas have
been classified by heuristic rules into a skin or not-skin labels
using the Color Distance Map (CDM) proposed in [26]. First,
we will explain this method by applying it on the right arc

Arcr and the same operation will be applied on the left arc
Arcl. First, two skin clusters for natural illumination and flash
illuminator conditions are defined as

CDM1 =



















R > 95, G > 40, B > 20,

1, max (R,G,B)−min (R,G,B) > 15,

|R−G| > 15, R > G,R > B

0, otherwise

, (3)

CDM2 =











R > 220, G > 210, B > 170,

1, |R−G| ≤ 15, B < R,B > G

0, otherwise

. (4)

Then, the non-skin map is created based on these clusters
as

sr(i) =

{

1, if CDM1(i) ‖ CDM2(i) = 0

0, otherwise
, (5)

where the symbol‖ refers to the logical OR operator, 1 refers
to a non-skin pixel and 0 to a skin pixel. The same operation
will be repeated onArcl to producesl. Next, from thesr
andsl vectors, four sub-arcsupr with Θ ∈ [π/6 : π/3], upl

with Θ ∈ [5π/6 : 2π/3], downr with Θ ∈ [−π/6 : −π/3]
and downl with Θ ∈ [−5π/6 : −2π/3] are used to define
decision parameters for the non-skin pixels as

nskup(i) = upr(i)
⋂

upl(i), (6)

nskdown(i) = downr(i)
⋂

downl(i), (7)

where
⋂

is the logical AND operator andΘ is set within this
range empirically to enhance the processing time. Then, the
percentage of the non-skin pixels is calculated for bothnskup

andnskdown as

pernskup
=

No. of 1s (nskup)

Total No. of elements(nskup)
, (8)

pernskdown
=

No. of 1s (nskdown)

Total No. of elements(nskdown)
. (9)

According topernskup
and pernskdown

, the final decision
to accept or reject the eye image is defined as

Eye image=

{

Accept, if pernskup
≥ 0.6

⋂

pernskdown
≥ 0.3

Reject, otherwise
, (10)

where 0.6 and 0.3 are set empirically for optimum perfor-
mance. After that, if the eye image is validated for a sufficient
sclera area, then the iris binary mask is applied to segment
the iris and the image is ready for the sclera segmentation.
Otherwise, no further processing time is required and the
image is rejected. The proposed validation process for an ideal
eye and partial occluded eye images is shown in Fig. 4.

C. Sclera Segmentation

Having presented the sclera validation methodology, we
next describe the proposed full procedure for sclera segmen-
tation.
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Fig. 4. Proposed occluded and partially occluded eye image detection, (a)
and (b) are an ideal eye image and partial occluded eye image respectively
with the angles depicted wherenskup andnskdown are calculated, (c) the
histograms of skin and non-skin pixels in thenskup andnskdown vectors.

1) Seed-base Initialization of Contours:For a frontal-
looking iris, two initial seeds for the left and right contours are
initialized depending on the iris radius and center coordinates
(r, x0, y0). The center positions of these seeds are calculated
as

Crs (x, y) =
(

x0 + (1.35× r) , y0
)

, (11)

and

Cls (x, y) =
(

x0 − (1.35× r) , y0
)

, (12)

(a)

(b)

Fig. 5. Segmentation process for the sclera, (a) initial seeds for the right
and left contours for iris-centered eye, (b) sclera segmented template.

where1.35 × r is set to ensure that the right and left seed
centers are outside the iris. The height of the initial contours
is set with altitude from the point on the iris circumference
with θ = π/12 to the point withθ = −π/12 and the width
(r/2) to make the contours converge inside the sclera regions.
The initial seed positions are depicted in Fig. 5a.

2) Active Contours Without Edges:The basic idea in snakes
or active contour models is to develop a curve subject to image
forces in order to detect salient objects [27]–[30]. For instance,
a curve is initialized around an object to be detected and
the curve will move towards that object until its boundary is
detected. However, a major problem with these active contour
models is that they have to rely on an edge function which
depends on the image gradient. These models can detect only
objects with edges defined by the gradients that stop the
curve evolution. In practice, the discrete gradients are bounded.
Therefore, the stopping function is never zero on the edges and
the curve may pass through the boundary. Another problem is
that if the image is contaminated with noise, it will require
a strong isotropic smoothing Gaussian function to remove the
noise at the cost of smoothing the edges as well.

In contrast, the active contours without edges model [20] has
no stopping edge function i.e., the gradient of the image is not
adopted for the stopping process, instead the Mumford-Shah
segmentation techniques are adopted [31]. The advantage of
this model is the ability of detecting contours independentof
gradients. For instance, objects with very smooth boundaries
or with discontinuous boundaries.

Summarizing the development in [20], let an eye image in
the grayscaleI0 be an open subset ofR2 with its boundary
equals∂I0, and the evolving curveC in I0 representing the
boundary of scleraω of I0 i.e.,ω ⊂ I0 andC = ∂ω. Then, the
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termsinside(C) andoutside(C) will equal the area regions
of ω and I0\ω̄ respectively, where the symbol(\) denotes
removal of the ensuing term and̄ω is the closed region ofω.
Assuming thatI0 has two regions of approximately piecewise-
constant intensitiesIi0 andIo0 , then the sclera to be detected is
the region with valueIi0. The fitting term of the active contour
model is represented by the energy functionF (c1, c2, C)
which is minimized if the curveC is on the boundary ofω
and defined as

F (c1, c2, C) = F1 (C) + F2 (C) + µ.Length (C)

+ ν.Area (inside (C)) , (13)

whereF1 (C) andF2 (C) equal

F1 (C) = λ1

∫

inside(C)

|I0 (x, y)− c1|2 dxdy, (14)

F2 (C) = λ2

∫

outside(C)

|I0 (x, y)− c2|2 dxdy, (15)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters,
and c1, c2, are the averages ofI0 inside and outsideC
respectively. Further details of the minimizing procedureis
in [20]. The parametersλ1, λ2 = 1 and ν = 0 are fixed for
best performance whereas the time step∆t is set to 0.1.µ is
the controlling parameter of the evolving curveC. The smaller
the value ofµ, the more ability to detect as many objects as
possible with different sizes. Asµ increases, the curveC will
detect only large objects. In our case, we setµ empirically
high to 0.2 in order to not detect the blood veins inside the
sclera rather the sclera boundary.

Then, the iris-segmented image is converted to the blue
channel and down-sampled by factor = 0.2 to enhance pro-
cessing time and the final sclera binary map is created. The
initial contours will converge towards the sclera boundaries in
all direction and will stop for a number of iterationsi = 200.
The final sclera template is shown in Fig. 5b.

III. SCLERA BLOOD VESSELENHANCEMENT AND

MAPPING

The main purpose of the vessel enhancement is to isolate the
blood vessels in the sclera from their background. This process
has two stages. In the first stage, the green layer of the RGB
image is extracted as it leads to better contrast between the
sclera blood vessel and the background [32]. Then, CLAHE
was applied to the sclera regions as it will enhance the green
layer of the colored image [5].

For the vessel extraction, which is the second stage, we
propose the two-dimensional Isotropic Undecimated Wavelet
Transform (IUWT) as it is robust and well adapted to astro-
nomical data and biology images where objects are more or
less isotropic [33]. To extractW = {w1, · · · , wJ , cJ}, where
wj are the wavelet coefficients at scalej and cJ are the
coefficients at the coarsest resolution, a subtraction between
two adjacent sets of coefficient scales is applied as

wj+1 [k, l] = cj [k, l]− cj+1 [k, l] , (16)

where
cj+1 [k, l] =

(

h̄(j)h̄(j) ∗ cj
)

[k, l] , (17)

and h̄(j) [k] = [1,4,6,4,1]
16 is the non-orthogonal Astro filter

bank withk = −2, · · · , 2. At each scalej, one wavelet set is
obtained which has the same resolution as the sclera image.
This feature solves the dimensionalty increment introduced
using Gabor filters with different scales and orientations and
produces efficient processing time. The reconstruction process
is obtained by co-addition ofj wavelet scales as:

c0 [k, l] = cJ [k, l] +

J
∑

j=1

wj [k, l] . (18)

The segmentation process for the vessels can be initiated
simply by adding the best wavelet levels with a thresholding
process that represents the best vessels contrast. The threshold
to detect the vessels is empirically set to identify the lowest
30% of the coefficients. It is likely to misclassify non-vessel
pixels as a vessel pixel. However, a cleaning process can be
achieved simply by calculating the area of misclassified pixels
and set a threshold to remove these undesired pixels. This is
shown in Fig. 6a

The thickness variation in the sclera vessels due to the
physiological status of a person [6] affects the recognition pro-
cess. Therefore, these vessels must be transformed to a single
pixel skeleton map. For the thinning process, a morphological
thinning algorithm was applied and binary morphological
operations are applied to remove the exterior pixels from
the detected vascular vessels map and to create a one-pixel
skeleton running along the center of the vessels. The binary
skeleton map of the sclera vessels is shown in Fig. 6b.

IV. SCLERA FEATURE EXTRACTION AND TEMPLATE

REGISTRATION

A. Sclera Feature Extraction

The feature extraction process in the sclera recognition
system involves producing a reliable mathematical model in
order to identify individuals. We propose a new method for
the sclera pattern feature extraction based on Harris corner and
edge detection [34]. This algorithm detects the Interest-Points

(a)

(b)

Fig. 6. The sclera blood vessels enhancement and mapping, (a) apply IUWT
for the vessel extraction, (b) the morphological thinning process.
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Fig. 7. Applying Harris detector to extract IP features.

(IPs) represented by the corner responseR. Some of these IPs
include Y, T, L and X vessel corner formations which supply
a significant 2D texture for pattern recognition.

The corner responseR is defined as

R = det(A) − k tr2(A), (19)

wheredet is the determinant of matrixA, k is a constant set
to 0.04, tr is the matrix trace andA is the image structure
matrix computed from the image derivatives as

A =

[

I2x IxIy
IxIy I2y

]

, (20)

where Ix and Iy are the partial derivatives inx and y
respectively. The corner response value is positive when a
corner region is detected, small if a flat region is detected
and negative if an edge region is detected within the smooth
circular Gaussian window. The steps for the IP extraction
process is as follows

1) compute the 1st derivatives inx andy;
2) apply the Gaussian smoothing filter to remove the noisy

response due to a binary window function;
3) find the points with a large corner response functionR

when (R > thC);
4) take the points of local maxima ofR.

wherethC is set to 0.01 for best performance. The extracted
IPs in the sclera vessel map are shown in Fig. 7.

After the IP locations have been extracted, the characteristic
information such as the magnitude, phase and orientation
within a specific window surrounding each feature point are
calculated. We exploit the two-dimensional monogenic signal
method [35] to extract the local information of these IPs. An
analytic signal is constructed by using the Riesz transform.
The analytic signal is isotropic and therefore provides a split
of identity where the information is orthogonally decomposed
into geometric and energetic information for the blood veins
IPs in term of local amplitude, local phase and local orien-
tation. If the coordinates of the vertical and horizontal filters
are u = (u1, u2), then the Riesz kernels in the frequency
domain are multiplied with Log-Gabor scale mask to calculate
the spatial representation of the vertical and horizontal filters
respectively as

h1 (u) = i
u1

|u|G (|u|) , h2 (u) = i
u2

|u|G (|u|) , (21)

where |u| =
√

u2
1 + u2

2 represents the radius of frequency
values from the center andG (|u|) is the monogenic scale
space defined by using the Log-Gabor filter for a wavelength
1/f0 as

G(|u|) = exp

(

− (log(|u| /f0))2
2(log(k/f0))2

)

, (22)

where1/f0 = 0.1 and k = 0.2 is the ratio of the standard
deviation of the Gaussian describing the log-Gabor filter’s
transfer function in the frequency domain to the filter center
frequency. Iff(I) represents the input image in the frequency
domain, then the monogenic signal of input imagefM (I) can
be defined as

fM (I) = f(I) + h(u) ∗ f(I), (23)

where ∗ is the convolution operator. For the monogenic
signal representation in the image domain, 3-tuple variable
{p(I), q1(I), q2(I)} is defined as

p(x) = (f ∗Ga)(I)

q1(x) = (f ∗ h1)(I)

q2(x) = (f ∗ h2)(I)

, (24)

whereGa is the Log-Gabor filter of the image domain. The
amplitude information is ignored as the vessel image is a
binary form whereas the monogenic phaseϕ(I) , which will
be in range−π/2 ≤ ϕ ≤ π/2, is calculated as

ϕ(I) = tan−1 p(I)
√

q1(I)2 + q2(I)2
. (25)

Finally for each IP location, a window patch with size of
(19× 19) pixels is stored along with the analytic signal infor-
mation and the sclera template will consist of the following
components

St = {IP.locations, IP.phases} . (26)

B. Sclera Feature Template Registration

The investigation of non linear blood vein movement in
the sclera carried out by Zhou et al. [6] has shown that these
vessels move slightly as the eye moves. To overcome this limi-
tation and produce an invariant-blood movement user template,
we propose a new method for user template registration. This
method is initiated with the alignment of user sclera templates
to a reference point. For the three training templatesSt1,
St2 andSt3, the reference points arer1(x, y), r2(x, y) and
r3(x, y) which represent the radius of the iris. Then, these
templates are aligned as follows

1) let r1(x, y) be the point whereSt2 andSt3 are to be
aligned;

2) for St2, subtract (r1(x, y),r2(x, y)) to extract the shift
values (hr,vr) in the horizontal and vertical dimensions;

3) apply a circular shift whereSt2 is shifted in both
directions asSt2(x+ hr, y + vr);

4) repeat forSt3.

If (hr,vr) are positive,St2 is shifted to the right and to the
bottom, if (hr,vr) are negative,St2 is shifted to the left and to
the top, if (hr) is positive and (vr) is negative,St2 is shifted
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Fig. 8. The most homogeneous feature setsSt
f represented in the red square

extracted fromfin1, fin2 and fin3.

to the right and to the top, and if (hr) is negative and (vr) is
positive,St2 is shifted to the left and to the bottom.

Next, we propose a new method for feature matching based
on a local descriptor to generate putative matching pairs
pm between these sclera feature sets, and Random Sampling
Consensus (RANSAC) [36] to select the homogeneous feature
setsfin. RANSAC uses the minimum number of feature points
to estimate the initial feature sets and proceed to maximize
the number of pairs within the set with consistent data points
and thus decreasing the processing time. The proposed local
descriptor includes generating a correlation matrix between
two sclera templates(St1,St2). The correlation matrix holds
the correlation strength of every feature set inSt1 relative to
St2. Then, search forpm1 pairs that correlate maximally in
both directions;pm1 can be calculated as

1) set a radius for the correlation windowrc = w−1
2 ;

2) calculate the distances ofSt1.IP.location(i) with all
St2.IP.location;

3) specify the pairs points that have a distance< dmax;
4) normalize the phase information of the selected pairs

points window to a unit vector form and measure the
correlation using a dot product;

5) find pm1 = arg{max |corr (St1,St2).
wheredmax is set empirically to 50 for best performance.

Once thepm1 pairs for these templates were specified, then
the process of findingfin1 for pm1 can be defined as follows

1) select randomly the minimum number of feature points
m = arg{min(pm1)};

2) normalize each set of points so that the origin is at
centroid and mean distance from origin is

√
2;

3) calculate Sampson error distances [37] between these
sets and determine how many feature points from the
templates fit with predefined Sampson error tolerance
< ε, whereε empirically set to 0.002.;

4) if the ratio of the number offin1 over the total number
of pm1 exceeds a predefined thresholdb, re-estimate
the model parameters using all the identifiedfin1 and
terminate.

5) otherwise, repeat steps 1 through 4 for a maximum of
N iterations.

The decision to stop selecting new feature subsets is based
on the number of iterationsN required to ensure that the

probability z = 0.99 that choosing random samples has at
least one set does not includefout points.N can be set as

N =
log(1 − z)

log(1− b)
, (27)

where b = 1 −
(

No. of fin
No. of pm

)s

represents the probability that
any selected feature points isfin1 feature points ands = 8
is the number of points needed to fit a fundamental matrix
[36]. This method uses a minimum number of feature points
to estimate the homogeneous pairs set and maximizes this set
with consistent feature points. Afterfin1, fin2 and fin3 have
been extracted and grouped in one set, the final sclera user
templateStf is created by removing the duplicated points.
This is shown in Fig. 8. The anglesφ betweenStf points and
iris center have been calculated for each point which will be
used in the matching process to mitigate some outlier points
been paired incorrectly.

V. SCLERA MATCHING AND DECISION PROCESS

The matching and decision process between two sclera
templates is the final stage where theStf of an enrolled user
is compared in terms of local orientation and local phase with
Stt of any test template. First, the putative feature setspm are
extracted fromStf andStt. Then these pair sets are compared
in term of the location and the angle to iris center. For the
decision process, we propose a two stage decision method
by using the Euclidean distance and the angle difference to
classify the matching results. For each pair, two parameters
are defined as

Dp =

{

1, if dist
(

Stf ,Stt
)

≤ thp

0, otherwise
, (28)

Dφ =

{

1, if |φf − φt| ≥ thφ

0, otherwise
, (29)

wherethp = 20 and thφ = 5 degrees are set empirically for
best performance. The decision to accept or reject each pair
is shown in Algorithm 1.

Finally, the decision process is calculated as

Df =

{

Accept, if no. of accepted pairs
no. of pm

≥ thf

Reject, otherwise
, (30)

Algorithm 1: Decision process between two sclera tem-
plate pairs

if (Dφ == 1) then
if (Dp == 1) then

Pair accepted;
else

Pair rejected;
end

else
Pair rejected;

end
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(a) (b)

Fig. 9. Examples of the matching process output between two sclera templates, (a) matching process between two sclera templates belonging to the same
individual, (b) matching process between two sclera templates belonging to a different individuals.

wherethf is set empirically to 0.6.
Some examples of the matching results between two users

are shown in Fig. 9.pm points are represented by a red
cross andfin are in a blue cross. The matching between two
sclera templates belonging to the same individual is shown
in Fig. 9a whereas Fig. 9b shows the matching between
two sclera templates belonging to different individuals.Df

is dramatically higher (Df = 89.51%) when matching two
sclera templates for the same user than matching different user
templates (Df = 49%).

VI. EXPERIMENTAL RESULTS

A. Experimental Methodology

The evaluation of a biometric system basically includes
calculating the False Acceptance Rate (FAR), the False
Rejection Rate (FRR) and the Equal Error Rate (EER) [38].
FAR andFRR are defined as

FAR =
FP

FP + TN
× 100%, (31)

FRR =
FN

FN + TP
× 100%, (32)

whereFP is the false positive match,TP is the true positive
match,FN is the false negative match andTN is the true
negative match.EER denotes the error rate at threshold
t where FAR(t) = FRR(t). In addition, we used the
Receiver Operating Characteristic (ROC) curve to evaluate
the performance of our system where ROC is a plot of the
FAR versus the Genuine Acceptance Rate (GAR). GAR is
calculated as

GAR = 1− FRR. (33)

B. Experimental Results Using the UBIRIS database

We utilized the UBIRIS.v1 database [39] to evaluate the per-
formance of our proposed method. This database is composed
of 1877 eye RGB images collected from 241 individuals in
two sessions. In the first session which consists of 1214 images
from 241 users, noise factors such as reflections, luminosity

(a) (b) (c)

(d) (e) (f)

Fig. 10. UBIRIS.v1 database poor quality images. (a) an iterated sclera,
(b) occluded eye, (c) partially occluded eye, (d) uncroppedeye image, (e)
insufficient sclera region and (f) high light exposure image.

and contrast were minimized as the images were captured
inside a dark room. While in the second session which is
composed of 663 images and involved only 135 from the 241
users, capturing location was changed in order to introducea
natural luminosity factor which introduced more reflections
contrast, luminosity and focus problems. The UBIRIS.v1
database includes the images captured by a vision system
with or without minimizing the collaboration of the subjects.
Some images have a poor quality condition such as irritated
sclera, closed eye, severe blurring, uncentered uncroppedeye-
area and poor lighting. Examples are shown in Fig.10. The
evaluation process has been achieved in single-session and
multi-session contexts. For the single-session context, we used
3 images for training and 2 for testing per user whereas the
multi-session scenario uses session 1 images for training and
session 2 images for testing and vise versa.

1) Sclera Validation Method Evaluation:The performance
of the proposed sclera validation is measured by computing
the Correct Sclera Validation(CSV ) rate where the correct
validation images are subjectively evaluated against the eye
image decision in (10) andCSV is calculated as

CSV = Number of CAS+Number of CRS
Total number of images × 100%, (34)
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TABLE II
THE CORRECT SCLERA VALIDATION RATE ON UBIRIS.V1

CSV

Session 1 Session 2

95.38% 89.45%

whereCAS is the Correctly Accepted Sclera image andCRS
is the Correctly Rejected Sclera image. As shown in Table II,
our proposed method has removed the partial or full occluded
images and thus avoids expensive processing times and any
human intervention. However, some limitations in our method
can be concluded as follows 1) the detection process depends
on the skin detection algorithm which is specifically designed
for RGB images and thus, the inability to use it on grayscale
images; 2) the process of findingArcr and Arcl depends
dramatically on the iris segmentation algorithm for the iris
center. Therefore, the failure in extracting the iris center will
cause errors in the validation process.

2) Active Contour Methods For Sclera Segmentation Com-
parison: We compared our proposed sclera segmentation
method using active contours without edges with state-of-the-
art active contour models such as the geodesic [30], balloons
[40] and the gradient vector flow [41] active contours in term
of accuracy and complexity as shown in Table III. We used
Matlab (version R2013a) on a PC with Intel core i5 3.0
GHz processor and 8.0 GB RAM for implementing these
algorithms. Our proposed algorithm is tended to focus on
computer-based application and thus the hardware complex-
ity is not discussed. For a fair comparison, the number of
iterations in all models is set to 200 and the sclera images are
down-sampled with factor = 0.2. For the subjective evaluation
results as shown in Fig. 12, our proposed method overcomes
the active contour model problem by not relying on the edge
function which depends on the image gradient to stop the curve
evolution. These drawbacks appear severely in noisy images
and in the case of irregular sclera shape. In term of accuracy,
our adapted method achieved 98.65% for Session 1 and 95.3%
for Session 2 which is significantly higher than other active
contour methods. In addition, our proposed method presented
significantly lower processing time among these methods

TABLE III
COMPARISON OF SCLERA SEGMENTATION USING DIFFERENT ACTIVE

CONTOUR MODELS IN TERM OF ACCURACY AND COMPLEXITY ON

UBIRIS.V1

Session Active
Contours Method

Correctly
Segmented Sclera Images Processing Time

Session 1
Geodesic Active

Contour [30]

68.02% 3.235 s

Session 2 52.3% 7.128 s

Session 1
Balloons Active

Contour [40]

77.15% 3.366 s

Session 2 72.36% 5.402 s

Session 1 GVF Active
Contours [41]

87.15% 4.818 s

Session 2 72.36% 6.310 s

Session 1 Proposed Active Contours
without Edge

98.65% 0.003 s

Session 2 95.3% 0.010 s

(0.003s and 0.010s for Session 1 and 2 respectively).
In addition, we utilized a supervised evaluation method used

by Proenca [42] to evaluate our proposed sclera segmentation
method. First, we manually segmented and labelled 200 sclera
images from both sessions. Then,R2 which is an objective
measure for the good-of-fit is calculated as

R2 = 1−
∑

(yi − ŷi)
2

∑

(yi − ȳ)
2 , (35)

whereyi are the desired sclera pixel values resulted from the
manual segmentation,ȳ is the mean and̂yi are the actual sclera
pixel values resulted from the above mentioned active contour
segmentation methods. As shown in Fig. 11, our proposed
method has superiority over the compared methods supporting
that active contours without edge which has no stopping edge
function is reliable for sclera segmentation.

Fig. 11. R square values for different active contour methods evaluation at
iteration i = 200.

3) A State-Of-The-Art Sclera Recognition Method Compar-
ison: We compared our proposed sclera recognition method
with the state-of-the-art methods on UBIRIS.v1 database as
shown in Table I. In addition, we plotted the ROC curves for
these comparison scenarios in Fig 13. The comparison in terms
of EER includes single-Session 1 and 2, Session 1 training-
Session 2 testing and Session 2 training-Session 1 testing.In
terms of human supervision, the authors in [6], [11], [14],
[17], [18], which their learning-based information is shown in
Table I, have discarded Session 2 manually as this session has
more noisy images which will affect system evaluation. While
in [19], the authors stated that they used all the images even
the occluded eye images but without including any occluded
eye detection method. For the segmentation speed in term of
active contours, [19] used a balloon-based active contour with
segmentation speed of 0.14s.

In contrast, we proposed a method for occluded and partial
occluded eye images which increase the robustness of the
system. In addition, the segmentation speed of the proposed
sclera segmentation is significantly lower (0.003s). Whilein
terms of the non linear blood vein movement effect, the
methods in [14], [17], [19] do not discuss nor suggest any
method to overcome this limitation whereas our proposed
system has an adaptive user template registration to extract
the most homogeneous features for a final user template.
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(a) (b)

(c) (d)

Fig. 12. The sclera regions extracted using different active contour models
applied on the same image, (a) proposed active contours without edges, (b)
the geodesic, (c) balloons and (d) the gradient vector flow active contours.

TABLE IV
A STATE-OF-THE-ART COMPARISON OF RECENT WORK ON THE UBIRIS.V1

DATABASE

Method Image
discarded

EER(%)
Single-session

EER(%)
Multi-session

S1 S2 S1 training
S2 testing

S2 training
S1 testing

Thomas et al. [11] Yes (S2) 3.38 n/a n/a n/a

Oh and Toh [14] Yes (S2) 0.47 n/a n/a n/a

Zhou et al. [6] Yes 4.09 9.98 n/a n/a

Lin et al. [18] Yes 3.05 n/a n/a n/a

Das et al. [17] Yes (S2) 0.66 n/a n/a n/a

Das et al. [19] No 0.42 0.51 3.95 4.34

Proposed
method No 2.19 2.67 3.68 4.11

4) Sclera versus Iris Recognition using the UBIRIS
Database:We compared our system with the iris recognition
systems using the UBIRIS.v1 database in order to analyze both
iris and sclera recognition systems using visible wavelength
images. For the iris recognition, two systems suggested by
Proenca and Alexandre [43] and the traditional Daugman
method were used. While for the sclera recognition system,
the Zhou et al. [6] method was used in comparison. We used
800 images for evaluating our system since in these systems,
they chose 800 images with best quality and least noise to
evaluate the accuracy. In addition, we used 800 images which
are randomly selected to evaluate the proposed system. As
shown in Table V, our system results are better (EER=1.23%)
compared to Daugman method (EER=3.72%) and to Proenca
and Alexndre method (EER=2.38%) using iris in the visible
wavelength. In addition, our system results are promising
compared to Zhou’s method in both best and random 800
images selection using proposed sclera recognition system.
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Fig. 13. UBIRIS.v1 ROC curve using single and multi-sessioncomparisons.

C. Experimental Results Using the UTIRIS database

We used the UTIRIS database [44] to evaluate our proposed
segmentation method accuracy. The UTIRIS database consists
of two distinct sessions of visible-wavelength and near-infrared
images for 79 individuals with five images from both the left
and right eyes as shown in Fig. 14. We discarded the near-
infrared images as our focus is on visible-wavelength images.
The dimension of RGB images is 2048× 1360. Some of these
images are off-angle iris position which have been discarded
manually. First, we resized the dimension of RGB images to
600×800 using bilinear interpolation and utilized the same
evaluation process parameters as on UBIRIS.v1. As shown
in Table VI, the accuracy of our proposed active contours
without edges method has been decreased as compared with
the UBIRIS.v1 database because some of the UTIRIS images
are defocused on the sclera regions as this database is created
for evaluating the iris pigmentation role in an iris recognition

TABLE V
EER COMPARISON OF IRIS AND SCLERA RECOGNITION SYSTEMS ON

UBIRIS.V1 DATABASE

Modality Method No. of Images EER (%)

Iris Proenca and Alexandre [43] Best 800 2.38

Iris Duagman [43] Best 800 3.72

Sclera Zhou et al. [6] Rand 800 3.83

Sclera Zhou et al. [6] Best 800 1.34

Sclera Our proposed system Rand 800 2.31

Sclera Our proposed system Best 800 1.23
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TABLE VI
COMPARISON OF SCLERA SEGMENTATION USING DIFFERENT ACTIVE

CONTOURS MODELS IN TERM OF ACCURACY AND COMPLEXITY ON UTIRIS
DATABASE

Active
Contours Method

Correctly
Segmented Sclera Images Processing Time

Geodesic Active
Contour [30] 66.33% 3.145 s

Balloons Active
Contour [40]

71.01% 3.708 s

GVF Active
Contour [41] 82.44% 4.779 s

Proposed Active Contours
without Edge 90.82% 0.004 s

system. Therefore, sclera regions are not considered important
to the authors study. However, the processing time remains
significantly lower compared to other active contours models.
In addition, EER has been calculated (EER=6.67%) and ROC
curve is shown in Fig. 15.

Fig. 14. UTIRIS right and left eye images. The upper row represents the
right eye images whereas the lower row represents the left eye images.

D. Computational Load of The Proposed System

This section provides the computational load of the pro-
posed system in each step as shown in Table VII. The
properties of simulation program and PC are mentioned in
the subsection VI-B2. the computational complexities of each
step is calculated by running the simulation program 20 times
using both UBIRIS.v1 and UTIRIS databases and the average
processing time is recorded.

TABLE VII
TIME COMPLEXITY OF THE PROPOSED SYSTEM.

Sclera Recognition Steps Complexity

Iris Segmentation 1.97 s

Sclera Validation 0.24 s

Sclera Segmentation 0.007 s

Feature Extraction 0.29 s

User Template Registration 0.46 s

E. Empirical Parameters Tuning Analysis

To analyse the tuning criteria for the system controlling
parameters, we summarized these variables according to their
location as follows:
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Fig. 15. UTIRIS database ROC curve.

• Occluded eye detection for sclera validation: this section
has three controlling parameters which areΘ, pernskup

and pernskdown
. For Θ, increasing the angle width pro-

vides more accurate results at the expense of processing
time. While forpernskup

andpernskdown
, the higher the

values, the more sclera samples are rejected.
• Sclera segmentation: this section has two controlling

parameters which areµ and the number of iterations
i. Increasingi means more curve convergence with a
possibility that the fitting curve my pass through the
sclera border whereasµ is discussed in subsection II-C2.

• Sclera matching and decision process: finally, the deci-
sion process is determined through first detect pair sets
depending onthp and thφ whereasthf sets the final
decision. Increasing the values ofthp and thφ are more
likely produce false pair sets. Whilethf determines FRR
and FAR where the higher thethf , the higher the FRR
and the lower FAR and vice versa.

VII. C ONCLUSION

In this paper, a novel occluded eye detection method has
been proposed to discard the noisy images. Sclera segmen-
tation has been achieved through an adaptive active contours
without edges method. In addition, a new method for blood
vein extraction and mapping have been suggested based on
IUWT. For the non linear movement of the blood veins,
a new user template registration is proposed to overcome
this effect and create a robust sclera feature template. The
results using the UBIRIS.v1 and UTIRIS databases showed
that our proposed method has a lower processing time with
high segmentation accuracy. In addition, the proposed method
minimizes the human supervision during the recognition pro-
cess introducing more robustness. This paper has not evaluated
the use of off-angle sclera images which need to be considered
as future work. In addition, considering different versions of
the RANSAC algorithm to select the homogeneous feature
sets and comparing the efficiency and processing time of each
version is recommended.
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