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Robust Sclera Recognition System with Novel
Sclera Segmentation and Validation Techniques

S. AlkassarStudent Member, IEEBV. L. Woo, Senior Member, IEEES. S. Dlay,
and J. A. Chamberssellow, IEEE,

Abstract—Sclera blood veins have been investigated recently segmentation process and the expensive processing time. In
as a biometric trait which can be used in a recognition system the semi-automated method suggested by Crihalmeanu et al.
The sclera is the white and opaque outer protective part of [10] based on K-means clustering, the eyelids included in
the eye. This part of the eye has visible blood veins which . . ’
are randomly distributed. This feature makes these blood vias the resulting sclera 'mage_ were manually corrected. After
a promising factor for eye recognition. The sclera has an that, two automated strategies were suggested based oa scle
advantage in that it can be captured using a visible-wavelegth  pixel thresholding and a sclera shape contour to extraetacl
camera. Therefore, applications which may involve the scta  regions. For the sclera pixel thresholding technique, Ta®m
are wide ranging. The contribution of this paper is the desig et al. [11] and Zhou et al. [6], [12], [13] converted the color
of a robust sclera recognition system with high accuracy. Ta . . ' ’ .
system comprises of new sclera segmentation and occludedeey'mages Into t_he HSV color space and f[he sclera} feQ'O” V\{as
detection methods. We also propose an efficient method for €xtracted as it has low hue, low saturation and high intgnsit
vessel enhancement, extraction and binarization. In the fgure in the HSV space. Then, another mask was created from a
extraction and matching process stages, we additionally #elop  skin detection method and the convex hull of each mask was
an efficient method that is orientation, scale, illuminatio and -5 culated and fused for the final sclera mask. Oh and Toh [14]

deformation invariant. The obtained results using UBIRISv1 and d the HSV col ith hist lizati d
UTIRIS databases show an advantage in terms of segmentation use e color space wi IStogram equalization an

accuracy and computational complexity compared with stateof-  l0wpass filtering in order to extract the sclera. For grajesca
art methods due to Thomas, Oh, Zhou and Das. images, Otsu’s thresholding method was applied to detect

Index Terms—Biometrics, wavelet transforms, feature extrac- sclera regions as the intensity of the sclera area is diftere
tion, pattern recognition, sclera recognition from the background. In contrast, the sclera shape contour

technique was utilized in [15]-[17] which depends on the

convergence of the contours through the sclera region. A-tim

|. INTRODUCTION adaptive active contour was used to extract the scleramsgio

ECENT research on biometrics have shown an increased

interest in new human traits rather than the typical For the enhancement of blood vessels, Derakhshani et al.
biometrics [1]. Human recognition systems using blood eesg5], [9] utilized Contrast-Limited Adaptive Histogram Eal
patterns for instance have been investigated using thearetization (CLAHE) with a region growing method to extract the
[2], palms [3], fingers [4], conjunctival vasculature [5]dan binary network of the sclera blood vessels. A bank of Gabor
sclera [6]. The sclera can be defined as the white and opadjliers was used in [6], [12], [13] whereas adaptive histogra
outer protective part of the eye. It consists of four tisayets: equalization with the discrete Haar wavelet was used in [17]
the episclera, stroma, lamina fusca and endothelium [7¢hvhito enhance the vessel patterns. While for the feature eidrac
surround the iris. The iris is the colored tissue around tiglp process, Zhou et al. [6], [12], [13] proposed a line segment
This is shown in Fig. 1. The sclera has visible blood veimdescriptor based on the iris centroid. Oh and Toh [14] used
which are randomly distributed in different orientationsda an angular grid with Local Binary Patterns (LBP) whereas
layers making them a promising factor for the improvemefterakhshani et al. [5], [9] suggested minutiae detectiathan
of an eye recognition system [8]. matching method for sclera recognition.

Typical sclera recognition systems involve sclera segmen-Several issues and challenges remain for sclera recognitio
tation, blood vessel enhancement, feature extraction andvlich may affect the system performance. These are: 1)ascler
matching process which is shown in Fig. 2. In addition, segmentation with pixel thresholding could be affectedhsy t
summary of recent published work on single sclera modality
is given in Table I. Sclera segmentation has evolved from
the manual segmentation applied by Derakhshani et al. [~
[9] which is an unreliable approach for real-time applice
tions because of the human supervision required with t sclera

<—— Blood Veins

S. Alkassar, W. L. Woo, S. S. Dlay and J. A. Chambers are wighSthool
of Electrical and Electronic Engineering, Newcastle Ursity, Newcastle
Upon Tyne, NE1 7RU, UK (e-mails{s.h.m.alkassar, Lok.Woo, Satnam.Dlay,
Jonathon.Chambef@newcastle.ac.uk). S. Alkassar is also a staff member o o )
with Electronics Engineering collage, University of Mosliag. Fig. 1. Eye structure consisting of pupil, iris and sclergioe.



RECENT WORKS RELATED TO SCLERABASED RECOGNITION USING A SINGLE SCLERA MODALITY

TABLE |

Authors Year Sclera segmentation  Vessels enhancement Feet Extraction Database(subj./img.)  Learning-based The best
performance
Derakhshani CLAHE?, region growing Hu'’s invariant moments,  In-house 100% identification
et al. [5] 2006 Manual method minutiad DB (6/12) No rate
Derakhshani In-house Yes o
et al. [9] 2007  Manual CLAHE CDF 9/ DB(50/300) 3 TIPLY 4.3% EER
Crihalmeanu Semi-automated CLAHE, selective ) In-house o
et al. [10] 2009 (pixel thresholding)  enahncement filter Affine transform DB(50/100) No 25% EER
Thomas Automated Gabor filters : - UBIRIS.v1 Yes o
et al. [11] 2010 el thresholding)  bank Line segments description 1505 2 TIPU 3.38% EER
Automated . UBIRIS.v1
Oh and Toh [14] 2012 (pixel thresholding) Angular grid, LBP¢ (241/1205) No 0.47% EER
Automated Gabor filters ; .. UBIRIS.v1 Yes o
Zhou et al. [6] 2012 (pixel thresholding)  bank Line segments description (241/1805) 2 TIPU 4.09% EER
: Automated Gabor filters : .. UBIRIS.vl1 Yes
Lin et al. [18] 2014 (pixel thresholding) bank Line segments description (241/1168) 2 TIPU 3.05% EER
Automated AHE 7/, Haar wavelet g UBIRIS.v1 Yes o
Dasetal [17] 2013 s,a0e contour) filters bank D-SIFT (241/1205) 3 TIPU 0.66% EER
Automated AHE, Descrete Meyer h UBIRIS.v1 Yes o
Das et al. [19] 2014 (shape contour) wavelet filters bank LDP (241/1350) 5 TIPU 3.95% EER
@ CLAHE: Contrast-Limited Histogram Equalization.
b Minutiae detection and matching.
¢ CDF 9/7: Cohen-Daubeches-Feauveau 9/7 wavelet.
4 TIPU: Training images per user.
¢ LBP: Local Binary Pattern.
I AHE: Adaptive Histogram Equalization.
9 D-SIFT: Dense Scale Invariant Feature Transform.
 LDP: Local Directional Pattern.
Train image
. Sclera Vessels Classification
Iris a Feature Database s Output
. validation and enhancement . . and decision
segmentation ; . extraction training
segmentation and mapping process
Test image T

Fig. 2. Typical sclera recognition system design.

noise and distortion present in sclera images; 2) the sffect Il. PROPOSEDSCLERA SEGMENTATION
of the sclera boundary on the convergence of the sclera shapgcjera segmentation is the initial and the most challenging
contour; 3) occluded or partial occluded and noisy imagggep in a sclera recognition system. The accuracy of thesscle
are discarded manually; 4) the enhancement of blood Vesﬁ%léognition system could be degraded if the segmentation
and _the feature extraction algorithm should be invariant B’(ocess fails to extract the correct sclera regions fromyan e
nonlinear blood vessel movement [6]; 5) robust user teraplgiage. Some incorrect sclera segmentation scenariosdiclu
registration and an efficient matching procedure are requ"segmenting the sclera with some parts of the iris, eyelids
To mitigate these limitations, we propose the following @ov 5,4 eyelashes. Table | shows sclera segmentation teclsnique
contributions to achieve a practical sclera recognitioste&y geyeloped from both manual and automated segmentation
based only on visible-wavelength illumination: processes. Two strategies, sclera pixel thresholding eledas
shape contour, have been adopted each having their adeantag
« Occluded eye image detection; and disadvantages. We will focus on the sclera shape contour
. Adaptive sclera shape contour segmentation based t@ghnique in this paper as the sclera pixel thresholdingiwes
active contours without edges; multiple steps to remove noise and segmenting sclera rggion
« Efficient image enhancement and vessel map extractidhUs increasing the complexity and processing time. We pro-

« Robust sclera feature extraction with template registrati Pose an adaptive approach for unsupervised fully automated
and matching. sclera segmentation by using active contours without edges

[20] with a novel occluded eye detection method.

The organization of the paper is as follows: in Section Il, we _
propose a new unsupervised sclera segmentation and odclue IS Segmentation
eye detection method. Section Ill discusses the enhandemeniris center estimation has an essential role in our proposed
extraction, and mapping of blood vessels. Section IV inetudsclera segmentation method. Although the sclera recogniti
the feature extraction process and user template registratsystem does not depend directly on the iris for the system
while Section V discusses the matching and decision stapsimhplementation. However, locating the position of the iris
Section VI, we introduce our evaluation results and finally wcenter within the eye image plays a crucial part in our predos
present the conclusions in Section VII. sclera segmentation. There is a significant amount of titega



on iris segmentation [21]-[25] for which the iris region isArc, and the same operation will be applied on the left arc
modeled as circular boundaries and it is not our focus aréac;. First, two skin clusters for natural illumination and flash
to improve these methods rather than to extract the irisecenilluminator conditions are defined as

and radius. We use the |ntegro—d|ffe.rent|al operator ssigge R>95.G>40,B > 20,

by Daugman [21] which acts as a circular edge detector. The

integro-differential operator is defined as cpnm, = b max (R,G, B) —min (R, G, B) > 15, 3)
5 I(z.9) |IR—G|>15R>G,R>B
€,y .
. — ds|, 1 ,
arg (Tgliz(o) Gy (1) * 5 jé,zo,yo oy s‘ 1) 0, otherwise
where I (z,y) is the grayscale level of the eye image, R > 220,G > 210, B > 170,

(r,0,y0) are the iris radius and center coordinates, theCDM, =<1, |[R—G|<15,B<R,B>G. (4)
symbol is the convolution operator ar@, () is a Gaussian 0 otherwis;

smoothing function of scaler. The colored image is first

converted into grayscale format and down-sampled by factorThen, the non-skin map is created based on these clusters
of 0.25 to enhance the processing time. This is shown in Figs

3.
\_J1 i CDMG) || CDMy(D) =0
Converted to | | Down-sample s(i) = 0, otherwise - ©
ot & grayscale by factor 0.25
Ebmﬂf' e < where the symbo] refers to the logical OR operator, 1 refers
o l to a non-skin pixel and 0 to a skin pixel. The same operation
PE—— will be repeated onArc; to produces;. Next, from thes,
s s pply integro- ands; vectors, four sub-arcap, with © € [7/6 : 7/3], u
Ret Creat : : ! ’ P P/l up
(erl)lcm 11;15 — bir::a errlll::ssk «— differential with © € [57/6: 27/3], down, with © € [—-7/6: —7/3]
X0:.)0 Ly operator and down; with © € [-57/6 : —27/3] are used to define
decision parameters for the non-skin pixels as
Fig. 3. Iris segmentation process. nskup(i) = up, (z) ﬂ UPl(i), (6)
nsKgown (i) = down,. (i) ﬂ down, (i), (7)

B. OCC|Ud?d Eye Detectl(.)n For Sclera Validation . where() is the logical AND operator ané is set within this
One major challenge in the sclera segmentation procegsge empirically to enhance the processing time. Then, the

is the sclera validation where the segmented sclera is ayercentage of the non-skin pixels is calculated for hotk,,,,
matically verified without any supervision from the humarandnsk,,.,, as

There are some factors such as an occluded eye image and No. of 1s (nskyy)

small sclera area which will affect the automation process PeTnsk,, = i ol , (8)
and increase error rate. Many researchers have discarded Total No. of elementgnsk.,)
these images manually or applied sclera validation after th No. of 1s (nskdown)

sclera segmentation step. However, if the sclera imagetas a  P“"nskioun = T5131No. of elementénskaomn) ©)
occluded eye, then validating the sclera after segmentégio
inefficient. Therefore, we propose a sclera validation gssc
by isolating the poor samples in the enrollment and veri
cation stages. The proposed method is applied before sclera imagee {Accept if pernsk,, > 0.6 () Pernskyon, = 0-3 (10)

According to perpsk,, and pernsk,,..,.. the final decision
ﬁg accept or reject the eye image is defined as

segmentation to detect partial or fully occluded eye image, Reject otherwise
make a validation decision of a sufficient sclera region.

Based on the iris radius and center coordindtes, o),
two arc areas of intensities are specified according to t
following

where 0.6 and 0.3 are set empirically for optimum perfor-
mance. After that, if the eye image is validated for a suffitie
SClera area, then the iris binary mask is applied to segment
the iris and the image is ready for the sclera segmentation.
Arc = RGB (zog +rcosb,yo + rsinf), (2) Otherwise, no further processing time is required and the
image is rejected. The proposed validation process for ea id

where ¢ & [-m/3:m/3] U [-2m/3:2m/3] with uniform eye and partial occluded eye images is shown in Fig. 4.
increment steps of 0.1 degree and is set in this range to

check the status where eyelids are partially closed. Then, t .

RGB intensities of each pixel in these two arc areas hafe Sclera Segmentation

been classified by heuristic rules into a skin or not-skirelab  Having presented the sclera validation methodology, we
using the Color Distance Map (CDM) proposed in [26]. Firshext describe the proposed full procedure for sclera segmen
we will explain this method by applying it on the right araation.
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Fig. 4. Proposed occluded and partially occluded eye imagection, (a)
and (b) are an ideal eye image and partial occluded eye imegpectively
with the angles depicted wheresk,, andnskg,,.,, are calculated, (c) the
histograms of skin and non-skin pixels in thek., andnskg,,, vectors.

1) Seed-base Initialization of Contourdtor a frontal-
looking iris, two initial seeds for the left and right contslare
initialized depending on the iris radius and center coatdia

(b)

Fig. 5. Segmentation process for the sclera, (a) initiabseer the right
and left contours for iris-centered eye, (b) sclera segetetemplate.

where 1.35 x r is set to ensure that the right and left seed
centers are outside the iris. The height of the initial carto

is set with altitude from the point on the iris circumference
with § = 7/12 to the point withd = —z/12 and the width
(r/2) to make the contours converge inside the sclera regions.
The initial seed positions are depicted in Fig. 5a.

2) Active Contours Without Edge$he basic idea in snakes
or active contour models is to develop a curve subject to enag
forces in order to detect salient objects [27]-[30]. Fotanse,

a curve is initialized around an object to be detected and
the curve will move towards that object until its boundary is
detected. However, a major problem with these active contou
models is that they have to rely on an edge function which
depends on the image gradient. These models can detect only
objects with edges defined by the gradients that stop the
curve evolution. In practice, the discrete gradients arelded.
Therefore, the stopping function is never zero on the edgés a
the curve may pass through the boundary. Another problem is
that if the image is contaminated with noise, it will require
a strong isotropic smoothing Gaussian function to remoee th
noise at the cost of smoothing the edges as well.

In contrast, the active contours without edges model [26] ha
no stopping edge function i.e., the gradient of the imagets n
adopted for the stopping process, instead the Mumford-Shah
segmentation techniques are adopted [31]. The advantage of
this model is the ability of detecting contours independsnt

(r,20,y0). The center positions of these seeds are calculaigdients. For instance, objects with very smooth bouedari

as
Crs (x,y) = (:1:0 +(1.35 x 1) ,yo), (12)

and
Cls (x,y) = (:EO - (135 X T) 7y0)7 (12)

or with discontinuous boundaries.

Summarizing the development in [20], let an eye image in
the grayscald, be an open subset @2 with its boundary
equalsdly, and the evolving curvé€' in I, representing the
boundary of sclera of Iy i.e.,w C Iy andC = dw. Then, the



termsinside(C') and outside(C) will equal the area regions and h\%) [k] = % is the non-orthogonal Astro filter

of w and Iy\@w respectively, where the symbdl) denotes bank withk = —2,--- 2. At each scalg, one wavelet set is
removal of the ensuing term angis the closed region af. obtained which has the same resolution as the sclera image.
Assuming that/y has two regions of approximately piecewiseThis feature solves the dimensionalty increment introduce
constant intensitieg) and g, then the sclera to be detected isising Gabor filters with different scales and orientationd a
the region with valud{. The fitting term of the active contour produces efficient processing time. The reconstructiongs®
model is represented by the energy functibici,co,C) is obtained by co-addition of wavelet scales as:

which is minimized if the curve” is on the boundary ofs

J
and defined as co [k, 1] = ey [k, 1]+ > wy [k, 1] (18)
F(e1,09,C) = F1 (C) + F» (C) + p.Length (C) J=1
+ v.Area (inside (C)) , (13) The segmentation process for the vessels can be initiated
simply by adding the best wavelet levels with a thresholding
where Fy (C) and F3 (C) equal process that represents the best vessels contrast. Tehdlite
9 to detect the vessels is empirically set to identify the Istwe
F1(C) =X /mm_de(c) o (z,y) — a1 dzdy, (14) 30% of the coefficients. It is likely to misclassify non-vessel
pixels as a vessel pixel. However, a cleaning process can be
Fy (C) = Xy / |Io (z,y) — 02|2 dady, (15) achieved simply by calculating the area of misclassifieelgix
outside(C) and set a threshold to remove these undesired pixels. This is

wherepy > 0, v > 0, A\;,A2 > 0 are fixed parameters,shown in Fig. 6a
and ¢;, ¢y, are the averages of, inside and outsideC The thickness variation in the sclera vessels due to the
respectively. Further details of the minimizing procedige physiological status of a person [6] affects the recognifico-
in [20]. The parameters;, A\, = 1 andv = 0 are fixed for cess. Therefore, these vessels must be transformed tola sing
best performance whereas the time stepis set to 0.1, is  Pixel skeleton map. For the thinning process, a morphotdgic
the controlling parameter of the evolving cur¥e The smaller thinning algorithm was applied and binary morphological
the value ofy, the more ability to detect as many objects a@perations are applied to remove the exterior pixels from
possible with different sizes. As increases, the curv@ will the detected vascular vessels map and to create a one-pixel
detect only large objects. In our case, we geempirically Sskeleton running along the center of the vessels. The binary
high to 0.2 in order to not detect the blood veins inside ttikeleton map of the sclera vessels is shown in Fig. 6b.
sclera rather the sclera boundary.

Then, the iris-segmented image is converted to the blue IV. SCLERA FEATURE EXTRACTION AND TEMPLATE
channel and down-sampled by factor = 0.2 to enhance pro- REGISTRATION
cessing time and the final sclera binary map is created. The Sclera Feature Extraction
initial contours will converge towards the sclera bounegin
all direction and will stop for a number of iteratioms= 200.
The final sclera template is shown in Fig. 5b.

The feature extraction process in the sclera recognition
system involves producing a reliable mathematical model in
order to identify individuals. We propose a new method for
the sclera pattern feature extraction based on Harris cante

Il. SCLERA BLOOD VESSELENHANCEMENT AND edge detection [34]. This algorithm detects the Intereét

MAPPING

The main purpose of the vessel enhancementis to isolate the
blood vessels in the sclera from their background. Thisgsec
has two stages. In the first stage, the green layer of the RGB
image is extracted as it leads to better contrast between the
sclera blood vessel and the background [32]. Then, CLAHE
was applied to the sclera regions as it will enhance the green
layer of the colored image [5].

For the vessel extraction, which is the second stage, we
propose the two-dimensional Isotropic Undecimated Wavele
Transform (IUWT) as it is robust and well adapted to astro-
nomical data and biology images where objects are more or
less isotropic [33]. To extradt) = {w1, -+ ,wys,cs}, where
w; are the wavelet coefficients at scajeand c; are the
coefficients at the coarsest resolution, a subtraction dwtw
two adjacent sets of coefficient scales is applied as

Wi41 [k, l] =Cj [/{, l] — Cj+1 [k7 l] ) (16)

(@

(b)

where Fig. 6. The sclera blood vessels enhancement and mapp)raply IUWT

cjy1 [k, 1] = (i_z(j)ﬁ(j) * Cj) [k, 1], (17)  for the vessel extraction, (b) the morphological thinninggess.



where |u| = /u? + u3 represents the radius of frequency
values from the center an@ (Ju|) is the monogenic scale
space defined by using the Log-Gabor filter for a wavelength

1/fo as
B (log((ul / /o))?
Cjul) = exp <‘ Ho8 0/ o) ) ’ (@2)

wherel/fy, = 0.1 andk = 0.2 is the ratio of the standard
deviation of the Gaussian describing the log-Gabor filter's
transfer function in the frequency domain to the filter cente
frequency. Iff(I) represents the input image in the frequency
domain, then the monogenic signal of input imagge(/) can

be defined as

fu(I) = f(I) + h(u) = f(I), (23)
(IPs) represented by the corner respofits&ome of these IPs . _ .
include Y, T, L and X vessel corner formations which supplyhere = is the convolution operator. For the monogenic

Fig. 7. Applying Harris detector to extract IP features.

a significant 2D texture for pattern recognition. signal representation in the image domain, 3-tuple vegiabl
The corner responsR is defined as {p(I),q1(I),q2(1)} is defined as
R = def(4) — k tr?(A), (19) p(e) = (f*Ga)()
. . o a(z) = (f * b)), (24)
wheredet is the determinant of matrid, & is a constant set
to 0.04,¢r is the matrix trace andl is the image structure ¢ () = (f * h2)(IT)
matrix computed from the image derivatives as whereG,, is the Log-Gabor filter of the image domain. The
2L amplitude information is ignored as the vessel image is a
A= [I 3 %U} , (20) binary form whereas the monogenic phasg) , which will
Y Y be in range-7/2 < ¢ < 7/2, is calculated as
where I, and I, are the partial derivatives iz and y p(I)
respectively. The corner response value is positive when a o(I) = tan~" (25)

corner region i i an i a2+ (1)
gion is detected, small if a flat region is detected

and negative if an edge region is detected within the smoothFinally for each IP location, a window patch with size of

circular Gaussian window. The steps for the IP extractiqd9 x 19) pixels is stored along with the analytic signal infor-

process is as follows mation and the sclera template will consist of the following
1) compute the 1st derivatives inandy; components
2) apply the Gaussian s_mooth|_ng filter to remove the noisy St — {IP.locationsIP.phasek. (26)
response due to a binary window function;
3) find the points with a large corner response functiton ) )
when (R > the); B. Sclera Feature Template Registration
4) take the points of local maxima dt. The investigation of non linear blood vein movement in
whereth is set to 0.01 for best performance. The extractdfie sclera carried out by Zhou et al. [6] has shown that these
IPs in the sclera vessel map are shown in Fig. 7. vessels move slightly as the eye moves. To overcome this limi

After the IP locations have been extracted, the charatiterigation and produce an invariant-blood movement user teipla
information such as the magnitude, phase and orientatig!e propose a new method for user template registration. This
within a specific window surrounding each feature point af@ethod is initiated with the alignment of user sclera tergsla
calculated. We exploit the two-dimensional monogenic aignto a reference point. For the three training templa$gs,
method [35] to extract the local information of these IPs. Afit2 and St;, the reference points are (z,y), r2(z,y) and
analytic signal is constructed by using the Riesz transforms(z,y) Which represent the radius of the iris. Then, these
The analytic signal is isotropic and therefore provides lit sptemplates are aligned as follows
of identity where the information is orthogonally decomgeds 1) let ri(x,y) be the point wherét, and St; are to be

into geometric and energetic information for the blood gein aligned;
IPs in term of local amplitude, local phase and local orien- 2) for St, subtract {1 (z,y),r2(z,y)) to extract the shift
tation. If the coordinates of the vertical and horizontakfi values {r,vr) in the horizontal and vertical dimensions;

areu = (u1,u2), then the Riesz kernels in the frequency 3) apply a circular shift whereSt, is shifted in both
domain are multiplied with Log-Gabor scale mask to calaulat directions asSto(x + hr,y + vr);
the spatial representation of the vertical and horizonlizr§ 4) repeat forSts.
respectively as If (hr,ur) are positive,St, is shifted to the right and to the
o L u2 bottom, if (hr,vr) are negativeSt, is shifted to the left and to
ha (u) = 172G (Jul) , ha (u) = ZHG (ju), @1 e top, if () is positive and 4r) is negative St is shifted



probability = = 0.99 that choosing random samples has at
least one set does not incluflg,; points. N can be set as

_ log(1 —2)
~ log(1—10)’ 27)
whereb = 1 — M)S represents the probability that

any selected feature points fg,; feature points and = 8

is the number of points needed to fit a fundamental matrix
[36]. This method uses a minimum number of feature points
to estimate the homogeneous pairs set and maximizes this set
with consistent feature points. Aftdy,, fino andfi,; have

Fig. 8. The most homogeneous feature §t6 represented in the red squarebeen extracted and grouped in one set, the final sclera user
extracted fromfin;, finy andfing. templateSt’ is created by removing the duplicated points.
This is shown in Fig. 8. The anglesbetweerSt/ points and

iris center have been calculated for each point which will be

to the right and to the top, and it() is negative andu) IS ;seq in the matching process to mitigate some outlier points
positive, Sto is shifted to the left and to the bottom. been paired incorrectly

Next, we propose a nhew method for feature matching based
on a local descriptor to generate putative matching pairs
pPm between these sclera feature sets, and Random Sampling
Consensus (RANSAC) [36] to select the homogeneous feature he matching and decision process between two sclera
setsf;,. RANSAC uses the minimum number of feature point&mplates is the final stage where e’ of an enrolled user
to estimate the initial feature sets and proceed to maximifecompared in terms of local orientation and local phasé wit
the number of pairs within the set with consistent data soin®t’ of any test template. First, the putative feature getsare
and thus decreasing the processing time. The proposed Igdracted fronBt/ andSt'. Then these pair sets are compared
descriptor includes generating a correlation matrix betwein term of the location and the angle to iris center. For the
two sclera templateéSty, St,). The correlation matrix holds decision process, we propose a two stage decision method
the correlation strength of every feature seSity relative to Py using the Euclidean distance and the angle difference to
St,. Then, search fop.,, pairs that correlate maximally in classify the matching results. For each pair, two pararseter

V. SCLERA MATCHING AND DECISION PROCESS

both directionsp.,, can be calculated as are defined as
1) set a radius for the correlation window = “>; o P oant
2) calculate the distances @t;.IP.locatior{i) with all D, = 1, if dist (St ’St) = thl’7 (28)
St,.IP.location; 0, otherwise

3) specify the pairs points that have a distarcé,,, . ; )
4) normalize the phase information of the selected pairs D, — 1, i |op — | = the (29)
points window to a unit vector form and measure the ¢ 0, otherwise ’

correlation using a dot product; .
J P whereth, = 20 andth, = 5 degrees are set empirically for

5) find pm; = Stq, St»). . ' .
) P a1 arg{n@_xkow( 1, St2) best performance. The decision to accept or reject each pair
whered,,... is set empirically to 50 for best performance. is shown in Algorithm 1.

Once thep,, pairs for these templates were specified, then Finally, the decision process is calculated as
the process of findindi,, for pm; can be defined as follows
L. . A ¢ if no. of accepted pairs> th+
1) select randomly the minimum number of feature points Dy = ceept, T no.ofpm =YY (30)
m = arg{min(pm1)}; Reject, otherwise ’
2) normalize each set of points so that the origin is at
centroid and mean distance from originy&;
3) calculate Sampson error distances [37] between thegfigorithm 1: Decision process between two sclera tem-
sets and determine how many feature points from thejate pairs
templates fit wnh _predeﬁned Sampson error toleranceif (Dy —= 1) then
< ¢, wheree empirically set to 0.002.; if (D, = 1) then
4) if the ratio of the number of;,; over the total number Lo
il ’ | Pair accepted;
of pm; exceeds a predefined threshdldre-estimate

. . o else
the model parameters using all the identifigg;, and | Pair rejected;
terminate. end
5) otherwise, repeat steps 1 through 4 for a maximum ofelse
N iterations.

e _ _ | Pair rejected;
The decision to stop selecting new feature subsets is basedn(

on the number of iterationgV required to ensure that the
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Fig. 9. Examples of the matching process output between tlevastemplates, (a) matching process between two sclerpldées belonging to the same
individual, (b) matching process between two sclera tetaplédelonging to a different individuals.

wherethy is set empirically to 0.6.
Some examples of the matching results between two us j
are shown in Fig. 9p,, points are represented by a rec
cross and;, are in a blue cross. The matching between tw
sclera templates belonging to the same individual is shov il T
in Fig. 9a whereas Fig. 9b shows the matching between () (b) (©
two sclera templates belonging to different individual3;
is dramatically higher D; = 89.51%) when matching two
sclera templates for the same user than matching diffesant u
templates D = 49%).

VI. EXPERIMENTAL RESULTS

d
A. Experimental Methodology @ ©) ®

Fig. 10. UBIRIS.v1 database poor quality images. (a) arafiéel sclera,
The evaluation of a biometric system basically mcludqs) occluded eye, (c) partially occluded eye, (d) uncroppge image, (e)
calculating the False Acceptance RatEAR), the False insufficient sclera region and (f) high light exposure image
Rejection Rate ¥ RR) and the Equal Error Rat&F{E'R) [38].
FAR and FRR are defined as

P and contrast were minimized as the images were captured
FAR = FPITN < 100%, (31) inside a dark room. While in the second session which is
composed of 663 images and involved only 135 from the 241
FRR = _N x 100%, (32) users, capturing location was changed in order to introduce
FN+TP natural luminosity factor which introduced more reflection

whereF'P is the false positive match; P is the true positive contrast, luminosity and focus problems. The UBIRIS.v1
match, F'N is the false negative match arfdN is the true database includes the images captured by a vision system
negative match.FER denotes the error rate at thresholavith or without minimizing the collaboration of the subjsct
t where FAR(t) = FRR(t). In addition, we used the Some images have a poor quality condition such as irritated
Receiver Operating Characteristic (ROC) curve to evaluaelera, closed eye, severe blurring, uncentered uncrogyesd
the performance of our system where ROC is a plot of tlewea and poor lighting. Examples are shown in Fig.10. The
F AR versus the Genuine Acceptance RateAR). GAR is evaluation process has been achieved in single-session and
calculated as multi-session contexts. For the single-session contextsed
GAR =1- FRR. (33) 3 images for training and 2 for testing per user whereas the
multi-session scenario uses session 1 images for traimidg a
session 2 images for testing and vise versa.
1) Sclera Validation Method Evaluationfhe performance
B. Experimental Results Using the UBIRIS database of the proposed sclera validation is measured by computing
We utilized the UBIRIS.v1 database [39] to evaluate the peRe Correct Sclera ValidatiogC'SV) rate where the correct
formance of our proposed method. This database is compo¥alidation images are subjectively evaluated against fee e
of 1877 eye RGB images collected from 241 individuals iinage decision in (10) an@'SV is calculated as
two sessions. In the first session which consists of 1214ésag
from 241 users, noise factors such as reflections, luminosit C.SV = MUmeLeleioTumoer ECRS % 100%,  (34)




TABLE Il

THE CORRECT SCLERA VALIDATION RATE ON UBIRISV1 (0.003s and 0.010s for Session 1 and 2 respectively).
In addition, we utilized a supervised evaluation methodiuse
Session 1 Session 2 by Proenca [42] to evaluate our proposed sclera segmemtatio
csv method. First, we manually segmented and labelled 200sscler
95.38% 89.45% images from both sessions. TheR? which is an objective

measure for the good-of-fit is calculated as

A \2
whereC' AS is the Correctly Accepted Sclera image aiii®S R*=1- Z(yziyj)g’ (35)
is the Correctly Rejected Sclera image. As shown in Table I, _ > (v - Y)
our proposed method has removed the partial or full occludéperey: are the desired sclera pixel values resulted from the
images and thus avoids expensive processing times and Hlgual segmentatiop,is the mean ang; are the actual sclera
human intervention. However, some limitations in our methd?iXel values resulted from the above mentioned active aonto
can be concluded as follows 1) the detection process depefgmentation methods. As shown in Fig. 11, our proposed
on the skin detection algorithm which is specifically design Method has superiority over the compared methods supportin
for RGB images and thus, the inability to use it on grayscalgat active contours without edge which has no stopping edge
images:; 2) the process of findingrc, and Arc, depends function is reliable for sclera segmentation.
dramatically on the iris segmentation algorithm for thes iri
center. Therefore, the failure in extracting the iris cemntél
cause errors in the validation process.

2) Active Contour Methods For Sclera Segmentation Con
parison: We compared our proposed sclera segmentatic
method using active contours without edges with statdief-t
art active contour models such as the geodesic [30], baloo
[40] and the gradient vector flow [41] active contours in tern
of accuracy and complexity as shown in Table Ill. We use:

1

0.9

0.8

0.7

0.6

0.5

RSQUARE

0.4

0.3

0.2

Matlab (version R2013a) on a PC with Intel core i5 3.C o1

GHz processor and 8.0 GB RAM for implementing these 0

algorithms. Our proposed algorithm is tended to focus o Geodesic Balloons GVF ithont adat
computer-based application and thus the hardware comple —* RsquaresSl 0.15 059 0.67 041

. . . . . —=—R square $2 0.1 0.39 0.42 0.89
ity is not discussed. For a fair comparison, the number c.

iterations in all m_Odels is set to 200 and the _SCle,ra Images, fa-{g 11. R square values for different active contour mesheealuation at
down-sampled with factor = 0.2. For the subjective evabmati jteration: = 200.

results as shown in Fig. 12, our proposed method overcomes -

the active contour model problem by not relying on the edge3) A State-Of-The-Art Sclera Recognition Method Compar-
function which depends on the image gradient to stop thescut$on: We compared our proposed sclera recognition method
evolution. These drawbacks appear severely in noisy imadééh the state-of-the-art methods on UBIRIS.v1 database as
and in the case of irregular sclera shape. In term of accuragown in Table I. In addition, we plotted the ROC curves for
our adapted method achieved 98.65% for Session 1 and 95 8%se comparison scenarios in Fig 13. The comparison irsterm
for Session 2 which is significantly higher than other activef EER includes single-Session 1 and 2, Session 1 training-
contour methods. In addition, our proposed method predenf@€ession 2 testing and Session 2 training-Session 1 testing.

significantly lower processing time among these methoé&Ms of human supervision, the authors in [6], [11], [14],
[17], [18], which their learning-based information is shoin

Table I, have discarded Session 2 manually as this sessfon ha

TABLE Il more noisy images which will affect system evaluation. Whil
COMPARISON OF SCLERA SEGMENTATION USING DIFFERENT ACTIVE . .
CONTOUR MODELS IN TERM OF ACCURACY AND COMPLEXITY ON n [19]’ the aUthor_S Stated that they U§ed a‘" the Ima‘ges even
UBIRIS.V1 the occluded eye images but without including any occluded

eye detection method. For the segmentation speed in term of

. Active Correctl . N . . .

Session | 0 ours Method Segmented Sclera Imageq F1°essing Tme | active contours, [19] used a balloon-based active contthr w
Session 1 Geodesic Active 68.02% 3.235s segmentation speed of 0.14s. _
Session 2 Contour [30] 52.3% 7128 s In contrast, we propose(_j a method for occluded and partial

: occluded eye images which increase the robustness of the
Session 1 Balloons Active 77.15% 3.366 s .. .

: ontour (40] system. In addition, the segmentation speed of the proposed
Session 2 72.36% 5402s sclera segmentation is significantly lower (0.003s). Wiile
Session 1 GVF Active 87.15% 4.818s terms of the non linear blood vein movement effect, the
Session 2 Contours [41] 72.36% 6.310 s methods in [14], [17], [19] do not discuss nor suggest any
Ses5i0n 1| proposed Actve Contour 98.05% 0,003 5 method to overcome_thls limitation Wheregs our proposed

. without Edge system has an adaptive user template registration to éxtrac
Session 2 95.3% 0.010 s .

the most homogeneous features for a final user template.
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Fig. 13. UBIRIS.v1 ROC curve using single and multi-sessiomparisons.

Fig. 12. The sclera regions extracted using different aatwntour models
applied on the same image, (a) proposed active contour@utitedges, (b)
the geodesic, (c) balloons and (d) the gradient vector flaiveacontours.

C. Experimental Results Using the UTIRIS database

We used the UTIRIS database [44] to evaluate our proposed
segmentation method accuracy. The UTIRIS database censist
of two distinct sessions of visible-wavelength and neé#aired
images for 79 individuals with five images from both the left
and right eyes as shown in Fig. 14. We discarded the near-
infrared images as our focus is on visible-wavelength irsage
The dimension of RGB images is 20481360. Some of these
images are off-angle iris position which have been disahrde
manually. First, we resized the dimension of RGB images to
600x 800 using bilinear interpolation and utilized the same
evaluation process parameters as on UBIRIS.vl. As shown
in Table VI, the accuracy of our proposed active contours
without edges method has been decreased as compared with
the UBIRIS.v1 database because some of the UTIRIS images
are defocused on the sclera regions as this database isctreat

TABLE IV
A STATE-OF-THE-ART COMPARISON OF RECENT WORK ON THE UBIRIS/1
DATABASE
EER(%) EER(%)
Image Single-session Multi-session
Method discarded s1 S2 S1 training | S2 training
S2 testing S1 testing
Thomas et al. [11]| Yes (S2) | 3.38 n/a n/a n/a
Oh and Toh [14] | Yes (S2) | 0.47 n/a n/a n/a
Zhou et al. [6] Yes 409 | 9.98 n/a n/a
Lin et al. [18] Yes 3.05 n/a n/a n/a
Das et al. [17] Yes (S2) | 0.66 n/a n/a n/a
Das et al. [19] No 042 | 051 3.95 4.34
Proposed
method No 219 | 2.67 3.68 411

4) Sclera versus
Database:We compared our system with the iris recognitio

for evaluating the iris pigmentation role in an iris recdgm

TABLE V

EER COMPARISON OF IRIS AND SCLERA RECOGNITION SYSTEMS ON
UBIRIS.V1DATABASE

Iris Recognition using the UBIRIS

systems using the UBIRIS.v1 database in order to analyze b,
iris and sclera recognition systems using visible wavelend

images. For the iris recognition, two systems suggested
Proenca and Alexandre [43] and the traditional Daugm

method were used. While for the sclera recognition syste
the Zhou et al. [6] method was used in comparison. We usg

800 images for evaluating our system since in these system

they chose 800 images with best quality and least noise
evaluate the accuracy. In addition, we used 800 images wh

are randomly selected to evaluate the proposed system.
shown in Table V, our system results are better (EER=1.23
compared to Daugman method (EER=3.72%) and to Proel
and Alexndre method (EER=2.38%) using iris in the visibl

wavelength. In addition, our system results are promisil
compared to Zhou’s method in both best and random 8

images selection using proposed sclera recognition systent

O‘;\/Iodality Method No. of Images | EER (%)
by

N Iris Proenca and Alexandre [43] Best 800 2.38
ed Iris Duagman [43] Best 800 3.72
‘nQ,

tOsclera Zhou et al. [6] Rand 800 3.83
ich

A%clera Zhouet al. [6] Best 800 1.34
V)

nca

e Sclera Our proposed system Rand 800 2.31
g

DO Sclera Our proposed system Best 800 1.23




TABLE VI
COMPARISON OF SCLERA SEGMENTATION USING DIFFERENT ACTIVE
CONTOURS MODELS IN TERM OF ACCURACY AND COMPLEXITY ON UTIRIS

DATABASE
Active Correctly Processing Time
Contours Method Segmented Sclera Imageg
oniou (30] 6.9 e
Contour 40] o T
i
Propojv?t(qu (ﬁj(;tiégg(éontour 90.82% 0.004 s

system. Therefore, sclera regions are not considered tangor
to the authors study. However, the processing time rematfri$
significantly lower compared to other active contours medel
In addition, EER has been calculated (EER=6.67%) and ROC
curve is shown in Fig. 15. *

S
Y
i eI

Fig. 14. UTIRIS right and left eye images. The upper row repnés the
right eye images whereas the lower row represents the lefiregges.

D. Computational Load of The Proposed System

This section provides the computational load of the pro-
posed system in each step as shown in Table VII. The
properties of simulation program and PC are mentioned in
the subsection VI-B2. the computational complexities afhrea
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Occluded eye detection for sclera validation: this section
has three controlling parameters which &eperysx,,

and perysk,,,,,.- FOr ©, increasing the angle width pro-
vides more accurate results at the expense of processing
time. While for pernsk,, andpernsk,,,,,.,» the higher the
values, the more sclera samples are rejected.

Sclera segmentation: this section has two controlling
parameters which arg and the number of iterations

i. Increasingi means more curve convergence with a
possibility that the fitting curve my pass through the
sclera border whereasis discussed in subsection [I-C2.
Sclera matching and decision process: finally, the deci-
sion process is determined through first detect pair sets
depending onth, andth, whereasth; sets the final
decision. Increasing the values @f, andth, are more
likely produce false pair sets. Whité ; determines FRR
and FAR where the higher thié ¢, the higher the FRR
and the lower FAR and vice versa.

VIl. CONCLUSION

In this paper, a novel occluded eye detection method has

step is calculated by running the simulation program 204imgqap, proposed to discard the noisy images. Sclera segmen-
using both UBIRIS.v1 and UTIRIS databases and the averggon has been achieved through an adaptive active cantour

processing time is recorded.

TABLE VI

Sclera Recognition Steps| Complexity
Iris Segmentation 1.97 s
Sclera Validation 0.24 s

Sclera Segmentation 0.007 s
Feature Extraction 0.29 s
User Template Registratior 0.46 s

E. Empirical Parameters Tuning Analysis

To analyse the tuning criteria for the system controlling

TIME COMPLEXITY OF THE PROPOSED SYSTEM

without edges method. In addition, a hew method for blood
vein extraction and mapping have been suggested based on
IUWT. For the non linear movement of the blood veins,
a new user template registration is proposed to overcome
this effect and create a robust sclera feature template. The
results using the UBIRIS.v1 and UTIRIS databases showed
that our proposed method has a lower processing time with
high segmentation accuracy. In addition, the proposed odeth
minimizes the human supervision during the recognition pro
cess introducing more robustness. This paper has not ¢edlua
the use of off-angle sclera images which need to be considere
as future work. In addition, considering different versicof

the RANSAC algorithm to select the homogeneous feature
sets and comparing the efficiency and processing time of each
version is recommended.
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