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Abstract—Bilinear matrix inequality (BMI) problems in system
and control designs are investigated in this paper. A solution
method of reduction of variables (MRV) is proposed. This method
consists of a principle of variable classification, a procedure for
problem transformation, and a hybrid algorithm that combines
deterministic and stochastic search engines. The classification
principle is used to classify the decision variables of a BMI
problem into two categories: external and internal variables. The-
oretical analysis is performed to show that when the classification
principle is applicable, a BMI problem can be transformed into
an unconstrained optimization problem that has fewer decision
variables. Stochastic search and deterministic search are then
applied to determine the decision variables of the unconstrained
problem externally and explore the internal problem structure,
respectively. The proposed method can address feasibility, single-
objective, and multiobjective problems constrained by BMIs in
a unified manner. A number of numerical examples in system
and control designs are provided to validate the proposed
methodology. Simulations show that the MRV can outperform
existing BMI solution methods in most benchmark problems and
achieve similar levels of performance in the remaining problems.

Index Terms—Bilinear matrix inequality (BMI), BMI solution
methods, method of reduction of variables (MRV), multiobjective
BMI problems, spectral abscissa optimization, static output
feedback.

I. INTRODUCTION

Bilinear matrix inequality (BMI) problems frequently arise

in system and controller designs [1], e.g., low-authority con-

troller (LAC) designs [2], [3], static output feedback designs

for spectral abscissa optimization/H2 optimization/H∞ opti-

mization [4]–[6], affine fuzzy system designs [7], [8], and

observer-based robust controller designs [9]. The advantages

of using BMI formulations can be observed in various scenar-

ios. For instance, BMI formulations can avoid a nonsmooth

objective function that is hard to handle when spectral abscissa

optimization is considered [10]; they may outperform linear

matrix inequality (LMI) approaches that can fail to predict

the stability of Takagi–Sugeno fuzzy systems [11]; and they
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can yield less conservative designs than using LMI formula-

tions [12].

While BMI problems are NP-hard [13], [14], BMI solution

methods are continuously investigated in the literature because

of the advantages derived from using BMI formulations. In [2],

[15], [16], path-following methods were proposed in which

controller gains were iteratively perturbed to achieve desired

performance specifications. The methods were based on the

assumption that closed- and open-loop systems were slightly

different, i.e., LAC designs were considered. In [4], convex–

concave decomposition and linearization methods (CCDM)

were combined to address static output feedback problems.

After decomposition and linearization, BMI constraints were

addressed by solving a sequence of convex semi-definite

programming problems. In [5], an inner convex approximation

method (ICAM) was proposed as a generalized version of the

CCDM. Nonlinear semi-definite programming was considered

and a regularization technique was employed to ensure a strict

descent search direction. In [17], a Newton-like search method

closely related to alternative projection methods was proposed

to improve convergence properties.

Alternating minimization (AM) is another popular solution

method and has been widely used because of their simplicity

and effectiveness [11], [18], [19]. For the AM methods,

decision variables are divided into two groups. By fixing one

group of variables, the other group of variables forms an

LMI problem (LMIP), which is convex and can be solved

efficiently. Decision variables in separate groups are then

determined alternately during the solving process of LMIPs.

Variant versions include iterative LMI (ILMI) methods [7],

[20], [21] and the two-step procedure [9]. A few Matlab

toolboxes for BMI problems are also available online. For

example, LMIRank can be used to solve rank constrained LMI

problems [22]. HIFOO employs quasi-Newton updating and

gradient sampling to search for solutions. It mainly focuses on

fixed-order stabilization and performance optimization prob-

lems [23]–[25]. PENBMI, commercial software, aims at solv-

ing BMI constrained optimization problems or optimization

problems that have quadratic cost functions [26], [27].

The aforementioned methods and software packages serve

as local optimization approaches to BMI problems. Because a

BMI problem is nonconvex, local optima exist and, hence,

local optimization approaches may not be able to achieve

global optimality. To avoid attaining local optimality, we

consider global optimization approaches that employ heuristic

algorithms. In [28]–[33], branch-and-bound (BB) type meth-
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ods were proposed. The BB type methods replace bilinear

terms with bounded new variables so that a BMI problem

can be relaxed into an LMIP. Although being possible to

achieve the global optimum, BB type methods can bear a

computational burden because the size of the LMIs that must

be solved for the lower bound can increase exponentially upon

increasing the number of decision variables [21]. In [34],

another global optimization approach using generalized Ben-

ders decompositions was proposed for BMI problems, but

its performance was not evaluated through a number of test

problems.

In general, existing BMI solution methods can suffer from

at least one of the following five drawbacks or limitations.

First, decision variables are expressed solely in a vector form,

e.g., some BB type methods. By contrast, a matrix form is

more convenient in control problems [35]. Second, solution

methods are originally designed to fit particular problem

structures. In some situations, applying developed methods

to other problem structures, if not impossible, requires extra

efforts to reformulate the problem, e.g., some AMs and ILMI

methods. In other situations, solution methods cannot be

applied to problems that do not have the intended struc-

tures, e.g., path-following methods. Third, prior derivations

such as approximations or decompositions must be performed

before algorithms are applied, e.g., the CCDM and ICAM,

and these derivations can be cumbersome and sometimes

heuristic. Fourth, only local optimization is performed while

BMI problems inherently have multiple local optima. Finally,

to the best of our knowledge, existing BMI solution methods

cannot address multiobjective optimization problems (MOPs)

in which a set of Pareto optimal solutions is of interest rather

than the global optimal solution.1

To avoid the aforementioned five drawbacks or limitations,

we propose a method of reduction of variables (MRV). The

method consists of a principle of variable classification, a

transformation of the BMI problem, and a hybrid multiob-

jective immune algorithm (HMOIA) that solves the problem

derived from the transformation. Internal and external vari-

ables are coined and used to denote all the decision variables

involved. The internal variable can represent a set of matrix

variables, which is convenient in controller designs. To develop

a general-purpose solution method, we consider possible mul-

tiple objectives in BMI problems and assume no particular

problem structures. This yields a framework that addresses

feasibility problems, single-objective optimization problems

(SOPs), and MOPs constrained by BMIs in a unified manner.

The developed HMOIA is a hybrid because it employs stochas-

tic and deterministic mechanisms to determine the external

and internal decision variables, respectively. The stochastic

1The ability to solve MOPs constrained by BMIs is worth further in-
vestigation because MOPs naturally and frequently arise in engineering
problems [36]–[39]. Solving an MOP, yielding an approximate Pareto front
(APF) and Pareto optimal set, can provide a system designer with a broad
perspective on optimality. The resulting APF can clearly illustrate how one
objective affects the others, and the obtained Pareto set allows the designer
to make a posterior decision, i.e., selecting design parameters after a set of
promising candidates is available [40], [41]. In general, a posterior decision is
preferred to a prior decision because more information has been used before
the decision making [42].

mechanism allows for global exploration of the entire solution

space. By applying the HMOIA to BMI problems, few prior

derivations, involving only variable classification and simple

problem transformation, are required. Limited derivations ren-

der the proposed method suitable for various BMI problems.

To verify the effectiveness of the MRV, we used a series of

test problems in our simulations [2], [6]–[9], [11], [15], [29].

For feasibility problems, while different solution methods were

developed to address various BMI problems, the MRV was

able to find a solution with 100% success rates in a unified

manner. In spectral abscissa optimization, the MRV outper-

formed existing methods in 73% of selected benchmark prob-

lems in terms of the minimum value or mean value. The MRV

achieved better levels of performance than existing methods

in 27.5% and 47.8% of selected H2 and H∞ optimization

problems, respectively, while it yielded similar performance in

the remaining problems. As shown in [4] and [5], the CCDM

and ICAM were relatively robust compared with other existing

solution methods. We illustrated that the MRV was able to

find solutions to certain problems in which these two robust

methods failed or made little progress towards a local solution.

The main contributions of this paper are as follows. We

propose a novel global optimization approach to BMI prob-

lems, which has not been fully investigated compared to

local optimization approaches. This approach can combat a

few drawbacks existing BMI solution methods can suffer

from: using inconvenient variable expression, being confined

to particular problem structures, requiring heuristic or cum-

bersome prior derivations, or being incapable of addressing

multiple objectives. When the proposed classification principle

is applicable, we provide a unified formulation that facilitates

generating solutions to feasibility problems, SOPs, and MOPs

constrained by BMIs. To the best of our knowledge, this

is the first study that provides such a unified framework.

We perform related analysis and validate the proposed MRV

through a large number of benchmark problems, showing that

the proposed methodology can outperform existing solution

methods in many of these BMI problems.

The rest of this paper is organized as follows. Section II

describes the problem formulation and the principle of variable

classification. In Section III, preliminaries to our algorithm

development are examined, including analysis of problem

transformations. Section IV presents the HMOIA and hence,

the MRV. Simulation results are given in Section V. Finally,

Section VI concludes this paper.

II. PROBLEM FORMULATION AND VARIABLE

CLASSIFICATION

In this section, we investigate system and control designs

that are formulated as BMI problems, and propose a classifi-

cation principle for decision variables that facilitates solution

search. Under our framework, the associated cost function can

be a vector-valued function, a scalar function, or a constant,

depending on the number of objectives involved. By using

the classification principle, decision variables in BMIs are

classified into two types, the internal and external variables.

Design examples are presented to illustrate how to use the

proposed principle of variable classification.
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The following notation and terminology are used throughout

this study. Let R and C be the sets of real and complex

numbers, respectively. For a scalar b ∈ C, b denotes the

complex conjugate of b. Let [a]i and [A]ij denote the ith
entry of the vector a and the (i, j)th entry of the matrix A,

respectively. For two vectors a and b, a ≤ b is interpreted

as [a]i ≤ [b]i for all i. If P > 0, then P is symmetric

and positive-definite. Similarly, P < 0 implies that P is

symmetric and negative-definite. For a square matrix A,

eig(A) represents the vector of all eigenvalues of A placed

in a prescribed manner, and eig{A} represents the set of all

eigenvalues of A. The mark “⋆” is used to denote the induced

symmetry, e.g., (PA, ⋆) = PA+ATP T and
[

A BT

B C

]

=

[

A ⋆
B C

]

=

[

A BT

⋆ C

]

.

If f : Ω → RN is a vector-valued function, then the MOP

min
ω

f(ω)

subject to ω ∈ Ω
(1)

is interpreted as vector optimization in which Pareto optimality

is adopted. The domain Ω lies in the Euclidean space RM

for some positive integer M . The associated terminology is

presented as follows [43]–[45].

Definition 1 (Pareto dominance): In the decision variable

space of (1), a point ω′ ∈ Ω dominates another point ω′′ ∈ Ω
if the conditions [f(ω′)]i ≤ [f(ω′′)]i, i = 1, 2, ..., N, hold

true and at least one inequality is strict. In this case, we denote

ω′ �f ω′′ and f(ω′) � f(ω′′). A point that is not dominated

by other points is termed a nondominated point.

Definition 2 (Pareto optimal set): The Pareto optimal set

P∗ of (1) is defined as the set of all nondominated points, i.e.,

P∗ = {ω ∈ Ω : ∄ω′ ∈ Ω such that ω′ �f ω}.

Definition 3 (Pareto front): The Pareto front (PF) of (1)

is defined as the image of the Pareto optimal set through the

mapping f , i.e., f(P∗) represents the PF.

In our BMI-based design problems, we use

BMI(α,X) < 0 (2)

to represent a BMI, where BMI(·) is a matrix function, and

α and X are the variables. The inequality BMI(α,X) < 0
becomes an LMI in the variable α given X or in the variable

X given α. If more than one BMI are involved, then the

notation BMI(α,X) represents a block-diagonal matrix such

that BMI(α,X) < 0 consists of all the BMIs.

To consider optimal designs in a unified framework, we

add an objective function F(·) to (2). From the perspective

of algebra, there is no difference between α and X in (2)

because they are just two coupled variables in the BMI

BMI(α,X) < 0. However, to create a solution method, we

assume F is a function of α. The resulting BMI-based MOP

can be expressed as

min
α,X

F(α)

subject to BMI(α,X) < 0
(3)

where α is distinguished from X by using the following

classification principle.

Principle of Variable Classification:

1) Upper and lower bounds on the entries of variables in α

are available or can be obtained. Square matrix variables

in α, if any, do not have constraints on definiteness, i.e.,

positive or negative definiteness.

2) Bounds on entries of variables in X are unavailable.

3) The objective function F can be expressed solely in

terms of α.

4) The size of α should be as small as possible.

When the classification principle is applicable, we term the

variables α and X the external and internal decision variables,

respectively. In our principle, α represents those variables

(scalar and/or matrix variables) in a BMI problem that have

bounds on entries. These bounds are mostly inherent from

physical constraints or can be readily assigned mathematically.

The remaining variables (scalar and/or matrix variables) are

included in X . They generally do not have upper and lower

bounds on their entries, but there can be constraints related to

positive or negative definiteness imposed on matrix variables

in X . The definiteness associated with matrix variables in

X is required to ensure the system stability, which mainly

distinguishes X from α. A typical external variable can

include controller gains and/or system parameters. By contrast,

matrix variables related to the Lyapunov theory are classified

as the internal variable because bounds on the entries of these

matrix variables are unavailable in practice.

The condition in which F is not a function of X does not

yield a restricted problem formulation. For instance, if [F ]i =
g(X) is encountered, we may introduce a slack variable η,

impose the constraint g(X) ≤ η, and assign [F ]i := η. In this

way, the objective function becomes the one with α as the only

variable. Finally, it will be shown that the BMI-constrained

problem in (3) can be reduced to an unconstrained problem

in which α is the only decision variable. Therefore, a smaller

size of α means the fewer number of decision variables in the

unconstrained problem, which explains why we keep the size

of α as small as possible in the classification principle.

When F(·) is a constant function, it is understood that the

BMI problem in (3) is interpreted as a feasibility problem.

Otherwise, an SOP (or MOP) is considered if F(·) is a

scaler-valued (or vector-valued) function. For a feasibility

problem, it is desired to determine whether or not there exists a

point (α,X) satisfying the matrix inequality BMI(α,X) <
0. If such a point exists, then the problem is feasible and

any point that satisfies the matrix inequality is a solution

(or a feasible point). For an SOP, it is desired to search

for a feasible point that achieves the minimum value of the

objective function. When an MOP is considered, the associated

optimality is interpreted as Pareto optimality. In that case, the

Pareto optimal set is to be determined.

To illustrate how to use the principle of variable classifica-

tion, we examine a few design examples as follows.
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A. Feasibility Problems

Stability Test (ST): Consider a T–S fuzzy system [46]

ẋ(t) =

2
∑

i=1

ξi(x(t))Aix(t) + p,pTp ≤ µ2x(t)Tx(t). (4)

It can be shown that the system in (4) is stable if there exist

τℓij ≥ 0 and Pi > 0 such that [11]

AT
ℓ Pi +PiAℓ +µ2I −

2
∑

j=1

τℓij(Pj −Pi) < 0, for ℓ, i = 1, 2

(5)

are satisfied. According to the classification principle, the

external variable cannot include matrix variables that have

a constraint on definiteness. Because Pi > 0, i = 1, 2,
are positive-definite matrix variables, they must be included

in the internal variable X; to yield a BMI problem, the

remaining variables τℓij are included in the external variable

α. The feasibility problem in (5) can then be expressed

as BMI(α,X) < 0 in which α = (τ112, τ121, τ212, τ221)
and X = (P1,P2).

B. Single-objective Optimization Problems

Linear Parameter-varying Systems (LPVS): Consider a lin-

ear time-varying system [47], [48]

ẋ(t) = A(t)x(t),A(t) ∈ convex hull{A1,A2} (6)

where

A1 =

[

0 1
−2 −1

]

and A2 =

[

0 1
−2− ς −1

]

.

The ς represents a design parameter. The system in (6) is stable

if there exist δi and Pi satisfying [29], [49]

(1− δ2)(P2A1, ⋆) + δ2(P2 − P1) < 0

(1− δ1)(P1A2, ⋆)− δ1(P2 − P1) < 0

(P1A1, ⋆) < 0, (P2A2, ⋆) < 0

0 < Pi < I, 0 ≤ δi ≤ 1, i = 1, 2.

(7)

For a fixed ς , (7) is a BMI in the variables (δ1, δ2) and

(P1,P2). To find the largest value of ς yielding a stable

system, we can solve

max
ς,δi,Pi

ς

subject to (7).
(8)

Based on the principle of variable classification, P1 and P2

are positive-definite and must be included in the internal

variable X; to have BMI(α,X) < 0 as an LMI problem

for a fixed α, we are forced to include all the remaining

variables in the external variable. We thus have α = (ς, δ1, δ2),
X = (P1,P2), and F(α) = −ς . The negative sign in F has

been added for the conversion of (8) to the minimization form

of (3).

C. Multiobjective Optimization Problems

For a sparse linear constant output-feedback design, the

BMI problem [2], [4]

min
β,F ,P

− σβ +
∑

i

∑

j

|[F ]ij |

subject to (PAF , ⋆) + 2βP < 0,P > 0

(9)

can be formulated, where AF = A+BFC , σ > 0 represents

a prescribed weighting coefficient, and β represents the decay

rate. The SOP in (9) is interpreted as determining the controller

gain F so that the decay rate β is maximized and F is kept

as much sparse as possible. One drawback of considering

the single-objective formulation is that there is no rule that

can be used to assign the value of σ, which affects the

values of β and F . In practice, a system designer selects

an arbitrary value of σ and accepts the resulting gain F .

To avoid such heuristic assignment for σ, we can consider

a multiobjective formulation that addresses two objectives in

separate dimensions [42], [50]:

min
β,F ,P

[

−β
∑

i

∑

j |[F ]ij |
]T

subject to (PAF , ⋆) + 2βP < 0,P > 0.
(10)

According to the classification principle, P is positive-definite

and hence, included in the internal variable X; to yield a

BMI problem, the remaining variables must be included in the

external variable α. Referring to (3), we have α = (β,F ),
X = P , and F(α) = [−β

∑

i

∑

j |[F ]ij |]T . Once (10)

has been solved, an approximate Pareto front (APF) can be

obtained and the system designer can select an appropriate F

based on the information provided by the APF.

The proposed classification principle is based on the basic

properties of BMIs represented by BMI(α,X) < 0. Because

BMIs are nonlinear and have possibly several local optima

when optimization is involved, any deterministic algorithms

can be trapped locally. To remedy this problem, stochastic

algorithms can be used. Because BMI(α,X) < 0 is a

BMI, BMI(α,X) < 0 becomes an LMI in the variable

X for a fixed value of α. For LMIs, it is well-known that

deterministic algorithms such as interior-point methods are

suitable for solving them efficiently. These arguments suggest

that variables in BMI problems be classified into two groups so

that a hybrid algorithm combining stochastic and deterministic

search engines can be applied.

To integrate stochastic and deterministic search schemes,

we first explore the variable space of α (external exploration)

so that an LMIP BMI(α,X) < 0 in the variable X can

be obtained. Once α is determined, the associated variable

space of X can then be searched internally and efficiently

because of the convexity. This explains why α and X are

termed external and internal variables, respectively. Since X

is relevant to the feasibility but irrelevant to the objective

values, this internal variable can be considered hidden from the

external search if information about the feasibility is extracted

properly. Therefore, we may reduce the original problem with

variables α and X to a simpler problem with only the variable

α, and then transform the resulting problem into another form
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that is convenient for addressing the feasibility condition.

III. PRELIMINARIES TO ALGORITHM DEVELOPMENT

This section discusses the reduction and transformation, and

other preliminary results that are helpful in later development

of the hybrid algorithm. The section is divided into three

subsections: Section III-A focuses on theorems that transform

the BMI problem in (3) into an unconstrained problem with

fewer decision variables; Section III-B presents a solution

method related to pole placement problems; and Section III-C

describes an algorithm that reduces the population density of

the HMOIA.

A. Reduction and Equivalence Theorems

Theorems in this subsection lead to an optimization problem

that has a simpler form than (3). By using the theorems,

the number of decision variables in (3) can be reduced,

and the associated problem can be further transformed into

an unconstrained optimization problem. Although we adopt

multiobjective formulations in the following discussions, the

established results remain true when an SOP or a feasibility

problem is considered.

Consider the eigenvalue problem (EVP)

(λ∗(α),X∗(α)) =
argλ,X minλ,X λ
subject to BMI(α,X) < λI.

(11)

Because the constraint BMI(α,X) < 0 is a BMI, the EVP

in (11) is convex in the variables λ and X given the value

of α. (For a fixed value of λ, the EVP can thus be solved by

interior-point methods.) In (11), we denote (λ∗(α),X∗(α)) as

the pair that achieves the minimum. Both λ∗(α) and X∗(α)
are regarded as a function of α. The following lemma relates

the value of λ∗(α) to the feasibility of (3).

Lemma 1: The BMI problem in (3) is feasible if and only

if an α̃ exists such that the value of λ∗(α̃) in (11) is negative,

i.e., λ∗(α̃) < 0.

Proof: It can be readily verified by a slight modification

of the proof in Lemma 1 of [43] or [51].

The following theorem follows from using Lemma 1.

Theorem 1 (Reduction Theorem): There exists a pair

(α̃, X̃) that is Pareto optimal in (3) if and only if (denoted

by ⇔) α̃ is Pareto optimal in

min
α

F(α)

subject to λ∗(α) < 0.
(12)

Proof: We first prove necessity (⇒). By Lemma 1, we

have λ∗(α̃) < 0 and hence, α̃ is a feasible point of (12). Let

us proceed by contraposition. Suppose that there exists an α′

dominating α̃ in (12), i.e.,

α′ �F α̃, λ∗(α̃) < 0, and λ∗(α′) < 0. (13)

However, the conditions in (13) implies that

(α′,X∗(α′)) �F (α̃, X̃)

which yields a contradiction.

To prove sufficiency (⇐), we again use contraposition.

Suppose that there exists a pair (α′,X ′) dominating (α̃, X̃),
i.e.,

(α′

,X
′) �F (α̃, X̃),BMI(α′

,X
′) < 0, and BMI(α̃, X̃) < 0.

(14)

By Lemma 1, the conditions in (14) are equivalent to those

in (13), which implies that α̃ is not Pareto optimal in (12).

However, this contradicts the Pareto optimality of α̃.

According to Theorem 1, the BMI problem in (3) with α

and X as the decision variables can reduce to (12) with α

as the only decision variable. That is, the number of decision

variables is reduced, which explains why Theorem 1 is termed

the Reduction Theorem. In the theorem, the expression “Pareto

optimal” is replaced by “feasible” if we consider a feasibility

problem. In this case, the theorem is exactly the same as

Lemma 1. Similarly, we replace “Pareto optimality” with

conventional optimality when an SOP is encountered.

By Theorem 1, we can solve (12) for a BMI-based design

in place of (3). We further consider an unconstrained problem

that is equivalent to (12).

Theorem 2 (Equivalence Theorem): Let

F̃(α) =
[

F(α)T max{0, λ∗(α)}
]T

(15)

where max{0, λ∗(α)} represents the maximum element in the

set {0, λ∗(α)}. A point α̃ is Pareto optimal in (12) if and only

if (denoted by ⇔) α̃ satisfies the condition max{0, λ∗(α̃)} =
0 and is Pareto optimal in

min
α

F̃(α). (16)

Proof: We prove necessity (⇒). Since α̃ is Pareto optimal

in (12), we have λ∗(α) < 0 and thus α̃ satisfies the condition

max{0, λ∗(α̃)} = 0. We use contraposition. Suppose that α̃

is not Pareto optimal in (16). There must exist an α′ such

that α′ �
F̃

α̃, yielding max{0, λ∗(α′)} = 0. However, this

implies that the conditions in (13) hold true, i.e., α̃ is not

Pareto optimal in (12), which yields a contradiction.

We now prove sufficiency (⇐) and again use contraposition.

Suppose that an α′ exists such that the conditions in (13) hold

true. This implies α′ �
F̃

α̃, which yields a contradiction.

Theorem 2 is termed the Equivalence Theorem because

it establishes an equivalence relation between (16) and (12).

According to Reduction and Equivalence Theorems, we can

solve the unconstrained problem in (16) that has fewer decision

variables than the original BMI problem in (3).

B. Levenberg–Marquardt Method

Pole placement problems occur frequently in controller

designs [52], [53]. In this subsection, we investigate a trust

region Levenberg–Marquardt method that can be used for pole

placement when the system matrix A+BFC is encountered.

In this situation, matrices A, B, and C are known, and F is

the design parameter that must be determined.

Suppose that A ∈ Rnx×nx and F ∈ Rnu×ny in which

nx, ny, and nu represent the dimensions of the state vector,

physical output, and control input, respectively. To facilitate

the following discussions, we reshape the gain matrix F into
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an nuny × 1 vector q, and denote A(q) = A + BFC ∈
Rnx×nx and

h(q,λpre) =
1

2
||eig(A(q))− λpre||22 (17)

where eig(A(q)) represents the vector of eigenvalues of A(q)
and λpre is a prescribed vector of poles. The entries of the

vector eig(A(q)) in (17) is placed in a way that the minimum

norm is achieved. The associated pole placement problem can

be formulated as

q∗(λpre) = argq min
q

h(q,λpre) (18)

which is an unconstrained nonlinear least squares problem.

To apply the trust region Levenberg–Marquardt method to

solve (18), we need the first partial derivatives and an approx-

imate Hessian matrix of h(q,λpre) in (17). For the vector of

eigenvalues eig(A(q)), let Xe(q) ∈ Cnx×nx be the matrix

consisting of the associated eigenvectors such that

A(q)Xe(q)

= Xe(q)diag([eig(A(q))]1, [eig(A(q))]2, ..., [eig(A(q))]nx
).

We have [54], [55]

∂[eig(A(q))]i
∂[q]m

=
[

Xe(q)
−1 ∂A(q)

∂[q]m
Xe(q)

]

ii

for i = 1, 2, ..., nx, and m = 1, 2, ..., nuny . The first partial

derivatives ∂h(q,λpre)/∂[q]m and approximate Hessian ma-

trix H can be expressed as

∂h(q,λpre)

∂[q]m
= Re

{

nx
∑

i=1

([eig(A(q))]i − [λpre]i)

×∂[eig(A(q))]i
∂[q]m

}

and

[H ]mℓ = Re
{

∑nx

i=1 (
∂[eig(A(q))]i

∂[q]m
)(∂[eig(A(q))]i

∂[q]ℓ
)
}

(19)

respectively. The Levenberg–Marquardt algorithm for the pole

placement problem in (18) is described as follows.2

Trust Region Levenberg–Marquardt Algorithm [56], [57]

Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1/4)
For k = 1, 2, ...

Evaluate pk by solving

pk = argp min
p

mk(p)

subject to ||p||2 ≤ ∆k

(20)

where ∆k represents the current trust region radius, and

mk(p) = h(qk,λ
pre)+∇h(qk,λ

pre)Tp+pTHkp (21)

with entries of ∇h(qk,λ
pre) and Hk defined in (19).

Evaluate

φk =
h(qk,λ

pre)− h(qk + pk,λ
pre)

mk(0)−mk(pk)
. (22)

2The reader can refer to Theorems 1–4 in [56] or Theorems 4.8, 4.9, and
6.4 in [57] for the convergence analysis of the trust region method.

If φk < 1/4
∆k+1 := ∆k/4

Else

If φk > 3/4 and ||pk||2 = ∆k

∆k+1 := min{2∆k, ∆̂}

Else

∆k+1 := ∆k

End If

End If

If φk > η
qk+1 := qk + pk

Else

qk+1 := qk

End If

End For

C. Density Reduction Algorithm

When an evolutionary algorithm searches for Pareto optimal

solutions to an MOP, less crowded points must be preserved

so that population diversity can be ensured. To this end, we

estimate the density of current population and remove points

that lie in a dense region. We denote A(tc) as the current

population with the cardinality |A(tc)|, Nnom as the nominal

size of the population, and α as an element of A(tc). Suppose

that F̃(α) ∈ RN+1. The process of removing points from

a dense region is termed density reduction, which can be

performed by the following algorithm modified from [58].

Density Reduction Algorithm

While |A(tc)| > Nnom do

Evaluate

ci,j(αi)

=

{

minΓ+

j
(αi)−maxΓ−

j
(αi)

Fmax
j

(A(tc))−Fmin
j

(A(tc))
, if Γ+

j (αi),Γ
−
j (αi) 6= ∅

N, otherwise

(23)

for all αi ∈ A(tc) and j = 1, 2, ..., N , where

Fmax
j (A(tc)) = max

α∈A(tc)
[F(α)]j ,

Fmin
j (A(tc)) = min

α∈A(tc)
[F(α)]j ,

Γ+
j (αi) = {[F(α)]j : α ∈ A(tc), [F(α)]j > [F(αi)]j}, and

Γ−
j (αi) = {[F(α)]j : α ∈ A(tc), [F(α)]j < [F(αi)]j}.

Evaluate

(αi)av =

N
∑

j=1

ci,j(αi)

for all αi ∈ A(tc).
Remove the element α that yields the least (α)av from A(tc)
and thus the size of A(tc) is reduced by one.
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End While

IV. PROPOSED ALGORITHM

This section presents the HMOIA used to solve (16). The

algorithm is a hybrid because it integrates both stochas-

tic and deterministic search schemes. For example, the

Levenberg–Marquardt algorithm, density reduction algorithm,

and interior-point methods are deterministic algorithms, while

artificial immune systems used as the underlying structure

of the HMOIA are stochastic search methods. There are a

few reasons why the immune search scheme was adopted in

our main algorithm structure. First, its potential to provide

novel solutions has been illustrated in several studies [59]–

[61]. Second, the immune search scheme is robust and out-

performs some existing MOEAs or at least performs equally

well in most benchmark MOPs [58]. (In [58], the MO

immune algorithm was compared to PAES, PESA, NSGA-

II [62], SPEA2, MOEA/D [63], and ACSAMO in terms of

convergence, diversity, uniformity, and coverage.) Finally and

most importantly, the artificial immune system is a “highly

parallel intelligent system” [42], [64], [65] and thus a parallel

computation scheme can be readily developed. This is useful

for solving BMI constraints that requires a large amount of

computational power in general. Despite these reasons, it is

worth mentioning that other advanced MOEAs can also be

adopted if modified properly.3

The pseudocode of the HMOIA is presented as follows.

Pseudocode of the Proposed HMOIA

Input: MOP in (16)

Prescribe bounds on the external variable and initialize the

population

Evaluate the objective function

Remove dominated points

Let tc := 1
While tc ≤ tmax do

If N = 0 and ∃α ∈ A(tc) such that F̃(α) = 0
Let tc := tmax

Else

Perform the hyper-mutation operation

Evaluate the objective function

Update population

End If

Let tc := tc + 1

End While

Remove points α that have [F̃(α)]N+1 > 0
Remove dominated points

Output: Approximate Pareto optimal solutions and Pareto

front

In the following subsections, we elaborate key steps of the

algorithm and summarize the MRV.

3Proper modifications may include incorporation of pole-placement tech-
niques into the search engine and a design of a mechanism that ensures
legitimate pole placement.

A. Prescribe Bounds on External Variable and Initialize the

Population

To specify the range of interests, we prescribe bounds

for the external variable α in (16). Entries of α can be

generated pointwisely over prescribed bounds or recovered

collectively from a given vector of eigenvalues λpre described

in (17) and (18). For example, if a range [αmin
i , αmax

i ] is

prescribed, then the ith entry of α can be generated uniformly

at random over the range. Otherwise, if a range [−σmin, 0]×
[−ωmax, ωmax] is given, we can randomly generate

[λpre]i ∈ {σ + jω : (σ, ω) ∈ [−σmin, 0]× [−ωmax, ωmax]}
(24)

where complex entries of λpre occur in conjugate pairs,

and then recover the entries of α from q∗(λpre) defined

in (18) using the trust region Levenberg–Marquardt algorithm

presented in Section III-B.

After specifying the range, we initialize the population:

assign the nominal population size Nnom and the maximum

population size Nmax, and generate initial population

{α1,α2, ...,αNnom
}. (25)

The basic structure of artificial immune algorithms in [45]

and [58] is adopted. During the evolutionary process that mim-

ics operations in immune systems, the population size changes

over the iteration but remains below Nmax, nondominated

points are maintained, and dominated points are removed from

the population.

In general, large bounds should be assigned to provide

a spacious search space, but such a spacious space can

yield ineffective search when Pareto optimal solutions have

most entries that are close to zero. To manage possible

ineffectiveness, we divide the search spaces [αmin
i , αmax

i ] or

[−σmin, 0]× [−ωmax, ωmax] into several subspaces

[κsα
min
i , κsα

max
i ] or [−κsσ

min, 0]× [−κsω
max, κsω

max]
(26)

where κs ∈ (0, 1] with s = 1, 2, ..., S. Population ini-

tialization is thus modified accordingly. We either generate

[α]i ∈ [κsα
min
i , κsα

max
i ] pointwisely or recover entries of α

collectively from

[λpre]i ∈ {σ + jω : (σ, ω) ∈ [−κsσ
min, 0]× [−κsω

max, κsω
max]}.

(27)

B. Evaluate the Objective Function

Function evaluation for the objective function F̃ defined

in (15) can be divided into two parts. The first part addresses

the evaluation of F(α). If F is explicitly expressed as a

function of α, then the evaluation is simply the substitution of

α into F ; otherwise, deterministic algorithms are employed to

evaluate F(α). For example, if α represents a controller gain

of a linear control system and F(α) denotes the associated

H∞ norm, then F(α) must be evaluated using deterministic

algorithms. The second part addresses the evaluation of λ∗(α).
Because this evaluation is related to solving LMIs, determin-

istic algorithms such as interior-point methods can be used.
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C. Remove Dominated Points

By removing dominated points from the population, non-

dominated points are maintained. Preserving nondominated

points is an important operation that relates to the convergence

of the algorithm. Other operations such as the hyper-mutation

and population update that guide the population towards the

Pareto optimal set are important to the algorithm convergence

as well.

D. Perform Hyper-mutation Operation

Let A(tc) and |A(tc)| denote the current population and

the associated population size, respectively. For two vectors

a and b, a⊕ b denotes a random and pointwise combination

of entries of a and b, i.e., [a ⊕ b]i can be either [a]i or [b]i
with equal probability. For a hyper-mutation operation, new

points α
j
i are generated by

α
j
i =

{

Ljαi + (1− Lj)αj , rand > 0.5,

αi ⊕αj , otherwise
(28)

for all αi ∈ A(tc), where rand and Lj are independent

random numbers chosen from (0, 1), and entries of αj are

generated pointwisely or recovered collectively in the same

way described at the population initialization. The operation

in (28) is performed R(tc) = xNmax/|A(tc)|y times for each

i, where x·y represents the floor function. This operation can

be interpreted as follows: an αi in A(tc) is cloned R(tc) times,

and then all these cloned points mutate to produce points

α
j
i , j = 1, 2, ..., R(tc).

E. Update Population

Updating the population consists of addition and removal

operations. After the hyper-mutation operation, R(tc)×|A(tc)|
points are newly generated and added to the population.

To keep a manageable size of the population, we remove

infeasible points, dominated points, or nondominated points

in order if necessary. Fig. 1 shows a removal procedure that

reduces the size of A(tc) to Nnom. In the procedure, infeasible

points α that have λ∗(α) > 0 are gradually removed from

the population. After the removal, if the population size is

still greater than its nominal size, then dominated points are

removed from the population randomly and iteratively. If

|A(tc)| is still greater than Nnom, then we remove nondom-

inated points using the density reduction algorithm described

in Section III-C.

F. Parameter Selection

The values of parameters Nmax, Nnom, and tmax can

affect algorithm performance. In general, larger values of them

yield a better level of performance if the complexity is not

a concern [58], [66]–[68]. This is because larger values of

Nmax and Nnom mean that more computational resources are

employed to explore the search space in each iteration, and

a larger value of tmax corresponds to more exploration time.

When the values of the parameters exceed certain thresholds,

mature convergence is attained and further improvement can

be hardly observed. Some practitioners suggest that large

Start
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Fig. 1. Flowchart for the removal procedure during the population update.
The set A1 consists of infeasible points in the current population A(tc), and
A2 consists of feasible but dominated points in the current population A(tc).
The values of λ∗(α) are available because they have been obtained during
the objective function evaluations.

values of Nmax, Nnom, and tmax be set first, and then these

values be lowered gradually until unacceptable results are

obtained. However, this practice suffers from two drawbacks.

First, the notion of unacceptable results is vague. Second,

computational time can be a cost, and repeating the whole

search with different parameters becomes costly.

Although parameters should be set differently in different

problems for better performance, we selected the same param-

eters in our simulations when solving all the BMI problems.

The main reason of such selection is that it is difficult to

define the “optimal” values for parameters in consideration of

the performance, complexity, and computational time. Despite

of using the same parameters, the simulation results still

provide a proof of concept that the proposed methodology

can outperform existing design approaches in most benchmark

BMI-based design problems.

G. Method of Reduction of Variables

For a system or control design problem constrained by

BMIs, the proposed method of solution can be realized by

the following steps:

S1) Classify the decision variables into the internal and exter-

nal variables using the Principle of Variable Classification.

S2) Transform the BMI problem in (3) into its equivalent form

in (16).

S3) Apply the proposed HMOIA to solve (16).

After these three steps, the associated system or controller

can be constructed based on the obtained solution(s).
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Remark 1: There are two circumstances in which the

proposed methodology can fail: the classification principle is

not applicable; and same eigenvalues are assigned when pole

placement is performed. The first situation may occur when

physical or mathematical bounds on coupled decision variables

cannot be obtained or readily prescribed. Here is an example:

P (A+BFC)+ (A+BFC)TP T < 0,P > 0, and F > 0
(29)

where P and F are decision variables, yielding a BMI

problem. In (29), we cannot assign α = P or α = F because

both of them do not have inherent bounds on their entries and

have a constraint of positive definiteness. The classification

principle is thus not applicable. Fortunately, although the

proposed principle is not valid, we rarely encounter this type

of problem such as (29) in system and control designs. When

a controller design problem is considered, F generally relates

to a controller gain and physical constraints do not yield a

requirement of positive or negative definiteness on F . In fact,

F may not even be a square matrix in practice. The second

situation is related to the differentiability of eigenvalues.

Eigenvalues are differentiable only if they are distinct, and

the condition of differentiability is used when pole placement

is performed. Since eigenvalues are randomly assigned in our

algorithm, there is little chance that two eigenvalues are the

same. Even if their values are slightly different, the trusted

region algorithm described in Section III-B can still work [56].

Therefore, this situation does not impose a serious restriction

on the applicability of our methodology either.

Remark 2: In our framework, SOPs and MOPs are ad-

dressed in a unified manner. For an illustrative purpose, we

examine the problem

min
α

f(α)

subject to g(α) ≤ 0
(30)

which can represent an SOP or MOP depending on the dimen-

sion of f(·). The problem in (30) can then be transformed into

the MOP

min
α

[

f(α) max{g(α), 0}
]T

. (31)

If an SOP is considered in (30), then the resulting problem

in (31) is a 2-D MOP. If an MOP with two objectives is

considered in (30), then the resulting problem in (31) becomes

a 3-D MOP. For either case, (31) is regarded as an MOP and

can be solved by our hybrid algorithm, producing a solution

set. If any points in the obtained solution set yield a nonzero

value of the final objective, i.e., max{g(α), 0} > 0, then they

are removed from the set because they are infeasible. After

the removal, a legitimate APF and approximate Pareto optimal

set can be attained. The reader can refer to [69] for a similar

technique that relates an SOP to an MOP.

V. NUMERICAL EXAMPLES

This section presents various system and control design

examples using BMI approaches. Among the solution methods

included for comparison, only BB methods involve global

optimization. A detailed description of design problems and

associated system parameters can be found in the appendices.

TABLE I
FEASIBILITY PROBLEMS

Problems Existing Solution Methods Results of MRV
Name SR %

ST [11] AM 100

SIP [11] AM 100

SAFS-I [7] ILMI 100

SAFS-II [8] Diffeomorphic state transformations 100

OCS [9] Two-step procedure 100

Sections V-A and V-B examine feasibility problems and

SOPs constrained by BMIs, respectively. Algorithm param-

eters Nnom = 40, Nmax = 160, and tmax = 20 were used,

and 70 simulation runs were performed. For the BMI-based

MOPs in Section V-C, the iteration number tmax = 300 was

used to produce APFs. These parameters were chosen based

on a number of experiments in consideration of the algorithm

convergence and computational time.

A. Feasibility Problems with BMI Constraints

Table I presents our simulation results. See Appendix A

for detailed problem descriptions. The “SR %” represents the

success rate of the proposed MRV solving these feasibility

problems with BMI constraints. While the AM, ILMI, diffeo-

morphic state transformations, and two-step procedure were

able to solve respective problems, our method successfully

found solutions in a unified manner.

B. SOPs with BMI Constraints

We compared the MRV with BB and path-following meth-

ods. Table II shows the numerical results in which the “Op-

timum, Mean,” and “Std” stand for the achieved optimal

value, mean value, and standard deviation, respectively. In

comparison with existing methods, the MRV yielded promi-

nent improvement in problem SSS, and had similar results in

problems LPVS and MCD.

To further assess the performance of the MRV, we used var-

ious models in COMPleib [6], [70], including aircraft models

(AC), helicopter models (HE), reactor models (REA), decen-

tralized interconnected systems (DIS), wind energy conversion

models (WEC), terrain following models (TF), and academic

test problems (NN). Spectral abscissa optimization problems,

H2 optimization problems, and H∞ optimization problems

were investigated. The associated system under investigation

has the following form:






ẋ = Ax+B1w +Bu

z = C1x+D11w +D12u

y = Cx.
(32)

The closed-loop system of (32) using a static output feedback

controller u = Fy = FCx can be written as
{

ẋ = (A+BFC)x+B1w = AFx+B1w

z = (C1 +D12FC)x+D11w = CFx+D11w.
(33)

The spectral abscissa optimization (or minimization) asso-

ciated with (33) is formulated as [10]

min
F

αo(AF ) (34)
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TABLE II
SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS

Problems
Methods Results of Existing Methods

Results of MRV
Name Optimum Mean Std SR %

LPVS (maximization) [29] BB methods 4.75 4.7575 4.7209 0.0280 100

SSS (maximization) [2] Path-following methods 1.05 4.1765 3.3347 0.3758 100

MCD (minimization) [15] Path-following methods 0.7489 0.7600 0.8291 0.0407 100

TABLE III
SPECTRAL ABSCISSA OPTIMIZATION

Problems Results of Existing Solution Methods, αo(AF ) Results of MRV, αo(AF )
Name αo(A) HIFOO LMIRank PENBMI CCDM ICAM Min Mean Min Mean Std SR %
AC1 0.000 -0.2061 -8.4766 -7.0758 -0.8535 -0.7814 -8.4766 -3.4786 -18.0761 -11.8993 3.2210 100

AC4 2.579 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500 -0.05 -0.05 -0.05 -0.05 6.9e-17 100

AC5 0.999 -0.7746 -1.8001 -2.0438 -0.7389 -0.7389 -2.0438 -1.2192 -2.4051 -2.1444 0.1754 100

AC7 0.172 -0.0322 -0.0204 0.0896 -0.0673 -0.0502 -0.0673 -0.0161 -0.0747 -0.0494 0.0088 100

AC8 0.012 -0.1968 -0.4447 0.4447 -0.0755 -0.0640 -0.4447 -0.0672 -0.4447 -0.4447 2.7e-16 100

AC9 0.012 -0.3389 -0.5230 -0.4450 -0.3256 -0.3926 -0.523 -0.405 -2.0823 -0.5776 0.2970 100

AC11 5.451 -0.0003 -5.0577 x -3.0244 -3.1573 -5.0577 -2.8099 -16.9018 -10.6947 2.6689 100

AC12 0.580 -10.8645 -9.9658 -1.8757 -0.3414 -0.2948 -10.8645 -4.6684 -18.3236 -13.3959 2.8633 100

HE1 0.276 -0.2457 -0.2071 -0.2468 -0.2202 -0.2134 -0.2468 -0.2266 -0.2446 -0.2338 0.0107 100

HE3 0.087 -0.4621 -2.3009 -0.4063 -0.8702 -0.8380 -2.3009 -0.9755 -1.7847 -0.8908 0.3055 100

HE4 0.234 -0.7446 -1.9221 -0.0909 -0.8647 -0.8375 -1.9221 -0.8919 -3.0567 -1.2306 0.5201 100

HE5 0.234 -0.1823 x -0.2932 -0.0587 -0.0609 -0.2932 -0.1487 -1.1953 -0.6939 0.2193 100

HE6 0.234 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 -0.005 -0.005 -0.005 -0.005 2.6e-18 100

REA1 1.991 -16.3918 -5.9736 -1.7984 -3.8599 -2.8932 -16.3918 -6.1833 -19.3041 -15.4064 2.4190 100

REA2 2.011 -7.0152 -10.0292 -3.5928 -2.1778 -1.9514 -10.0292 -4.9532 -19.4238 -13.0948 4.2323 100

REA3 0.000 -0.0207 -0.0207 -0.0207 -0.0207 -0.0207 -0.0207 -0.0207 -0.0207 -0.0207 3.5e-15 100

DIS2 1.675 -6.8510 -10.1207 -8.3289 -8.4540 -8.3419 -10.1207 -8.4193 -19.4340 -16.6852 2.5153 100

DIS4 1.442 -36.7203 -0.5420 -92.2842 -8.0989 -5.4467 -92.2842 -28.6184 -16.0222 -11.4094 2.4090 100

WEC1 0.008 -8.9927 -8.7350 -0.9657 -0.8779 -0.8568 -8.9927 -4.0856 -11.9629 -6.1804 2.2291 100

IH 0.000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5 -0.5 -0.1576 -0.0617 0.0407 76.47

CSE1 0.000 -0.4509 -0.4844 -0.4490 -0.2360 -0.2949 -0.4844 -0.383 -0.3489 -0.2282 0.0452 100

TF1 0.000 x x -0.0618 -0.1544 -0.0704 -0.1544 -0.0955 -0.2688 -0.1769 0.0396 100

TF2 0.000 x x -1.0e-5 -1.0e-5 -1.0e-5 -1.0e-5 -1.0e-5 -1.0e-5 -1.0e-5 1.7e-20 100

TF3 0.000 x x -0.0032 -0.0031 -0.0032 -0.0032 -0.0031 -0.0032 -0.0032 8.0e-6 100

NN1 3.606 -3.0458 -4.4021 -4.3358 -0.8746 0.1769 -4.4021 -2.4962 -5.89 -5.6847 0.1812 100

NN5 0.420 -0.0942 -0.0057 -0.0942 -0.0913 -0.0490 -0.0942 -0.0668 -0.094 -0.0915 0.0018 100

NN9 3.281 -2.0789 -0.7048 x -0.0279 0.0991 -2.0789 -0.6781 -17.8516 -12.1047 2.7270 100

NN13 1.945 -3.2513 -4.5310 -9.0741 -3.4318 -0.2783 -9.0741 -4.1133 -13.6061 -8.5606 4.7341 100

NN15 0.000 -6.9983 -11.0743 -0.0278 -0.8353 -1.0409 -11.0743 -3.9953 -10.9821 -10.3002 0.8034 100

NN17 1.170 -0.6110 -0.5130 x -0.6008 -0.5991 -0.611 -0.3244 -0.6107 -0.6007 0.0196 100

where

αo(AF ) = max
λ∈eig{AF }

Re(λ)

is the spectral abscissa of AF , eig{AF } represents the set of

eigenvalues of AF , Re(λ) is the real part of λ, and matrix F

represents the controller gain that must be determined. Because

the objective function in (34) is neither smooth nor Lipschitz

continuous, (34) is conventionally transformed into the BMI

problem [6], [10]:

min
P ,F ,β

β

subject to (PAF , ⋆) + 2βP < 0,P > 0
(35)

where β is related to the decay rate of the system.

To use our methodology, we compared (34) to (3), and

let α = F , X = ∅ (no internal variable is involved), and

F(α) = αo(AF ). Table III presents the resulting performance

of various solution methods.4 Minimization problems are

considered. Values in the columns of Table III labeled with

4In Tables III–V, the numerical results of existing methods HIFOO,
LMIRank, PENBMI, and CCDM come from [4], and the results of ICAM
are from [5]. The notation αo(A) represents the spectral abscissa of A.

“Min” and “Mean” present the best possible performance and

average performance during the simulation trials, respectively.

The letter “x” means that no solution is found. Our approach

performed excellently in approximately 73% of test problems

(marked in bold numbers) and yielded similar levels of perfor-

mance in the remaining problems as compared with existing

solution methods.

Remark 3: In Tables III–VI, the “Min” and “Mean” serve

as performance metrics in different situations. Having the

minimum “Min” in the results of the MRV implies that the

proposed method outperforms existing solution methods in

the best-case scenario. The best-case scenario can be related

to the situation in which the computational complexity is

not a concern. The best solution can then be obtained by a

series of evaluations. This situation occurs in certain off-line

applications and the value of “Min” can serve as a performance

metric. By contrast, having the minimum “Mean” in the results

of the MRV indicates that the proposed method is better than

existing solution methods in average. When computational

resources are limited, e.g., in certain online applications, the

value of “Mean” can serve as a performance metric.
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TABLE IV
H2 OPTIMIZATION

Problems Results of Existing Solution Methods, ||Gcℓ(F )||2 Results of MRV, ||Gcℓ(F )||2
Name ||Goℓ||2 HIFOO PENBMI CCDM Min Mean Min Mean Std SR %
AC1 Inf 0.025 0.0061 0.054 0.0061 0.0283 0.015 0.0187 0.0019 100

AC2 Inf 0.0257 0.0075 0.054 0.0075 0.029 0.01566 0.0188 0.0017 100

AC3 25.5798 2.0964 2.0823 2.1117 2.0823 2.0968 2.1206 2.231 0.0836 100

AC4 Inf 11.0269 x 11.0269 11.0269 11.0269 11.0269 11.0269 2.82e-15 100

AC6 24.6067 2.8648 2.8648 2.8664 2.8648 2.8653 3.026 3.6263 0.6533 100

AC7 Inf 0.0172 0.0162 0.0176 0.0162 0.017 0.0162 0.0164 0.0001 100

AC8 Inf 0.633 0.7403 0.6395 0.633 0.6709 0.6321 0.6813 0.0417 100

AC12 Inf 0.0022 0.0106 0.0992 0.0022 0.0373 0.0627 0.1129 0.0295 100

AC15 176.4515 1.5458 1.4811 1.5181 1.4811 1.515 1.6564 1.828 0.1709 100

AC16 176.4515 1.4769 1.4016 1.4427 1.4016 1.4404 1.4641 1.5307 0.0335 100

AC17 10.2650 1.5364 1.5347 1.5507 1.5347 1.5406 1.5392 1.5429 0.0041 100

HE2 13.8541 3.4362 3.4362 4.7406 3.4362 3.871 3.7494 6.1145 1.1487 100

HE3 Inf 0.0197 0.0071 0.1596 0.0071 0.0621 0.0333 0.1026 0.0808 100

HE4 Inf 6.6436 6.5785 7.1242 6.5785 6.7821 15.7738 27.0193 8.7713 100

REA1 Inf 0.9442 0.9422 1.0622 0.9422 0.9828 0.9593 0.9864 0.0176 100

REA2 Inf 1.0339 1.0229 1.1989 1.0229 1.0852 1.0261 1.0319 0.0134 100

DIS1 5.1491 0.6705 0.1174 0.7427 0.1174 0.5102 0.51 0.7455 0.1531 100

DIS2 Inf 0.4013 0.37 0.3819 0.37 0.3844 0.372 0.381 0.0128 100

DIS3 11.6538 0.9527 0.9434 1.0322 0.9434 0.9761 0.997 1.0623 0.0288 100

DIS4 Inf 1.0117 0.9696 1.0276 0.9696 1.0029 1.0644 1.1091 0.0351 100

WEC1 Inf 7.394 8.1032 12.9093 7.394 9.4688 12.1017 16.2366 1.9181 100

WEC2 66.5622 6.7908 7.6502 12.2102 6.7908 8.8837 13.2889 16.5298 1.3581 100

AGS 7.0412 6.9737 6.9737 6.9838 6.9737 6.977 7.1807 10.1753 2.4965 100

BDT1 0.0397 0.0024 x 0.0017 0.0017 0.002 3.52e-05 5.44e-05 1.22e-05 100

MFP 12.6469 6.9724 6.9724 7.0354 6.9724 6.9934 7.0556 7.6688 0.7976 100

PSM 3.8474 0.033 0.0007 0.1753 0.0007 0.0697 0.0217 0.04 0.0149 100

EB2 4.0000 0.064 0.0084 0.1604 0.0084 0.0776 0.0832 0.086 0.0091 100

EB3 1.26e03 0.0732 0.0072 0.0079 0.0072 0.0294 0.0846 0.0918 0.0141 100

TF1 Inf 0.0945 x 0.1599 0.0945 0.1272 0.1949 0.6965 1.2484 100

TF2 Inf 11.1803 x 11.1803 11.1803 11.1803 11.1803 11.1803 1.48e-14 100

TF3 Inf 0.1943 0.1424 0.2565 0.1424 0.1977 0.2568 2.0745 1.6401 97.67

NN2 Inf 1.1892 1.1892 1.1892 1.1892 1.1892 1.1892 1.1892 3.82e-06 100

NN4 5.5634 1.8341 1.8335 1.859 1.8335 1.8422 1.8945 1.989 0.056 100

NN8 5.9220 1.5152 1.5117 1.5725 1.5117 1.5331 1.5241 1.5518 0.017 100

NN11 0.1420 0.1178 0.079 0.1263 0.079 0.1077 0.0972 0.1137 0.0102 100

NN13 Inf 26.1012 26.1314 62.3995 26.1012 38.2107 30.1629 34.4666 3.9562 100

NN14 Inf 26.1448 26.1314 62.3995 26.1314 38.2252 29.6438 35.6657 7.4852 100

NN15 Inf 0.0245 x 0.021 0.021 0.0227 0.0034 0.0035 8.82e-05 100

NN16 Inf 0.1195 0.1195 0.1195 0.1195 0.1195 0.1208 0.2085 0.068 100

NN17 Inf 3.253 3.2404 3.3329 3.2404 3.2754 3.2554 3.2881 0.1843 100

For H2 and H∞ optimization, we use

Goℓ =

[

A B1

C1 D11

]

and Gcℓ(F ) =

[

AF B1

CF D11

]

(36)

to represent the open- and closed-loop systems, respectively.

The controller gain F was designed so that the H2 norm of

the closed-loop system, denoted by ||Gcℓ(F )||2, or the H∞

norm of the closed-loop system, denoted by ||Gcℓ(F )||∞, was

minimized while certain BMI constraints were satisfied (see

Appendix B). Tables IV and V present the respective results.5

The MRV outperformed existing solution methods in approx-

imately 27.5% and 47.8% of test problems for H2 and H∞

optimization, respectively (marked in bold numbers). For the

remaining problems, it yielded similar levels of performance.

As testified in [4] and [5], the CCDM and ICAM were rel-

atively robust compared with other existing solution methods,

but they failed or made little progress towards a local solution

in problems AC18, DIS5, PAS, and NN12 in COMPleib. By

5In the tables, ||Goℓ||2 and ||Goℓ||∞ represent the H2 and H∞ norms
of the open-loop system Goℓ, respectively. The notation “Inf” stands for
“infinity.”

contrast, the MRV was able to find solutions in these problems,

as shown in Table VI.

C. MOPs with BMI Constraints

This subsection examines the ability of the MRV to produce

APFs for controller designs involving multiple objectives. The

first problem is the sparse linear constant output-feedback

design described in (10) in which the matrices A,B, and C

are defined in [2] and [4]. The goal is to maximize the decay

rate β and minimize the entry values of the controller gain F .

The second problem is an MO version of a mixed H2/H∞

control problem (derived from (35) in [4]):

min
P1,P2,F ,Z,γ

[

trace(Z) γ
]T

subject to

[

(P1AF , ⋆) + (Cz1

F )TCz1

F P1B1

⋆ −γ2I

]

< 0,

[

(P2AF , ⋆) P2B1

⋆ −I

]

< 0,

[

P2 ⋆
Cz2

F Z

]

> 0,

P1,P2 > 0
(37)
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TABLE V
H∞ OPTIMIZATION

Problems Results of Existing Solution Methods, ||Gcℓ(F )||∞ Results of MRV, ||Gcℓ(F )||∞
Name ||Goℓ||∞ HIFOO PENBMI CCDM Min Mean Min Mean Std SR %
AC1 2.1672 0.0000 x 0.0177 0.0000 0.0088 0.0405 0.0907 0.0285 100

AC2 2.1672 0.1115 x 0.1140 0.1115 0.1127 0.1262 0.1917 0.0310 100

AC3 352.6869 4.7021 x 3.4859 3.4859 4.094 3.9206 4.5709 0.4217 100

AC4 69.9900 0.9355 x 69.9900 0.9355 35.4627 69.99 69.99 1.29e-13 100

AC6 391.7820 4.1140 x 4.1954 4.114 4.1547 4.8138 6.9232 3.1554 100

AC7 0.0424 0.0651 0.3810 0.0548 0.0548 0.1669 0.0315 0.0316 6.27e-05 100

AC8 1.7e03 2.0050 x 3.0520 2.005 2.5285 1.4305 1.8223 0.4017 100

AC9 Inf 1.0048 x 0.9237 0.9237 0.9642 3.2926 5.1355 1.069 100

AC11 Inf 3.5603 x 3.0104 3.0104 3.28535 3.1158 4.0119 0.5472 100

AC12 586.9176 0.3160 x 2.3025 0.316 1.3092 1.3532 1.9379 0.1729 100

AC15 2.4e03 15.2074 427.4106 15.1995 15.1995 152.6058 17.1925 18.2818 0.4480 100

AC16 2.4e03 15.4969 x 14.9881 14.9881 15.2425 15.8600 16.6389 0.5547 100

AC17 30.8328 6.6124 x 6.6373 6.6124 6.6248 6.6124 6.6124 1.30e-06 100

HE1 0.5598 0.1540 1.5258 0.1807 0.154 0.6201 0.1538 0.1595 0.0045 100

HE2 81.8318 4.4931 x 6.7846 4.4931 5.6388 4.3681 5.5034 0.7626 100

HE3 1.4618 0.8545 1.6843 0.9243 0.8545 1.1543 0.8570 0.9142 0.0381 100

HE4 174.2975 23.3448 x 22.8713 22.8713 23.108 46.5677 65.3844 7.8214 100

HE5 2.0802 8.8952 x 37.3906 8.8952 23.1429 20.8784 137.7817 155.8509 100

REA1 25.7708 0.8975 x 0.8815 0.8815 0.8895 0.8836 0.9073 0.0309 100

REA2 26.3449 1.1881 x 1.4188 1.1881 1.3034 1.1471 1.168 0.0125 100

REA3 Inf 74.2513 74.446 74.5478 74.2513 74.415 74.2513 75.5692 2.3953 100

DIS1 17.3209 4.1716 x 4.1943 4.1716 4.1829 4.3197 4.7678 0.4376 100

DIS2 0.9016 1.0548 1.7423 1.1546 1.0548 1.3172 1.0604 1.1364 0.039 100

DIS3 32.0698 1.0816 x 1.1382 1.0816 1.1099 1.2727 1.3733 0.0436 100

DIS4 3.1304 0.7465 x 0.7498 0.7465 0.7481 0.9486 1.0203 0.0411 100

TG1 130.3418 12.8462 x 12.9336 12.8462 12.8899 14.2157 25.1589 13.8431 100

AGS 8.1820 8.1732 188.0315 8.1732 8.1732 68.126 10.0239 20.963 6.2165 100

WEC2 354.3162 4.2726 32.9935 6.6082 4.2726 14.6247 7.8382 10.3568 1.5282 100

WEC3 180.0408 4.4497 200.1467 6.8402 4.4497 70.4788 7.2021 9.6854 1.4185 100

BDT1 5.1426 0.2664 x 0.8562 0.2664 0.5613 0.2662 0.2669 0.0008 100

MFP 83.1407 31.5899 x 31.6079 31.5899 31.5989 33.9193 51.8236 25.4745 100

IH Inf 1.9797 x 1.1858 1.1858 1.5827 30.1004 450.2228 1231.8531 90.38

CSE1 1.3e13 0.0201 x 0.0220 0.0201 0.021 0.0198 0.0199 2.00e-05 100

PSM 4.2328 0.9202 x 0.9227 0.9202 0.9214 0.9202 0.9208 0.001 100

EB1 39.9526 3.1225 39.9526 2.0276 2.0276 15.0342 1.888 1.888 4.81e-08 100

EB2 39.9526 2.0201 39.9547 0.8148 0.8148 14.2632 0.8142 0.8142 8.44e-16 100

EB3 3.9e06 2.0575 3995311.074 0.8153 0.8153 1331771.316 0.8143 0.8143 6.17e-16 100

NN1 Inf 13.9782 14.6882 18.4813 13.9782 15.7159 15.5294 16.6317 0.8991 100

NN2 Inf 2.2216 x 2.2216 2.2216 2.2216 2.2038 2.2056 0.0021 100

NN4 31.0435 1.3627 x 1.3802 1.3627 1.3714 1.4327 1.6037 0.0855 100

NN8 46.5086 2.8871 78281181.15 2.9345 2.8871 26093728.99 2.9193 2.9977 0.047 100

NN9 3.7675 28.9083 x 32.1222 28.9083 30.5152 30.7173 35.299 7.047 100

NN11 0.1703 0.1037 x 0.1566 0.1037 0.1301 0.1075 0.1374 0.0127 100

NN15 Inf 0.1039 x 0.1194 0.1039 0.1116 0.098 0.0982 0.0001 100

NN16 6.4e14 0.9557 x 0.9656 0.9557 0.9606 2.3044 6.8293 3.2719 100

NN17 2.8284 11.2182 x 11.2381 11.2182 11.2281 11.2042 11.6262 0.5366 100

TABLE VI
ADDITIONAL PROBLEMS IN SPECTRAL ABSCISSA,H2 , AND H∞

OPTIMIZATION

Problems Results of MRV, αo(AF )
Name αo(A) Min Mean Std SR %
AC18 0.1015 -1.9248 -1.1526 0.3836 100

DIS5 1.0192 -2.7044 -2.3709 0.2454 100

PAS 0 -2.05e-05 -1.61e-05 5.87e-06 100

NN12 1.0000 -2.4761 -1.9860 0.5362 100

Problems Results of MRV, ||Gcℓ(F )||2
Name ||Goℓ||2 Min Mean Std SR %
AC18 Inf 20.0248 21.1601 0.6287 100

DIS5 Inf 0.0013 0.0019 0.0006 100

NN12 Inf 8.6989 10.5373 3.7473 100

Problems Results of MRV, ||Gcℓ(F )||∞
Name ||Goℓ||∞ Min Mean Std SR %
AC18 140.3365 10.8088 11.9210 1.7586 100

DIS5 0.0108 28.7928 29.3512 0.4921 100

NN12 Inf 22.4556 40.5618 28.6066 100

where AF = A+BFC , Czi

F = Czi +FC, i = 1, 2, and the

matrices A,B,B1,C
z1

F and Cz2

F are defined in [2] and [4].

The H2 and H∞ performance are related to trace(Z) and

γ, respectively. To apply the classification principle, we intro-

duced a slack variable η and imposed an additional constraint

trace(Z) ≤ η2. The mixed H2/H∞ design problem in (37)

can then be transformed into

min
P1,P2,F ,Z,η,γ

[

η γ
]T

subject to

[

(P1AF , ⋆) + (Cz1

F
)TCz1

F
P1B1

⋆ −γ
2I

]

< 0,

[

(P2AF , ⋆) P2B1

⋆ −I

]

< 0,

[

P2 ⋆

C
z2

F
Z

]

> 0,

P1,P2 > 0, trace(Z) ≤ η
2
.

(38)

According to the classification principle, P1,P2, and Z must
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be included in the internal variable X because they have a

constraint on positive definiteness (Z is located in a diagonal

block of a positive-definite matrix and hence, it is positive-

definite); since η and γ appear in the objective function, they

are included in the external variable α; and finally, F must be

included in α as well so that for a fixed α, BMI(α,X) < 0
becomes an LMI in the variable X . Referring to the notations

in (3), we let α = (η, γ,F ), X = (P1,P2,Z), and F(α) =
[η γ]T .

Fig. 2 shows APFs obtained by solving (10) and (38). The

APF in Fig. 2(a) is bent, implying that objectives are not

heavily dependent. By choosing a design that corresponds to

a vector in the knee region of the APF, it is possible to simul-

taneously improve both objectives, i.e., maximizing the decay

rate and minimizing the values of entries of the controller gain.

By contrast, the line shape of the APF in Fig. 2(b) indicates

that simultaneous improvement in both objectives cannot be

attained. Therefore, for the design problem in (38), we must

sacrifice the H∞ performance to improve the H2 performance,

or vice versa. These two examples illustrate the ability of the

MRV to produce APFs for MOPs constrained by BMIs. Since

an APF can contain useful information about the relationships

among objectives, applying the proposed methodology to solve

BMI-constrained MOPs can be advantageous.

Remark 4: We illustrated how beneficial it can be by

using the proposed methodology, consisting of variable clas-

sification, problem transformation, and algorithm integration,

to solve BMI-constrained problems in system and control

designs. The comparisons with existing BMI solution methods

validated the effectiveness of the proposed methodology. A

proof of concept was thus provided. It is worth noting that

existing MOEAs cannot be directly applied to obtain solutions

to our BMI-constrained problems such as (10) and (38)

because they are not expressed in a standard form of an MOP.

(The problem in (16) derived from the Equivalence Theorem

is in the standard form.) Even if our variable classification

and problem transformation have been performed so that the

standard form has been obtained, there is little chance that

existing MOEAs can solve the resulting MOPs because the

external variable α often contains the controller gain F that

is still related to some matrix constraint. The proposed hybrid

algorithm can have the power to produce solutions mainly

because we have incorporated a pole-placement technique into

the search engine (described in Section III-B) and designed a

mechanism that ensures legitimate pole placement (described

in Section IV-A).

VI. CONCLUSION

In this paper, we proposed a solution method termed the

MRV for BMI problems in system and control designs.

By using this method, the associated decision variables are

classified into external and internal variables according to

the variable classification principle; the BMI problem is then

transformed into an unconstrained optimization problem that

has fewer decision variables; and finally, a hybrid algorithm

termed HMOIA is applied to solve the unconstrained problem,

yielding a feasible point, a solution, or a set of approximate

Pareto optimal solutions depending on the dimension of the

objective function. In our simulations, we compared the pro-

posed MRV to various BMI solution methods and found that

the MRV yielded excellent levels of performance in many

benchmark problems, validating the proposed methodology.

In contrast with some existing BMI solution methods, the

MRV possesses the following advantages: it expresses decision

variables in a vector form, which is convenient for controller

designs; it avoids much effort such as problem reformulation

or prior derivations, which can be heuristic and cumbersome;

it performs global optimization instead of local search, which

is essential because BMI problems are non-convex and have

multiple local optima; and it can address multiple objectives

simultaneously.

APPENDIX A

FEASIBILITY PROBLEMS WITH BMI CONSTRAINTS

If not specified, the following equation numbers are those

in the respective references.

ST (Stability Test, Sec. V-A of [11] with µ = 0.1): The

problem was described in (5) of this paper, and the bounds

τℓij ∈ [0, 10] were used.

SIP (Stabilization of Inverted Pendulum, Sec. V-B of [11]

with µ = 0.001 and BMIs in (13)):




(Pi(Aℓ +BℓFi), ⋆) + µ2I ⋆ ⋆
Pi −I 0
µFi ⋆ −I





−
2

∑

j=1

τℓij

[

Pj − Pi ⋆
0 0

]

< 0 for ℓ, i = 1, 2

where τℓij ≥ 0, Fi, and Pi > 0 are the decision vari-

ables. The external and internal variables were classified

as α = (τ112, τ121, τ212, τ221,F1,F2) and X = (P1,P2),
respectively. The bounds τℓij ∈ [0, 10] and [Fi]mn ∈ [−10, 10]
were used.

SAFS-I (Stabilization of an Affine Fuzzy System, Sec. V

of [7] with BMIs in (16.1) and (16.2)):

GT
22PG22 − P < 0

and
[

GT
ijPGij − P − τijTij GT

ijPσij − τijuij

⋆ σT
ijPσij − τijvij

]

< 0

for (i, j) = (1, 1), (3, 3), (1, 2), (2, 3), where

Gij =
1

2
{(Ai−BiFj)+(Aj−BjFi)} and σij =

1

2
(µi+µj).

The τij ≥ 0, Fi, and P > 0 are the decision variables.

The external and internal variables were classified as α =
(τ11, τ33, τ12, τ23,F1,F2,F3) and X = P , respectively. The

bounds τij ∈ [0, 5] and [Fi]mn ∈ [−5, 5] were used.

SAFS-II (Stabilization of an Affine Fuzzy System, Sec. V

of [8] with BMIs in (14a) and (14b)):

(P (A2 −BF2), ⋆) < 0



14

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9

10

12

14

16

18

20

−β

∑
i

∑
j
|[
F
] i
j
|

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

1.5

2

2.5

3

η

γ

(a) (b)

Fig. 2. APFs obtained by solving MOPs with BMI constraints using the proposed MRV. (a) APF obtained by solving (10); (b) APF obtained by solving (38).

and
[

(P (Ai −BFi), ⋆)− τijTij P (µi −Bσi)− τijuij

⋆ −τijvij

]

< 0

for (i, j) = (1, 1), (3, 1). The τij ≥ 0, Fi, and P > 0 are the

decision variables. The external and internal variables were

classified as α = (τ11, τ31, σ1, σ3,F1,F2,F3) and X = P ,

respectively. The bounds τij ∈ [0, 5], σi ∈ [−5, 5] and

[Fi]mn ∈ [−5, 5] were used.

OCS (Observer-based Control System, Sec. IV-A of [9] with

BMIs in (16)):




(P1Ai − P1B2iFi, ⋆) ⋆ ⋆ ⋆

(P1B2iFi)T (P2Ai −GiC2i, ⋆) ⋆ ⋆

(P1B1)T (P2B1)T −γ2I ⋆
C1i 0 0 −I



 < 0

for i = 1, 2, 3, 4. The Fi,Gi, i = 1, 2, 3, 4, and Pi > 0, i =
1, 2, are the decision variables, and the observer gains Li, i =
1, 2, 3, 4, are recovered by Li = P−1

2 Gi. The external and

internal variables were classified as α = (F1,F2,F3,F4) and

X = (P1,P2,G1,G2,G3,G4), respectively. The bounds

eig{Ai −B2iFi} ∈ {σ + jω : (σ, ω) ∈ [−20, 0]× [−20, 20]}

for i = 1, 2, 3, 4, were used.

APPENDIX B

SOPS AND MOPS WITH BMI CONSTRAINTS

If not specified, the following equation numbers are those

in the respective references.

LPVS (Linear Parameter-varying System, (28)–(32) in

Sec. V-A of [29]): The problem was presented in (8) of this

paper, and the bounds δi ∈ [0, 1] and ς ∈ [0, 10] were used.

SSS (Simultaneous State-feedback Stabilization,

Sec. 4.2 [2]): A stabilizing state-feedback gain F exists

if the optimum of

max
F ,γi

min{γ1, γ2, γ3}

subject to [F ]mn ≤ Fmax

(Pi(Ai +BiF ), ⋆) + 2γiPi < 0

Pi > 0, i = 1, 2, 3

is positive. We let α = (γ1, γ2, γ3,F ), X = (P1,P2,P3), and

F(α) = −min{γ1, γ2, γ3}. The bounds [F ]mn ∈ [−50, 50]
and γi ∈ [0, 5] were used.

MCD (Mixed H2/H∞ Controller Design, Sec. III-A of [15]

with BMIs in (3)): We let α = (η,K) and X = (P1,P2).
The bounds η ∈ [0, 2] and [K]n ∈ [−5, 5] were used.

Spectral Abscissa Optimization: The bounds [F ]mn ∈
[−50, 50] and eig{AF } ∈ {σ + jω : (σ, ω) ∈ [−20, 0] ×
[−20, 20]} were used, S = 3 subspaces were adopted, and

κs was chosen from {1, 0.5, 0.1} uniformly at random when

each αi in (25) of this paper was constructed. The same setting

was used in the H2 optimization, H∞ optimization, and MOPs

as well.

H2 Optimization: We let D11 = 0 in Gcℓ(F ) and solved

min
Y ,F ,Q

||Gcℓ(F )||2

subject to (AFQ, ⋆) +B1B
T
1 < 0

[

Y C1Q

⋆ Q

]

> 0,Q > 0.

The term B1B
T
1 was replaced by B1B

T
1 +10−5I if it was not

positive definite. We let α = F , X = (Q,Y ), and F(α) =
||Gcℓ(F )||2 according to the classification principle. Given the

value of the external variable α = F , existing deterministic

algorithms can be applied to evaluate F(α) = ||Gcℓ(F )||2,

e.g., the MATLAB routine norm(syst, p) with syst = Gcℓ(F )
and p = 2 can be used. To facilitate numerical comparisons

and expedite the solving process, we used the following

settings for both H2 and H∞ optimization: the objective values

F̃ := [105 105 + αo(AF )]
T were assigned without further

evaluation of λ∗(α) whenever αo(AF ) ≥ 0; and the bounds
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eig{AF } ∈ {σ+jω : (σ, ω) ∈ [−20, 0]× [−20, 20]} were not

used (only bounds on [F ]mn were used) when problem NN11

in COMPleib was solved.

H∞ Optimization: We solved

min
Y ,F ,γ

||Gcℓ(F )||∞

subject to





(Y AF , ⋆) XB1 CT
F

⋆ −γI DT
11

⋆ ⋆ −γI



 < 0

Y > 0, γ > 0.

We let α = F , X = (γ,Y ), and F(α) = ||Gcℓ(F )||∞.

Given the value of the external variable α = F , the value

of F(α) = ||Gcℓ(F )||∞ can be determined using determinis-

tic algorithms, e.g., the MATLAB routine norm(syst, p) with

syst = Gcℓ(F ) and p = inf can be used.

MOPs: We used the bound β ∈ [0, 1.5] in the sparse

linear constant output-feedback design, and the bounds η ∈
[0, 2], γ ∈ [1, 5] in the mixed H2/H∞ design.
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