
 
 

University of Birmingham

Agent Cooperation Mechanism for Decentralised
Manufacturing Scheduling
Jules, Guiovanni; Saadat, Mozafar

DOI:
10.1109/TSMC.2016.2578879

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Jules, G & Saadat, M 2016, 'Agent Cooperation Mechanism for Decentralised Manufacturing Scheduling', IEEE
Transactions on Systems, Man and Cybernetics: Systems, vol. 47, no. 12, pp. 3351 - 3362.
https://doi.org/10.1109/TSMC.2016.2578879

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1109/TSMC.2016.2578879
https://doi.org/10.1109/TSMC.2016.2578879
https://birmingham.elsevierpure.com/en/publications/b777c3fd-9d9a-4284-9bde-b2911574c531


 

Abstract—This paper presents an agent cooperation 

mechanism for scheduling operations in a manufacturing 

network, while allowing manufacturers to absolutely control 

their scheduling activities.   The study includes a thorough 

review of recent publications, a real-life industrial use case of a 

manufacturing network, an agent-based model of the network 

simulated with Recursive Porous Agent Simulation Toolkit 

(REPAST), the Muth and Thompson (MT10) scheduling data 

set, and the visualisation of results in Microsoft 

Project.  Results of a study of a four-layer cooperation 

mechanism showed that for the MT10 problem, manufacturer 

arrangement 0-5-7-2-3-8-1-9-6-4-0 was found to maximise the 

utilitarian social welfare of the manufacturing network.   In 

terms of make-span, the network achieved a maximum of 1125 

which was beyond the known optimal 930.  Results suggest that 

manufacturers could express their scheduling goals and their 

preferences with whom they wanted to cooperate.  These were 

measured by the time incentive and compatibility 

indicators.  The latter could also be used to track the optimality 

loss in make-span optimisation when implementing the 

decentralised scheduling approach in the context of 

manufacturing networks.  

 

Index Terms—Decentralised, Distributed, Scheduling, 

Agent, Welfare, Optimisation 

 

I. INTRODUCTION 

RODUCTION systems have encountered a paradigm 

shift towards mass customisation and more flexible and 

reconfigurable value chains.  The context in which these 

systems operate, include multi-site independently owned 

facilities.  Decentralised scheduling is a promising 

paradigm, within the aforementioned context, for effective 

planning and scheduling of processes.  Decentralised 

scheduling consists of distributed entities that have enough 

knowledge to make decisions but only part of the knowledge 

to fulfil the scheduling objectives of the system.  Therefore 

collaboration is required.    Centralised scheduling consists 

of an entity that has all the required knowledge to fulfil the 

scheduling objectives of the system [1].  Centralised 

scheduling can be a rigid activity with respect to the 

dynamic demand of an uncertain market.   

A scheduling problem usually involves a system of 

entities competing for limited resources. Deterministic 

scheduling problem is one where the problem parameters 

are known, certain and the schedule is executed exactly as 

planned.  This is in contrast with a stochastic scheduling 

problem where the parameters are random variables and 

executional uncertainties are taken into account, such as 
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machine breakdowns, rush orders and reworks [2].  A 

scheduling solution is bounded by constraints such as 

conflicting access to operations at a given time and limited 

resource capacities which contribute to the NP-hardness of 

the problem.  Heuristic methods are often used for such 

problem solving and involve a model that takes inputs, 

constraints and decision variables [3].    

The case for decentralised scheduling can be supported on 

the basis of two reports from the consulting companies 

McKinsey and American Productivity and Quality Council 

(APQC).  McKinsey [4] proposed decentralisation as the 

default organisation structure unless one of three criteria is 

met.  First criterion states that unless centralisation is 

mandated by law or external stakeholders, decentralisation 

is adequate.  Second criterion states that if centralisation 

increase a value by at least 10%, for instance, market 

capitalisation, then centralisation is recommended.  The 

final criterion is concerned with the risks of increased 

bureaucracy, increased business rigidity and withered 

motivation.  If implementing centralisation could reduce the 

risks, then it should be implemented.  So, based on a survey 

of 96 manufacturers, production schedule reliability was 

only 5% better for centralisation compared to 

decentralisation.  Therefore production scheduling does not 

need to be centralised when the production sites are 

inherently decentralised [5]. 

Independent facilities should be able to decide on how to 

schedule their tasks as they are subject to their own 

constraints and goals.  High value production is becoming 

more personalised where the concepts of vertical alliance 

and economy of scale are not adequate.  Vertical alliance is 

usually associated with supply chains and requires suppliers 

to exclusively devote their production capacities to the top 

tier company.    Horizontal alliances involve independent 

companies that usually compete but occasionally collaborate 

on projects that they cannot handle individually [6].  

Horizontal alliance and strong collaboration are essential 

when key innovation come from independent small and 

medium entrepreneurial companies that have developed 

advanced technologies and processes [7].  They form part of 

manufacturing networks to better reach the market with 

adaptability and innovative products [8].  Multi-site 

production is uneconomical and difficult if the transfers of 

semi-finished goods are not tightly coordinated, a problem 

described in literature as very complex.  In a network-type 

manufacturing system, planning and scheduling of 

manufacturing operations effectively handled by a 

decentralised scheduling approach has some promise.   

The concept of ring network in the manufacturing domain 

has been introduced by Owliya et al. [9].  The researchers 

investigated the use of agent based model for decentralised 
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job allocation among machines on a shop floor with the 

token ring principle as backdrop.  Our work repurposes the 

essence of their previous work to the context of networks of 

independent manufacturers.  Furthermore, our work uses a 

case study where interdependencies of manufacturing 

operations are more prominent.  The context of 

manufacturing network organisation was investigated in our 

previous work [10].  We demonstrated the formation of a 

community of networks using various selection 

mechanisms.  In this work, however, we focus our research 

on micro-mechanisms of scheduling manufacturers in a 

single network.  A problem involving multiple 

interdependent issues cannot be effectively solved unless it 

is decomposed into self-contained sub-problems, which is 

addressed by Fujita et al. [11].    

Our work makes use of a Muth and Thompson scheduling 

problem.  The case study has been cited in 646 publications.  

The MT10 problem is a flow shop scheduling problem and 

involves 10 manufacturers, 10 jobs and 100 operations as 

shown in Table 1.   

 
 

Each job consists of a process plan of 10 unique 

operations with operation dependencies and precedencies.  

For instance, Job-2 has a process plan similar to 20-22-24-

29-23-21-26-25-27-28 where operation 20 is the first 

operation with a processing time of 43 hours and operation 

28 is the last operation with a processing time of 30 hours.  

Operations 12, 22, 32, 42, 52, 62, 72, 82, 92 and 102 share 

Manufacturer 2 and will all form part of the manufacturer 

operation plan.  The objective of the problem solving is to 

generate the operation plans of the 10 manufacturers with 

respect to the process plans of the 10 jobs so that an optimal 

lead time of 930 hours is reached.  The operation research 

community use this problem as one of the benchmarks to 

validate their results.   

II. RELATED WORK 

A. Solution searching algorithms 

Problems that are computationally hard to optimise (NP-

hard) are often approximately solved by moving from 

solution to solution within specified time bounds.   They 

typically have a number of candidate solutions that form the 

search space.  Usually, the objective is to find a solution that 

maximises a criterion such as make span or total operating 

cost, in the case of scheduling.  A solution can be a cycle, a 

path or a plan [12]. Local search algorithms offer multiple 

ways of formulating the problems and solving them with 

various degree of efficiency.  The established approach is 

the genetic algorithm.  More recently developed approaches 

involve flower pollination and chemical reaction 

optimisation.   

In genetic algorithm (GA), a sample of the search space 

of a problem is captured by a population of chromosomes.  

Chromosomes, by virtue of genes and alleles, map valid 

solutions to the problem.  The fitness function quantifies the 

extent to which objective metrics are satisfied by these 

solutions.  GA exploits or explores the search space by 

evolving the population.  In exploitation, the rate of region 

sampling depends on the probability of good solutions in the 

vicinity.  The population will consist of more chromosomes 

from higher payoff regions that from other regions.  

Exploration balances the mixture of chromosomes sampled 

from higher and lower payoff regions.  Through mutation, 

crossover and selection, many solutions will fail and 

degrade the performance of the algorithm.  However, after 

enough iterations, novel solutions are discovered [13].  

Users can experiment with parameters such as population 

size, mutation rate and offset, to influence the exploitation 

and exploration of regions. 

Chemical reaction optimisation is a search algorithm that 

mimics the nature of chemical reactions such as wall and 

inter-molecular collisions, synthesis and decomposition.  A 

solution has a permutation-based and a vector-based 

representation and the ranking of its content is significant.  

In a permutation-based representation of a scheduling 

solution, the first vector has tasks that are separated, by 

delimiters, into clusters.  Each cluster represents all the tasks 

that are allocated to a resource.  The resource id is 

equivalent to the position, in the vector, occupied by the 

cluster.  The second vector denotes the number of tasks 

allocated to each resource.  It implicitly indicates the 

number of clusters and the position of the delimiters in the 

first vector.   In a vector-based representation, a vector 

contains resources and their positions are equivalent to the 

allocated task id.  All three vectors represent one solution.  

Within a chemical reaction, the solutions interact through 

several operations.  The vectors undergo eight distinct 

operations and evaluation is performed, of the extent to 

which each solution achieves the objective metrics.  This is 

determined by a fitness function [14].      

Flower pollination algorithm has been claimed to have an 

exponential convergence rate.  A solution vector is 

represented by a pollen gamete from a flower of a plant 

species in a patch. The pollination is associated with the 

transfer of pollen and its strength linked with the distance 

travelled by a pollen gamete.   There is the long distance 

TABLE 1 

JOB PROCESS PLANS FROM MUTH AND THOMPSON 10 X 10 PROBLEM  

 

Job O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 

1 10 11 12 13 14 15 16 17  18 19 
 (29) (78) (9) (36) (49) (11) (62) (56) (44) (21) 

2 20 22  24  29  23  21  26  25  27  28  
 (43) (90) (75) (11) (69) (28) (46) (46) (72) (30) 

3 31 30 33 32 38 35 37 36 39 34 
 (91) (85) (39) (74) (90) (10) (12) (89) (45) (33) 

4 41 42 40 44 46 48 47 43 49 45 
 (81) (95) (71) (99) (9) (52) (85) (98) (22) (43) 

5 52 50 51  55 53  54 58 57 59 56 
 (14) (6) (22) (61) (26) (69) (21) (49) (72) (53) 

6 62 61 65 63 68 69 60  66  64 67 
 (84) (2) (52) (95) (48) (72) (47) (65) (6) (25) 

7 71 70 73 72 76 75 79 78 77 74  
 (46) (37) (61) (13) (32) (21) (32) (89) (30) (55) 

8 82  80 81  85 84 86 88 89 87 83 

 (31) (86) (46) (74) (32) (88) (19) (48) (36) (79) 

9 90  91 93 95 92 99 96 97 94  98  
 (76) (69) (76) (51) (85) (11) (40) (89) (26) (74) 

10 101 100 102 106 108 109 105 103  104 107 
 (85) (13) (61) (7) (64) (76) (47) (52) (90) (45) 

O1 = first operation, 90 = needed by Job 9, provided by Manufacturer 0, 

(76) = operation processing time 

 



step operation which is characterised by the Lévy 

distribution of pollen transfer via the Lévy flight of 

pollinators.  There is the neighbourhood step operation 

which is characterised by a uniform distribution of transfer 

by rain and wind.  Pollinators are attracted to flowers of the 

same plant species and will bypass other flowers.  The 

combination of proximity probability, flower constancy and 

step operations mimic the behaviour.  The proximity 

probability determines when a pollen gamete is transferred 

over long distance or when it is transferred into the 

neighbourhood.  In other words, it is the probability of local 

or global pollination taking place.   Flower constancy 

modulates the step sizes so that the means of pollination do 

not overreach flowers of the same plant species.  Flower 

pollination has had significantly good performance on 

several test functions and has been applied in design/cost 

optimisation of pressure vessels [15].  

Being a well-established algorithm with many developed 

features and integrations into simulation development 

platforms, GA is a simpler means of representing a 

scheduling problem and maintaining the representation 

integrity, during optimisation.  Moreover, in terms of 

computation complexity which is relative to the number of 

operations per iteration, FPA and GA are equally good and 

better than CRO.  Also, CRO and GA could be applied to 

various types of problems e.g. scheduling, while FPA would 

be best for root-finding problems.  Within the context of 

root-finding, it has been reported that FPA can produce 

exact solutions in less time than GA.  However, for the 

context of this paper, the application of GA was considered 

well enough for demonstrating the use of optimisation.    

B. Decentralised Approaches in Manufacturing Scheduling 

From literature, it is noted that the main problems that 

decentralised scheduling attempt to solve are the various 

particulars of decentralisation [16, 17, 18, 19], the 

intractability of black box optimisation [16], the lack of 

constraint relationships across multiple domains [19, 20] 

and dynamic scheduling [16, 18, 19].   

The information used as scheduling criteria are localised 

and often incomplete due to decentralisation [16].  

Decentralised scheduling is often attributed to task 

allocation to geographically distributed machines [17].  It 

can also be attributed to task allocation to a mix of local 

resources that are always available and shared resources that 

have limited availability.  Scheduling resolves resource 

conflicts among shared resources by leveraging local 

resources [18].   And this mix of local and shared resources 

may constitute a single agent problem i.e. flow, open, job 

shop problem.  Or it can be considered as a multi-agent 

problem i.e. production network where each task has its own 

objective [19].  Then there is the intractability of 

optimisation that is often used to determine the weight 

coefficients combining multiple criteria.  If the information 

is global, complete and static, global optimisation is 

adequate.  If the information is local, dynamic and globally 

incomplete, unambiguous local objectives must be achieved 

first [16].  In this manner, at multiple levels of 

decomposition, different constraints can be considered and 

be achieved [19, 20].  Finally, decentralised scheduling 

promises to tackle dynamic states [19] such as random 

project release times [18] and lot quantities [16].   

Research in decentralised scheduling has tackled a few 

objectives broadly categorised into time and cost.  Time 

objectives include cycle time, standard deviation of cycle 

time, and percentage of on-time completion [16], make span 

with transportation time [17], average project delay [18], 

maximum completion time and average job response time 

[19].  Cost objectives include total earliness and tardiness 

penalties, weighted tardiness cost, manufacturing costs and 

profit [19].  The objectives can be achieved while balancing 

system flexibility and solution optimality [20].     

There are main methods that have been researched 

namely functional and physical decomposition [16, 20], 

interaction mechanisms [18] and system architecture [20].  

In a type of physical decomposition approach, workstations 

have been classified based on utilisation and dispatching 

complexity i.e. entropy.  These simpler sub problems are 

more tractable problems to which specific scheduling 

policies were applied such as decentralised WIP and speed 

control as well as workload control [16].   Interaction 

mechanism is concerned with the coordination of agents and 

negotiation of limited resources by agents, for overall 

scheduling to emerge [20].   Examples of interaction 

mechanisms are auction-based negotiation, multi-unit 

combinatorial auction [18], modified ring protocol for 

unsupervised task allocation in shop floors [9] and modified 

Contract Net Protocol (CNP) for the formation of a 

collaborative network organization [10].  This scheme 

allows the parallel generation of schedules, local decision 

making by agents [18], generation of alternative plans, and 

ranking of alternative plans, final selection of resources 

against plans and the merging of local schedules into a 

global one [20].  There are also bio-inspired interaction 

mechanism where potential fields whether attractive or 

repulsive, are used to control behaviours of the system. The 

potential field is formulated as a matrix correlating services 

and their availability [21].  Finally, system architecture is an 

important component of successful decentralised 

scheduling.  Agents can be federated, form part of 

hierarchical structure or be autonomous.  Federated agents 

may be associated with a broker, a mediator or a facilitator.  

In the case of federated facilitator architecture, agents 

communicate via an interface which processes incoming 

data from agents and routes outgoing data to appropriate 

agents.  This contributes in limiting unintended interactions, 

communication overhead and facilitating complex agent 

management [20]. 

It was noted that workstation classification and the right 

policies can help to outperform rule-based scheduling and 

compound scheduling strategies by managing the number of 

look ahead and look back steps [16].  Through carefully 

designed interaction mechanisms, the proposed approach 

which was benchmarked against three decentralised and two 

centralised algorithms, outperformed with 82 out of 140 new 

best solutions.  The approach could handle dynamic arrival 

of projects and was scalable on the basis of number of 

activities, resources and projects [18].         

C. Mechanism of Agent Cooperation 

Evolution and adaption in a distributed system of agents 

may trigger an endless cycle of chaotic behaviours.  Barbosa 



et al. [23] proposed a two layer stabilisation approach for a 

system of self-organising agents to reduce the nervous 

impulse of agents and the system to react to perturbations.   

The research used a Proportional, Integrative and Derivative 

(PID) controller derived from classical control theory.  

Applied to a manufacturing case study, a reduction in make-

span performance degradation for behavioural self-

organisation and a reduction in transportation times for 

structural self-organisation, were reported.  

Wooldridge et al. [24] proposed a taxation scheme to 

impose different levels of costs on various agent actions 

while the agent seeks to minimize its expenditures.  This 

mechanism can provide an incentive for an agent to steer 

clear of some actions or steer towards some actions with 

respect to its goals.   

The social welfare, also known as collective welfare of 

the system measures how well agents had their goals met. 

The notion of utilitarian social welfare is the sum of utilities 

of agents and the aim is to maximise the sum without regard 

for the average of utilities.  The score is not concerned with 

fairness as are egalitarian and Nash welfares [25].  A utility-

based agent would compare different possible outcomes in 

terms of utilities and select the action that would produce 

the outcome with the highest utility [26].  Utility could be 

defined as either a measure of an agent preference for an 

outcome of the agent performing a particular action or 

simply a measure of an agent preference for an action [27].  

Nguyen et al. [28] performed a computational complexity 

survey on social welfare optimisation namely utilitarian, 

egalitarian and the Nash product. It was reported that on all 

three notions, the complexity of optimisation is NP-

complete.  In other words, an exact solution can be achieved 

but there are no known algorithm that can efficiently solve 

the problem.  Therefore, the computation time significantly 

increases with the size of the problem.   

To solve the highly complex utility space with improved 

efficiency, Fujita et al. [29] proposed a mechanism to 

decompose the problem into distributed agents which, based 

on compatible issues, locally establish relationships with 

other agents to form issue clusters.  A mediator aggregate 

the clusters into issue groups which undergo nonlinear 

optimisation to produce the final solution.  A measurement 

was proposed for issue interdependency strength, optimality 

rate of issue grouping and quality factor.  They use as their 

control method centralised simulated annealing.  When the 

number of issues increased, they reported that the distributed 

mechanism improved the differential gradient of optimality 

rate as well as the quality factor. 

D. Statement of purpose 

In this paper, we introduce the idea of a mechanism for 

manufacturer interaction so that a desirable network 

schedule can emerge and lead time is minimised while 

manufacturers have absolute control over their scheduling 

activities.   The study was limited to deterministic 

scheduling problem and decentralisation while other issues, 

such as executional uncertainties, lot sizing, order release 

strategies and dispatch rules, were not considered, in this 

case.  The MT10 scheduling problem has always been 

solved by global optimisation and in a centralised manner 

which is the conventional way.  In decentralisation, new 

constraints are involved namely incomplete information, 

federated decision making, and local entity goals in addition 

to the system global goals.  This paper proposed four main 

functions involved in solving the MT10 in a decentralised 

manner.  First, the local agent must define its goal by 

determining its ideal operation plan.  Second, not all local 

agents have to interact and this is determined by their local 

objective scores.  Third, agent federation is influenced by 

existing federated agents.  And finally, information is 

explicitly exchanged for satisfying local information needs.  

Addressing these four functions would fulfil a gap in the 

decentralised scheduling literature.    

Metrics were developed to measure the schedule 

performance at each interaction stage. We generated an 

agent-based model of a network, from an industrial use case, 

ran the model in the Recursive Porous Agent Simulation 

Toolkit (REPAST) with the operation research data set 

MT10.  REPAST applied GA decentrally to produce 

manufacturer operation plans.  GA was used for the purpose 

of demonstrating the use of optimisation in decentralised 

scheduling and is not claimed to be the best but yet is a 

strong method.  The resulting operation plans and the fixed 

job-based process plans were plotted into Microsoft Project.  

Upon data entry, the latter automatically checks that the 

dependencies between the operations, either manufacturer-

wise or job-wise, are valid.  The scheduling of the validated 

operation plans is performed and the resultant lead time is 

benchmarked against a known optimum lead time for the 

MT10 data.  Figure 1 shows the procedure. 

 

 
Merits of REPAST in the manufacturing domain have 

been conclusive especially when modelling distributed 

decision making, time scheduling and networks [26].   

Moreover, the platform provides facilities for data 

collection, visualisation as well as an array of useful 

optimisation algorithms which outweigh similar platforms 

like MASON, NetLogo and Swarm. Furthermore, REPAST 

is versatile in applications ranging from industrial analysis, 

to social systems and evolutionary systems [29]. 

 
Fig 1. Flowchart of proposed methodology 

Objective 

•Manufacturer-controlled scheduling 

•Leadtime minimisation 

Metric 

•Time budget 

•Pair compatibility 

•Network compatibility 

Constraint 

•Operation dependencies in job process plans 

•1 operation per manufacturer at a given time 

Function 

•Time budget optimisation 

•Pair compatibility optimisation 

•Network compatibility optimisation 

Model 

•Agent based model of manufacturing 

•Decentralised genetic algorithm 

•Generated operation plans 

Evaluate 

•Operation dependencies validated in MS Project 

•Leadtime benchmarked 



III. METHODOLOGY 

A. Use Case of a Network-Type Manufacturing System 

GFM Srl (Groupe Fabricazione Meccanica) is a private 

enterprise situated in the province of Bergamo, Italy.  A 

provider of components and assembly equipment for the 

energy, naval, aerospace and oil/gas sector, GFM has 40 

years of experience and employs 90 employees which 

qualifies it as a Small and Medium Enterprise (SME).  The 

company acts as a service broker for more than 40 

workshops and 500 specialised suppliers. It provides the 

service to the original equipment manufacturers. Moreover, 

it offers warehousing facilities for raw material, semi-

finished and finished products transferred between 

workshops.  However, the company owns only one 

production facility which it uses as a production and R&D 

facility.  The production services consist of hundreds of 

operation combinations, a thousand technicians which 

translate into more than a million working hours per year 

(www.gfmsrl.com).  In previous works, we have 

investigated the job allocation process of GFM to form a 

Manufacturing Network Organisation (MNO) [30].  In this 

paper, we focus on functions of the departments of 

Purchasing and Production for production scheduling in one 

network of MNO. 

B. Agent-Based Model of a Network 

The proposed model used three basic agents from the 

Holonic principles to investigate decentralised scheduling 

approach in a manufacturing network.  The resource agent 

becomes an abstraction of the production means such as 

manufacturers and organisations of manufacturers.  The 

product agent represents the product model which 

incorporates the complete operation plans for products 

specified for the customer.  The order agent represents an 

operation state model which assures the correct execution of 

an operation and the on-time delivery to the next operation.    

For the rest of this section, the ‘italic’ font will be used to 

refer to the class attributes of the resource, order and product 

agents e.g. ‘jobDueDate’. 

   

1) Definition of main attributes 

There are three new attributes introduced namely time 

budget, pair compatibility and network compatibility.  Each 

operation has a time budget which determines how close to 

the time constraints of a job and a manufacturer, the timing 

of the operation is.  Time budget is affected by the job due 

time, the operation duration and operation start time.  Time 

budget indicates the utility of the manufacturer.  Pair 

compatibility is an indication of how effective the timing of 

operations within a pair is.  Pair compatibility increases 

when the sum of idle time within the pair and the time 

budget overdraft decrease.  Time budget overdraft applies to 

a manufacturer pair and is the sum of time budget excess for 

the operations involved in the pair.  A zero overdraft means 

that the operations of a pair of manufacturers have respected 

all the time constraints set by the jobs and the pair of 

manufacturers.  The attributes, such as pair compatibility 

and network compatibility, monitor whether the operation 

plans of manufacturers are in harmony with the job process 

plans.  Pair compatibility is an indication of the utility of the 

manufacturer pair.  The network compatibility is the sum of 

the pair compatibilities.  A valid network will have a much 

higher compatibility value that an invalid network and lower 

optimality loss.  Network compatibility indicates the social 

welfare of the system-wide manufacturer network.  In a 

valid network, the manufacturer operation plans have 

optimised operation dependencies i.e. predecessors and 

successors, that complement rather than conflict with the 

fixed operation dependencies of job process plans. 

2) Cooperation mechanism of the agent-based model  

The cooperation mechanism involved elements such as 

agents, their local objectives, a multi-agent system, its 

global objectives and regulations for agent behaviours.  

Cooperation was considered as a regulated system behaviour 

emerging from strategically pruned interactions of agents.  

Due to their decentralised nature, agents had incomplete 

information about the overall system and therefore 

cooperation is a means for agents to perceive and effectively 

react to the needs of the system.  Cooperation allowed the 

agents to compromise between their local objectives and the 

global objectives of the system.  In this paper, the 

compromise was regulated by the utilitarian social welfare 

which ensured that the global objectives prevail among 

agents that are also trying to achieve their local objectives.  

Other regulation alternatives included stabilisation from 

control theory [23] and taxation schemes [24].   The social 

welfare concept was used for its simplicity and because it 

aligns with the notion that it is the manufacturing networks 

and not individual manufacturers that compete for customer 

orders.  The chosen method to prune agent interaction was 

the federated facilitator architecture [20] so that agents 

formed into little clusters to achieve local objectives that 

eventually led to a network that achieved global objectives.          

3) Order Agent and Product Agent Specialisation 

The agent-based model consists of the operation agent 

which is a specialisation of the order agent.  Attributes of 

the operation agent form the process execution knowledge.  

The product agent has a specialisation called the job agent.  

Attributes of the job agent form the production knowledge. 

4) Resource Agent Specialisation 

The agent-based model proposes three types of resource 

agents namely Manufacturer, Manufacturer Pair and 

Manufacturing Network and all implement their own 

optimiser.  Attributes of resource agents can be regarded as 

the process knowledge [22].  To maximise the chance of 

hitting target ‘jobDueDate’, manufacturer agents implement 

a Time Budget Utility (TBU) function.  The TBU function 

incentivizes the rearrangement of the operation plan of the 

manufacturer, so that its schedule maximises the differences 

between ‘proposedFinishTime’ and 

‘latestPossibleFinishTime’.  This results in the parameter 

‘timebudget’ created for each operation and parameter 

‘optimisedOperationPlan’ for the manufacturer agent.   

 

http://www.gfmsrl.com/


 
 

𝑂𝑜
has
⇒ {𝐷𝑂𝑜 , 𝐿𝐹𝑇𝑂𝑜 ,  𝑆𝑇𝑂𝑜 , 𝐹𝑇𝑂𝑜 ,  𝑇𝐵𝑂𝑜}  (1) 

 

𝐽𝑗
needs
⇒  {𝑗𝑜

𝐽𝑗,0
, 𝑗𝑜

𝐽𝑗,1
, … , 𝑗𝑜

𝐽𝑗,𝐵−1
}  (2) 

 

𝑀𝑚
provides
⇒     {𝑚𝑜𝑀𝑚,0, 𝑚𝑜𝑀𝑚,1, … ,𝑚𝑜𝑀𝑚,𝐼−1}  (3) 

 

𝑃𝑝
defined by
⇒     {𝑀1,𝑃𝑝 , 𝑀2,𝑃𝑝 , IT𝑃𝑝 , 𝑇𝐵𝑜𝑣𝑒𝑟𝑑𝑟𝑎𝑓𝑡𝑃𝑝

 , 𝐶𝑃𝑝  }  (4) 

 

𝑚𝑜𝑀𝑚,𝑖 ≡ 𝑗𝑜𝐽𝑗,𝑏 ≡ 𝑂𝑜                     (5) 

 

𝑀1,𝑃𝑝 ≡ 𝑀2,𝑃𝑝 ≡ 𝑀𝑚                 (6) 

 

TBU function:  max∑ 𝑇𝐵𝑚𝑜𝑀𝑚,𝑖
𝐼
𝑖  (7) 

 

𝑇𝐵𝑂𝑜 = 𝐿𝐹𝑇𝑂𝑜 − 𝐹𝑇𝑂𝑜  (8) 

 

𝐹𝑇𝑂𝑜 = 𝑆𝑇𝑂𝑜 + 𝐷𝑂𝑜  (9) 

 

𝑆𝑇𝑂𝑜 = 𝑆𝑇𝑚𝑜𝑀𝑚,𝑖+1
= 𝑆𝑇𝑗𝑜𝐽𝑗,𝑏+1

           (10) 

Where 𝑆𝑇𝑚𝑜𝑀𝑚,𝑖+1
≥ 𝐹𝑇𝑚𝑜𝑀𝑚,𝑖               

Where 𝑆𝑇𝑗𝑜𝐽𝑗,𝑏+1
≥ 𝐹𝑇𝑗𝑜𝐽𝑗,𝑏

           

Where 𝑂𝑜 = 𝑚𝑜𝑀𝑚,𝑖+1 = 𝑗𝑜𝐽𝑗,𝑏+1    

 

Sample problem:  

Given Job 1 is defined as 𝐽1 with operations 𝑗𝑜𝐽1,1 =

𝑂10, 𝑗𝑜𝐽1,2 = 𝑂11 where 𝐷𝑂10 = 1, 𝐿𝐹𝑇𝑂10 = 9 and 

𝐷𝑂11 = 1, 𝐿𝐹𝑇𝑂11 = 10 

Given Job 2 is defined as 𝐽
2
 with operations j𝑜𝐽2,1 =

𝑂20, 𝑗𝑜𝐽2,2 = 𝑂21 where 𝐷𝑂20 = 2, 𝐿𝐹𝑇𝑂20 = 6 and 𝐷𝑂21 =

4, 𝐿𝐹𝑇𝑂21 = 10  

Given Manufacturer 1 is defined as  
𝑀1 with operations 𝑚𝑜𝑀1,i ∈ {𝑂10, 𝑂21} and Manufacturer 2 

is defined as 𝑀2 with operations 𝑚𝑜𝑀2,i ∈ {𝑂11, 𝑂20} 

 

 
 

 
 

The selected operation plans for Manufacturer1 is 

𝑚𝑜𝑀1,1 = 𝑂10, 𝑚𝑜𝑀1,2 = 𝑂21 and for Manufacturer2 is 

𝑚𝑜𝑀2,1 = 𝑂11, 𝑚𝑜𝑀2,2 = 𝑂20, so that 𝑚𝑎𝑥 (∑ 𝑇𝐵𝑚𝑜𝑀1,i
𝐼
𝑖 ) =

12 and 𝑚𝑎𝑥 (∑ 𝑇𝐵𝑚𝑜𝑀2,i
𝐼
𝑖 ) = 12.  The other operation plans 

are shown in Table 3.  However, the operation plans are not 

compatible with each other, in terms of timing and instead 

Manufacturer2 should have 𝑚𝑜𝑀2,1 = 𝑂20, 𝑚𝑜𝑀2,2 = 𝑂11 as 

its operation plan.  This would have resulted in the best lead 

TABLE 2  

NOMENCLATURE 
 

Symbol Description 

𝑃𝑝 Manufacturer pair where 0 ≤ 𝑝 < 𝑃 

𝑃 No.  of valid pairs 

𝑀1,𝑃𝑝 Primary manufacturer of pair 𝑃𝑝 

𝑀2,𝑃𝑝 Secondary manufacturer of pair 𝑃𝑝 

𝑀𝑚 Manufacturer where 0 ≤ 𝑚 < 𝑀 

𝑚 Manufacturer instance ID 

𝑀 No. of manufacturers 

𝑚𝑜𝑀𝑚,𝑖 Operation of manufacturer 𝑀𝑚 in position i 

𝑖 Position within operation plan where 0 ≤ 𝑖 < 𝐼 

𝐼 No.  of operations offered by manufacturer 

𝑂𝑜 Operation where 0 ≤ 𝑜 < 𝑂 

𝑜 Operation instance ID 

𝑂 No. of operations 

𝐽𝑗 Job where 0 ≤ 𝑗 < 𝐽 

𝑗 Job instance ID 

𝐽 No. of jobs 

𝑗𝑜𝐽𝑗,𝑏 Operation of job 𝐽𝑗 in position b 

𝑏 Position within process plan where 0 ≤ 𝑏 < 𝐵 

𝐵 No.  of operations required by job 

𝑇𝐵𝑂𝑜 Time budget of operation 𝑂𝑜  

𝐹𝑇𝑂𝑜 Proposed finish time 

𝐿𝐹𝑇𝑂𝑜 Latest possible finish time  

𝑆𝑇𝑂𝑜 Proposed start time  

𝐷𝑂𝑜 Duration of operation 𝑂𝑜 

𝐼𝑇𝑃𝑝 Idle time of pair 𝑃𝑝 

𝑇𝐵𝑜𝑣𝑒𝑟𝑑𝑟𝑎𝑓𝑡𝑃𝑝  Time budget overdraft of pair 𝑃𝑝 

𝐶𝑃𝑝 Compatibility of pair 𝑃𝑝 

 
 

 

TABLE 3  

WORKED SOLUTIONS 
 

 
∑ 𝑇𝐵𝑚𝑜𝑀𝑚,i

𝐼

𝑖
 

𝑶𝒐 𝑺𝑻𝑶𝒐 𝑭𝑻𝑶𝒐 𝑻𝑩𝑶𝒐 

𝑀1(𝑂10, 𝑂21) 12 
𝑂10 0 1 8 

𝑂21 2 6 4 

𝑀2(𝑂20, 𝑂11) 11 
𝑂20 0 2 4 

𝑂11 2 3 7 

𝑀1(𝑂21, 𝑂10) 4 
𝑂21 3 7 3 

𝑂10 7 8 1 

𝑀2(𝑂11, 𝑂20) 12 
𝑂11 0 1 9 

𝑂20 1 3 3 

𝑀1(𝑂10, 𝑂21) 10 
𝑂10 0 1 8 

𝑂21 4 8 2 

𝑀2(𝑂11, 𝑂20) 10 
𝑂11 1 2 8 

𝑂20 2 4 2 

𝑀1(𝑂21, 𝑂10) 6 
𝑂21 2 6 4 

𝑂10 6 7 2 

𝑀2(𝑂20, 𝑂11) 6 
𝑂20 0 2 4 

𝑂11 7 8 2 
 

 

 

 
 

Fig 3. Gantt charts of the worked solutions 



time of 6 and the least idle time as marked in Figure 3.  

Therefore operation plan compatibility needs to be 

accounted for, in selecting the right operation plan for 

Manufacturer2. 

To maximise the utility ‘pairCompatibility’ between two 

manufacturers, Manufacturer Pair (MP) agents implement a 

Pair Compatibility Utility (PCU) function. The pair 

compatibility is the inverse of the sum of idle time between 

operations and the overdraft of the time budget for 

rearranging operations.  It is also a measure of optimality 

loss.  A manufacturer pair consists of two manufacturers 

offering some operations each.  The PCU function 

incentivizes a pair of manufacturer to reshuffle its operation 

positions i to maximise the pair compatibility.  This results 

in an optimized arrangement of operations which is stored in 

the parameter ‘optimisedCombinedOperationPlan’.   

 

PCU function: maximise 𝐶𝑃𝑝 (11) 

 

𝐼𝑇𝑃𝑝 = |∑ (𝑆𝑇𝑂𝑦 − 𝐹𝑇𝑂𝑥)
𝐼
𝑖 |                 (12) 

  

𝑇𝐵𝑜𝑣𝑒𝑟𝑑𝑟𝑎𝑓𝑡𝑃𝑝

𝑖𝑓 𝑇𝐵<0
⇒    |∑ (𝑇𝐵𝑂𝑥 + 𝑇𝐵𝑂𝑦)

𝐼
𝑖 | (13) 

 

Where 𝑂𝑥 = 𝑚𝑜𝑀𝑚,𝑖  where 𝑀𝑚 = 𝑀1,𝑃𝑝    

 

Where 𝑂𝑦 = 𝑚𝑜𝑀𝑚,𝑎  where 𝑀𝑚 = 𝑀2,𝑃𝑝  

 

Where 𝑎 ≡ 𝑖 
 

Where  { 𝑂𝑥 , 𝑂𝑦}
𝑝𝑎𝑟𝑡 𝑜𝑓
⇒     𝐽𝑗 

 

𝐶𝑃𝑝 =  
1

1+𝐼𝑇𝑃𝑝+𝑇𝐵𝑜𝑣𝑒𝑟𝑑𝑟𝑎𝑓𝑡𝑃𝑝

   (14) 

 

 
With the highest pair compatibility, pair  

𝑃1  was chosen from the list presented in Table 4.  That pair 

of manufacturers has the most compatible operation plans.  

This means that time budget is positive and idle time is 

lowest.  This resulted in the lowest lead times for 

Manufacturer1 and Manufacturer2 as noted in Figure 3.  

This increases the likelihood of the pair to participate in the 

formation and become part of a manufacturing network. 

Just like two manufacturers form a manufacturer pair, 

several manufacturer pairs form a network.  Each network 

agent starts with a pair group called ‘optimisedpairlist’.  To 

form a valid network, each two pairs must have a common 

node.  The characteristics of the common node is that it is 

one manufacturer with an operation plan.  The operation 

plan is shared by two pairs.  The objective is to find the best 

shared operation plan for every two pairs so that their pair 

compatibilities are maximised.  Each network agent runs the 

NCU function that triggers the right two pairs.  The pair 

agents then run their PCU functions within the constraint of 

a shared operation plan.  The resulting compatibility 

‘networkcompatibility’ is quantified by the NCU function.  

Network compatibility is considered as the utilitarian social 

welfare of a network because it is an aggregation of 

objective scores of manufacturer agents and pair agents.   

 

NCU function: maximise ∑ ∑ (𝐶𝑃𝑝 + 𝐶𝑃𝑎)
𝑃
𝑎

𝑃
𝑝  (15) 

 

Where 𝑎 ≡ 𝑝 

 

Where 𝑀2,𝑃𝑝 = 𝑀1,𝑃𝑎 

 

Where 𝑀1,𝑃𝑝 ≠ 𝑀2,𝑃𝑎 

 

 
 

The valid network 𝑀1𝑀3𝑀2 consists of manufacturer pairs 

𝑃2 and 𝑃6  and has the highest network compatibility among 

the list of options provided in Table 6.  The social welfare of 

the network is the highest due to the selection of two pairs 

with the best shared operation plan. 

5) Decentralised Optimiser 

Every instance of resource agents executes a genetic 

algorithm.  The decentralised feature allows optimisation to 

take place in parallel on separate computing threads.  The 

optimisation among similar agents is a concurrent activity 

and saves computational time.  However, the optimisation 

across different resource agent types is performed in 

sequence, firstly manufacturer optimisation, next 

manufacturer pair optimisation and finally manufacturing 

network optimisation.  This ensures that the exchange of 

information across the three phases of optimization is 

correct and therefore the sequence needs to be respected.    

C. Simulation of Decentralised Optimisation Model 

Recursive Porous Agent Simulation ToolKit (Repast) 

Simphony uses Eclipse as the primary development 

environment.  Repast Simphony (RS) provides, through the 

simphony application framework, the user interface tools.  

TABLE 4  

WORKED SOLUTIONS 

 

 𝑷𝒑 𝑶𝒐 𝑰𝑻𝑷𝒑 𝑻𝑩𝑶𝒗𝒆𝒓𝒅𝒓𝒂𝒇𝒕𝑷𝒑 𝑪𝑷𝒑  

𝑀1(𝑂10, 𝑂21) 
𝑃1 

𝑂10 (0-0) +  
(2-1) +  
(0-0) +  
(2-2) = 1 

0 

1

1 + 1 + 0
= 0.5 

𝑂21 

𝑀2(𝑂20, 𝑂11) 
𝑂20 
𝑂11 

𝑀1(𝑂21, 𝑂10) 
𝑃2 

𝑂21 (3-0) +  
(7-7) + 
(0-0) + 
(1-1) =3 

0 

1

1 + 3 + 0
= 0.25 

𝑂10 

𝑀2(𝑂11, 𝑂20) 
𝑂11 
𝑂20 

𝑀1(𝑂10, 𝑂21) 
𝑃3 

𝑂10 (0-0) + 
(4-0) + 
(1-0) + 
(2-2) = 5 

0 

1

1 + 5 + 0
= 0.17 

𝑂21 

𝑀2(𝑂11, 𝑂20) 
𝑂11 
𝑂20 

𝑀1(𝑂21, 𝑂10) 
𝑃4 

𝑂21 (2-0) + 
(6-6) + 
(0-0) + 
(7-2) = 7 

0 

1

1 + 7 + 0
= 0.13 

𝑂10 

𝑀2(𝑂20, 𝑂11) 
𝑂20 
𝑂11 

 

 

 

TABLE 5  
SAMPLE PROBLEM 

 

𝑷𝒑 𝑴𝟏,𝑷𝒑 𝑴𝟐,𝑷𝒑 𝑪𝑷𝒑 

𝑃1 𝑀1 𝑀2 0.2 

𝑃2 𝑀1 𝑀3 0.5 

𝑃3 𝑀2 𝑀1 0.1 

𝑃4 𝑀2 𝑀3 0.3 

𝑃5 𝑀3 𝑀1 0.6 

𝑃6 𝑀3 𝑀2 0.5 
 

 

 

TABLE 6  
WORKED SOLUTION 

 

𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑵𝑪𝑼 
𝑀1𝑀2𝑀3 0.2+0.3=0.5 

𝑀1𝑀3𝑀2 0.5+0.5=1.0 

𝑀2𝑀1𝑀3 0.1+0.5=0.6 

𝑀2𝑀3𝑀1 0.3+0.6=0.9 

𝑀3𝑀1𝑀2 0.6+0.2=0.8 

𝑀3𝑀2𝑀1 0.5+0.1=0.6 
 

 

 



In addition to core simulation functions such as scheduling, 

RS supports a set of independent third-party applications 

such as Java Genetic Algorithm Package (JGAP), Microsoft 

Excel spreadsheet and so on.    

1) Optimisation Configuration for Manufacturer Agent 

The manufacturer agent has a population of sample 

potential solutions called genotypes.  These solutions are 

encoded in chromosomes made up of integer genes.  The 

integer within the genes are called alleles and are bounded 

from 1 to 10 because we are dealing with operation plans 

with 10 operations.  Genotypes are made of chromosomes 

where genes, in Figure 4a, have been shuffled around for 

each chromosome.  Figure 4b represents operation ID 

substitution for genes of a chromosome where allele 1 

represents Operation 11, allele 2 represents Operation 25 

and so on.   

 

2) Optimisation Configuration for Pair Agent 

The integer within genes are bounded from 1 to 20 

because we are dealing with two operation plans.  The 

manufacturer pair agent does not perform the same 

operation several times and therefore the chromosome will 

not contain duplicate integer genes.  Figure 5 presents the 

combined operation plan of two manufacturers encoded. 

  

 

3) Optimisation Configuration for Network Agent 

The integer within the genes are bounded from 1 to 10 

because there are 10 manufacturers.  The manufacturing 

network agent does not use the same manufacturer pair 

twice and therefore the chromosome will not contain 

duplicate integer genes.  Furthermore, it is very important 

that no more than two pairs contain the same manufacturer.  

Figure 6 represents the relationship between alleles and the 

decoded manufacturer pair IDs whereby the combination of 

two adjacent alleles represent a manufacturer pair.     

 

4) Interaction mechanism between agents 

In order for agents to have the right information at the 

right time for their optimisation process, an interaction 

protocol was developed.  The protocol directs the outputs of 

six main actions to the right agents at the right time, as 

illustrated in Figure 7.  

The object ChromosomeApplicationData is an optional 

feature of the genetic algorithm that is used to pass inputs, 

received by agents, to their fitness functions.  For optimising 

a manufacturer agent, its operation plan is passed via the 

parameter, for manufacturer pair agent, a pair of operation 

plans is passed and for manufacturing network agent, a list 

of linked pairs is passed.   These constitute the messages 

that were exchanged between agents.   

Some of the inputs did not undergo processing and were 

used instead for influence.  For instance, given pairs 1-6, 6-3 

and 3-5. On one hand, for pair 1-6, its combined operation 

plan is optimised so that manufacturers 1 and 6 have jointly 

optimised operation plans.  On the other hand, the jointly 

optimised operation plan of manufacturer 6 is kept fixed 

during the optimisation of pair 6-3.  The operation plan of 

manufacturer 3 is optimised within the constraints of the 

fixed operation plan of manufacturer 6.  The reason is that 

this prevents conflicts from occurring between pair 1-6 and 

pair 6-3.  The same takes place for the next pair 3-5.  This 

ensures that the optimised manufacturing network is 

congruent and schedules of the pairs are aligned. 

5) Decentralised Optimisation Algorithm 

The generic algorithm is used by all resource agents with 

 

a) 1 2 3 4 5 6 7 8 9 10 

 

b) 11 25 30 40 52 61 70 82 91 100 
 

Fig 4. Chromosome (a) representing operation plan (b) of Manufacturer 1. 
  

a) 1 2 3 4 5 6 7 8 9 10 

 11 12 13 14 15 16 17 18 19 20 

 

b) 16 26 37 44 59 67 74 85 96 103 

 19 23 38 48 58 65 76 87 95 108 
 

Fig 5. Chromosome (a) representing decoded combined operation plans (b) 

of Manufacturer 6 and 9  

 

a) 1 2 3 4 5 6 7 8 9 10 

 

b) 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-1 

 

c) 4 2 9 1 5 8 6 7 3 10 

 

d) 4-2 2-9 9-1 1-5 5-8 8-6 6-7 7-3 3-10 10-4 
 

Fig 6. Chromosomes (a, c) representing the decoded networks (b, d) 

 

 
 

Fig 7. UML activity diagram of the interactions between agents 



minor modifications for each agent type.  The GASolver is 

an object that executes genetic algorithm on a separate 

thread.  The solver is configured with a TBU fitness 

function for manufacturer agents, PCU fitness function for 

manufacturer pairs, and NCU for manufacturing network 

agents. The solver is further configured with the 

GreedyCrossoverOperator [31] for the crossover stage and 

the SwappingMutationOperator for the mutation stage. 

These operators will avoid duplicate alleles and are often 

found applied to the Travelling Salesman Problem (TSP) for 

that reason.  Furthermore, an offset parameter can be 

specified to keep a part of a chromosome fixed and devoid 

of mutation and swapping manipulation.  The population of 

solutions is initially created and is evolved for a set number 

of cycles.  To increase the problem solving efficiency, the 

previous population is passed back to the solver at each 

iteration and a fraction of solutions are replaced by a new 

population.  Best solutions have higher chances to be 

retained. 

IV. RESULTS 

Time incentive is the performance indicator that was 

maximised.  Fundamentally, the utility function (∑𝑇𝐵 = 

1960 hrs) ensures that manufacturers maximise the overall 

distance of their operations from the critical time path.  

Figure 9 shows the local optimisation of the operation plan 

for Manufacturer 1 by its agent to satisfy the utility function.  

The variants for optimisation were set for a population size 

of 500 and a swapping mutation rate of 50%. 

 
After a number of GA iterations (35), the time incentive for 

Manufacturer 1 indicates that the ideal operation plan for 

Manufacturer 1 clocked a total distance of nearly 2000 hours 

from the critical path for the MT10 problem. 

In the same scenario, the next phase carries out pairing of 

manufacturers, aiming at discovering the manufacturer pair 

that inherently will generate the best schedule.  The 

performance indicator to maximise is compatibility which is 

an inverse function of idle time between two operations of 

the same job and the manufacturers’ deficits in time 

incentive.  The focus of this optimisation has shifted from 

the manufacturer alone to both a job and two manufacturers.  

In this phase, constraints involve the process plan of the job, 

operation plans of manufacturers, the job due date and the 

manufacturer time incentive.  As expected, there are 𝐶2
10  

(45) pairs of manufacturers associated with compatibility 

scores.  Figure 10 shows that the manufacturing pairing has 

a lower optimisation gradient than that of single 

manufacturer.   

In the first phase, 10 operations are optimised compared 

to 20 operations in the second phase.  Figure 11 shows the 

results of phase 2 where utility function is maximised and 

where manufacturers 6 and 9 do not have conflicting 

schedules.  A population size of 200 and a swapping 

mutation rate of 25% were set and returned the best 

compatibility after 40 generations.   

The third phase gathers valid manufacturer pairs with 

high compatibility.  The scheduler agent then carries out GA 

optimisation to maximise the compatibility of the ring 

network being formed.  The objective function takes into 

account the labelling of the pairs which is indicative of the 

manufacturers involved.  For instance, given the machine 

pairs presented in Table 5, the pairs aggregate to form ring 

network 0-5-7-2-3-8-1-9-6-4-0.  The network has the 

highest compatibility achieved using a population size of 50 

 
 

Fig. 9.  GA optimization of the time incentive available to manufacturers. 

  

 
 

Fig. 10.  GA optimisation of the compatibility of the operation plans for 
Manufacturer 6 and 9. 

  

 
 

Fig. 11.  Combined operation plans of Manufacturer 6 and 9 after pairing optimisation. 

  

  



and a swapping mutation rate of 5%. 

Finally, the fourth phase re-uses the objective function of 

the second phase to synchronise and re-optimise the 

operation plans of the ring network.  New pair 

compatibilities (C = 39 +- 24; n = 10) are generated with 

coefficient of variation 0.6 compared to their initial 

optimisation round.  

The job data and job sequences from Table 7 were used in 

Microsoft Project, to create a Gantt chart. Based on the 

methodology presented, the proposed operations plans 

should produce a valid Gantt chart.  If not valid, Microsoft 

project automatically flags errors.  The data from Table 7 is 

invalid if it creates a situation where a series of dependent 

operations contains an operation that links back in a way to 

the first operation.  If the Gantt chart is valid, the results 

extracted from the Gantt chart are then presented in Table 8 

and Table 9.   

  Based on the results, manufacturers and jobs had 

almost equal average idle times and theoretical lead times 

while the average actual lead time was almost twice the 

average theoretical lead times as presented in Table 10.  

Moreover, the spreads of idle times and actual lead times at 

manufacturers were trice the standard deviation of 

theoretical lead time.  At the jobs, the spreads of actual lead 

times and theoretical lead times were almost the same.  The 

maximum duration of the order was 1125 hrs. 

 

 

 
 

 
 

 

V. DISCUSSION 

A. Repurposing a JSSP benchmark to the network context 

In this work, we repurpose a job shop scheduling problem 

(JSSP) that has been used many times in research.  We 

found that it is possible to adapt the problem to a 

manufacturing network scheduling problem.  Considering 

the MT10 problem, our scheduling problem consists of ten 

manufacturers.  Each manufacturer can perform ten unique 

operations.  There are ten jobs that each consists of ten 

unique operations.  Every manufacturer is involved in 

processing one unique operation within every job.  Based on 

the best results obtained by previous approaches for the 

MT10 problem, the optimal solution is known to be 930 hrs 

[32].  There is little evidence to suggest that this optimal 

solution was not generated by centralised algorithms.   Our 

work uses a decentralised set of algorithms, implemented by 

distributed agents.   

B. Discussion of results from the multi-phase scheduling 

mechanism 

Our concept decomposes the scheduling problem into 

self-contained optimisation problems.  The first phase 

encourages manufacturer agents to sequence their 

manufacturing operations in order to maximise their utility 

functions regardless of the social welfare of the whole 

manufacturing network.  The first phase gives 

manufacturers the incentive to resist change to their ideal 

operation plan thus limiting the solution space for an 

operation plan.  The steep gradient of Figure 8 suggests that 

resistance as GA converged to solution within a few 

generations.    

The second phase promotes the cooperation of 

manufacturers in pairs.  Pairs maximise their utility 

functions regardless of the welfare of the network but now 

with regards to objectives of their respective manufacturers.  

TABLE 7 
COOPERATIVE SCHEDULING OF PAIRS TO FORM A NETWORK 

 

Pair Job Sequence 1 Job Sequence 2 C 

0-5 9-7-10-8-1-4-2-5-6-3- 6-7-10-8-9-5-1-3-2-4- 79 
7-5 4-7-9-3-5-8-1-2-6-10- 6-7-10-8-9-5-1-3-2-4- 70 
2-7 8-6-5-10-4-7-2-1-9-3- 4-7-9-3-5-8-1-2-6-10- 61 
3-2 7-6-9-10-1-3-5-2-4-8- 8-6-5-10-4-7-2-1-9-3- 42 
8-3 10-6-4-7-8-3-5-9-1-2- 7-6-9-10-1-3-5-2-4-8- 32 
1-8 7-10-6-4-9-8-3-1-5-2- 10-6-4-7-8-3-5-9-1-2- 32 
9-1 10-6-7-2-9-8-4-5-3-1- 7-10-6-4-9-8-3-1-5-2- 26 
6-9 10-7-4-8-9-1-2-6-3-5- 10-6-7-2-9-8-4-5-3-1- 19 
4-6 4-8-2-1-5-9-10-6-7-3- 10-7-4-8-9-1-2-6-3-5- 15 
0-4 9-7-10-8-1-4-2-5-6-3- 4-8-2-1-5-9-10-6-7-3- 13 

 
C = Compatibility 

TABLE 8 
RESULTS OF THE DECENTRALISED SCHEDULING OF JOBS BY NETWORK 

 

Task Name TD (h) AD (h) I (h) Last Manufacturer 

Job 1 395 1047 652 Manufacturer 9 
Job 2 510 1085 575 Manufacturer 8 
Job 3 568 1047 479 Manufacturer 4 
Job 4 655 919 264 Manufacturer 5 
Job 5 393 1022 629 Manufacturer 6 
Job 6 496 1080 584 Manufacturer 7 
Job 7 416 973 557 Manufacturer 4 
Job 8 539 1006 467 Manufacturer 3 
Job 9 597 915 318 Manufacturer 8 
Job 10 540 1125 585 Manufacturer 7 

 

TD = Theoretical Duration, AD = Actual Duration, I = Idle Time 

TABLE 9 

RESULTS OF THE DECENTRALISED SCHEDULING OF OPERATIONS BY THE 

MANUFACTURERS 

 

Manufacturer TD (h) AD (h) I (h) 

Manufacturer 0 493 585 92 
Manufacturer 1 548 754 206 
Manufacturer 2 556 730 174 
Manufacturer 3 631 1006 375 
Manufacturer 4 534 1047 513 
Manufacturer 5 416 919 503 
Manufacturer 6 491 1022 531 
Manufacturer 7 499 1125 626 
Manufacturer 8 531 1085 554 
Manufacturer 9 410 1047 637 

 

TD = Theoretical Duration, AD = Actual Duration, I = Idle Time 

TABLE 10 

AVERAGE AND DATA SPREAD IN THE SCHEDULES 
 

Criteria Manufacturer Job 

Idle time (h) 421 ∓ 198 511 ∓ 130 
Actual duration (h) 932 ∓ 180 1021 ∓ 70 
Theoretical duration (h) 510 ∓ 66 510 ∓ 88 

 



By maximising their utility functions, the operation plans of 

manufacturers synergise and scheduling conflicts are 

reduced to increase operation plan compatibility as shown in 

Figure 11.  Scheduling conflicts include operation 

overlapping, idle time and being on critical paths. After 

several optimisation iterations, some manufacturer pairs 

significantly stand out from the rest and are more likely to 

proceed to the next phase.  Judging by the gentle gradient of 

Figure 9, the solution space is much larger.  The size of the 

optimisation problem is doubled due to involvement of two 

operation plans from a pair of manufacturers.   

In the third phase, the network agent combines 

manufacturer pairs to form a ring network.  Pairs that can be 

merged and that have high compatibilities are selected.  The 

selected pairs have combined operation plans and in GA 

terms, the plans give access to good search regions where 

idle time, conflict, time budget overdraft and optimality loss 

were lowest.   

In the final phase, the manufacturer pairs of the ring 

network perform optimisation in series.  The pair that heads 

the network is considered to be optimised and is left as is.  

The next annexed pair is re-optimised relative to the 

previous pair where the primary manufacturer of the former 

is the secondary manufacturer of the latter.  Consequently 

one operation plan is kept fixed while the other is re-

optimised.  This significantly narrows the regions to sample 

and search for a good operation plan.  Eventually, all pairs 

are optimised relative to each other, for the benefit of the 

network.  The network compatibility, which is the sum of 

pair compatibilities, is referred to as the utilitarian social 

welfare of the network.  It is a network with less conflict, 

less idle time and less time budget overdraft and therefore 

with better lead time than alternative networks.     

C. Analysis of useful outcomes 

The results, from Table 10, meant that for every 

operation, there was an associated idle time of 

approximately equal length to the operation processing time.  

The use of the egalitarian social welfare, which is a useful 

indicator of fairness, would probably reduce standard 

deviations of idle time compared to utilitarian welfare [25].   

However, the average idle times might increase.   This is 

where the Nash product could help to reach a compromise 

between two notions of social welfare [25].  At the jobs, the 

standard deviation was possibly kept under control by the 

defined due times for each job.  At the manufacturers, there 

was no such control and there lies an opportunity, for future 

work, to limit lead time deviations during the optimisation 

of manufacturer pairs and manufacturer networks.   Also, 

the maximum actual duration of the schedule is 1125 hrs 

which is therefore above the optimal 930 hrs.  However, 

optimality loss of 21% is believed to be a reasonable 

compromise for implementing a decentralised approach to 

scheduling of multi-site production in the context of 

manufacturing networks.  And we have presented useful 

performance indicators, at multiple phases of the scheduling 

process, to enable tractability of optimality loss. 

D. Contribution of the approach 

The paper introduced manufacturer pair agents which act 

as facilitators between two manufacturer agents.  All agents 

are able to share data via a pair agent.  Some of the shared 

data are universal and some are unique and owned by two 

agents and their pair agent.  This novelty enables 

interactions to be developed in new ways. For instance, 

interaction is now an agent with scalable data structure.  

Next, the interaction has the ability to reason about the data.  

Also, interaction becomes tractable and therefore can be 

scientifically enhanced. The federated facilitator architecture 

limits the pool size of pair agents and agent interactions.  In 

doing so, it also limits the solution space for possible 

configuration of networks, leading to better convergence.   

VI. CONCLUSION 

 This paper presented agent cooperation mechanism to 

allow manufacturers to schedule operations for a 

manufacturing network while they retain complete control 

over how scheduling is performed.   The mechanism used 

time incentives and compatibility indicators to allow 

manufacturers to express their scheduling goals as well as 

their preferences for cooperation. The study approach 

included a review of primary research and review articles 

and a use case of a manufacturing network.  The case study 

informed the design of an agent-based model of a 

manufacturing network which was simulated using 

Recursive Porous Agent Simulation Toolkit (REPAST).  

Muth and Thompson (MT10) scheduling data set was used 

as inputs to the model and the outcome was visualised in 

Microsoft Project.  The results show that the maximisation 

of the utilitarian social welfare of a manufacturing network 

results into a maximum make span which is not the optimal 

but is a reasonable optimality trade-off for achieving the 

decentralisation of scheduling.  Decentralisation of 

scheduling allows independently owned manufacturers to 

respect their own constraints and goals while engaging into 

cooperative scheduling.  Future works would investigate 

functions that will incentivise agents to reduce standard 

deviations in pair and network lead times.  An investigation 

of the Nash product and egalitarian social welfare would 

further our understanding of cooperative scheduling of 

decentralised agents.  Also, a study would be performed on 

how the proposed cooperation mechanism could enable a 

manufacturing network to self-repair, in the context of a 

stochastic scheduling problem. 
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