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Abstract — Development of new products or services requires 
knowledge and understanding of aesthetic qualities that correlate to 
perceptual pleasure. As it is not practical to develop a survey to assess 
aesthetic quality for all objective features of a new product or service, 
it is necessary to develop a model to predict aesthetic qualities. In this 
paper, a fuzzy regression method is proposed to predict aesthetic 
quality from a given set of objective features and to account for 
uncertainty in human assessment. The proposed method overcomes 
the shortcoming of statistical regression, which can predict only 
quality magnitudes but cannot predict quality uncertainty. The 
proposed method also attempts to improve traditional fuzzy 
regressions, which simulate a single characteristic with which the 
estimated uncertainty can only increase with the increasing 
magnitudes of objective features. The proposed fuzzy regression 
method uses genetic programming (GP) to develop nonlinear 
structures of the models, and model coefficients are determined by 
optimizing the fuzzy criteria. Hence the developed model can be used 
to fit the nonlinearities of sample magnitudes and uncertainties. The 
effectiveness and the performance of the proposed method are 
evaluated by the case study of perceptual images, which are involved 
with different sampling natures and with different amounts of 
samples. This case study attempts to address different characteristics 
of human assessments. The outcomes demonstrate that more robust 
models can be developed by the proposed fuzzy regression method 
compared with the recently developed fuzzy regression methods, when 
the model characteristics and fuzzy criteria are taken into account. 

Index Terms — aesthetic quality assessment/prediction, fuzzy 
regression, perceptual imaging, uncertainty estimates 

I. INTRODUCTION 

esthetic quality evaluates the nature of art, beauty, and taste in 
relation to the creation and appreciation of products [1]. It is 

essential to take aesthetic quality into account when developing 
pleasurable products. Better aesthetic quality increases products’ 
appeal to potential buyers and produces a more harmonious product 
[70]. For example, two teapots with the same capacity and size are 
used in a café - one with an attractive colour and shape, the other 
with unattractive ones [48]. Despite the fact that the teapots have 
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the same practical features, people find it more enjoyable to drink 
from the attractive one. 

To assess aesthetic qualities, two types of approaches are 
generally used: The first approach uses survey-based questionnaires 
to obtain aesthetic scores from a product. Conducting a full survey 
requires significant amount of time and cost to assess all objective 
features of a product or service. Also the survey cannot be 
implemented in real time. The second approach assumes that 
human perceptions of aesthetic qualities are trigger by objective 
features like colours and object configurations [70]. Aesthetic 
quality models can be developed to predict aesthetic qualities by 
correlating with objective features. Statistical regression has 
commonly been used for developing aesthetic quality models to 
predict aesthetic quality for plastic surgery [14], restorative material 
for teeth [44], structural landscape design [71], visuals of 
images/video [31,41,58], and website design [52,29]. The statistical 
regressions are commonly used because statistical regression 
models are explicit. Based on the models, ones can analyze 
significances and interactions of objective features and also ones 
can compute confidence intervals for assessing the aesthetic 
quality. Comparing with artificial neural networks [51] and fuzzy 
T-S systems [34,35], they have more transparency than artificial
neural networks [60].

However, human assessments of aesthetic qualities are subjective 
and are therefore inherently difficult to measure. Although the 
statistical regression can be used to estimate magnitudes of 
aesthetic qualities, the perceived uncertainties caused by human 
assessments cannot be addressed. To overcome this shortcoming, 
fuzzy regression [57] has been developed to address uncertainties 
caused by human assessments of customer satisfaction [24,38,53], 
affective quality [56], image quality [5,9] and option prices in 
finance [45]. Similar to statistical regression models, fuzzy 
regression models are structured by polynomials. However, 
statistical regression models consist only of coefficients in real 
numbers and fuzzy regression models consist of fuzzy coefficients 
in fuzzy numbers. Fuzzy coefficients attempt to map objective 
features to aesthetic quality which is in the domain of fuzzy 
numbers [27]. Perceived uncertainty caused by human assessments 
can be addressed, when the aesthetic quality in fuzzy numbers is 
estimated. 

A potential shortcoming was ascertained in using fuzzy 
regression to address uncertainties in human assessments [25]. 
These fuzzy regression models [4,8,15, 16,18,19, 20,21,24, 37,38, 
42,45,47, 49,54,55, 64,66] address only one characteristic that the 
estimated uncertainty of human assessments can only increase with 
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the increasing magnitudes of objective features. The assumption 
may suit instrumentation measurements because the amount of 
uncertainty increases when measurement magnitudes increase [43]. 
However, the uncertainty of assessing aesthetic quality can be 
smaller or unchanged when feature magnitudes are increased [25]. 
For example, when aesthetic qualities of images are evaluated, we 
may have less uncertainty in evaluating images with high or low 
qualities than those with medium qualities [13]. Hence more 
uncertainty is generated when images with medium qualities are 
evaluated. Several approaches have been proposed to address this 
shortcoming of estimating uncertainty [25,46,62]. Analytical study 
demonstrates that those methods still cannot address decreasing or 
statics uncertainty trends when magnitudes of objective features are 
increasing [39].  
 To overcome this shortcoming, this paper proposes a novel fuzzy 
regression namely NON-SC-FR, which attempts to generate 
aesthetic quality models for addressing nonlinear uncertainty. The 
NON-SC-FR uses a commonly used evolutionary computational 
approach, GP [17,21,36], to develop the model structures for the 
magnitudes and uncertainties of aesthetic qualities. The model 
structures are correlated with object features and aesthetic qualities. 
GP is incorporated with NON-SC-FR as GP is effective to generate 
polynomial models for a complex and highly nonlinear systems 
[31]. Also, GP is effective in modeling nonlinear quantities and 
uncertainties. After the model structures are determined, the model 
coefficients are computed by optimizing the fuzzy criteria [3,37] 
which are commonly used to fit uncertain samples for both fuzzy 
numbers and real numbers. 

The effectiveness and the performance of the proposed NON-
SC-FR are evaluated by two databases for image quality assessment 
(IQA) namely TID [50] and VLC [69] databases, where the IQA is 
important for image compression, transmission and reconstruction 
[12]. The IQA is used for evaluating the NON-SC-FR as IQA is 
involved with nonlinear magnitudes and uncertainties [13]. Also, 
TID [50] and VLC [69] databases contain samples with real and 
fuzzy numbers respectively. Hence the effectiveness of the NON-
SC-FR can be evaluated for modelling both sample types. TID and 
VLC contain 2125 and 552 samples respectively. Different 
characteristics of human assessments can be addressed, as different 
amount of samples are considered. We compare the proposed 
NON-SC-FR with four existing fuzzy regressions [4,20,39,61], 
which have been recently developed for overcoming the 
aforementioned deficiency of uncertainty estimation. These two 
case studies of IQA verify that the proposed NON-SC-FR is able to 
develop better models which can achieve four better fuzzy criteria, 
confidence index [63], fuzzy credibility [37], overall fuzzy spread 
[57] and fuzzy number distance [3].

The contents of the paper are summarized as:
1. Section II discusses the formulation and mechanism of

aesthetic quality models which correlate aesthetic quality
with objective features. An example of IQA is given to
discuss the common shortcoming of the existing approaches
of fuzzy regression which cannot address nonlinear
uncertainties of assessing aesthetic quality. It gives the
motivation of why we propose the NON-SC-FR in order to
model the nonlinear uncertainties.

2. Section III discusses the operations and mechanisms of the
proposed NON-SC-FR, which attempts to overcome this
common limitation. The NON-SC-FR attempts to model the
magnitude and uncertainty of aesthetic quality which can be

both nonlinear. The NON-SC-FR can be used to develop 
models when the data in either fuzzy or real numbers is 
given. The real numbers simulate that the magnitudes of 
aesthetic quality are only available. The fuzzy numbers 
simulate that the variances and magnitudes of aesthetic 
quality are both available.  

3. Section IV presents two case studies of IQA which involve
data in fuzzy and real numbers. These two case studies
verify that the proposed NON-SC-FR outperforms four
existing methods which are developed for overcoming the
limitation of classical fuzzy regressions. Also the
characteristics of the NON-SC-FR and the tested methods
are discussed. Section V gives a conclusion and it also
discusses the future study for this research.

II. FUZZY REGRESSION FOR AESTHETIC QUALITY ESTIMATION

People generally assess aesthetic qualities based on human 
emotional or perceptual judgment [70]. Aesthetic qualities are 
evaluated around an integer with some degree of uncertainty [68]. 
For example, in IQA, ones may use a 5-point scale to score the 
image quality. An image with ‘high’ quality would be scored with a 
linguistic term ‘about 5’; an image with ‘low’ quality would be 
scored with ‘about 1’; the one with ‘fair’ quality would be scored 
with ‘about 3’. The linguistic term 'about 'cy  can be considered as 

a fuzzy number,  , ,c l ry y y y , where y  is engaged with the

membership [68] given by (1). 
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where cy  is a real number. It denotes the magnitude of the 

aesthetic quality; the uncertainty of the assessment is indicated by 
the sum of ly  and ry  with , 0l ry y  .  

To predict the aesthetic qualities in fuzzy numbers, the 
following aesthetic quality model,  PQM x , can be used:

          , , , ,c l r c l r
PQM PQM PQM PQMy y y y x x x x     

 (2)  

where  1 2, ,..., mx x x x ; jx  denotes the j-th objective feature 

with 1, 2,...,j m ; m is the number of jx ;  PQM x  is the 

functional relationship which correlates x  to y ;  c
PQM x , 

 l
PQM x  and  r

PQM x  correlate x  to cy , ly  and ry

respectively. 

The estimated uncertainty,   PQM x  , with respect to x  is 

defined by [50]: 

      l r
PQM PQM PQMx x x     (3) 

A. Fuzzy linear and nonlinear regressions

PQM can be developed based on fuzzy linear regression [49], 
Lin

PQMF , which is given as: 

       0 0 0
1

, , , , , ,
m

c l r Lin c l r c l r
PQM i i i i

i

y y y y F x a a a a a a x


     (4)
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where  , ,c l r
i i ia a a  are the fuzzy coefficients; c

ia , l
ia  and r

ia   are the 

central, left and right spreads of the fuzzy coefficient respectively. 
 Lin

PQMF x  in (4) can be rewritten as: 

        , ,Lin c l r
PQM Lin Lin LinF x f x f x f x (5a) 

where: 

  0 1 1 2
c c c c c

Lin j m mf x a a x a x a x     ; (5b) 

  0 1 1 2
l l l l l

Lin j m mf x a a x a x a x     ; (5c) 

  0 1 1 2
r r r r r

Lin j m mf x a a x a x a x     ; (5d) 

 c
Linf x  is the central function of  Lin

PQMF x  which is corresponding 

to cy ;  l
Linf x  and  r

Linf x  are the left and right spread functions 

of  Non
PQMF x  which correspond to ly  and ry  respectively. The

estimated uncertainty for  Lin
PQMF x  is given as: 

      Lin l r
PQM Lin LinF x f x f x   (5e) 

As  Lin
PQMF x  is formulated by a linear polynomial, it is 

ineffective to fit nonlinear samples. Therefore,  PQM x  can be

developed by the fuzzy nonlinear regression,  Non
PQMF x , which is in

a Kolmogorov–Gabor polynomial form as shown in (6) [2]. 
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where  * * *, ,c l rb b b  are the fuzzy coefficients with any combination 

‘*’; *
cb  is the central; *

lb  and *
rb  represent the left and right spreads 

respectively.  Non
PQMF x  in (6) can be rewritten as: 

        , ,Non c l r
PQM Non Non NonF x f x f x f x , (7a) 

where 

 
1 1 1 2 1 2

1 1 2

1 2 3 1 2 3 1 2

1 2 1

0 ,
1 1 1

3

, , , ,..
1 1 3 1 1 1 1

1,2,.., 1 2

... ...

.. ...

d

d

m m m

Non i i i i i i
i i i

d mm m m m m

i i i i i i i i i j
i i i i i j

m m

f x b b x b x x

b x x x b x

b x x x

   

 



  
 

     

      

    

     

 

    ;  (7b) 

with  ' ', ' ', ' 'c l r  . In  Non
PQMF x ,  c

Linf x  is the central function 

which corresponds to cy ;  l
Linf x  and  r

Linf x  are the left and 

right spread functions which correspond to cy  and ry  respectively. 

The estimated fuzziness for  Non
PQMF x  is given as: 

      Non l r
PQM Lin LinF x f x f x   (7c) 

Figures 1a and 1b illustrate  Lin
PQMF x  and  Non

PQMF x  respectively. 

They illustrate the central functions  c
Linf x  and  c

Nonf x , and the 

spread functions,  l
Linf x ,  r

Linf x ,  l
Nonf x  and  r

Nonf x , with 

respect to x . The estimated uncertainties,   Lin
PQMF x  in (5e) and 

  Non
PQMF x in (7e), are also illustrated in Figures 1a and 1b 

respectively. 
In this research, we consider the case that the uncertainty is 

related to the independent variables, x  and it is also related to the 
constants 0

ra  and 0
la . In some cases, the uncertainty of 

instrumentation measurements increases when the magnitude of x

increases [42]. Hence,   Lin
PQMF x  is suitable on estimating the 

uncertainty of instrumentation measurements, when the 
measurement uncertainty is linearly related to x . 0

ra  and 0
la  can be 

used to covered some uncertainty which are not correlated with x . 

  Non
PQMF x is more suitable on estimating uncertainty of 

assessing aesthetic quality, as the uncertainty may not be increased 
with the increasing magnitude of x . This may not be always the 
case that uncertainty is increased when the magnitude of x  
increases. For example, when aesthetic qualities of images are 
assessed, ones may have less uncertainty or more confidence in 
evaluating very high or very low qualities than that in evaluating 
medium qualities [25]. Therefore, the amount of uncertainty of 
assessing aesthetic quality may be nonlinearly correlated to x .  
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 Fuzzy linear regression Lin
PQMF x  Fuzzy nonlinear regression Non

PQMF x
y

Fig. 1a: Fuzzy linear regression 
 Lin

PQMF x
Fig. 1b: Fuzzy nonlinear regression 

 Non
PQMF x

B. Common deficiency of fuzzy regression

For both  Lin
PQMF x  in (4) and  Non

PQMF x  in (6), the estimated 

uncertainty is indicated by the sum of left and right spreads given in 
(5e) and (7c) respectively. Uncertainty cannot be a negative value. 
Therefore, in order to ensure positive uncertainties, triangular fuzzy 
numbers are generally used as the fuzzy coefficients in Lin

PQMF  [8,37, 

15,16,19,23,37,42,49,47,54,55,64] and in Non
PQMF [4,24,20,45,66]. 

The left spreads (i.e. l
ia  and *

lb ) and the right spreads (i.e. r
ia  and 

*
rb ) of the triangular fuzzy numbers are constrained as positive 

values. When the magnitudes of x  increase, the magnitudes of the 

spread functions,  l
Linf x ,  r

Linf x ,  l
Nonf x and  r

Nonf x , also 

increase. Hence, the estimated uncertainties,   Lin
PQMF x and 

  Non
PQMF x , also increase as l

ia , *
lb , r

ia and *
rb  are all positive. 

We consider the simple models,   1
Lin

PQMF x  and   1
Non

PQMF x , with 

one objective feature, 1x ,  respectively as: 

    1 0 1 1 0 1 1 0 1 1, ,Lin c c l l r r
PQMF x a a x a a x a a x    (8a) 

   
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2 2
1 0 1 1 1,1 1 0 1 1 1,1 1

2
0 1 1 1,1 1
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Non c c c l l l
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F x b b x b x b b x b x

b b x b x

        
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(8b) 
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Figure 2a: Fuzzy linear regression   1
Lin

PQMF x Figure 2b: Fuzzy nonlinear regression   1
Non

PQMF x Figure 2c: Boxplot for score samples 

Table 1: Contaminated images with 6 distortion levels 

Distortion Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 
Mean scores 59.60 44.88 37.78 28.16 19.50 18.74 

Std scores 3.26 10.07 10.59 12.43 6.66 5.36 
Score diff. 10 26 33 37 25 17 

The estimated uncertainties for   1
Lin

PQMF x  and   1
Non

PQMF x  are 

given respectively as: 

       1 0 1 1 0 1 1
Lin l l r r

PQMF x a a x a a x     (9a) 

       2 2
1 0 1 1 1,1 1 0 1 1 1,1 1

Lin l l l r r r
PQMF x b b x b x b b x b x           (9b) 

(9a) and (9b) show that    1
Lin

PQMF x and    1
Non

PQMF x  increase 

when 1x  increases. However, it may not be always true that the 

uncertainty increases linearly with increasing x  [39]. 
Here we consider the aesthetic quality estimation for IQA as an 

example. We used the 19th image in the VCL database [69]. The 
image was contaminated by Gaussian noise with six distortion 
levels. 1x  in (8a) and (9a) are represented as the distortion level. 

The first row of Table I illustrates six distorted images 
contaminated with six levels. It shows clearly that the aesthetic 
quality decreases gradually from level 1 to level 6. Each distorted 
image was scored between 18 and 23 times by randomly selecting 
118 naive participants who have no experience in perceived 
imaging. The second row of Table I shows the score means for the 
six distorted images, which decrease with increasing distortion 
levels. Table I also shows the score variances, where the third row 
shows the standard deviation of the scores for each distorted image, 
and the fourth row shows the scoring differences for each distorted 
image. They show that the standard deviations and scoring 
differences increase from levels 1 to 4, and decrease from levels 4 
to 6. Similar characteristics can be found in the boxplot in Figure 2c 
where the score means decrease, while the score variances increase 
from levels 1 to 4 and decrease from levels 4 to 6. 

However, the fuzzy regression estimates different uncertainty 
trends. Based on Hong and Wang’s approach [20], the fuzzy 
coefficients for   1

Lin
PQMF x  and   1

Non
PQMF x  are found respectively 

as: 

   0 0 0, , 58.79,13.75,13.75c l ra a a  ;    1 1 1, , 56.47,13.75,13.75c l ra a a   . 

   0 0 0, , 61.68,12.77,12.77c l rb b b  ;    1 1 1, , 94.97,12.77,12.77c l rb b b   . 

   1,1 1,1 1,1, , 83.64,12.77,12.77c l rb b b  . 

Hong and Wang’s approach [20] is used here as it was developed 
to generate both linear and nonlinear fuzzy regression models. The 
models of   1

Lin
PQMF x  and   1

Non
PQMF x , are illustrated in Figures 2a 

and 2b respectively. We can see that the estimated uncertainties 
increase in both   1

Lin
PQMF x and   1

Non
PQMF x when the distorted 

levels increase. It does not match the actual uncertainties illustrated 
in Figures 2a and 2b, and it also does not match the characteristics 
of the actual score variances illustrated in Figure 2c, which increase 
from levels 1 to 4 and decrease from levels 4 to 6. 

 This example illustrates that people may be more uncertain 
when evaluating median aesthetic quality. People may have more 
confidence to score images with extreme distortions, when the 
images either have no distortion or serious distortion. Therefore less 
uncertainty may be involved for evaluating images contaminated 
with extreme distortions [13]. This example illustrates the potential 
deficiency of the fuzzy linear regression that it may not be always 
true that the estimated uncertainty increases with the increasing 
objective features. This example shows that fuzzy linear regression 
may estimate inaccurate uncertainty of aesthetic quality assessment 
when the certainty is not linearly correlated with the objective 
features [39]. 

III.  PROPOSED FUZZY REGRESSION WITH NONLINEAR CENTRAL

AND VARYING SPREADS 

To overcome the deficiency of fuzzy regressions discussed in 
Section II.B, a fuzzy regression, namely NON-SC-FR, is proposed. 
Based on the aesthetic quality samples, sD  in (10), NON-SC-FR 

can be used to optimize the polynomial structures,  , and 

polynomial parameters,  , with ' ',c  ' ', ' 'l r  which are

defined in the aesthetic quality model,  PQM x , in (2).

    , | 1,2,...,s o DD y k x k k N  ,  (10) 

where         1 2, , ..., mx k x k x k x k  and      , ,c l
o o oy k y k y k

 r
oy k ;  oy k  can be collected from two data types namely crisp 

output data [56] and fuzzy output data [3]. For crisp output data, 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
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only the actual aesthetic qualities in real numbers are captured. 
Hence, all     0l r

o oy k y k  . For fuzzy output data, the 

uncertainties of the aesthetic qualities are taken into account. 
Hence, some    , 0l r

o oy k y k  .

 In NON-SC-FR, GP is employed to generate   as GP is 

effective to generate explicit polynomial models for highly 
nonlinear systems [30]. Hence the models are capable to fit the 
nonlinearities in sample magnitudes and uncertainties. After   is 

determined,  are determined using sD . When sD  is captured as 

crisp output data,   attempts to minimize the total fuzziness 

generated by the model and to cover all samples with a predefined 
membership level [57]. When sD  is captured as the fuzzy one,   

attempts to minimize the overall fuzzy distance between estimates 
and real samples [3]. 

Figure 3 shows the flow diagram of the NON-SC-FR and the 
pseudocode of the NON-SC-FR is shown as follows: 

Pesudocode of NON-SC-FR 
Input: sD ; // the aesthetic quality samples in (10) 

Output:   with  ' ', ' ', ' 'c l r  ; //optimal polynomial structures
  with  ' ', ' ', ' 'c l r  ; //optimal fuzzy coefficients

Step 1: Initialize the generation, t, by setting t←0. 
Step 2: Initialize three populations,  t  with  ' ', ' ', ' 'c l r  ,

where each  t  consists of  Np individuals as,

       1 2, ,...,
P

i i i
Nt t t t       

The j-th individual,  j t , represents the polynomial structure 

with  jn t regressors in (12). 

Step 3: Determine the fuzzy coefficient vectors,  c
jb t ,  l

jb t

and  r
jb t , with respect to  c

j t ,  l
j t  and  r

j t

respectively. For crisp output data, the approach in Section 
III.B.1 is used. For fuzzy output data, the one in Section III.B.2
is used.

Step 4: Evaluate the fitness of the j-th individual which is 
represented for  jb t  and  j t  with  ' ', ' ', ' 'c l r  .   For

crisp output data, mean fuzzy credibility in Section III.C.1 is 
used. For fuzzy output data, fuzzy number distance in Section 
III.C.2 is used.

Step 5: Select the best individual with the best polynomial 
structure,  best t , and the best parameter vector,  bestb t , where 

the (best)-th individual is the best among the Np individuals. 
Then, put  best t    and  bestb t   with  ' ', ' ', ' 'c l r  .

while ( Tt G ) do { // Tt G  is the termination generation 

Step 6: Perform parent selection,    1t t     with

 ' ', ' ', ' 'c l r  , based on Section III.D.

Step 7: Perform crossover and mutation for  1t 
based on Section III.E.  

Step 9: Increment t  by 1 as 1t t  . 
Step 10: Perform Step 4. 
Step 11: Perform Step 5. 

Figure 3 Flow diagram for NON-SC-FR 
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A. Individual representation

In NON-SC-FR, the j-th individual consists of three polynomial 
structures,  c

j t ,  l
j t , and  r

j t , which are corresponding to

the central,  c
PQM x , left spread,  l

PQM x , and right spread, 

 r
PQM x , of the model,  PQM x , in (2).  j t with 

 ' ', ' ', ' 'c l r   is represented as the hierarchical trees [30], which is

efficiency in modelling [65]. In the hierarchical tree, the 
nonterminal set, N, consists of sum operation, ' '  and 
multiplication, '. '  and the terminal set, T, consists of the m 
objective features, 1x , 2x ,…, mx . N and T are represented as (11a) 

and (11b) respectively: 

 ' ', ' 'N    ;  (11a) 

 1 2' ', ' ',..., ' 'mT x x x .   (11b) 

 j t  represents the polynomial structure as,

 
 

  

1 1

1
n t r ij

j I iqi q

t x






 

   , (12) 

where  jn t  is the number of regressors in  j t ;  r i  is the

number of variables at the i-th regressor;    1, 2,...,qI i m   with

 1, 2,...,q r i  indicates the variable index of the i-th regressor;

 qI i  can be represented by the variable index vector,  jI t , as: 

                 
     

 
    

1 11 2

1

1 ,1 ,..., 1 ,1 , 2 , 2 ,..., 2 , 2 ,

 ..., , ,..., ,

j r r

j j j j
r n tj

I t I I I I

I n t n t I n t n t

    

     
  

 

 
 
 
 

 (13) 

where the second coordinate represents the i-th regressor. For 
example, we consider the following polynomial structure with four 
regressors (i.e.   4jn t  ): 

  1 1 2 1 3 4 5 71
                         

 The first, second, third and fourth regressors

j t x x x x x x x x         
   

The corresponding variable indexes are given as: 
 1 1 1I    and    1 1 1rI    with  1 2r  ;

   2 2 2rI    with  2 1r  ;

 1 3 1I  ,  2 3 3I    and    3 3 4rI    with  3 3r  ;

 1 4 5I    and    4 4 7rI    with  4 2r  .

Hence, the variable index vector can be written as: 

                 1,1 , 1,1 , 2,2 , 1,3 , 3,3 , 4,3 , 5,4 , 7,4jI t     .

B. Fuzzy coefficient determination

Based on the variable index vector,  jI t  in (13), the fuzzy

regression model can be formulated as:

 

  

0
1 1

ˆ
n t r ij

i I iqi q

y b b x



  


 

    (14) 

where ib  with  ' ', ' ', ' 'c l r   are the fuzzy coefficients with

respect to  jI t . The three sets of ib  with  ' ', ' ', ' 'c l r   are

grouped by three fuzzy coefficient vectors as: 

 
 0 1, ,...,j n tj

b t b b b   


    
 with  ' ', ' ', ' 'c l r  . (15) 

Prior to determining  jb t , a data set, namely  j t , is 

generated based on  jI t .  j t  is given as: 

       
 
 


0 1, , ,..., |

 1, 2,...,

j o n tj

D

t y k p k p k p k

k N

   


  




, (16) 

where  0 1p k   and  
 
 

 

1

r i

i I iqq

p k x k




 . All  i jb b t   with 

 1,2,..., ji n t  and  ' ', ' ', ' 'c l r   are determined based on the

following two approaches, which are either for crisp-output-data or 
fuzzy-output-data. 
1) Crisp-output-data

For crisp output data (i.e. all     0l r
o oy k y k  ), all ib  are 

determined by solving the linear programming problem (17a) to 
(17d): 

 
 

 
 

0 1 0 1

min 
D D

l rn t n tN Nj j
l l r r
i i i i

i k i k

J b p k b p k
   

     ,  (17a) 

subject to: 

 
 

   
 

 
0 0

1

c ln t n tj j
c c l l c
i i i i o

i i

b p k h b p k y k
 

       ,  (17b) 

 
 

   
 

 
0 0

1

c rn t n tj j
c c r r c
i i i i o

i i

b p k h b p k y k
 

       ,  (17c) 

 
 

0

0

ln tj
l l
i i

i

b p k


  ,  
 

0

0

rn tj
r r
i i

i

b p k


   for all  0,1,..., Dk N   (17d) 

Solving J  in (17a) attempts to minimize the overall uncertainty 
estimated by the model. Hence, unnecessary uncertainty is less 
likely to be estimated. h in (17b) and (17c) is used to adjust the 
degree to which the model fits the samples,  where h is between 0 
and 1. When the constraints (17b) to (17d) are satisfactory, the 
model can cover all the samples with the memberships higher than 
h. The linear programming algorithm [6] is used to solve (17a) to

(17d) and determine ib  with 1, 2,i    ..., jn t  and ,  c l  or r . 

Hence,  jb t  in (15) is determined. 

2) Fuzzy-output-data

For fuzzy output data (i.e. some    , 0l r
o oy k y k  ), all ib  are 

determined by minimizing the overall residual error, E , given in 
(18). 

              2

1

ˆ ˆ ˆ, , , ,
DN

c l r c l r
o o o

k

E y k y k y k y k y k y k


  (18) 

where  ŷ k , with  ' ', ' ', ' 'c l r  , is the estimate with respect to

the k-th sample in  jD t . E  indicates the overall fuzzy distance

between the estimates and the samples. (18) can be rewritten as 

 
 

   
 

0 0
1 1 1 1

,  
D D

c ln t n tN Nj j
c c c c l l l

i i o i i
k i k i

E b b p k y k b b p k
   

    
                 
     

    
 

 0
1 1

,  
D

rn tN j
l r r r r
o i i o

k i

y k b b p k y k
 

 
         

  (19)
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After setting the derivatives of (19) with respect to every ib  to 

zero, three sets of equations with  ' ', ' ', ' 'c l r   can be developed

[3]. The ordinary least square regression (Chapter 7 of [28]), can be 

used to solve the three sets of equations. c
ib  with  1,2,..., ji n t

can be determined based on  c
oy k . l

ib  and r
ib  can be determined 

based on  l
oy k  and  r

oy k , respectively. Hence, all  i jb b t   in 

(15) can be determined.

C. Fitness functions

When   j t  and  jb t  are given, the fitness of the j-th individual 

is determined by either of the two fitness functions, which are either 
developed for crisp output data or fuzzy output data. For crisp 
output data, the mean fuzzy credibility (MFC) [37] is used. For 
fuzzy output data, the fuzzy number distance (FDIS) [3] is used.  
1) Mean fuzzy credibility (MFC)
The MFC is determined based on (20),

  
   
ˆ

1

MFC
ˆ ˆ

D
cN

y o

r l
k

y k

y k y k








 , (20) 

where the denominator indicates the overall uncertainty estimated 
by the model (14); the numerator indicates the fuzzy membership of 

 c
oy k , to the model (14). The fuzzy membership is determined by 

(1). When MFC is high, the model generates high memberships 
with respect to all  c

oy k  and generates small uncertainty 

estimates.  
2) Fuzzy number distance (FDIS)
For fuzzy output data, the fitness function (21) evaluates the FDIS

between the collected samples,  oy k    ,c
oy k   ,l

oy k  r
oy k , 

and the estimates,  ŷ k        ˆ ˆ ˆ, ,c l ry k y k y k , generated by the

model (14). 

         

         

         

2

1

2 2

1
ˆ ˆFDIS

3

ˆ ˆ

1
ˆ ˆ

12

DN
c c c c

o o
k

r r l l
o o

r r l l
o o

y k y k y k y k

y k y k y k y k

y k y k y k y k



    


     
      


(21) 

(21) is elaborated from (18). The details can be referred to [3].

D. Parent selection and termination condition

In  t  with  ' ', ' ', ' 'c l r  , individuals with good fitness are

selected as offspring for the following populations  1t  . The

roulette-wheel approach [30], is used to select the offspring. 

 1t   evolves iteratively until the generation number, t, reaches

the termination generation, TG . 

E. Evolutionary operations

In NON-SC-FR, the crossover produces two new individuals by 
inheriting the polynomial structures of two randomly selected 
individuals. It randomly selects an arithmetical operation in each 
individual and then it exchanges the sub-polynomial structures at 
the selected operations. For example, we considered the following 
individuals, 1  and 2 , of which the selected arithmetical 

operations are arrowed: 

1 1 3 4 2 2 2 2 3 41
       

x x x x x x x x x          


2 3 1 2 21
      

x x x x     


The crossover generates two new individuals as: 

1 1 3 4 3 1 2 2' 1
       

x x x x x x x        


 

2 2 2 2 2 3 4' 1
       

x x x x x x       


As different substructures are generated in 1'  and 2' ,

population diversification can be introduced. Mutation is performed 
by randomly selecting a character in the individual. The selected 
character is mutated to a new character. For example, the character 
of the following individual, 3 , is selected and is arrowed: 

3 1 2 3 41 x x x x     


The new character, 1x , is introduced by the mutation: 

3 1 2 1 4' 1 x x x x     


IV. EVALUATIONS OF ALGORITHMIC EFFECTIVENESS

Every day, huge amounts of digital images are captured by digital 
cameras, smartphones or tablets. The captured images need to be a 
faithful representation of the scenes people wish to capture. IQA is 
essential to evaluate the aesthetic quality of images before 
performing many image processing applications [12]. Therefore, 
IQA models are necessary to predict aesthetic qualities of captured 
images [13]. Our previous research developed the fuzzy regression 
approaches to generate IQA models [5,6]. The approaches attempt 
to overcome the limitation of the commonly used statistic 
regression and classical fuzzy regression, which cannot properly 
estimate uncertainty of IQA [5,6]. Here the proposed NON-SC-FR 
is used to further enhance the robustness of IQA models. Also, the 
effectiveness of NON-SC-FR can be evaluated. 

Two IQA databases, TID database [50] and VCL database [69], 
have been used to develop the IQA. These two databases are used 
because they consist of different data types, namely crisp-output-
data and fuzzy-output-data. TID database contains the mean 
opinion score (MOS) for each image. Hence the samples are in 
crisp-output-data as the MOS is a real number. The effectiveness of 
the proposed NON-SC-FR in dealing with crisp-output-data can be 
evaluated through TID database. VCL database contains a full set 
of individual opinion scores, which are evaluated by each 
participant to each image. Hence this set of full samples can be 
transformed into fuzzy-output-data. The effectiveness of NON-SC-
FR in dealing with fuzzy-output-data can be evaluated through the 
VCL database. 

The proposed NON-SC-FR was implemented based on the 
routines of GP Matlab package [40] which is available for the 
public. The following GP parameters [40], which are effective for 
developing polynomial models, were used: population size = 50; 
maximum number of generations = 500; crossover rate = 0.5; 
mutation rate = 0.5. 

As NON-SC-FR is a stochastic method, different results are 
generated from different runs. To evaluate its overall performance, 
30 runs are performed on NON-SC-FR. The result for the median 
of the 30 runs is used as the comparison. The proposed NON-SC-
FR is compared with the recently-developed fuzzy regression 
methods namely LW-FR [39], HW-FR [20], GP-FR [4] and U-FR 
[61], where they are particularly developed to address the nonlinear 
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or varying uncertainty of training samples. LW-FR and HW-FR are 
developed for both fuzzy and crisp output-data; GP-FR is 
developed for crisp-output-data; U-FR is developed for fuzzy-
output-data. 
LW-FR [39] is developed, in order to overcome the deficiency of 

previous fuzzy regressions which assume uncertainty for 
dependent variables increase with increasing magnitudes of 
independent variables. The LW-FR fits the uncertainty of 
dependent variable which can be increased or decreased with 
increasing magnitudes of independent variables. 

HW-FR [20] is developed based on a polynomial with quadratic 
terms, in order to fit sample nonlinearity. Experimental results 
showed that HW-FR is more effective on short term load 
forecasting than the state-of-art fuzzy regression. 

GP-FR [4] uses GP to develop polynomial models with high order 
and interaction terms, in order to model nonlinearity of 
manufacturing systems. The effectiveness was demonstrated by 
solving a manufacturing design problem. As GP-FR is a 
heuristic method, 31 runs are performed on GP-FR and the 
median results are used to compare with those of the proposed 
NON-SC-FR.  

U-FR [61] is developed based on high order polynomials to
represent the central, left and right spreads of the fuzzy
regression models. U-FR takes into account the possible
interactions between uncertainties and magnitudes of
dependent variables. The effectiveness of U-FR was

demonstrated by modelling software reliability. 

A. Crisp-output-data

1) Description for TID database
In the TID database, 25 high quality images were used to generate
2125 distorted images which were contaminated by 17 types of
distortion in 5 distortion levels. The distorted images were
evaluated by humans with 256428 perceived evaluations. Table 2
[50] shows the five sets of distorted images, namely JPEG, Noise,
Exotic, Actual and Full, where each set of distorted images were
contaminated by different types of distortion. The table shows the
distortion types in an image set, and it also shows the number of
images in each set. For example, Figures 4a to 4e, Figures 5a to 5e
and Figures 6a to 6e show three images which are contaminated by
JPEG compression, JPEG2000 compression and impulse noise with
five distortion levels respectively. In TID database, 17 objective
features, 1x  to 17x , are captured from the distorted images. The 

details of 1x  to 17x  can be referred to [50]. The most significant 

objective feature to each set is shown in Table 2. 
The participants scored the aesthetic quality of the images and 

the collected opinion scores were averaged as the MOS. TID 
database contains the MOS samples. Based on the MOS samples 
corresponding to the five sets, five types of IQA models can be 
generated. Each type of IQA models correlates MOS and the 
objective features, which are corresponded to an image set. 

Fig. 4a JPEG in level 1 Fig. 4b JPEG in level 2 Fig. 4c JPEG in level 3 Fig. 4d JPEG in level 4 Fig. 4e JPEG in level 5 

Fig. 5a JPEG2000 in level 1 Fig. 5b JPEG2000 in level 2 Fig. 5c JPEG2000 in level 3 Fig. 5d JPEG2000 in level 4 Fig. 5e JPEG2000 in level 5 

Fig. 6a Impulse noise in level 1 Fig. 6b Impulse noise in level 2 Fig. 6c Impulse noise in level 3 Fig. 6d Impulse noise in level 4 Fig. 6e Impulse noise in level 5 
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Table 2 Distortion types of TID database and the five sets of distorted types, JPEG, Noise, Actual, Exotic and Full [49] 
Image sets 

Distortion types JPEG Noise Actual Exotic Full 
Additive Gaussian noise Excluded Included Included Excluded Included 
Different additive noise in colour 
components 

Excluded Excluded Excluded Excluded Included 

Spatially correlated noise Excluded Included Included Excluded Included 
Masked noise Excluded Excluded Excluded Excluded Included 
High frequency noise Excluded Included Excluded Excluded Included 
Impulse noise Excluded Included Included Excluded Included 
Quantization noise Excluded Excluded Included Excluded Included 
Gaussian blur Excluded Included Included Excluded Included 
Image denoising Excluded Included Included Excluded Included 
JPEG compression Included Excluded Included Excluded Included 
JPEG2000 compression Included Excluded Included Excluded Included 
JPEG transmission errors Excluded Excluded Excluded Excluded Included 
JPEG2000 transmission errors Excluded Excluded Excluded Excluded Included 
Non eccentricity pattern noise Excluded Excluded Excluded Included Included 
Local blockwise distortions Excluded Excluded Excluded Included Included 
Mean shift Excluded Excluded Excluded Included Included 
Contrast change Excluded Excluded Excluded Included Included 
Most significant objective features PSNRHVSM 11x PSNRHVS 8x PSNRHVSM 11x MSSIM 2x MSSIM 2x

Numbers of MOS samples 250 750 1000 500 2125 

2) Experimental results
Table 3 shows the IQA models for the corresponding image sets.
Because of the constraint of limited pages, two types of models for
Exotic and Full were illustrated, where these models correlate MOS
with MSSIM 2x . These models are generated by the three 

methods, LW-FR, HW-FR and GP-FR, and the proposed NON-SC-
FR. It is necessary to report that the existing method, HW-FR, can 
only develop infeasible solutions, where not all the samples can 
satisfy the constraints (17b) and (17c). Hence, not all the samples 
can be covered by the fuzzy intervals represented by the left and 
right spreads. 

Figures 7a to 7d illustrate the model characteristics for the image 
set, Exotic. They show that the spreads of the proposed NON-SC-
FR better fit the samples than the spreads of the existing methods. 
As the spreads illustrate the estimated uncertainty, unnecessary 
amount of uncertainty is unlikely to be estimated by the NON-SC-
FR. For HW-FR, which can only develop infeasible solutions, 
Figure 7b shows that not all the samples can be covered by the 
spreads. Figures 8a to 8d show the similar results for the image set, 
Full. The proposed NON-SC-FR achieves better sample fitting than 
the existing methods do. It shows that unnecessary amount of 
uncertainty is less likely to be estimated by NON-SC-FR. Hence it 
further validates that NON-SC-FR outperforms the three tested 
methods.  

Table 4 shows the fuzzy criteria, MFC, for the model which 
engages only the most significant feature of each of the five image 
sets, JPEG, Noise, Actual, Exotic and Full, where the MFC is 
formulated in (21). These results indicate the effectiveness and the 
performance of the proposed NON-SC-FR in generating the fuzzy 
regression models, compared with other tested methods. Also the 
ranks of the four tested methods are given with respect to the MFC 
which is the-larger-the-better. They show that the proposed NON-
SC-FR obtains higher MFCs and higher ranks compared with the 
other tested methods. The proposed NON-SC-FR can generate 
models which have better fitting capability to the MOS data than 
the other tested methods. 

Table 3 IQA models for TID datasets 
E

xo
ti

c 

LW-FR    9 9
24.93,1.04 10.26,4.32, 0 ,1.044.34 10y x    

HW-FR       2
2 21.05,0.90 0.66,0.90 4.00,0.90y x x  

GP-FR     4
21.58,1.62 4.10,1.62y x  

NON-SC-
FR 

 4 2
2 2 22.29 2.496 , 2.68 6.06 ,0.91 0.33y x x x       

F
u

ll 

LW-FR    13 13
20.17,5.18,5.20 5.19,2.30 ,2.410 10y x    

HW-FR       2
2 20.80,1.07 0.29,1.07 4.19,1.06y x x    

GP-FR     2
21.00,1.88 6.07,1.88y x   

NON-SC-
FR 




2
22 2

2
2 2

, 12.94 313 9.06
 23.94 , 2.37 5.1

.79 39.66 30.46
2

x x
x x

y x    

  

 

 



 
 Despite the MFC, two other fuzzy criteria, namely average fuzzy 
spread (AFS) [57] and index of confidence (IC) [63], are used to 
further validate the effectiveness and the performance of the fuzzy 
regressions, and they are described as following:  

AFS [57] given in (22) indicates the overall uncertainty predicted 
by the model. Unnecessary uncertainty is unlikely to be 
predicted by the model, when AFS is small.  

     
1 1

ˆ ˆ ˆAFS
D DN N

r l

k k

y k y k y k
 

     (22) 

IC [63] given in (23) evaluates the degree of variation of all 

collected samples       , ,c l
o o oy k y k y k  r

oy k  to all

fuzzy estimates         ˆ ˆ ˆ ˆ, ,c l ry k y k y k y k  with k 

1,2,..., DN  which are the model outputs. The IC is similar to 

the R-square in statistical regression, which indicates the 
capability of fitting the collected samples. When the IC is 
large, the fitting capability of the fuzzy regression model is 
better. 

         

         

2 2

1 1

2 2

1 1

ˆ ˆ ˆ ˆ

IC=

ˆ ˆ

D D

D D

N N
c l c r

k k
N N

c l c r
o o

k k

y k y k y k y k

y k y k y k y k

 

 

  

  

 

 
, (23)
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> Tables 5 and 6 show the results for AFS and IC respectively of
which the models are engaged with the most significant feature. 
Table 5 shows that the proposed NON-SC-FR generates smaller 
AFSs than the other tested methods, LW-FR, HW-FR and GP-FR. 
The ranks of the proposed NON-SC-FR are the highest. Hence, the 
NON-SC-FR is capable to develop models, which are unlikely to 
estimate unnecessary amount of uncertainty than the other methods. 
Table 6 shows that NON-SC-FR obtains better ICs than those 
obtained by the other tested methods. NON-SC-FR can generate 
models with better fitting capability to the MOS samples. 
Therefore, the proposed NON-SC-FR is better than the other tested 
methods when these three criteria, MFC, AFS and IC, are taken into 
account. 

Tables 7, 8 and 9 show the results for MFC, AFS and IC of 
which the models are engaged with all the seventeen features, 1x  to 

17x . Based on these results, we can evaluate the effectiveness of the 

algorithm when more number of independent variables is involved. 
The tables show that the NON-SC-FR can generate better AFS, IC 
and MFC than those generated by LW-FR, HW-FR and GP-FR. 
Therefore, the proposed NON-SC-FR is capable of generating 
better models when more independent variables are involved. 
Better results obtained by the proposed NON-SC-FR can be 
explained by the mechanism of the NON-SC-FR, which can 
generate more flexible polynomials to represent the right and left 
spreads and also the center. The generated models can be better 
fitted to the MOS samples and they are developed with smaller 
fuzzy intervals, which are less likely to estimate unnecessary 
uncertainty. Therefore, the proposed NON-SC-FR is able to obtain 
better IC, AFS and MFC than those obtained by LW-FR, HW-FR 
and GP-FR. 

Figure 7a LW-FR for exotic Figure 7b HW-FR for exotic Figure 7c GP-FR for exotic Figure 7d NON-SC-FR for exotic 

Figure 8a LW-FR for full Figure 8b HW-FR for full Figure 8c GP-FR for full Figure 8d NON-SC-FR for full 

Table 4 MFC for the most significant IQA metric Table 5 AFS for the most significant IQA metric Table 6 IC for the most significant IQA metric 
LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 0.15 0.33 0.28 0.37 
Noise 0.11 0.19 0.17 0.25 
Exotic 0.09 0.13 0.11 0.16 
Actual 0.10 0.17 0.14 0.20 

Full 0.08 0.13 0.10 0.16 
Ave.MFC 0.11 0.19 0.16 0.23 

Rank 4 2 3 1 
MFC is the-larger-the-better 

LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 2.77 2.06 2.17 1.86 
Noise 3.88 3.14 3.69 2.79 
Exotic 4.33 5.24 5.89 4.26 
Actual 4.41 3.92 4.20 3.64 

Full 5.19 6.25 7.16 4.95 
Ave.AFS 4.11 4.12 4.62 3.50 

Rank 2 3 4 1 
AFS is the-smaller-the-better 

LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 0.24 0.79 0.54 0.82 
Noise 0.25 0.67 0.56 0.86 
Exotic 0.24 0.80 0.59 0.89 
Actual 0.24 0.73 0.55 0.89 

Full 0.24 0.72 0.63 0.83 
Ave.IC 0.24 0.74 0.57 0.94 
Rank 4 2 3 1 

IC is the-larger-the-better 

Table 7 MFC for the MOS to all IQA metrics Table 8 AFS for the MOS to all IQA metrics Table 9 IC for the MOS to all IQA metrics 

LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 0.29 1.32 0.19 4.28 
Noise 0.20 0.75 0.21 1.07 
Exotic 0.14 0.93 0.15 3.68 
Actual 0.16 0.80 0.20 2.24 

Full 0.14 0.39 0.16 0.93 
Ave.MFC 0.19 0.84 0.18 2.44 

Rank 3 2 4 1 
  MFC is the-larger-the-better  

LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 1.36 1.62 3.01 0.17 
Noise 2.06 1.54 2.55 0.64 
Exotic 2.95 2.02 4.18 0.02 
Actual 2.66 2.05 3.55 0.31 

Full 3.12 2.82 4.69 0.73 
Ave.AFS 2.44 2.01 3.60 0.38 

Rank 4 2 3 1 
AFS is the-smaller-the-better  

LW-
FR 

HW-
FR 

GP-
FR 

NON-
SC-FR 

 JPEG 0.23 0.81 0.78 0.89 
Noise 0.24 0.80 0.75 0.87 
Exotic 0.24 0.79 0.74 0.83 
Actual 0.24 0.81 0.77 0.88 

Full 0.24 0.82 0.81 0.87 
Ave.IC 0.24 0.81 0.77 0.87 
Rank 4 2 3 1 

  IC is the-larger-the-better 
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B. Fuzzy-output-data

1) Description for VCL database
VCL database [69] contains 552 distorted images. These distorted
images are generated based on the 23 reference images with two
distortion sets. The first set, namely Compression, was involved
with JPEG and JPEG2000 compressions. The second set, namely
Blur, was involved with Additive White Gaussian Noise and
Gaussian Blur. Each distorted image was contaminated by certain
distortion of which six levels of distortion were contaminated. The
image qualities for the distorted images were scored by 118 persons
of which their ages were between 20 and 30 years. 14 to 36 scores
were collected for each image and each image was scored with an
average of 20 times.

VCL database contains each individual opinion score obtained 
from each participant while the TID database only contains the 
averaged opinion score for each image. Hence VCL database can 
be used to generate fuzzy MOS in fuzzy number for each image. 
The fuzzy MOS for the k-th distorted image is defined as the fuzzy 

number,         , ,c l r
o o o oy k y k y k y k , as:

     
 

1

1 sN k
c
o j

js

y k y k
N k 

  ;  (24a) 

   
 

  
1,2,..,
minl c

o o jj N ks

y k y k y k


  ; (24b) 

 
 

    
1,2,...,
maxr c

o j o
j N ks

y k y k y k


   ; (24c) 

 jy k  is the opinion score given by the j-th participant for the k-th 

distorted image;  sN k  is the number of participants involved on 

scoring the k-th distorted image. Using these fuzzy MOS samples, 
we can evaluate the effectiveness of NON-SC-FR in dealing with 
fuzzy-output-data. 
2) Experimental results
Table 10 illustrates the characteristics of IQA models developed 
based on LW-FR, HW-FR, U-FR and the proposed NON-SC-FR, 
where the models are developed for Compression and Blur. The 
most significant features, PSNRHVSM 11x  and MSSIM 2x
respectively are correlated to the Compression and the Blur models 
respectively.  In Figures 9a to 9d, the characteristics of the 
Compression models are illustrated. The proposed NON-SC-FR 

and U-FR better fit the fuzzy MOS samples than the other two 
existing methods, LW-FR and HW-FR. Similarly, Figures 10a to 
10d show the models for Blur. They also show that the U-FR and 
NON-SC-FR outperform LW-FR and HW-FR. These figures show 
that the fitting capabilities of U-FR and the proposed NON-SC-FR 
are similar. We cannot distinguish the difference regarding the 
fitting capability for U-FR and NON-SC-FR. 

Table 10 IQA models for VCL dataset 

C
om

p
re

ss
io

n 

LW-FR  11 11 112.07 9.65,0.24 18.5,0.44 35.24y x x x      

HW-FR       2
11 1113.0,19.5 189,19.4 73,19.5y x x      

U-FR   
2 3

11 11 11

,8.11 0.19 ,5.84 0.23 ,
where  338 56.71 3.62 0.10

c c c

c
y y y y

y x x x
    

      


NON-
SC-FR 


2

11 11 11
6 3 2

11 11

13.0 0.1 0.1 ,  5. 0.89
 2.8 10 ,  20.1 0.03

y x x x
x x

        
    



B
lu

r 

LW-FR  2 2 2110.4 48.5,14.7 13.8, 3.0 24.7y x x x       

HW-FR       2
2 219.3,13.9 79.7,13.9 123.8,13.9y x x     

U-FR   
 3 2 3 4 5

2 2 2 2 2

,5.29 0.25 ,6.44 0.23 ,where -158
 10 1.8 7.5 + 14.6 13.3 46.9

c c c cy y y y y
x x x x x

     
         



NON-
SC-FR 




2 3
2 2 2

2 2

14.18 10.49 93.78 36.05 ,
 12.87 38.50 ,12.97 38.41

y x x x
x x

      
   



Table 11 Fuzzy number distances (FDISs) for fuzzy regressions 
LW-FR HW-FR U-FR NON-SC-FR 

F
it

ti
ng

 
ca

pa
bi

li
ty

 JPEG 8.81 12.71 6.43 4.48 
Blur 37.92 15.60 6.10 4.22 
Ave. 23.37 14.16 6.27 4.35 

Rank 4 3 2 1 

L
O

O
C

V
 

JPEG 10.29 18.61 5.93 4.99 
Blur 10.03 6.66 5.91 5.49 
Ave. 10.16 12.64 5.92 5.24 

Rank 3 4 2 1 

Fig. 9a LW-FR for Compression   Fig. 9b HW-FR for Compression Fig. 9c U-FR for Compression Fig. 9d NON-SC-FR for Compression 

  Fig. 10a LW-FR for Blur  Fig. 10b HW-FR for Blur   Fig. 10c U-FR for Blur   Fig. 10d NON-SC-FR for Blur 
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> Table 12 The performance and the characteristics of the fuzzy regression methods 

Fuzzy 
regression 
methods 

Fuzzy criteria  Modelling characteristics 

MFC AFS IC FDIS Number of 
independent 
variables 

Magnitude 
modelling 

Uncertainty 
modelling 

Data types Algorithmic 
types 

LW-FR Rank 3 Rank 4 Rank 4 Rank 3 More than 1 Linear Decreasing or 
increasing 

Fuzzy/crisp Deterministic  

HW-FR Rank 2 Rank 2 Rank 2 Rank 4 More than 1 Nonlinear Only increasing Fuzzy/crisp Deterministic 
GP-FR Rank 4 Rank 3 Rank 3 Nil More than 1 Nonlinear Only increasing Crisp Heuristic 
U-FR Nil Nil Nil Rank 2 Restricted to 1 Nonlinear Decreasing or 

increasing  
Fuzzy/crisp Deterministic 

Proposed 
NON-SC-FR 

Rank 1 Rank 1 Rank 1 Rank 1 More than 1 Nonlinear Decreasing or 
increasing 

Fuzzy/crisp Heuristic 

To further distinguish the fitting capability of the models, the 
FDIS in (21) is used. The first main row of Table 11 shows fitting 
capabilities of the models. It shows the FDISs obtained by the 
models for JPEG, Blur and the average of two. It shows that 
smallest FDIS is obtained by the proposed NON-SC-FR compared 
with LW-FR, HW-FR and U-FR. The ranks achieved by the NON-
SC-FR are the highest. The fuzzy MOS estimated by the proposed 
NON-SC-FR are closest to the collected fuzzy MOS samples. 
Hence, the fitting capability of the proposed NON-SC-FR is better 
than that of the other methods. To evaluate the generalization 
capability of the models, we performed the Leave-one-out-cross-
validation (LOOCV). Towards that end, the fuzzy MOS samples 
contaminated from 22 reference images are used for training and 
the samples contaminated from the remaining one reference image 
are used for validation. The LOOCV results are shown in the 
second main row of Table 11. These results confirm that the 
proposed NON-SC-FR performs consistently better than the other 
tested methods also on validation sets. 

C. Discussion

Sections IV.A and IV.B show that the proposed NON-SC-FR is 
better than the four other tested methods, LW-FR, HW-FR, GP-FR 
and U-FR, when the four fuzzy criteria, MFC, AFS, IC, and FDIS 
are taken into account. This section attempts to give a tradeoff 
between the five methods. Here Table 12 summarizes the 
performance and the characteristics of the proposed NON-SC-FR 
and the four existing methods. 

The left hand main column of Table 12 summarizes the fuzzy 
criteria achieved by the four tested methods. It gives the ranks 
provided in Tables 7, 8, 9 and 11. The columns with MFC, AFS 
and IC present the results achieved for developing the models with 
respect to all IQA metrics. The column of FDIS presents the results 
for LOOCV. Table 12 shows that the proposed NON-SC-FR has 
the highest ranks for these four criteria, MFC, AFS, IC and FDIS. 
Despite the four criteria, modelling characteristics of the four 
existing methods and the proposed NON-SC-FR are also given. 
First, the right hand main column of Table 12 shows that the 
proposed NON-SC-FR, LW-FR, HW-FR and GP-FR can be used to 
generate models with more than one independent variable. U-FR 
can only generate models which are restricted with one independent 
variable. Hence, this is the limitation of the U-FR. The proposed 
NON-SC-FR is more flexible than the U-FR. 

Then the right hand main column of Table 12 shows that the 
proposed NON-SC-FR, HW-FR, GP-FR and U-FR can model the 
nonlinear magnitudes of the aesthetic quality. LW-FR can only 
model the linear magnitudes. It also shows that the proposed NON-
SC-FR can model the decreasing or increasing characteristics of the 
uncertainty when the magnitudes of independent variables are 
increased. The HW-FR and GP-FR can only model the increasing 
characteristic of the uncertainty which is the common limitation of 

the classical fuzzy regression. Also the proposed NON-SC-FR can 
be used develop models when either fuzzy or crisp data is given. 
Although the proposed NON-SC-FR is the heuristic method, the 
aesthetic quality design can be performed off line and they are not 
necessary to be performed in a real time. Hence the heuristic 
methods can be used. Also the proposed NON-SC-FR is generally 
more feasible than the other methods in terms of the other 
characteristics and it can obtain better results when the four fuzzy 
criteria are taken into account. This is tradeoff in selecting the 
proposed method for developing aesthetic quality models.  

V. CONCLUSION

The paper proposed a novel fuzzy regression, NON-SC-FR, to 
estimate the magnitudes and uncertainties caused by aesthetic 
quality assessments, while the commonly used statistical regression 
can estimate only the magnitudes. Also the NON-SC-FR 
overcomes the deficiency of fuzzy regressions which address only 
one characteristic where the estimated uncertainty can only increase 
with the increasing magnitudes of objective features. In fact, quality 
uncertainty can be smaller or unchanged when the feature 
magnitudes are increased. The proposed NON-SC-FR is 
incorporated with GP in order to generate the central, and also the 
right and left spreads, of the model structures, where the central 
addresses the quality magnitude and the spreads address the quality 
uncertainty. As GP is effective on fitting nonlinear samples, 
nonlinearities of quality magnitudes and uncertainties can be 
addressed effectively by the proposed NON-SC-FR. After the 
model structures are determined, the fuzzy coefficients are 
optimized by the regression criteria. It further enhances the fitting 
capability of model. 

 The effectiveness and the performance of the proposed NON-
SC-FR are evaluated by two databases for IQA, where the IQA is 
necessary for image processing. We consider the IQA problem due 
to the following reasons: IQA is involved with nonlinear 
magnitudes and uncertainties; the two IQA databases contain 
different types of samples (one for crisp-output-data and the other 
for fuzzy-output-data); the databases consist of significant amounts 
of samples. Hence different characteristics of human assessments 
can be taken into account. The experimental results obtained by the 
proposed NON-SC-FR were compared with four other fuzzy 
regression methods, which are developed to overcome the 
aforementioned deficiency of uncertainty estimation. Better results 
were obtained by the NON-SC-FR when the four criteria, namely 
confidence index, fuzzy credibility, fuzzy spread and fuzzy number 
distance are taken into account. 

In the future, we will use EEG signals as an objective feature 
which is correlated to the perceptual quality. As EEG signal is 
highly imprecise, this imprecision can be represented by the 
measure tolerances. Based on the measure tolerances, samples in 
fuzzy numbers can be developed for the independent variables. As 
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the samples on both dependent and independent variables are in 
fuzzy numbers, we can integrate Khan et al’s fuzzy regression 
method [26] to determine the fuzzy coefficients in Section III.B.2, 
where Khan et al’s approach can be used to develop fuzzy 
regression models which correlate fuzzy independent variables to 
fuzzy dependent variables and also it can address the non-triangular 
fuzzy numbers. Based on Khan et al’s approach, the fuzzy 
coefficients can also be represented in non-triangular fuzzy 
numbers and the responses of the dependent variables are also in 
non-triangular fuzzy numbers. Hence, this will be more flexible 
than using triangular fuzzy numbers, and it will enhance the 
capability to model the nonlinear characteristics of the uncertainty. 
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