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Using Deep Learning-Based Approach to Predict
Remaining Useful Life of Rotating Components

Jason Deutsch and David He

Abstract—In the age of Internet of Things and Industrial 4.0,
prognostic and health management (PHM) systems are used to
collect massive real-time data from mechanical equipment. PHM
big data has the characteristics of large-volume, diversity, and
high-velocity. Effectively mining features from such data and
accurately predicting the remaining useful life (RUL) of the
rotating components with new advanced methods become issues
in PHM. Traditional data driven prognostics is based on shal-
low learning architectures, requires establishing explicit model
equations and much prior knowledge about signal processing
techniques and prognostic expertise, and therefore is limited
in the age of big data. This paper presents a deep learning-
based approach for RUL prediction of rotating components with
big data. The presented approach is tested and validated using
data collected from a gear test rig and bearing run-to-failure
tests and compared with existing PHM methods. The test results
show the promising RUL prediction performance of the deep
learning-based approach.

Index Terms—Bearing, condition monitoring, gearbox,
machine learning, prediction methods, prognostics.

I. INTRODUCTION

IN THE age of Internet of Things and Industrial 4.0, prog-
nostic and health management (PHM) systems are used

to collect massive real-time data from mechanical equipment.
Mechanical big data has the characteristics of large volume,
diversity, and high velocity. Remaining useful life (RUL) has
been used as an important parameter for condition-based main-
tenance decision making [1]. Effectively mining features from
such data and accurately predicting RUL of the rotating com-
ponents of the equipment in use with new advanced methods
become issues for PHM.

In recent years, many RUL prediction methods have been
proposed for PHM. These methods can be classified as model-
based, data-driven, or combination of the two. Model-based
approaches rely on the knowledge of the inherent system
failure mechanism to build a degradation model to describe
the physical nature of the failure. Data-driven approaches on
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the other hand, use massive data to find a degradation law
without knowing the physical nature of the failure mecha-
nism. In comparison with model-based techniques, data-driven
approaches can design an easily applied system when mas-
sive sensor data is available. A recent review of data-driven
approaches can be found in [2]. Traditionally, data-driven
prognostics is largely dependent on signal processing and
feature extraction techniques. Over the past years, many
hybrid prognostic methods that require explicit model equa-
tions have been developed [3]. For example, recurrent neural
networks [4], [5], Kalman filter [6]–[8], dynamic Bayesian
networks [9], k-reliable decentralized prognosis [10], parti-
cle filter [11]–[15], and combined particle filter and neural
networks [16]. Among all the approaches, particle filters [17]
have emerged in recent years as a comparatively good
RUL prediction method and are becoming more and more
widespread, mainly due to their capability of dealing with
dynamic systems characterized with nonlinear and non-
Gaussian nature. For example, [18] showed the superior RUL
prediction performance of a particle filter-based approach
using the gear data provided by the NASA Glenn Spiral Bevel
Gear Test Facility.

However, all above-mentioned methods require either com-
plicated signal processing techniques to extract features from
the sensor data or knowledge of the system dynamics to build
the explicit model equations. This type of requirement involves
manual processing and analysis of data by human experts
and therefore makes these methods not suitable for automatic
data processing and feature extraction for big data. There also
maybe situations in which these models are unavailable, such
as in offshore well drilling and wind turbines or for some bear-
ings in which online measurements of the crack depth may not
be available in which the traditional particle filter approach
cannot be used [12]. The recent development in deep learning
has provided an attractive opportunity to build advanced RUL
prediction methods for big data.

Since, the introduction of a deep belief network (DBN) [19],
DBNs and other deep learning methods have become a pop-
ular approach for big data processing and analysis. Deep
learning has the ability to yield useful and important fea-
tures from data that can ultimately be useful for improving
predictive power [20]. It has also the capability of pro-
cessing big data and mining hidden information due to its
multiple layer structure. The recent success of AlphaGo
by Google Deepmind [21] has demonstrated the power of
deep learning for big data processing and feature learning.
There have been great successes in building deep neural
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network architectures in various domains, such as image
recognition, automatic speech recognition, natural language
processing [22], and many more. It has also recently shown
promising results for machine fault diagnostics on extrac-
tion of raw vibration signals [23] as well as time-domain
features [24]. Although much success in deep learning has
been focused on classification problems, deep learning has also
proven to be successful in solving prediction problems. These
domains include predicting car traffic [25], weather [26], wind
speed [27], and Internet traffic [28]. There are many types
of deep learning algorithms present including auto-encoders,
restricted Boltzman machines (RBNs), DBNs, convolutional
neural networks, and more that can also be used for pre-
diction problems. In summary, deep learning represents an
attractive option to process mechanical big data for RUL pre-
diction as it has the ability to automatically learn features
that otherwise require much skill, time, and experience. Up
to date, no research on RUL prediction using deep learning-
based approaches for rotating components, such as gears and
bearings has been reported in the literature.

In this paper, a deep learning-based approach for RUL
prediction using vibration sensors is presented. The devel-
oped deep learning-based approach is a DBN-feedforward
neural network (FNN) algorithm that takes the advantages of
self-taught feature learning capability of the DBN and the
predicting power of the FNN. It can either take processed
vibration features or extract features from the vibration data to
predict the RUL. The presented method overcomes the above
mentioned limitations of the traditional data-driven approaches
and particle filter-based approaches to allow automatic feature
extraction and RUL prediction without human intervention in
the age of big data. The presented approach is tested and val-
idated using data collected from a gear test rig and bearing
run-to-failure tests and compared with existing PHM methods.

II. METHODOLOGY

A DBN, which is a stacked version of an RBM, is used in
this paper in order to predict the RUL at L steps ahead in the
future. Next, RBM, DBN, and DBN-FNN algorithm for RUL
prediction are explained.

A. Restricted Boltzman Machine

An RBM [29] is a type of unsupervised machine learning
algorithm. It is a generative stochastic artificial neural network
that learns a probability distribution over a set of its inputs.
An RBM is a bipartite graph, which contains undirected edges
connecting its two layers: 1) a visible and 2) a hidden layer.
Each layer contains a collection of neurons/nodes. The visible
layer consists of the data’s input, where each node/neuron rep-
resents a feature of the data. The hidden layer represents the
latent variables. As shown in Fig. 1, an RBM is “restricted”
because there are no connections between each neuron/node
within either the visible or hidden layer. An RBM contains
a matrix of weights Wij representing the connection between
visible node vi and hidden node hj. We will let ai represent
the bias term for the visible layer and bj for the hidden layer.

Fig. 1. Restricted Boltzmann machine.

The weights and biases are computed by maximizing P(v),
which is the probability that the network assigns to a visible
vector v

P(v) = 1

Z

∑

h

e−E(v,h) (1)

where Z is the normalization constant which can be found
by summing over all the possible pairs of visible and hidden
vectors

Z =
∑

v

∑

h

e−E(v,h) (2)

and the energy function of the joint configuration (v, h) is
given by

E(v, h) = −aTv − bTh − vTWh. (3)

The maximization of (1) can in theory, be determined by
taking its partial log derivative with respect to its parameters
W, a, and b

∂log(P(v))
∂W, a, b

=
∑

v,h

E(v, h) −
∑

h

E(v, h). (4)

Typically (4) is also written as

∂log(P(v))
∂W, a, b

= <vihj >data − <vihj >model (5)

where <∗> denotes the expectation of ∗. However, the expec-
tation <vihj>model in the maximum log likelihood function
cannot be easily computed and is thus estimated using con-
trastive divergence which leads to the following parameter
update equation [30]:

Wij
k = Wij

k +
(
<vi

khj >data − <vi
khj >T

)

= P
(
hj = 1|v)vi − vi

kP
(

hj = 1|vk
)

ai
k = ai

k +
(
<vi

k >data − <vi
k >T

)

= P(vi = 1|h) − vi
k

bj
k = bj

k +
(
<hj >data − <hj

k >T

)

= P
(
hj = 1|v)− P

(
hj = 1|vk

)
(6)

where T represents a full step of Gibbs sampling, represents
the learning rate, and k represents the k − step of contrastive
divergence. The neuron activation probabilities are given by
the following equations:

P
(
hj = 1|v) = σ

(
bj +

n∑

i=1

Wijvi

)
(7)

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 03,2021 at 01:59:15 UTC from IEEE Xplore.  Restrictions apply. 



DEUTSCH AND HE: USING DEEP LEARNING-BASED APPROACH TO PREDICT RUL OF ROTATING COMPONENTS 13

Fig. 2. DBN with two hidden layers.

P(vi = 1|h) = σ

⎛

⎝ai +
m∑

j=1

Wijhj

⎞

⎠ (8)

where n represents the number of visible units, m the number
of hidden units, and σ is the activation function. The activation
function is typically the logistic function used as a threshold
defined as

σ(x) = 1

1 + e−x
. (9)

B. Deep Belief Network

A DBN is formed by stacking multiple RBMs on top of
each other in order to create high representations of data that
can be used for classification, regression (continuous output)
tasks as well as unsupervised learning (see Fig. 2).

The RBM becomes a building block for forming
a DBN. The DBN can be trained in a greedy-layer-wise fash-
ion by stacking RBMs on top of each other [31]. The output
of one RBM, that is the activation values in the hidden layer,
simply becomes the input for the next RBM and the parameters
of the previous RBM do not change. This next RBM is trained
by the same process as illustrated in the previous section. This
process allows for creating multiple hidden layers.

C. DBN-FNN for RUL Prediction

In order to build a deep learning-based prognostic model, we
can first learn the weights and biases in the unsupervised stage
of learning using DBN. Once the optimal parameters (weights
and biases) have been determined, a supervised fine tuning
stage is performed. This is done by creating a final output
layer on the top of the DBN which outputs the predicted RUL
value given a set of vibration features. This is illustrated in
Fig. 3 below. The parameters of the entire network are then
updated using the backpropagation algorithm in the same way
as a FFN is trained. The DBN in this way pretrains the network
which serves as an initialization step for the parameters of
the FNN, instead of a random initialization of the weights
and biases, which has been shown to add robustness to deep
architectures and decrease the probability of obtaining poor
local minima [32].

The DBN–FNN performs unsupervised learning first by
training DBN on a set of fault features in order to learn a latent
representation of the data. After the end of the training, the
DBN–FNN is formed by adding an output layer on top of

Fig. 3. FFN with d = 3 and a single hidden layer.

the last layer of the DBN, where it is fully connected to the
last hidden layer. This output layer contains one neuron which
represents the continuous prediction ̂RULt+L for some time t
at L-steps ahead into the future.

The time series of the fault features Xt is reconstructed,
into a matrix, where each feature (column) represents a lagged
order of the time series, and whose output is the L-step ahead
into the future RUL value, and each row represents an index
in time. Formally, the input can be denoted as

[
Xt, Xt−1, . . . , Xt−d+1

]
, εR

d (10)

and the output as

[
RULt+L, RULt+L+1, . . . , RULn

]
(11)

where d represents the embedding dimension, and determines
the size of the first visible layer in the DBN–FNN. Thus,
yielding training tuples of ([Xt, Xt−1, . . . , Xt−d+1], RULt+L),
t = d − 1, . . . , n − L − 1.

Equations (10) and (11) define a method often called the
sliding window technique [33]. This windowing approach is
best illustrated below in Fig. 4.

The first plot in Fig. 4 is the complete series of a fault
feature. The second plot highlights the first window of size d =
100. The last plot simply shows the first window zoomed in.
The first window contains points from t = 0, 1, 2, . . . , 98, 99
(first row of features) and the second window would contain
points from t = 1, 2, 3, . . . , 99, 100 (second row of features)
and so on.

The predicted RUL can then be directly estimated as
a function of the fault feature by the following equation:

̂RULt+L = φ(Xt, Xt−1, . . . , Xt−d+1) (12)

where ̂RULt+L is the predicted RUL at some time t + L, and
φ(·) is a function of the input space that is to be learned by
the DBN–FNN.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 03,2021 at 01:59:15 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 1, JANUARY 2018

Fig. 4. Windowing approach.

Confidence bounds for the predictions can be obtained by
a resampling technique known as a jackknife, which is a linear
approximation to the bootstrap method [34]. The method is
described next.

Let φ(·)−i represent the DBN–FNN prediction of the RUL
when a single sample i (row) is deleted from the training set.
We will simply call this a jackknife sample. Let φ(·) be the
average across n jackknife samples

φ(·) = 1

n

n∑

i=1

φ(·)−i. (13)

And the estimate of the standard error of the mean is
defined as

σ̂ =
√√√√n − 1

n

n∑

i=1

[
φ(·) − φ(·)−i

]2
. (14)

The confidence interval with N − 1 degrees of freedom can
then be calculated as follows:

φ(·) ± t1−(α/2),N−1σ̂ . (15)

The DBN–FNN algorithm for RUL prediction is as follows.
Step 1: Reconstruct the time series of the fault features into

a matrix with an embedding dimension of d. This
will serve as the input and the output will be the
mapped RUL, RULt+L.

Step 2: Randomly delete one sample (one row) from the
data, including the target output. This will serve as
one jackknife sample.

Step 3: Initialize the weights and biases of the FNN by
training the DBN on the input data using all the
data except for the last 100 rows. The last 100 rows
will serve as the testing dataset and the rest of the
data is the training set.

Step 4: Train the FNN. Fine tune the weights in a super-
vised fashion by minimizing the loss function on
the training set and by using the backpropagation
algorithm.

Step 5: Predict the RULt+L.
Step 6: Let t = t +1, and update the training set with input

features (Xt, Xt−1, . . . , Xt−d+1) and output RULt−L.
Step 7: Repeat steps 4–6, until all 100 points have been

predicted.
Step 8: Repeat steps 2–7 for n number of jackknife sam-

ples. In step 2, the previous deleted sample is
replaced in the data and a new sample is deleted.

In the above DBN–FNN algorithm, step 6 is somewhat
analogous to the updating step in the particle filter-based
approach [35]. As new information becomes available the
weights and biases of the network change (from step 7) to
reflect the updated information.

III. CASE STUDIES

To validate the deep learning-based RUL prediction method,
vibration data collected at the NASA Glenn Spiral Bevel Gear
Test Facility and from hybrid ceramic bearing run-to-failure
tests were used.

A. Spiral Bevel Gear RUL Prediction

1) Spiral Bevel Gear Data: Gear tests were performed on
a bevel gear test rig at the NASA Glenn Spiral Bevel Gear
Test Facility and vibration data were collected during the gear
tests. A detailed description of the test rig and test procedure is
given in [36]. The rig as shown in Fig. 5 was used to quantify
the performance of gear material, gear tooth design, and lubri-
cation additives on the fatigue strength of the gears. During
the testing, vibration condition indictors (CIs) and oil debris
mass (ODM) data were used to detect pitting damage on spiral
bevel gears.

The tests consisted of running the gears under load through
a “back to back” configuration, with vibration data collected
once per minute using a sampling rate of 100 kHz for a 2 s
duration, generating time synchronous averages (TSAs) on
the gear shaft (36 teeth). The pinion, on which the damage
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Fig. 5. Bevel gear test rig and bevel gears [36].

Fig. 6. Damaged spiral bevel gear.

occurred, has 12 teeth. The tests were performed for a specific
number of hours or until surface fatigue occurs. In this paper,
data collected from experiment 5 were used. At test comple-
tion of the experiments, destructive pitting could be observed
on the teeth of the pinions (see Fig. 6).

CIs obtained from vibration data are commonly used for
mechanical fault detection and diagnosis. For example, the
health and usage monitoring system currently installed in heli-
copters utilizes a large number of vibration-based CIs. As
pointed out in [37], there is no single CI that is sensitive to
every failure mode of a gear. Combining multiple CIs into
one health index (HI) is an attractive approach for gear health
prognostics. TSA data was processed with gear CI algorithms
presented in [38] and [39]. A total of 6 CIs were used for
computing a 1-D HI as the fault feature in order to predict
the RUL: residual root mean square (RMS), energy opera-
tor RMS, FM0, narrowband kurtosis, amplitude modulation
kurtosis, and frequency modulation RMS. To compute the
1-D HI, the set of correlated CIs were first de-correlated by
applying the Cholesky decomposition. The Cholesky decom-
position of a Hermitian, a positive definite matrix results in
A = LL*, where L is a lower triangular, and L* is its con-
jugate transpose. Let F be a set of correlated CIs. It then
follows that

LL∗ = �−1 (16)

and

Y = L × FT (17)

where Y is a vector of n independent CIs with unit variance
and correlation(Y) = 0. Equation (11) creates the neces-
sary independent and identical distributions (IIDs) required to
define the HI for a function of distributions.

Assuming that the distributions of the CIs follow a Gaussian
distribution, then three statistical HI generation models can be
used: 1) the Gaussian order statistic; 2) the sum of n Gaussian;
and 3) the total energy of n Gaussian. These three models are
explained as follows [37].

1) The HI is defined as the Gaussian order statistic, it can
be computed as the following:

Y = L × (
FT − m

)
(18)

HI = (max{Y} + .34) ∗ .5

(3.41 + 0.34)
(19)

where m is the mean of F. Subtracting the mean and
multiplying by L transforms the features into n, Z
distributions (zero mean, IID Gaussian distributions).

2) When the HI is defined as the sum of n Gaussian, it can
be computed as the following:

Y = L × FT

HI = 0.5/(8.352 − 0.15)

(
−0.15 +

n∑

i=1

Yi

)
. (20)

3) When the HI is defined as the total energy of n Gaussian,
it can be computed as follows:

Y = L × FT

HI = 0.5/(3.368)

√√√√
n∑

i=1

Y2
i . (21)

The HI used for RUL prediction was the order statistic
defined by (19) as the order statistic gave a more consistent
trending of the HI than other statistics [14]. To predict the
RUL of the gear, here HI at time t is set as fault feature Xt.
The RULt for the gear data was calculated by finding the first
index of time in which the Xt ≥ 1.0, which can be assumed
is when the gear has failed and is denoted as T

′
end. Since, the

fault feature and the ODM (assumed to be the true state) are
correlated, the total life of the gear is the time index of the
ODM that correlates with XT

′
end

and is denoted as Tend. This
process is shown below in Figs. 7 and 8.

The RUL at each time step can then be calculated by a linear
interpolation using the following equation:

RULt = Tend − t

(
Tend

T
′
end

)
. (22)

Since, the fault feature and the ODM are not a one to one
mapping, (22) allows to map the RUL by the length of the
fault feature.

2) Spiral Bevel Gear RUL Prediction Results: A total of
5670 time steps were extracted from the gear data, in which
all the data up until T

′
end = 5280 was used. We set the last
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Fig. 7. Determining T
′
end from the fault feature.

Fig. 8. Determining Tend from the ODM.

100 points of the gear’s life as the testing set. For the training
set, the last 1280 time steps (elimination of the first 4000 time
steps) of data were used for L = 1 and 580 points (elimination
of the first 4700 points) of data were used for L = 10 in the
gear data.

The reason for the above setting was twofold: 1) speed of
the training/testing is the key to finding appropriate hyperpa-
rameters and 2) some removal of noise, since large regions
of the fault features are flat and contain a similar input space
with different output RUL values.

Since, the DBN assumes a binary input or a real valued
input in [0, 1] the input values were scaled to be in [0, 1].
The predictions for L = 1 and L = 10 are shown below
in Figs. 9 and 10, respectively. The error metrics and hyper-
paramters for predictions with L = 1 and L = 10 are provided
in Tables I and II, respectively. The L step ahead predictions
for L = 1 predict approximately 1 min into the future and
10 min into the future for L = 10.

In Figs. 9 and 10, the green color represents the average
predicted RUL values across the jackknife samples. The red
error bars represent the 90% confidence bounds.

For both L step ahead predictions it can be seen that they
accurately model the true RUL, while the L = 1 predictions
are less varied than that for L = 10. The confidence bounds
for L = 10 prediction seem to predict the RUL of the gear
slightly early when compared to the L = 1 predictions.

The common error metrics used in Table II are the root
mean squared error (RMSE) and the mean absolute percentage

Fig. 9. Plot of gear ̂RULt values with with L = 1.

Fig. 10. Plot of gear ̂RULt values with L = 10.

error (MAPE). The MAPE and RMSE are defined by the
following equations:

MAPE =
(

1

n

n∑

t=1

At − Ft

At

)
∗ 100% (23)

RMSE =
√√√√1

n

n∑

t=1

(At − Ft)
2. (24)

In (23) and (24), At = actual value and Ft = predicted
value from the DBN–FNN and n = the number of points to
be predicted.

The hyperparameters were mostly the same for both L step
predictions with 130 hidden neurons in the first layer and
30 neurons in the second layer and were chosen by using
a grid search. A large embedding dimension of d = 100 was
set which was empirically found to yield good results. Since,
step 7 of the DBN–FNN algorithm requires 100 different
FNNs to be trained, the hyperparameters of the model were
found more efficiently by simply training one DBN–FNN and
testing the model on the last 100 points and using a grid
search that performs exhaustive search throughout a set of
hyperparameters to find good candidate solutions. The hyper-
parameters chosen were simply those that minimized the
RMSE on the testing set. The assumption is that if a set of
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TABLE I
RMSE AND MAPE RESULTS FOR GEAR DATA

TABLE II
DBN–FNN HYPERPARAMETERS FOR GEAR DATA

parameters can fit the testing set well without an updating step,
then with an updating step it should perform better.

The best results were found by using the MAPE as
a loss function instead of the more typical mean squared
error loss function used for regression problems. The Adam
optimizer [40], which is a stochastic optimization algorithm
was also used for all of the predictions and yielded good
results without having to fine tune the learning rate, which
is due in part to the optimizer’s ability to adaptively change
the learning rate. The exponential decay rates and epsilon val-
ues were set to the recommended values as described in this
paper. The rectified linear unit (ReLU) activation function for
L = 1 was used as it empirically provided good results and it
solves the vanishing gradient problem that other nonlinear acti-
vation functions can cause [41]. The ReLU activation function
for the input x of a neuron is defined as

ReLU(x) = max {0, x}. (25)

For L = 10 on the gear data we found the best results using
a Leaky ReLU (LReLU) [42] defined as

LReLU(x) =
{

x, x > 0
xα, x ≤ 0

(26)

where α is some value which allows for a small nonzero gra-
dient when the neuron is saturated and not active. We found
the best results by setting it to a very small value of 0.001.

For a comparison purpose, the RMSE and MAPE of the
predicted RUL obtained by the particle filter-based approach
are also provided in Table I. The standard deviations (denoted
as σ ) for both the deep learning-based approach and the par-
ticle filter are provided, which are based on the resampled
estimates of the RUL, where as the averages are based on
the average predicted value. In comparison with the results
obtained using the deep learning-based approach, the average
RMSE and MAPE values of the particle filter-based approach
and their corresponding standard deviations are slightly higher.
This comparison result indicates that the RUL prediction
accuracy and reliability of the prediction results obtained by
the deep learning-based approach are slightly better than the
particle filter-based approach for the gear data.

Fig. 11. Bearing run-to-failure test rig.

B. Hybrid Ceramic Bearing RUL Prediction

1) Hybrid Ceramic Bearing Test Setup: Run-to-failure tests
were performed using hybrid ceramic bearings on a bearing
test rig in the laboratory and vibration data were collected
during the bearing run-to-failure tests. Fig. 11 shows the cus-
tomized bearing run-to-failure test rig in the laboratory. The
key features of the test rig include: 1) it is driven by a 3-HP
ac motor with a maximum speed up to 3600 rpm and variable
speed controller; 2) it is equipped with a hydraulic dynamic
loading system with a maximum radial load up to 4400 lbs
or 19.64 kN; and 3) an integrated loading and bearing hous-
ing that can be used for testing both ball and tapered roller
bearings.

An automatic data acquisition system based on National
Instrument CI 4462 board and NI LabVIEW software was
constructed for data collection purposes. The automatic
data acquisition system has the following features: 1) max-
imum sampling rate up to 102.4 kHz; 2) four input simul-
taneous anti-aliasing filters; 3) software-configurable ac/dc
coupling and IEPE conditioning; and 4) vibration analysis
functions, such as envelope analysis, cepstrum analysis, and
so on for computing necessary condition indicators.

The hybrid ceramic bearings used in the test were ball bear-
ings with stainless steel inner and outer races and ceramic
balls. Two accelerometers were stunt mounted on the bearing
housing in the direction perpendicular to the shaft. The test
bearing was mounted on the test rig and the rig was run at
a speed of 1800 rpm (30 Hz) and was subjected to a radial
load of 600 psi. A sampling rate of 102.4 kHz was used for
2 s of data collection at each sampling point. The data was
collected every 5 min during the test. At the end of the test,
the test bearing was disassembled, checked, and photographed.
The bearing contained a total of 849 data files with a length of
approximately 71 h. Table III provides the run-to-failure test
setting and Table IV the specification of the tested bearing.

The RMS of the vibration signals was computed to rep-
resent the degradation of the bearing over time during the
run-to-failure tests. The vibration signals were preprocessed
using the fast Fourier transform (FFT) and the FFT values
were used as the fault feature as the input into the DBN–FNN
to predict the RUL of the bearing. The RMS at each time
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TABLE III
RUN-TO-FAILURE TEST SETTING

TABLE IV
HYBRID CERAMIC BEARING SPECIFICATIONS

interval (denoted as RMSt) can be calculated as follows:

RMSt =
√√√√1

n

n∑

i=1

f 2
ti (27)

where fti represents the ith raw vibration data point at time
interval t and n is the length of the signal at time interval t.
The RMS plot for the bearing data can be seen in Fig. 12.

The FFT, which is an efficient algorithm for computing
the discrete Fourier transform at some time interval t can be
calculated as follows:

DFTtn =
N−1∑

k=0

ftke
−2π ikn

N (28)

where ftk is the kth raw vibration signal at time interval t, N
is the length of the signal at time interval t, i = √−1 and
n = 0, 1, . . . , N − 1.

Equation (28) transforms the vibration signals from a time
domain to a frequency domain in which we extracted eight
equal bands ranging from 0 to 20 kHz.

For the bearing data, the fault features were a one to one
mapping and the RULt was calculated simply by taking the
time index of the maximum recorded RMS value as the point
of failure denoted as RMSTend and subtracting it from each

Fig. 12. Bearing RMS values.

Fig. 13. Plot of bearing ̂RULt values with L = 1.

time step

RULt = RMSTend − t. (29)

2) Hybrid Ceramic Bearing RUL Prediction Results:
A total of 849 time steps were extracted from the bearing
data in which all the data up until time step 792 were used in
the DBN–FNN. As seen above from Fig. 12, a rather large dip
in the RMS values occurs from time steps 720 through 735.
Features collected from those points were simply removed
from the data and treated as outliers.

L = 1 and L = 10 were used to predict 5 min and 50 min
into the future for the bearing data, respectively.

The predicted RUL values for the last 100 steps can be seen
in Figs. 13 and 14 for L = 1 and L = 10, respectively. The
error metrics and hyperparameters for prediction with L = 1
and L = 10 are provided in Tables V and VI, respectively.
Input data was also scaled to be in [0, 1], the same d =
100 embedding dimension, loss function, and optimizer that
were used in the gear data were used for the bearing data.

In Figs. 13 and 14, the green color represents the average
predicted RUL values across the jackknife samples. The red
error bars represent the 90% bounds. The predicted results
show that for both L = 1 and L = 10 that it can accurately
predict the true RUL and as the bearing approaches the point
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Fig. 14. Plot of bearing ̂RULt values with L = 10.

TABLE V
RMSE AND MAPE RESULTS FOR BEARING DATA

TABLE VI
DBN–FNN HYPERPARAMETERS FOR BEARING DATA

of failure, the accuracy of the predictions tends to increase
and converge.

Similar to the L = 10 prediction for the gear data, an
LReLU was used for both the hidden layers in the bear-
ing data, with α = 0.0085 and α = 0.0015, for the first
and second hidden layers, respectively. Again, similar to the
L = 10 prediction for the gear data, the confidence bounds
for the L = 10 predicts the RUL of the bearing slightly early
when compared to the L = 1 predictions and exhibits a greater
variance. The increase of variance in comparison to the ReLU
is most likely due to a slightly wider band of information that
passes through each neuron when an input x < 0, rather than
the neuron being simply being turned off.

Again, for a comparison purpose, the RMSE and MAPE
of the predicted RUL obtained by the particle filter-based
approach are also provided in Table V. The standard deviations
for both the deep learning-based approach and the particle fil-
ter are provided, which are based on the resampled estimates
of the RUL, whereas the averages are based on the average
predicted value.

In comparison with the particle filter-based approach, the
average RMSE and MAPE values of the deep learning-based

approach are slightly higher while the corresponding standard
deviation are slightly lower. This comparison result indicates
that for the bearing data, the RUL prediction accuracy obtained
by the deep learning-based approach is slightly worse than
the particle filter-based approach but the reliability of the
results is slightly better than the particle filter-based approach.
Note that the RUL prediction results obtained by the parti-
cle filter-based approach were based on the features extracted
using Hilbert-Huang transform which is a complex signal pro-
cessing technique while the RUL prediction results obtained
by the deep learning-based approach were based on the fea-
tures extracted by DBN–FNN directly from the preprocessed
vibration data without assuming any explicit state transition
equations.

In summary, in both the gear and bearing RUL prediction
validation case studies, the deep learning-based DBN–FNN
has achieved the prediction accuracy that is compatible to that
of the most popular RUL prediction method based on parti-
cle filters. Given that the deep learning-based approach does
not require complicated signal processing and explicit model
equations like the particle filter-based approach and is scal-
able for big data applications, the RUL prediction performance
achieved by the deep learning-based DBN–FNN has shown
its potential for RUL prediction for rotating components with
big data.

IV. CONCLUSION

In this paper, a deep learning-based approach, a DBN–
FNN algorithm for RUL prediction of rotating equipment
using vibration data was presented. The developed DBN–FNN
algorithm takes the advantages of self-taught feature learn-
ing capability of the DBN and the predicting power of the
FNN. It can take either processed vibration features or extract
features from the vibration data to predict the RUL. The pre-
sented method overcomes the above mentioned limitations of
the traditional data-driven approaches and particle filter-based
approaches to allow automatic feature extraction and RUL
prediction without human intervention in the age of big data.

To validate the presented DBN–FNN-based RUL predic-
tion method, vibration data collected at the NASA Glenn
Spiral Bevel Gear Test Facility and from hybrid ceramic bear-
ing run-to-failure tests in the laboratory were used to predict
the RUL of the gears and bearings. In the first case study,
the vibration features for gear RUL prediction were extracted
using specialized signal processing techniques. However, in
the second case study, the vibration features for bearing RUL
prediction were extracted automatically by the DBB–FNN
algorithm. The optimal hyperparameters of DBN–FNN struc-
ture were determined by running a grid search to minimize
the RMSE on the testing set in all the case studies. The RUL
prediction performance of the DBN–FNN algorithm was com-
pared with that of a particle filter-based approach. The results
have shown that the deep learning-based approach achieved
a slightly better accuracy for gear but slightly worse accu-
racy than the particle filter-based approach. However, given
that the deep learning-based DBN–FNN does not require
manual feature extraction using specialized signal processing

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 03,2021 at 01:59:15 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 1, JANUARY 2018

techniques and explicit model equations like the particle filter-
based approaches, the RUL prediction performance achieved
by the deep learning-based DBN–FNN has shown its promis-
ing capability for RUL prediction of rotating components with
big data.
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