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Structure From Motion Technique for Scene
Detection Using Autonomous Drone Navigation

Yo-Ping Huang, Senior Member, IEEE, Lucky Sithole, and Tsu-Tian Lee, Fellow, IEEE

Abstract—A method is presented for scene detection and
estimation using high-resolution imagery acquired through
autonomous drone navigation aided with landmark detection
and recognition. The proposed system comprises a drone plat-
form that facilitates efficient autonomous flight; it can capture
images and provide real-time video streaming of the ground cover
using a camera equipped with a 14-megapixel CMOS sensor
and a fish-eye lens. In addition, landmark detection and recog-
nition was performed by applying the histogram of oriented
gradients and linear support vector machine methods on each
frame of the video stream. The high spatial resolution of the
acquired drone images makes the detection and interpretation of
environments less complicated. First, through image processing,
orthomosaic images and 3-D environment reconstruction (point
clouds) of the scene are generated from a set of drone images
by using an automatic photogrammetric technique called “struc-
ture from motion.” Subsequently, an unsupervised classification
method is used to detect and differentiate environmental classes
(scene interpretation) in the target or investigated area by using
the high-resolution images. Finally, the results of the proposed
method are evaluated by comparing them against ground-truth
points.

Index Terms—Autonomous navigation, drone, scene detection,
structure from motion (SfM).

I. INTRODUCTION

ECENT technological advancements have resulted in
Ran increase in the popularity of drones, also known as
unmanned aerial vehicles (UAVs). The drone technology has
become an effective alternative to satellite remote sensing for
achieving major research breakthroughs. Because drones are
compact and user- and eco-friendly and have the ability to
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capture images from a very low altitude, they can be used to
obtain high-resolution imagery to supplement satellite imagery
systems, whose performance may be limited by atmospheric
phenomena (e.g., cloud cover) and lack of coverage over a tar-
geted environment because of the orientation of the orbit
around the Earth [1]. Furthermore, compared with traditional
manned aerial systems, drones are highly effective for targeted
remote-sensing operations in areas that are inaccessible and
complex.

Efficient exploration and precise monitoring of complex
urban environments are critical for applications such as
forestry management and planning, flood modeling, pollution
modeling, mapping and cartography, urban planning, coastline
management, transportation planning, oil and gas exploration,
volumetric analysis and exploration of quarries and minerals,
archaeology, and cellular network planning. Furthermore, it
can prevent problems related to poor disaster management.
Buildings, roads, and landscapes deteriorate over time because
of factors related to human interactions and environmental
conditions. These conditions may pose a threat to both envi-
ronment and health of human beings. Failing to maintain urban
environments is tantamount to an act of disinvestment because
it leads to huge loss of investments and may result in disasters
if no preventive actions are taken.

The drone technology is an efficient and reliable method
to continuously and precisely monitor urban environments
through autonomous drone navigation and perform image pro-
cessing for remote sensing with little human intervention.
Drone platforms have become an increasingly popular and
valuable source of data acquisition for interpretation, surveil-
lance, environment mapping, and 3-D modeling applications.
Because drones are usually less expensive than traditional
manned aerial systems, they are being increasingly studied
for short and close-range applications [2]-[4]. Rotary- and
fixed-wing drones capable of performing photogrammetric
data acquisition with amateur or digital SLR cameras can
be used in manual, semiautomatic, and autonomous modes.
By following a classical photogrammetric workflow, 3-D
results such as digital surface or terrain models, contours, tex-
tured 3-D models, and raster and vector information can be
generated for very large areas in a limited amount of time.

UAV technology was originally developed for military
applications; nevertheless, it has gained popularity in recent
years because of its great performance in civilian applica-
tions. The high-resolution images of ground objects in the
investigated areas produced by UAVs make it easy to describe
and differentiate these objects in a more detailed and explicit
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manner. Consequently, objects exhibiting the same features or
belonging to the same class (e.g., trees and grass) can be eas-
ily identified, making detection of the entire class possible in
a considerably small amount of time [5], [6].

In the recent years, there has been a huge improvements
concerning the UAV technology but still suffers lack in one
crucial aspect which is the capability of autonomy since early
UAV are remotely piloted. Recent UAV platforms use global
navigation satellite system (GNSS) information to perform
limited autonomous flights that addresses many important
issues such as take-off and landing without any human inter-
vention. In order to enable autonomous navigation capabilities
the UAV platform requires machine vision systems to com-
plement GNSS to estimate the UAV state trajectory. The
most common way to estimate the UAV state is to integrate
inertial navigation system information with a GNSS, e.g.,
GPS. Ranft et al. [7] developed a very inexpensive frame-
work for autonomous navigation for micro air vehicles which
depends on a single camera and some additional on-board sen-
sors such as the inertial measurement units (IMUs) to solve
the challenges of flight planning and collision avoidance using
sparse 3-D points to evaluate the quadcopter’s position relative
to the ground plane. The authors used artificial landmarks in
areas with an ambiguous flight path, such as corridor crossings
or junctions to provide topological localization, which enables
the platform perform tasks such as way point following.

Many research work over the years focused on 3-D laser
measurement, 3-D laser mapping, etc. Zhuang et al. [8]
proposed a 3-D-laser-based place recognition system for
a mobile robot to autonomously learn complex indoor scenes
and avoid obstacle collisions caused by moving objects and
people effectively. Zhang et al. [9] developed a framework
that transform 3-D point clouds from mobile robot equipped
with a custom-built 3-D laser scanner to 2-D to reduce dimen-
sionality to obtain a less computational cost to novel multiclass
and multiview 3-D object detection system.

In this paper, a drone model is proposed that can navi-
gate over very large areas using GPS information, equipped
with a real-time landmark detection and recognition system
that improves the reliability of autonomous drone navigation.
Landmarks have proved to be a more robust and reliable tool
for scene detection and recognition because of their color and
shape properties. In the detection phase, the color and shape
properties of the landmarks are extracted as features. In the
recognition phase, the model evaluates the regions found in
the detection stage and identifies the landmarks.

Over the years, well-known features such as Haar-like fea-
tures introduced by Viola and Jones [6] for face detection [10],
histogram of oriented gradients (HOGSs), speeded up robust
features, and scale-invariant feature transform (SIFT) have
been implemented using computer vision. The HOG algo-
rithm, introduced by Dalal and Triggs [11] for pedestrian
detection, outperforms existing algorithms such as Haar-like
features.

To overcome the challenges associated with long-distance
drone flights, we apply the HOG and linear support vector
machine (SVM) algorithms to the detection and recogni-
tion of landmarks in the investigated region. We propose
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Fig. 1. Google Maps aerial view of the NTUT Athletic Field study area.

the use of landmarks to detect safe landing areas and auto-
matic recharging platforms for drones. The limited capacity
of batteries has restricted the flight distance of drones. The
proposed method triggers an automatic landing protocol to
enable the drone find the nearest charging platform in case of
low battery charge. In addition, during emergency landings
in cases of aborted missions or drone system malfunction,
the drone is prone to collision and destruction because of
a lack of safe landing places. The proposed method enables
the drone to automatically land safely by locating the nearest
safe landing place.

When the flight mission is complete, the captured images
are processed for 3-D reconstruction of the environment to
perform scene detection and interpretation through unsuper-
vised learning algorithms. Although existing algorithms such
as the K-means algorithm are widely applied for solving clus-
tering problems, in this paper, the iterative self-organizing
data analysis technique (ISODATA) algorithm is used for
image clustering and classification because of its robustness,
efficiency, and superiority over the K-means algorithm.

The remainder of this paper is organized as follows.
Section II describes the test site and equipment used to imple-
ment the system. Section III explains the techniques used in
the proposed system for scene detection. Section IV presents
the experimental results and discussions. Finally, Section V
presents the conclusion.

II. STUDY AREA AND DATA ACQUISITION

We used a drone with an onboard camera equipped with
sensors spanning the visible light range to capture a sequen-
tial set of images of our study area, namely the National
Taipei University of Technology (NTUT) Athletic Field,
Taipei, Taiwan. This study area, which measures approxi-
mately 6200 m?, is a field wherein some grass areas have
deteriorated due to poor management (Fig. 1). The images
were acquired using the quadcopter Parrot BEBOP 2 drone
with a camera equipped with a 14-megapixel CMOS sen-
sor and a fish-eye lens; the flying altitude of the rotor is
approximately 100 m. The images are characterized by three
channels (RGB) and a spatial resolution of approximately
7.5 cm. The high-spatial-resolution drone images were used
for 3-D reconstruction of the scene for further interpretation.
Images and video streams were recorded by a ground con-
trol station (GCS) for image processing and real-time video
processing.
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Fig. 2. Parrot BEBOP 2 drone.

A. Equipment

We used the Parrot BEBOP 2 drone for data acquisition and
a remote personal computer (PC) for planning the drone flight
missions and image processing.

1) Parrot BEBOP 2 Drone: The Parrot BEBOP 2 quad-
copter drone has a front camera with a 14-megapixel CMOS
sensor and a fish-eye lens for image acquisition (Fig. 2).
The resolution of the acquired images and videos is 4096 x
3072 and 1920 x 1080 pixels (30 frames/s), respectively. To
overcome the challenges of flight control and to avoid col-
lision, the drone was equipped with the following onboard
sensors. A pressure sensor that measures air pressure around
the drone and analyzes the flight altitude above 4.8 m (16 ft)
and an ultrasound sensor that analyzes the flight altitude up to
4.8 m. The GNSS chipset (GPS + Glonass + Galileo) geo-
localizes the drone and maintains its flight path and measures
the speed to stabilize the drone at very high altitudes. A tri-
axial gyroscope detects and maintains changes in the drone’s
direction. An accelerometer determines the position and ori-
entation of the drone in flight and measures its linear speed.
In addition, the drone was mounted with an additional vertical
camera sensor on its bottom to determine the altitude and to
capture images of the ground every 16 ms; moreover, the sen-
sor compares consecutive images to determine the speed of the
drone.

2) Ground Control Station: Our system uses a stan-
dard PC for autonomous flight planning and data acquisi-
tion. An advanced image processing technique is used for
scene interpretation. Autonomous navigation of the drone
requires the extraction of landmark features [7] to detect safe
predefined landing locations and automatic recharging plat-
forms. In addition, the onboard sensors enable the drone to
detect potential collisions. The GCS communicates with the
drone through a WiFi connection. Subsequently, the GCS
uses Parrot SDK3, a widely used drone open-source mid-
dleware, and the Open-CV library executed in a Python
environment to stream and process the real-time video; fur-
thermore, the GCS uses sensor measurements from the drone
and sends appropriate control commands for each of the
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four degrees of freedom in the drone (Fig. 3). The SIFT
filter tools are used to enhance images and to extract low-
level features, following which the images are subject to
sharpening, brightening, noise removal, and texture feature
extraction.

B. Data Acquisition

The images were captured using the Parrot BEBOP 2 quad-
copter with a 14-megapixel CMOS sensor and a fish-eye lens
during flight at an altitude of approximately 100 m. Images
with a spatial resolution of 7.5 cm were used for 3-D recon-
struction of the scene for further analysis. Approximately
50 images were captured over the archeological area of NTUT
Athletic Field, with an overlap of more than 50% between the
images (Fig. 4). Red, orange, and yellow areas indicate low
overlap, with poor 3-D points generated for three or fewer
matched keypoints. The green areas indicate good overlap,
with more than five matched keypoints for every pixel. High-
quality 3-D reconstruction of the scene can be realized when
the number of correctly matched keypoints is sufficiently high
for the target areas. Thus, the main objective of this experi-
ment was to maintain a high overlap between the images in
order to obtain sufficient matched keypoints to generate a high
quality 3-D representation of the scene.

The sequential images captured from the drone were used
for the 3-D reconstruction of objects using photogrammetry
software such as the structure from motion (SfM) software,
Pix4DMapper, and Photoscan Professional. The GPS informa-
tion usually cannot be exported for other use while the drone
is navigated by the inertial GPS unit. Therefore, an additional
GPS unit sensor is attached to the drone for tagging the GPS
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location on the images and 3-D objects for creating images
with geographic coordinates.

The drone framework, aided by the landmark detection and
recognition system, is capable of autonomously flying the
drone over very large complex environments. The drone is also
equipped with onboard sensors, collision detectors, to over-
come flight challenges. The drone transmits real-time video
to a GCS, which performs landmark detection and recogni-
tion on each video frame. The drone scans the environment
to identify objects of interest and triggers appropriate actions
when necessary.

C. Flight Planning

The flight and data acquisition is planned using a remote
PC with dedicated geographic information system software.
All information on the area to be investigated, the required
ground sample distance (GSD), and the intrinsic parameters
of the onboard drone camera is gathered. The required image
scale and camera focal length are fixed for estimating the
precise mission flying height. The camera perspective cen-
ters (“waypoints”) are computed by fixing the longitudinal
and transversal overlap of the strips. Depending on the objec-
tive of the particular flight, the parameters are varied using
a detailed 3-D reconstruction structure that requires high over-
laps between sequential images and a low flying height to
obtain small GSDs. In addition, landmarks are defined in the
investigated area to ensure safe landing and precise positioning
of the drone. Sufficient drone battery capacity and safe landing
platforms covering the entire investigated area are required to
perform safe autonomous flights over very wide areas.

D. Autonomous Navigation

For safe and efficient navigation, drones must be able to
localize themselves autonomously using their onboard sen-
sors and interpretation of the unknown environment features.
To this end, we propose a vision-based target detection and
localization system.

The Parrot platform was used to obtain a real-time video
stream to enable the drone to navigate autonomously over
very large areas using GPS information and perform the
real-time landmark detection and recognition system without
relying on GPS. The proposed system identifies the regions of
interest (ROIs) in each video frame during the flight and trig-
gers autonomous responses based on the detected landmark
and the current drone status. For example, on detecting low
battery charge, the drone searches for the nearest charging plat-
form in the video frame and executes a landing at the target
location. Moreover, if the drone detects system malfunctioning
during the flight or if the mission is aborted, the drone safely
executes an emergency landing by searching and locating the
nearest safe landing platforms, thus ensuring the smooth and
safe return of the drone to the ground for easy recovery. For
landmark detection, we applied the HOG feature extraction
algorithm to extract features from our landmark datasets. For
the landmark recognition system, we trained the model using
a linear SVM algorithm (Fig. 5).
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Fig. 5. Flow diagram for landmark detection and recognition using HOG
and linear SVM algorithms for autonomous drone navigation.
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Parrot BEBOP 2 quadcopter with four degrees of freedom during

We calculated an HOG feature descriptor used for landmark
detection based on a 128 x 128 patch of input images during
the feature extraction phase. Then, we computed each image
gradient in both x and y directions in the 8 x 8 cells. To make
our descriptor robust and independent of illumination varia-
tions, we normalized the contrast of the image gradient using
16 x 16 blocks of 50% overlap and calculated the magnitude
and direction of the image gradient. Finally, we trained the
landmark recognition model by using the extracted features of
the linear SVM model.

The GCS can send control commands to the drone, allow-
ing it to autonomously take appropriate actions. These control
commands adjust the acceleration and direction of the drone
by controlling the speed of the four rotors to perform the yaw,
roll, pitch, and throttle movements (Fig. 6).

III. METHODOLOGY

In this section, the proposed method for detecting and classi-
fying the damaged grass areas of an athletic field is described.
Fig. 7 delineates the proposed approach.

A. Data Preprocessing

The sequential drone images must be preprocessed to
produce high-resolution orthomosaic images and the point
clouds used as input data in our classification algorithms. The
Pix4DMapper software [12] was used during the preprocess-
ing. The high-resolution orthomosaic images with a resolution
of 1137 x 1430 pixels and 3-D point clouds with an average
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Fig. 7. Flow diagram of the proposed method for environment detection
using drone imagery.

density of 6.32 points/m> were then used as the two forms of
data for the investigated area.

1) Rectification: Raw digital images cannot be used as
maps because of the presence of geometric distortions result-
ing from the image acquisition phase, which varies with
the camera lens. Therefore, the original raw images must
undergo geometric correction, and distortions such as vari-
ations in altitude and earth curvature must be corrected to
achieve the same geometric integrity so that the images can
be used as maps. First, radial distortion can be adequately
corrected by, for example, applying a third-degree polynomial
approach [13] to correct straight lines that appear curved in all
the images. Second, every raw image must be rectified using
a nonparametric rectification approach.

To eliminate the noise and correct distortion in all the
images, we employed the Gaussian filter by using the 2-D
function f = f(I), where I = (x, y) € R?, to represent an
image [14]. The index (x, y) of the center element of a 5 x 5
mask was set to (0, 0), and the entire mask was defined to
span from (—2, —2) to (2,2). The value of each element in
the 5 x 5 Gaussian mask is defined as follows:

Golx.y) = e~ (54920 (1)
where x,y = {—2,...,2} and the standard deviation 0 =
[0.1,5.0].

The drone images are challenging to process because of
the lack of camera pose estimation in the direct and real-time
measurements. To overcome this problem, we implemented
a computational cost by applying a set of algorithms and
mathematical operations. These algorithms perform automatic
image matching, camera pose estimation for detecting outliers,
and 3-D feature point triangulation. We used the RANSAC
algorithm and a cost function to classify the outliers on the
basis of pose estimation and the additional constraints from
the sensor data of the IMU. For controlled flight, the drone is
equipped with a magnetometer, an accelerometer, and a gyro-
scope, all of which collectively forms the IMU for sensor
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Fig. 8. High-resolution orthomosaic image obtained by stitching the drone-
acquired images.

measurements. Bundle adjustment was applied to detect the
remaining outliers from the mismatches. We then optimized
the pose estimation by minimizing the cost function by varying
the constraints as follows [15]:

n m
2 A
E, = pr(”xk - q(Pi,Xj)||2) + A Zpr( ’Rl - RIHF)
k=1 =1
2
where |- || denotes the Frobenius norm and P; is the cam-

era pose. The 3-D points Xj, with x; image measurements,
the image projection function ¢, and the Cauchy functions p,
and p, are used to optimize the results. The measured rotations
from the IMU are denoted by Ry, and the rotational parts of the
camera pose P; are given by R;, with a regularization param-
eter A being a weight term between the image measurements
and IMU measurements.

2) Mosaicking: Mosaicking is the seamless joining or
stitching of adjacent imagery [11] or several overlapping
images to generate a large uniform image of the scene, as
shown in Fig. 8. On completion of image rectification, the
images can be merged together to form a high-resolution
mosaic image; however, the image may still contain visible
borders, which need to be rectified. We used image blending,
an effective method that can result in better-quality mosaics,
because drone-acquired images often possess radiometric vari-
ations of overlapping views. The 2-D sequential images from
the drone were used for 3-D reconstruction of the investigated
scene through the “SfM” technique. Although the drone is
navigated using the inertial GPS unit, GPS information is not
always available; consequently, accurate coordinates cannot be
registered on the 3-D points. The SfM is a technique used
for computing the camera parameters and 3-D coordinates
of feature points from 2-D image sequences captured from
different angles in computer vision. This process is used for
3-D reconstruction of the target scene and calculation of cam-
era parameters [16] that consider the usefulness of matched
points and bundle adjustment on completing feature-point
extraction and matching.

The pinhole camera geometry models the projective cam-
era with two subparametrizations, intrinsic and extrinsic
parameters, describing the relationship that exists between
the points on the image and the ground points. Assuming
that the lens axis passes through the center of the image
plane and that the pixel of the camera is foursquare, the
camera parameters can be defined with seven parameters,
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namely rotation parameters 6; = (01, 6,63), transla-
tion parameters ¢; = (f1,%,13), and the lens focus f;,
where i represents an image. The calibration matrix K; is
given by

fi 0 0
Ki=|0 fi 0. 3)
0 0 1

Fig. 9 shows point p in the image plane as a projection of the
ground point P in the focal plane with coordinate system X; =
(X, Y, Z). The coordinates of image point p in the image space

coordinate system are x; = (x,y,z), with 6 as the rotation
parameter for each axis. Thus, the relationship is
x;j = Ki(RiX; + ;) “4)

where x;; is the projection of point X; in image i and R; denotes
the rotation matrix [16], which can be described as

0 —03 (%)
R, = 03 0 -6 |. &)
—6, 61 0

Considering that the pixel is foursquare, « is the size of the
pixel, and the principal point (ug, vo) of the image plane is
assumed to be in the center of the image. The transformation
from the pixel coordinates of one point to its relative image
plane coordinates (x,y) can be represented as follows:

{x = a(u — ugp)
y=ol—vy).

In general, drone images possess large distortion because
they are captured using a nonmetric digital camera; the most
common type of distortion is radial distortion [3], which is
proportional to the distance square of the image point to the
principal point of the image plane. Assuming that the distor-
tions in the directions of u# and v are the same, the radial
distortion model is as follows:

{ W — Uy = xk(r)

Ve = B )

(6)

o
k(r) = 14 ki r* + kor® (8)

where (', V') are the pixel coordinates with distortion differ-
ence, k(r) is the ratio factor from nondistortion coordinates
to distortion coordinates, r = v/x% 4 y? is the distance of the
image point to the principal point of the image plane, and k;
and ky are the distortion parameters. Thus, the camera has nine
parameters (61, 62, 03, 11, 12, 13, f, k1, and k2).
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B. Unsupervised Classification Using ISODATA
Algorithm With PCA

Given the input data described in the previous sections,
vegetation mapping is specified as an unsupervised classifi-
cation of drone orthomosaic images and point clouds (texture
features) to serve as our inputs. We first performed princi-
pal component analysis (PCA) for dimensionality reduction
of the data. Subsequently, we used the ISODATA algorithm
for image classification because of its higher robustness and
efficiency relative to the K-means algorithm. Image classifica-
tion is a partitioning procedure in which all the pixels of an
image are clustered or grouped together such that pixels with
the same features can belong to the same class and are closely
related [17], [18].

1) Principal Component Analysis: PCA is an algorithm
commonly employed in data analysis to reduce the dimen-
sions. It is used to reduce a dataset with higher dimensional
vectors to a dataset with lower dimensional vectors [19], [20].
The PCA is executed by simultaneously applying both matrix
method and data method. PCA involves at least the following
four general steps.

1) Find the mean vector in x-space.

2) Assemble covariance matrix in x-space.

3) Compute eigenvalues and corresponding eigenvectors.

4) Form the components in y-space.

PCA compresses information on the number of bands
present into number of new bands called principal components
to reduce redundancy and increase the covariance, resulting in
a dataset of a much lower dimensionality.

2) ISODATA Classification Algorithm: Over the years, the
ISODATA algorithm has been widely used for unsupervised
classification. It assumes that each cluster follows a multi-
variate normal distribution. Therefore, the cluster means and
covariance matrices need to be computed for the individual
clusters. The K-means method is one of the simplest unsu-
pervised learning algorithms that overcomes the clustering
problem. The main idea is to determine the cluster centers
in the data input, following which each pixel belonging to
a given data set is associated to a K-means cluster using the
nearest center. Basically, the ISODATA and K-means algo-
rithms both approach randomly assigned cluster centers; new
cluster means and covariance are subsequently computed. The
new cluster means and covariance are computed for all the
pixels belonging to that cluster. This process is performed
repeatedly until a change in the iterations that satisfies a cer-
tain threshold or insignificant is encountered. The change
can be determined either by measuring the distances between
the cluster means if it differs from one iteration to the next
or by using the percentage of pixels that possess a change
between iterations. Both these algorithms are iterative proce-
dures, and the main difference between them is that in the
K-means algorithm, the number of clusters is known a priori,
whereas in the ISODATA algorithm, the number of clusters can
vary [21].

In this paper, the applied ISODATA algorithm was mod-
ified to account for all possible cases of Euclidean distance
from maximization to minimization in order to generate
the initial cluster centers and realize high performance [22].
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Fig. 10. Reference points were computed from the orthomosaic images as
ground truth for use in performance evaluation.

The Euclidean distance given by Dy; was calculated between
every pixel and the initial cluster centers that make the clas-
sification procedure possible. We computed the Euclidean
distance from every pixel to every cluster center in the same
band and then summed the distance of all the bands as
follows:

Dy; = Z (My; — ij)2 )

where Dy; is the sum of the band’s distance between the pixel
M, and the cluster center Cy; of the same band.

Therefore, for pixels My, if Dy < Dyj(i =0,1,...,NC —
1&i # j), My; € ®;, ®; is the cluster i with center Cy. By
modifying the cluster center value, where N; is the number of
pixels of all the bands in the cluster ®;, we have

1
Cix = — Z M., i=0,1,...,NC—1. (10)

Ni M€ ®;
Next, we calculated the average distance between the pixels
of the same cluster and the corresponding cluster center, where

W; is the average distance among pixels of the same cluster

1 .
Wi=— E My — Ciy), i=0,1,...,NC—1. (11D
N;
My € D;

Lastly, every pixel of the same cluster was summed to
calculate the total average of all the clusters as follows:

NC

— 1 .
W=N;Wi*N,-, i=0,1,...,NC—1.
=

12)

C. Target Scene Interpretation

The orthomosaic image was visually interpreted; 200 points
were extracted as reference points from the ground truth
(Fig. 10). We identified four main classes, namely dam-
aged grass areas, grass field, running track, and trees. Before
ISODATA clustering, we performed a PCA on the data to
reduce the dimensionality of the data. Then, because the
number of clusters needs to be known in advance for the
ISODATA classification, we used numbers ranging from 4 to
6; the results are more satisfactory when the value is 4.
Once the clustering process was complete, the clusters were
manually labeled (Fig. 11) to the closest match using the ref-
erence image. The ISODATA method generates a cluster map,
with clusters assigned arbitrary colors for easy identification.
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Fig. 11. Classification results from the orthomosaic image.

Fig. 12. Distorted checkerboard calibration pattern.

Accordingly, during labeling, each cluster was matched to
a class from the reference image and given a unique color.
Classes that exist in the cluster map can be easily recognized
by their spectral properties. In our experiment, we matched
as many classes as possible to the clusters produced by the
ISODATA clustering; however, results from only four clusters
perfectly matched all the targeted clusters.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We calibrated the drone camera using a checkerboard cali-
bration pattern (Fig. 12) in MATLAB to improve the accuracy
and performance of the proposed method. Camera calibra-
tion involves the estimation of a camera’s intrinsic, extrinsic,
and lens-distortion parameters. Subsequently, we used the cal-
ibrated camera parameters to accurately measure the size of
any object in the image.

The recommended calibration procedure to accurately mea-
sure the area of the objects is as follows.

1) Prepare calibration images of the model plane taken
under different orientations by moving either the plane
or the drone camera.

2) Estimate the camera parameters and evaluate the cali-
bration errors (Fig. 13).

3) Detect the feature points in the images (Fig. 14).

4) Estimate the intrinsic and extrinsic parameters (Fig. 15).

5) Correct lens distortion (e.g., radial lens distortion)
parameters.

6) Detect objects in the image by using segmentation
and measure their areas by using the calibrated cam-
era parameters (Fig. 16). It took the GCS 0.2 s to detect
landmarks on each video frame.

The detected object in our calibration image was a book of
surface area 173 cm?. Next, we evaluated the performance of
the proposed method when used for scene detection. On the
basis of our datasets (orthomosaic images and point clouds),
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Fig. 14. Visualization of extrinsic parameters. Left: pattern locations. Right:
camera locations.

Fig. 15. Left: detected points on checkerboard with distortion. Right: detected
points on checkerboard without distortion.

Fig. 16.
image.

Left: object segmentation. Right: object detection of undistorted

we specified the number of clusters for our experiment.
Furthermore, we extracted statistical data from the datasets
to evaluate the performance of the proposed method.
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A. Model Parameter

In this part of the experiment, the number of clusters for our
datasets needs to be provided as prior information. Using the
ISODATA classification algorithm, the minimum description
length criterion [23], [24] was implemented on the datasets to
select the optimum number of clusters as 4.

B. Evaluation of the Results

We further investigated the performance of the proposed
method and validated its accuracy against the K-means
approach as the reference algorithm. For the K-means algo-
rithm, the number of clusters was set to 4 when processing
both orthomosaic images and cloud points.

The main objective of environmental classification is to
label each point or pixel of the image to a specific group or
cluster. We labeled pixels in the image to belong to one of the
four class labels: 1) “damaged grass areas”; 2) “grass field”;
3) “running track”; and 4) “trees.” Accordingly, the classifica-
tion performance was evaluated using the following statistics:
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN).

We calculated the TP, FP, FN, and NP for the proposed
method, and the overall accuracy was compared with that of
the K-means algorithms.

To measure the accuracy and performance of our algo-
rithm, we calculated four evaluation indices, namely accuracy,
sensitivity, FN ratio (FNR), and FP ratio (FPR) [25]

TP + TN
Accurancy = (13)
TP 4+ TN + FP 4+ FN
o TP
Sensitivity = ———— (14)
TP + FN
FN
FNR = (15)
FN 4 TP
FP
FPR = ————— (16)
FP + TN

where accuracy refers to the number of correctly detected
points in the entire dataset, sensitivity indicates the number of
correctly detected points as either damaged grass areas, grass
field, running track, or trees in the ground truth. In addition,
FNR and FPR were computed for each land cover in terms
of commission—omission errors in the reference point of the
ground truth [26].

The image classification results of the ISODATA algorithm
and the corresponding execution time increased exponentially
as the number of iterations increased. A comparison of the
classified image against the ground truth pixels reveals that
the ISODATA algorithm is more precise and accurate because
each pixel in the image was correctly classified. The overall
accuracy of the classification process using the unsupervised
ISODATA algorithm with PCA was 84.0%.

The grass field pixels were classified with 100% accuracy
(Tables I and II). The tree pixels were misclassified as grass
field pixels, thereby lowering the sensitivity of the proposed
method (Tables III and IV) for the entire experiment in the
study area. In addition, the evaluation of the three indices was
high (Table V). The proposed method shows that sensitivity is
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TABLE I
CONFUSION MATRIX FOR THE PROPOSED METHOD
USING ISODATA WiTHOUT PCA

Grass Damaged Running  Trees
Field Area Track
Grass Field 50 0 0 0
Damaged Area 5 39 6 0
Running Track 0 0 41 9
Trees 23 0 0 27
TABLE II
CONFUSION MATRIX FOR THE PROPOSED METHOD
USING ISODATA WITH PCA
Grass Damaged Running  Trees
Field Area Track
Grass Field 50 0 0 0
Damaged Area 3 47 0 0
Running Track 0 0 42 8
Trees 19 0 2 29
TABLE III

EVALUATION OF THREE INDICES USING ISODATA WITHOUT PCA

Land cover Sensitivity FNR FPR

Grass Field 100% 0% 56%

Damaged Area 78% 22% 0%

Running Track 82% 18% 12%

Trees 54% 46% 18%
TABLE IV

EVALUATION OF THREE INDICES USING ISODATA WITH PCA

Land cover Sensitivity FNR FPR

Grass Field 100% 0% 44%

Damaged Area 94 % 6% 0%

Running Track 84% 16% 4%

Trees 58% 42% 16%
TABLE V

OVERALL ACCURACY OF THE PROPOSED AND
THE K-MEANS METHODS

Method Overall Accuracy
Proposed Method 84.0%
ISODATA without PCA 78.5%
K-means 76.0%

much higher when using ISODATA algorithm with PCA than
when using the ISODATA without PCA, and this result is
very encouraging. Moreover, FNR and FPR of the proposed
method are lower when the ISODATA and PCA algorithms are
used. Furthermore, the proposed method has an overall accu-
racy higher than that of the K-means algorithm, which implies
that the proposed method has higher accuracy in detecting
and classifying pixels in an image than does the K-means
algorithm.

C. Area Estimation of the Damaged Grass Field

We proposed an automatic method to calculate the area of
the damaged field after classification. The ROI pixels were
selected and grouped together to form contours and were used
to estimate the area of the damaged grass field. To estimate
the area of the ROI, we calculated some statistical values for
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TABLE VI
S1ZE OF THE CLASSIFIED AREAS

Land cover Area (m?)
Damaged Area 602.34
Grass Field 1441.40
Estimated Grass Area 2043.74
Actual Grass Area 2292.00

Fig. 17.

Contours representing pixels in the damaged grass field.

pixels of the input raster inside each target contour. The area is
calculated as

Area = Pixel count*(Ce:llsize)2 a7

where Cellsize is a constant value of 7.84 m, which is the cell
resolution of the raster image, and the pixel count is the sum
of all pixels that belong to the ROI. The area of the damaged
field was calculated as shown in Fig. 17.

Approximately 40% of the soccer field was damaged
(Table VI), indicating that the soccer field is poorly managed
and needs to be fixed urgently.

Subsequently, after determining the area of the damaged
field, we estimated the amount of grass that must be planted
to restore the soccer field. To validate the accuracy of the
results, we used the actual known grass area measured using
the GPS information against the summation of the damaged
area and the grass area from the classification, and the error
rate was calculated as follows:

|Actual Grass Area — Estimated Grass Area|

Error = 100%.
Actual Grass Area

(18)

The error rate, which reveals the number of pixels that were
incorrectly classified as either damaged or grass pixels, was
10.83% (Table VI), indicating that most of the pixels in the
field were correctly classified by the proposed algorithm.

D. Car and Vacant Parking Space Detection

The proposed method was also used as an image-based
system to automatically detect both cars and vacant parking
spaces in a parking lot to facilitate smart parking. It is aimed
at providing car drivers with reliable intelligent parking infor-
mation and guiding them to the nearest vacant parking space
to have easy and efficient parking. We consider the similar
architecture and algorithms used for the landmark detection
and recognition system for this application. HOG features
are computed by dividing the input images, each resized to
124 x 64 pixels from dataset containing both images of cars
and vacant parking spaces, into a set of overlapping cells.
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Fig. 18. Example of car HOG feature extraction process.
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Fig. 19. Result from parking lot UAV images. (a) Car detection. (b) Vacant
parking spaces.

In each cell the histograms of gradient directions are com-
puted as shown in Fig. 18. The histograms are further grouped
together to form the descriptors and then normalized to make
them more invariant to illumination and shadowing changes
over blocks of N x N cells. For this experiment, the HOG
parameters used were nine bins on cells of 8 x 8 pixels, with
a block size of 2 x 2 cells overlapping by 50%. A dataset
of 2000 images were collected using the UAV over an open
parking space during daylight at an altitude of approximately
40 m. One thousand six hundred images from the dataset
were used for training and the rest 400 for testing using their
HOG descriptors and linearSVM with C parameter set to 100.
After applying the linearSVM classifier to the HOG features
extracted from the sliding windows over the image pyramid
which is the multiscale representation of the UAV image,
a number of bounding boxes are derived by a threshold to the
prediction score as demonstrated in Fig. 19. A nonmaximum
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Fig. 20. Detection results from license plate images taken by UAV
for (a) motorcycles and (b) automobiles.

suppression algorithm is used to fuse the overlapped detection
with an overlapping threshold of 0.1 over all scales into one
final result. In Fig. 19(a), the result shows that all the four cars
in the parking lot were correctly detected and in Fig. 19(b),
both two vacant parking spaces were also correctly detected.
The overall accuracy achieved for the entire dataset is 98%.

E. Automatic License Plate Recognition

The proposed method was further used for an automatic
license plate recognition (ALPR) system designed to detect
and recognize license plates for vehicles in the target areas.
We propose a unified approach that integrates the three general
ALPR steps (license plate detection, character segmentation,
and optical character recognition) via the use of a deep con-
volutional neural network (CNN) that operates directly on the
image pixels [27]. In this method, the CNN is used as a feature
extractor and classifier to recognize alphabets (A-Z) and digits
(0-9) that constitute the license plate character combinations.
Our model was trained on a set of training dataset labeled with
expected outputs generated from synthetic images to represent
the vehicle license plates in the different styles.

A dataset of 25 000 synthetic license plate images each
of size 128 x 64 pixels were generated from 30 000 ran-
domly selected background images sourced from ImageNet
dataset [28]. After training the model over 20 000 images, the
test accuracy from 5000 images achieved 99% from detec-
tion of license plates with either six or seven characters.
Fig. 20(a) and (b) shows that all license plate characters for
the motorcycles and automobiles, respectively, were correctly
recognized.

V. CONCLUSION

We presented an unsupervised classification method that
uses high-resolution images to detect and differentiate the
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geo-object classes (scene interpretation) by using spectral
information in the target or investigated area; this system was
supported by a landmark detection and recognition system
for autonomous drone navigation. Because the classification
method is unsupervised, no prior knowledge about the inves-
tigated environment is required. The proposed method outper-
formed the reference model in the experiments. Furthermore,
we proposed a method to autonomously navigate a drone
in very large environments. The proposed -classification
method, which uses high-resolution orthomosaic images and
3-D point clouds, yielded satisfactory experimental results;
however, the overall accuracy of the method can still be
improved.

In the future, supervised or semisupervised training of the
models as well as their application to different target envi-
ronments can be investigated. 3-D collision detection and
obstacle avoidance can be considered to enhance the safe
landing of drone. Deep learning algorithms can be imple-
mented in landmark detection and recognition systems to
improve the overall accuracy of the method. Furthermore,
using the drone’s onboard CPU rather than the GCS may
improve the connection and efficiency of the algorithm
for use in real-time landmark detection and recognition
systems.
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