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Abstract—In this paper a new model describing the HIV-AIDS
epidemic spread is proposed. The improvement with respect to
the known models has been driven by recent results obtained
from historical data collection and the suggestions given by
the World Health Organization: the characteristics of the virus
diffusion, mainly by body fluids, imply the trivial fact that
wise behaviours of healthy subjects and fast timely recognition
of a new positive diagnosis should reduce the spread quite
fast. Therefore, the set of susceptible subjects is divided into
two categories: the wise people that, suitably informed, avoid
dangerous behaviours, and the ones that, with irresponsible
acts, could get the infection. The set of infected subjects is
constituted by people who are still not aware of being infected
(and therefore are responsible of the HIV spread), along with
the subjects aware of being infected by HIV or AIDS. Inspired
by the international guidelines suggestions, three controls are
introduced, aiming both at the prevention and at the cure: an
informative campaign, a test campaign, and a HIV/AIDS therapy
action. Among them, the core of the control effort is a fast
HIV diagnosis. The equilibrium points, their stability and the
influences of the introduced inputs to the system behaviour are
studied, yielding to preliminary statements for prospective works
on suitable control design approaches.
Keywords: Analytical models, System analysis and design, Sys-
tems performance analysis and prediction, Nonlinear dynamical
systems, Public health-care

I. INTRODUCTION

Mathematical modelling has shown its power describing mod-
els of different outbreaks like SIR, SARS, SIRC, SEIR, HIV
[1], [2], [3], [4], [5], and therefore discussing possible control
strategies, such as vaccination, drug medication, quarantine
and so on [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15]. Moreover, epidemic models can be applied in different
scenarios, such as biological and social networks, as in [16],
where the authors formulated an SIS model with the infection
transmission delay, or in [17], where again the SIS case was
studied introducing a switching network for the epidemic mod-
elling. Pioneering studies on epidemic models with switching
parameters and dynamics are presented in [18]. The prediction
of epidemic spread behaviour is analysed in [19] in a rather
general context to propose a network architecture for resource
usage prediction.
The Human Immunodeficiency Virus (HIV) is responsible
for the Acquired Immuno Deficiency Syndrome (AIDS); it
infects cells of the immune system, destroying or impairing
their function: the immune system becomes weaker, and the
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person is more susceptible to infections. The AIDS is the most
advanced stage of the HIV infection and it can be reached in
10-15 years from the infection. It can be transmitted only by
some body fluids: blood, semen, pre-seminal fluid, rectal fluid,
vaginal fluid, and breast milk; therefore, it is mainly transmit-
ted by a subject during unprotected sex, sharing needles or
syringes and, less commonly, by oral sex, blood transfusion
or from mother to child during pregnancy or breastfeeding.
The data from the World Health Organization (WHO) confirm
the seriousness of the HIV being 1.1 million the number
of people died of AIDS-related illnesses worldwide in 2016
(last update); in the same period the number of people living
with HIV-AIDS is about 36.7 million. A significant aspect
that contributed to the inspiration of this paper is that only
54% of people with HIV is aware of the infection. Currently
no vaccine exists and the treatment consists in standard An-
tiRetroviral Therapy (ART) to maximally suppress the HIV
virus and stop its progression; using condoms and regular
blood analysis on subjects belonging to risk-categories could
help in contrasting the spread of this virus. Available models of
the HIV-AIDS infection may be divided into two main groups,
one focused on the dynamics at cells level [20], [21], [7], [22]
and one dealing with the dynamics of subjects interactions
[23], [24], [25], [26], [27], [28]. Regarding the first approach,
the attention is focused on the essential components of the
immune system, the CD4 T-cells. An HIV patient is expected
to develop AIDS; he is classified as an AIDS patient when
he has less than 200 CD4 T-cells in mm3 of blood [29]. A
Long Term Non Progressor (LTNP) is the status of the HIV
patients who still have enough CD4 T-cells to contrast the
HIV and the other infections, never developing the AIDS; they
represent less than 1% of the HIV infected patients, [30], [31].
In [32], the two equilibrium points, LTNP and AIDS, functions
of medication, are studied in the state space, showing their
asymptotic stability. The aim is to drive, with medication, the
state of the patient into the LTNP region of attraction. In this
framework, the medication strategy is studied in [7] and [20];
in particular, in [20] a state dependent coefficient that weights
differently the control according to the number of the infected
cells is introduced. These considerations inspired the works
[14] and [33], where control strategies with a state dependent
switching cost index are introduced, referring to a SIR and an
HIV model respectively. As far as the approach concerning
the relations between subjects, generally four classes are
introduced: the Susceptible one, S, with the subjects which are
not yet infected but may get the virus; the Infected one, I , with
the individuals that still do not know their illness condition; the
HIV group with the pre-AIDS patients, P , and the one with the
AIDS patients, A. In [23], this four-classes model considers
a constant individuals inflow in the S and the I classes and



a natural death is introduced in addition to the one due to
HIV/AIDS; the transitions considered are from S to I for the
unconscious infected subjects, from I to P or A depending
on the diagnosed infection characteristics, and from P to A.
Subjects in LTNP status are not here considered. In [34], a
description of a dynamic compartmental simulation model for
Botswana and India considers sex behavioural compartment,
high risk and low risk, to identify the best strategies for
preventing the spread of the HIV/AIDS. They are focused on
a behavioural intervention on female sex workers, a program
for the treatment of sexually transmitted infections, for the
prevention of mother-to-child transmission, for medication of
the entire population, and one specific for sex workers only.
In [26] the four-classes model is analysed to determine the
best strategy to control the disease burden; the conclusions
enhanced the importance of controlling the effective contact
rate of the infected population and of isolating the susceptible
part. The HIV/AIDS models present nonlinear interactions; the
mathematical analysis of the global dynamics of the spread is
faced in [28]. The main finding is that, whereas treatment can
help in containing the HIV/AIDS spread, it can also lead to
the evolution of drug resistance, which can reverse the benefits
of treatment. Nevertheless, treatment is useful in reducing the
infection and the mortality in infected individuals. Recently,
in [25] a new model, the SICA, has been proposed, focusing
on the antiretroviral therapy; four classes are introduced: the
susceptible subjects (S), the infected individuals (I) with no
symptoms of AIDS, the infected subjects (C) under ART
treatment, the infected patients with AIDS (A). The analysis
on the nonlinear SICA model showed the importance of an
early ART treatment for the infected subjects, thus putting
in evidence the urgency of a fast HIV/AIDS detection. In
[35], the effects of people interactions in case of extreme
events are studied when facing dangerous and risky actions;
the uncertainties on behaviour diffusion are considered in the
rather general contest of social networks in [36], where the
differences with respect to virus spreading are pointed out. As
it will be discussed in Section II, in this paper two classes
of non-infected subjects are introduced: the subjects that are
not aware of irresponsible acts and, therefore, could become
infected, and the subjects representing the wise population
that, suitably informed, avoid dangerous acts. The infected
subjects are divided into three groups: the individuals that are
still not aware of being infected, and therefore are responsible
of the spreading of the HIV/AIDS, and the infected aware
patients, which may be in the HIV class or in the AIDS one.
The definition of the health care systems represents the first
step when planning intervention. A framework in which such
systems can be studied is proposed in [37] where a metamodel
with different views is proposed: care of patients, resource and
organization.

In the present paper, three different control actions are intro-
duced, consistent with the three levels of intervention sug-
gested by the World Health Organization:

• primary prevention: it is designed for healthy people to
reduce the possibility of new infections; in our approach it
corresponds to the information effort aiming at using wise

attitudes to prevent the non-infected subjects to acquire
the infection;

• secondary prevention: it is devoted to a fast identification
of new infections and risk conditions to improve the
percentage of subjects that become aware of their illness
by regular blood tests;

• medication: it is the cure to the aware infected patients.
The costs of primary and secondary preventions represent an
immediate economic effort, whereas their effects could be
noted only in the future. Therefore, the preliminary study on
the effects of the different strategies is useful in the cost/benefit
analysis.
The main points of this paper may be summarized as follows:
• a new model of the HIV/AIDS spread is proposed: it

has been inspired by the simple consideration that all the
subjects in the population are susceptible and with wise
behaviours the spread could stop immediately, since the
HIV may be transmitted only by body fluids contact.
Therefore, the important distinction between subjects
with wise behaviours and the others has been modelled;

• a deep analysis of the proposed model is presented,
showing its consistency with known results [23], [30].
It could represent the basis for further implementations,
as it will be outlined in the Conclusions;

• interventions coherent with the suggestions of the World
Health Organization are introduced and their effects on
the spread are studied. Of course, the medication on
the AIDS patients does not influence the spread in the
proposed model, since it is assumed that, after a positive
diagnosis, a patient can infect nobody. However, it is
introduced for sake of completeness;

• the intuitive consideration that a fast HIV/AIDS recogni-
tion could help in reducing the spread has been confirmed
by the numerical results.

The paper is organized as follows. In Section II, the proposed
mathematical model is illustrated and motivated, while in
Section III its stability properties are studied. In Section IV the
numerical analysis of the dynamics is presented and the results
obtained are discussed. Conclusions and future developments
are outlined is Section V.

II. THE MATHEMATICAL MODEL

As presented in the Introduction, when dealing with the HIV
infection analysis and control the most common choice for
its mathematical modelling makes use of the cellular and the
virus dynamics and interactions [21], [20]. An epidemiological
approach is only sometimes followed, mainly to put in evi-
dence some peculiar characteristics of its dynamics. One of the
most interesting among them is proposed in [23], where some
interesting aspects in the epidemic transmission and diffusion
are introduced and investigated. Starting from its analysis,
recalled in the next Subsection II-A, the mathematical model
here proposed is derived and discussed in Subsection II-B.

A. The reference mathematical model

In [23], the total population is denoted by N(t). It contains the
susceptible individuals S(t), the ones that can become infected



through sexual contacts, and three kinds of infected indi-
viduals: the subjects unconscious of their illness status I(t),
the HIV diagnosed subjects P (t), and the AIDS diagnosed
ones A(t). The hypothesis there adopted is that the infected
individuals I(t) and P (t) can transmit the infection to the
healthy ones, while for the A(t) no risky sexual relationship is
allowed. As a final step, the unconscious infected individuals,
once diagnosed, transit to one of the two classes P or A,
according to a prefixed probability. Then, the dynamics there
proposed, corresponding to such choices, is

Ṡ(t) = Q1 − dS(t)− βcS(t)I(t)

N(t)
− β′cS(t)P (t)

N(t)

İ(t) = Q2 +
βcS(t)I(t)

N(t)
+
β′cS(t)P (t)

N(t)
− (δ + d)I(t)

Ṗ (t) = εδI(t)− (α1 + d)P (t)

Ȧ(t) = (1− ε)δI(t) + α1P (t)− (α+ d)A(t) (1)

The parameters in (1) are: Q1, the rate of the uninfected
external population incoming, and Q2, the same for the
infected ones; d, the rate of natural death, not related to the
infection; β the sexual contact rate between S(t) and I(t) and
β′ the same between S(t) and P (t), with β � β′; c, the
average number of sexual partners; δ, the rate of movement
from infectious class due to the symptomatic effects; ε, the
fraction of the natural evolution of the illness toward the HIV
infection; α1, the rate of the HIV infected subjects moving to
the AIDS class; α the constant death rate due to the AIDS
infection. In this model, the external actions introduced are
the prefixed constant external rates of population variations
Q1 and Q2.

B. The proposed model

The model here proposed integrates the one recalled in Sub-
section II-A in order to better explain particular realistic
behaviours of the phenomenon and to take into account the
suggestions from the World Health Organization. The first
change in the model is the splitting of the healthy class S into
two groups of non infected persons: the first, S1, containing
people that are not aware of the risks of the infection; the
second, S2, the part of healthy population which, suitably
informed, gives a great attention to the partners and to the
protections. As a consequence, only the interaction between
the individuals in S1 and the ones in I can produce new
infected subjects. There are two kind of interactions between
S1 and S2 introduced in the proposed model. The first one
represents the possibility that, under a driven informative
campaign, a fraction of unaware healthy persons in S1 moves
to the class S2. The effective strength of the information
campaign is represented by the external input u1(t) and can
be assumed dependent on the amount of the (economic)
resources invested and on the sensibility of the population with
respect to the risk; therefore, a term of the form S1(t)u1(t) is
introduced. The second interaction is represented by the fact
that some individuals, despite well informed, may accidentally
become potentially at risk of infection. This contribution is
considered proportional to the number of individuals S2(t)
and its effect is modelled by the term γS2(t). The flux of new

individuals is here supposed to be represented by uninfected
ones only (growing children, checked people and so on),
without hypothesis on their awareness of the unsafe contacts,
so that only Q1 is present, renamed as Q. A further hypothesis
is that the individual consciousness and the social prophylaxis
lead any infected person who knows his/her status to have only
safe relationships. This means that β′ = 0 is assumed. Then,
the following two dynamical equations model the uninfected
population:

Ṡ1(t) = Q− dS1(t)− βcS1(t)I(t)

Nc(t)
− S1(t)u1(t) + γS2(t)

Ṡ2(t) = S1(t)u1(t)− (γ + d)S2(t) (2)

Note that the term N(t) has been changed in Nc(t) =
S1(t) + S2(t) + I(t) in order to consider the subdivision of
S(t) into S1(t) and S2(t) and the fact that P (t) and A(t)
are not involved in risky sexual relationships. The second im-
provement concerns the transition from I(t) to the diagnosed
P (t) and A(t). A natural transition, represented by the term
δI(t), is also present in (1). Here, in addition, a second input
u2(t) is introduced to represent the external contribution to a
test campaign aiming at discovering the infection as soon as
possible. The corresponding action considers the total amount
of candidate subjects Nc(t) and defines the quantity u2(t)

Nc(t)

as the cost for each individual. The costs for S1(t), S2(t)

and I(t) are given by S1(t) u2(t)
Nc(t) , S2(t) u2(t)

Nc(t) and I(t) u2(t)
Nc(t) ,

respectively. The first two terms do not contribute to the
dynamics, since they represent the cost to confirm that an
uninfected person is actually safe. On the contrary, the third
one contributes to reveal the infected status and to transfer
such individuals to the diagnosed classes. Representing this
effect as a proportional contribution, the term −ψI(t) u2(t)

Nc(t) is
introduced in the I(t) dynamics to model such a transition.
The decrement in İ(t) must correspond to how much Ṗ (t)
and Ȧ(t) increase, dividing such quantity in a fraction φ for
Ṗ (t) and (1 − φ) for Ȧ(t), 0 ≤ φ ≤ 1. Then, the equations
added to (2), under these considerations, are

İ(t) =
βcS1(t)I(t)

Nc(t)
− (d+ δ)I(t)− ψI(t)

u2(t)

Nc(t)

Ṗ (t) = εδI(t)− (α1 + d)P (t) + φψI(t)
u2(t)

Nc(t)

Ȧ(t) = (1− ε)δI(t) + α1P (t)− (α+ d)A(t) +

+(1− φ)ψI(t)
u2(t)

Nc(t)
(3)

Finally, a term taking into account the degeneration of the
illness from HIV to AIDS is introduced. The natural transition
is modelled, as in (1), by the proportional term depending on
the parameter α1. In addition, a form of therapy is introduced
by the action of the third input u3(t), so that the transition
from HIV to AIDS becomes dependent also on such an
input, proportionally to the number of individuals P (t), thus
reducing the natural transition given by α1P (t). Therefore, the
term P (t)u3(t) is introduced.
Under all these considerations, the whole model here proposed
is



Ṡ1(t) = Q− dS1(t)− cβS1(t)I(t)

Nc(t)
+ γS2(t)− S1(t)u1(t)

Ṡ2(t) = −(γ + d)S2(t) + S1(t)u1(t)

İ(t) =
cβS1(t)I(t)

Nc(t)
− (d+ δ)I(t)− ψ I(t)

Nc(t)
u2(t)

Ṗ (t) = εδI(t)− (α1 + d)P (t) + φψ
I(t)

Nc(t)
u2(t) +

+P (t)u3(t)

Ȧ(t) = (1− ε)δI(t) + α1P (t)− (α+ d)A(t) +

+(1− φ)ψ
I(t)

Nc(t)
u2(t)− P (t)u3(t) (4)

that can be expressed in the compact form

ξ̇ = F (ξ) + g1(ξ)u1 + g2(ξ)u2 + g3(ξ)u3 (5)

where ξ = (S1 S2 I P A )
T denotes the five dimen-

sional state vector of (4), and

F (·) =


f1(·)
f2(·)
f3(·)
f4(·)
f5(·)

 =


Q− dS1 − cβS1I

Nc
+ γS2

−(γ + d)S2
cβS1I
Nc
− (d+ δ)I

εδI − (α1 + d)P
(1− ε)δI + α1P − (α+ d)A



g1(·) =


−S1

S1

0
0
0

 ; g2(·) =


0
0
−ψI
Nc

φψI
Nc

(1−φ)ψI
Nc

 ; g3(·) =


0
0
0
P
−P


III. EQUILIBRIA AND STABILITY ANALYSIS

In this Section, the existence of equilibrium conditions for the
dynamics (4) and the corresponding stability properties are
studied.

A. Equilibria computation

The computation of the equilibrium points is performed by
solving the equation

F (ξe) = 0 (6)

It can be noted that, under the hypothesis of absence of rela-
tionships between subjects with the infection diagnosed P (t)
and A(t), and the other ones, the uncontrolled dynamics can be
decomposed into a first three dimensional system, whose state
variables are S1(t), S2(t) and I(t), and a two dimensional
one, with state variables P (t) and A(t). The second system
is influenced by the first one through the number of infected
subjects I(t). A scheme is depicted in Figure 1. Accordingly to
this decomposition, the state space ξ ∈ IR5 can be partitioned
as ξ = ( ξT1 ξT2 )

T where ξ1 = (S1 S2 I )
T ∈ IR3 and

ξ2 = (P A )
T ∈ IR2 and, correspondingly,

F (ξ) =

(
F1(ξ1)

F2(ξ1, ξ2)

)
=

(
F1(S1, S2, I)
F2(I;P,A)

)

Fig. 1: Decomposition of the uncontrolled dynamics

Then, the analysis of the equilibrium points and their stability
properties can be carried on referring to the two systems
separately. The computation of the equilibrium points for the
first block yields to the two solutions

ξe1,1 =

Se,11

Se,12

Ie,1

 =

 1
d
0
0

Q,

ξe1,2 =

Se,21

Se,22

Ie,2

 =

 1
cβ−δ

0
cβ−(d+δ)

(d+δ)(cβ−δ)

Q

The existence and the positiveness of ξe1,2 depend on the
fulfillment of the condition

cβ − (d+ δ) > 0 (7)

Note that if cβ − (d + δ) = 0, then ξe1,2 = ξe1,1; this fact
is deeply analysed hereinafter, when the stability of such
equilibria is studied. As the value of cβ − (d + δ) increases,
the second equilibrium ξe1,2 becomes feasible and moves away
from ξe1,1. In order to study what happens when cβ − (d+ δ)
becomes very large, the computation of

lim
cβ−(d+δ)→+∞

ξe1,2 (8)

may be useful. Such a computation can be simplified observing
that, since d ≥ 0 and δ ≥ 0, the quantity cβ − (d + δ)
indefinitely increases only if cβ does. So, instead of (8), one
can compute,

lim
cβ→+∞

ξe1,2 =

 0
0
1

(d+δ)

Q

This shows that, being cβ the coefficient regulating the infec-
tion propagation, its increment produces a higher number of
infected individuals and, correspondently, a decrement of the
uninfected subjects; at the limit situation, all the population
is infected. As far as the second block is concerned, equation
(6), restricted to the P −A subspace, yields

ξe2 =

(
P e

Ae

)
=

(
0
0

)
where the presence of the state variable I(t) is assumed as an
external input acting from the first subsystem to the second
one and then, in this analysis, it can be set equal to zero.



B. Stability analysis

In order to study the stability properties of the equilibrium
points, the results based on the local linear approximation are
used. Due to the structure of the full dynamics, each of the
two subsystems are here addressed separately. Starting with
the first block, it is required the computation of the dynamical
matrices of the linear approximations in a neighbourhood of
each equilibrium point, ξe1,1 and ξe1,2. To this purpose, the
Jacobian matrix ∂F1

∂ξ1
must be computed and then evaluated

at each equilibrium point. The classical well known structure
for the Jacobian is

∂F1

∂ξ1
=

 ∂f1
∂S1

∂f1
∂S2

∂f1
∂I

∂f2
∂S1

∂f2
∂S2

∂f2
∂I

∂f3
∂S1

∂f3
∂S2

∂f3
∂I

 (9)

The nonzero terms in (9) are

∂f1

∂S1
= −d− cβI

Nc
+
cβS1I

(Nc)
2 ,

∂f1

∂S2
= γ +

cβS1I

(Nc)
2

∂f1

∂I
= −cβS1

Nc
+
cβS1I

(Nc)
2 ,

∂f2

∂S2
= −(γ + d)

∂f3

∂S1
=
cβI

Nc
− cβS1I

(Nc)
2 ,

∂f3

∂S2
= −cβS1I

(Nc)
2

∂f3

∂I
= −(d+ δ) +

cβS1

Nc
− cβS1I

(Nc)
2

Evaluating (9) at ξe1,1, one gets the matrix

A1
1 =

 −d γ −cβ
0 −(γ + d) 0
0 0 cβ − (δ + d)

 (10)

whose eigenvalues are λ1 = −d, λ2 = −(γ + d), λ3 =
cβ − (d + δ) and then the equilibrium point ξe1,1 is locally
asymptotically stable under the condition

cβ − (d+ δ) < 0 (11)

If condition (11) is not satisfied, the equilibrium point ξe1,1 is
unstable. However, as it can be suggested by the components
of the eigenvectors v1 and v2 of the linear approximation,

v1 =

 1
0
0

 , v2 =

 0
1
0

 , v3 =

 1
0

−γ−cβ+d+δ
cβ


for any initial condition in the two dimensional manifold

Σ =
{

(S1 S2 I )
T ∈ <3 : I = 0

}
the corresponding trajectory lies in the S1 − S2 subspace and
converges to the point ξe1,1. In fact, from (4), the autonomous
dynamic of the I(t) variable, rewritten as

İ(t) = I(t)

(
cβS1(t)

Nc(t)
− (d+ δ)

)
shows that if I(t0) = 0, then İ(t) = 0 and I(t) = const =
I(t0) = 0. Under this hypothesis, the dynamics of S1(t) and
S2(t) under zero inputs become

Ṡ1(t) = Q− dS1(t) + γS2(t)

Ṡ2(t) = −(γ + d)S2(t)

that is, a linear structure with dynamical matrix

A0 =

(
−d γ
0 −(γ − d)

)
Its integration, starting from S1(0) and S2(0), due to the
nonsingularity of A0, gives(
S1(t)
S2(t)

)
= eA0t

((
S1(0)
S2(0)

)
+A−1

0

(
Q
0

))
−A−1

0

(
Q
0

)
with

A−1
0

(
Q
0

)
=

1

d(γ − d)

(
−(γ − d) −γ

0 −d

)(
Q
0

)
=

(
−Qd

0

)
The conclusion is that if(

S1(0)
S2(0)

)
= −A−1

0

(
Q
0

)
=

(
Q
d
0

)
the time evolution is(

S1(t)
S2(t)

)
= −A−1

0

(
Q
0

)
=

(
Q
d
0

)
Otherwise,

lim
t→∞

(
S1(t)
S2(t)

)
= −A−1

0

(
Q
0

)
=

(
Q
d
0

)
which proves that the equilibrium point (Se,01 Se,02 )

T
=

( Qd 0 )
T , projection of ξe1,1 on the S1 − S2 subspace, is an

asymptotic stable one, once the dynamics is restricted to such
a subspace.
To complete the stability analysis, the second equilibrium point
ξe1,2 is now considered. Then, the Jacobian (9) has to be
evaluated at the equilibrium point ξe1,2; setting H = d+δ

cβ and
K = 1−H , one gets the matrix

A2
1 =

−d− cβK2 γ + cβHK −cβH2

0 −(γ + d) 0
cβK2 −cβHK −cβHK

 (12)

The structure yields the eigenvalue λ1 = −(γ + d) whereas
for λ2 and λ3 one has to find the solutions of

λ2 + (cβ − δ)λ+
(d+ δ)(cβ − (d+ δ))(cβ − δ)

cβ
= 0 (13)

from which the eigenvalues λ2 and λ3 can be numerically
computed once the values of the set of parameters is known.
This will be done in Section IV for the case under investi-
gation. Here, as far as the stability of ξe1,2 is concerned, the
two solutions of (13) have negative real parts, and then ξe1,2 is
stable, if and only if (by Descartes’ rule of signs)

cβ − δ > 0

(d+ δ)(cβ − (d+ δ))(cβ − δ) > 0 (14)

Since d+δ > 0, (14) is equivalent to (7) and then ξe1,2 is locally
asymptotically stable if and only if (7) holds. It is interesting
to observe that if ξe1,1 is the unique equilibrium point (i.e.
(7) is not satisfied), it is locally asymptotically stable, while
the second equilibrium point ξe1,2 exists, and is asymptotically
stable, if and only if ξe1,1 is unstable. If cβ = d+δ, the matrix
(10) of the linear approximation in a neighbourhood of ξe1,1 has
one eigenvalue equal to zero. This fact suggests to study the



presence of a bifurcation once the control parameter β̄ = cβ
is considered. In fact, it can be noted that the solutions ξe1,1
and ξe1,2 always exist and they coincide when β̄ = d+ δ, i.e.
when there is the null eigenvalue. This means that a Stationary
Bifurcation is present; in this case it is a Simple Bifurcation,
since the augmented Jacobian, evaluated at ξe1,1 with cβ =
d+ δ,

( ∂F1

∂ξ1
∂F1

∂β̄
)ξ1=ξe1,1

=

 −d γ −cβ 0
0 −(γ + d) 0 0
0 0 0 0


has rank ρ < 3. In Figure 2 it is depicted the diagram where
the Transcritical Bifurcation is reported with reference to the
state variable I , while in Figure 3 the same is performed for the
state variable S1. Here, the numerical values of the parameters
given in Table I are used for simplicity of interpretation.
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Figure 2 shows with solid lines the stable equilibrium values
for Ie when Ie = Ie,1 = 0 for β̄ < d + δ and Ie =
Ie,2 = cβ−(d+δ)

(d+δ)(cβ−δ) for β̄ > d+ δ. The dotted part of Ie,2, for
β̄ < d+δ, denotes the unfeasible (negative) unstable solution,
while the dashed part of Ie,1 marks the unstable part of the
solution. Also in Figure 3 the solid lines denote the stable
equilibrium values, while the dashed ones indicate the unstable

solutions. Such a behaviour depends on the parameters cβ, d
and δ. On the basis of their meanings, the existence and the
stability of the equilibrium points depend on the values of
the probability of the infection transmission (cβ) and on the
rate of reduction of the infected subjects I(t) by natural death
(d) or by infection diagnosis (δ). The stability analysis of the
equilibrium point for the second subsystem can be carried on
computing the Jacobian

∂F2

∂ξ2
=

( ∂f4
∂P

∂f4
∂A

∂f5
∂P

∂f5
∂A

)
(15)

Since its nonzero terms are
∂f4

∂P
= −(α1 + d),

∂f5

∂P
= α1,

∂f5

∂A
= −(α+ d)

matrix (15), evaluated at ξe2 , becomes

A2 =

(
−(α1 + d) 0

α1 −(α+ d)

)
(16)

whose eigenvalues are λ1 = −(α1 + d) and λ2 = −(α +
d). It is worth noting that, since I(t) acts as an input for
the second subsystem, when the equilibrium Ie,2 6= 0 for the
first subsystem is considered, P (t) and A(t) assume values
different from zero, corresponding to the steady state condition
under constant feed Ie,2.

IV. NUMERICAL ANALYSIS OF THE DYNAMICS

The results obtained in the previous Section III are now
applied to the case study here considered, assuming the model
parameters as in Table I

Parameter Value Parameter Value
d 0.02 c 10
β 0.15 γ 0.2
δ 0.4 ψ 100000
ε 0.6 α1 0.5
φ 0.95 α 1

TABLE I: Numerical values used for the model parameters

Whenever applicable, the same values for the parameters as
in [23] are used. The constant value Q = 10000 is assumed
as the flow of new individuals in equations (4). This choice
does not affect the system analysis, being all the equilibrium
points proportional to such a value.

A. Numerical values of equilibrium points and their stability
analysis

In the numerical evaluation, the structure of the system, a
series of a three dimensional dynamics with a two dimensional
one, should be considered. The connection is represented by
the action of I(t), that can be assumed as the output of the
first block and the input of the second one. Being the state
evolution of the second subsystem dependent on I(t), for
any consideration about the values assumed by the two state
variables P (t) and A(t) it is necessary to know its behaviour.
These considerations suggest to study the full system for sim-
plifying the numerical analysis and the results interpretation.
This is the approach followed in this Section, in which all the
results showed and discussed refer to the full five dimensional



dynamics. Since condition (7) is fundamental for the stability
characteristics, it is important to observe that in the present
case cβ − (d + δ) = 1.08 and the condition (7) is satisfied.
Then, according to what stated in Subsection III-A, it is
possible to claim that for the first subsystem there are two
equilibrium points ξe1,1 and ξe1,2, the first one unstable and
the second one locally asymptotically stable. The numerical
values for the two equilibria are ξe1,1 = ( 500000 0 0 )

T and
ξe1,2 = ( 9100 0 23400 )

T . The corresponding steady state
values for the second subsystem are ξe2,1 = ξ2|ξe1,1 = ( 0 0 )

T

and ξe2,2 = ξ2|ξe1,2 = ( 10800 8800 )
T

Then, in the sequel the two full equilibrium points

ξe1 =

(
ξe1,1
ξe2,1

)
, ξe2 =

(
ξe1,2
ξe2,2

)
(17)

are considered.
The influence of cβ on ξe2 , highlighted in Subsection III-A, can
be numerically evidenced computing this equilibrium point for
different increasing values of cβ, starting from d+ δ = 0.42.
The results are depicted in the Figure 4 for the Se1 and Se2
components and in Figure 5 for the Ie, P e and Ae ones.
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The variations of the equilibrium state components Se2 , Ie, P e

and Ae with respect to (17) are evident: the only equilibrium

component highly affected by the value of cβ − (d + δ) is
the first one, Se1 . As the product cβ increases, the second
equilibrium point asymptotically tends to

ξe2 = ( 0 0 23800 11000 9100 )
T

In order to verify the unstability condition for the equilibrium
point ξe1 , the numerical computation of the Jacobian evaluated
in the first equilibrium point yields

A1 =
∂F

∂ξ

∣∣∣∣
ξ=ξe1

=

(
A1

1 0
∗ A2

)
=

=


−0.02 0.2 −1.5 0 0

0 −0.22 0 0 0
0 0 1.08 0 0
∗ ∗ ∗ −0.52 0
∗ ∗ ∗ 0.5 −1.02


with A1

1 from (10) and A2 from (16).
Its eigenvalues are λ1 = −0.02, λ2 = −0.22, λ3 = 1.08,
λ4 = −0.52, λ5 = −1.02, and then ξe1 is confirmed to be
unstable due to the presence of λ3 > 0.
As far as ξe2 is concerned, the matrix

A2 =
∂F

∂ξ

∣∣∣∣
ξ=ξe2

=

(
A2

1 0
∗ A2

)
=

=


−0.80 0.50 −0.12 0 0

0 −0.22 0 0 0
0.78 −0.30 −0.30 0 0
∗ ∗ ∗ −0.52 0
∗ ∗ ∗ 0.5 −1.02


must be considered, with A2

1 from (12) and A2 from (16).
Its eigenvalues are λ1 = −0.22, λ2 = −0.55 + 0.17i, λ3 =
−0.55 − 0.17i, λ4 = −0.52, λ5 = −1.02, all with negative
real part, as expected, being (7) verified.
Figures from 6 to 9 show the projection to different subplanes
of the state evolution in the neighbourhood of the equilibrium
point ξe2 . Six initial conditions ξi0, i = 1, ..., 6, reported in
Table II, have been chosen:

ξ10 ξ20 ξ30 ξ40 ξ50 ξ60
S1 92000 60000 5000 500 45000 90000
S2 0 32000 30000 10000 2000 2500
I 8000 5000 50000 10000 5000 50000
P 0 2000 5000 25000 2500 15000
A 0 1000 14000 5000 10000 1000

TABLE II: Initial conditions used for the state trajectories
analysis near the equilibrium point ξe2

In Figure 6, where the relations between the subjects S1(t) and
the infected ones I(t) are depicted, it is possible to note that
initially the number of the infected subjects increases, due to
the term cβS1(t)I(t)

Nc(t) , and then it decreases and converges to the
equilibrium point. Exceptions are represented by the cases of
initial conditions ξ3

0 and ξ4
0 ; in these cases, due to the high ratio

between the infected I0 and the susceptibles S1,0, an initial
decrement of the infected subjects is present. This behaviour
can be explained considering that in these conditions, the high



value of I0 implies a high flux of subjects towards the class P
and A, as confirmed by Figure 7, while the contemporary low
number of susceptible subjects corresponds to an initially low
interaction between the two classes and, then, a lower number
of new infected individuals. This effect is more evident for the
case of ξ3

0 due to the particularly high number of infected I0.
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The same situation may be also analysed considering the
relationship between S1 and S2, in Figure 8. It could be noted
that S2(t) decreases while S1(t) converges to the equilibrium
point showing a small oscillation.
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Fig. 9: Family of state trajectories in the P – A plane for
initial conditions as in Table II

This oscillatory behaviour is well evidenced in Figure 7,
where the evolution of the totality of the diagnosed patients
(P (t)+A(t)) versus the infected subjects I(t) is reported, and
in Figure 9, where the projection on the P−A plane of the free
evolutions is depicted. There is, generally, a sort of spiral-like
pattern which reaches the equilibrium point, intuitively due to
the presence of the coupling terms. In fact, for example, when
the infected subjects increase, their larger number increments
the number of the illness classes P and A, that, successively,
decrease for the death terms proportionally to their number.

B. Numerical results under constant inputs

In this Subsection it is developed a first analysis of the
influences of the introduced inputs. It must be noted that,
while the input u1(t) is a control of the transition between
the two classes of uninfected population introduced in the
present work, the input u2(t) as well as the input u3(t)
contribute to modify two natural transitions. In fact, the input
u2(t) has the same effect, with a different structure, of the
natural transition term δI(t), while the input u3(t) acts in
the same way of the term α1P (t), but working in the opposed
direction so counteracting the free trasition from P to A. Then,
it is expected that some natural behaviours of the dynamics
evolutions, like the ones illustrated in Subsection IV-A, can
be accentuated and some others attenuated.
In order to check if and how the previous considerations are
verified, the effects of the introduced inputs u1, u2 and u3

have been shown through some numerical simulations.
Each of the three inputs is considered separately, in order to
better identify the corresponding contribution.
All the simulations have been performed making use of the
initial conditions ξ2

0 in Table II.
1) Case u1 6= 0, u2 = u3 = 0: in this case, the contribution
of u1(t) to the dynamics is evaluated simulating the state
evolution for different constant values of the first input u1,



more precisely for u1 = 0, 0.1, 0.25, 0.4, 0.5, while keeping
the other two inputs equal to zero. Figures from 10 to 12 show
the results of such simulations. In all of them, the dotted curve
corresponds to u1 = 0.
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0 2 4 6 8 10 12 14 16 18 20

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

S
1
(t) + S

2
(t)

P
(t)

+A
(t)
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u1

The most evident and expected result is visible in Figure 10:
as u1 increases, the S1(t) and S2(t) variables evolve reducing
the oscillatory evolution discussed in Subsection IV-A (dotted
curve), and change their steady state conditions, so that both
S1(t) and S2(t) increase. The effectiveness of the primary
prevention u1 is evident in Figures 11 and 12, in which it can
be noted both the progressive attenuation of the oscillatory
evolution and the long term (t→ +∞) reduction of both the
infected subjects I(t) and P (t) +A(t) in a global context of
increment of the whole population, as depicted in Figure 13.
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Fig. 13: Time history of the total population for different
values of u1

2) Case u2 6= 0, u1 = u3 = 0: the input u2 corresponds to an
action aiming at reducing, more than the autonomous effect
modelled by δI(t), the number of the infected subjects I(t)
responsible of the propagation of the infection. In this case
simulations have been performed for different values of u2 in
the set [0, 0.1, 0.25, 0.4, 0.5], while the other two inputs have
been kept equal to zero.
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corresponding equilibrium points, for different values of u2

Figure 14 shows the evolution of I versus the total unifected
population S1 + S2. This figure can be more interesting
once compared with Figure 11. Both the controls u1(t) and
u2(t) contribute to decrement the number of the dangerous
infected individuals I . But, tough the action of u2 produces a



significant oscillatory behaviour, evident as u2(t) increases,
it reduces the number of infected subjects I(t) more than
the control u1(t). In fact, from Figure 11, the steady state
number of infected individuals I(t) decreases up to about
16000 patients under different values of the u1 control, while
the decrement is up to 6-7000 units under the control u2 of
the same order as u1, see Figure 14.
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Fig. 16: Time history of the total infected population
(I(t) + P (t) +A(t)) for different values of u2

Figure 15 depicts the state evolution of the diagnosed infected
patients P (t)+A(t) with respect to the unifected ones S1(t)+
S2(t). In this case, it seems that u2 has not a positive effect
on the number of infected patients P (t) + A(t): the steady
state value is greater as u2 increases. Actually, this reflects
the positive effect of a larger number of diagnosed infected
subjects, with a corresponding decrement of I(t) (Figure 14).
The contribution of u2 to the reduction of the total number of
infected individuals I(t) + P (t) + A(t) is evident in Figure
16, as well as the increment of the total population (Figure
17); the advantages are also confirmed by the higher number
of healthy population S1(t) + S2(t), depicted in Figure 18.
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Fig. 17: Time history of the total population for different
values of u2

The oscillatory characteristics are present in all the evolutions
and increase with the amplitude of u2. Differently from u1,
the control u2 does not modify the convergence to zero of
S2(t). In Figure 19 it is shown how S2(t) goes to zero for
any u2 while S1(t), with an oscillatory transient, reaches a
steady state value depending on u2.
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3) Case u3 6= 0, u1 = u2 = 0: the control u3 represents the
effects of the therapy on the pre-AIDS patients to prevent their
transition to the AIDS status; then, it affects the dynamics of
P and A only.
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For S1 and S2 it is obvious; for the part I of the infected
population it is possible to see that the independence from u3

still holds.
For u3 = 0, 0.1, 0.25, 0.4 the steady state value for I(t) is
always 2.34 · 104 while different values for P (t) + A(t) are
asymptotically reached, as depicted in Figure 20.
Figure 21 illustrates the main effect of the u3 action. As u3

increases, the steady state values and the maximum peaks for
A(t) decrease, the second more significantly. At the same time,
P (t) shows an increasing steady state value, since the effect
of the therapy is to keep the pre-AIDS patients in such a state
as much as possible.

V. CONCLUSIONS

A new model describing the HIV-AIDS spread is proposed,
providing an accurate description of the susceptible subjects
and of the infected ones. The former are divided into two
categories, the wise ones, that avoid dangerous behaviours,

and the subjects that, with irresponsible acts, could become
infected. The infected subjects are divided into three cate-
gories, the infected not yet aware of their status (therefore
dangerous for the spread of the virus), and the subjects in the
HIV and in the AIDS status. Beyond the obvious action aiming
at medication but not influencing the spread, two more controls
are introduced to increase the information among susceptible
subjects (and therefore to avoid dangerous behaviours) and to
induce the unaware infected individuals to a fast identification
of the infection, thus reducing the spread of the HIV/AIDS.
From the simulation results, the test campaign appears to be
the core of the success of a prevention control effort: being
aware of the health status as soon as possible reduces the
period, up to 10-15 years, in which risky contacts are possible
and induces infected subjects to start the medication. A deep
analysis of the system, the equilibria points, their stability and
the influences of the control actions are studied, confirming
intuitive results and constituting the basis for future possible
developments, as the determination of the control actions
resulting from an optimization procedure with constraints on
the resources. The non-availability of the full information
on the state can be also taken into account: generally the
only reliable information is related to the number of subjects
with HIV/AIDS positive diagnosis, whereas the category of
susceptible individuals should include all the subjects that have
not done the test yet. Therefore, to determine a control strategy,
an observer should be determined.
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