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Abstract—Revealing complex relations between entities
(e.g., items within or between transactions) is of great significance
for business optimization, prediction, and decision making. Such
relations include not only co-occurrence-based explicit relations
but also nonco-occurrence-based implicit ones. Explicit relations
have been substantially studied by rule mining-based approaches,
including association rule mining and causal rule discovery. In
contrast, implicit relations have received much less attention but
could be more actionable. In this paper, we focus on the implicit
relations between items which rarely or never co-occur while
each of them co-occurs with other identical items (link items)
with a high probability. A framework integrates both explicit
and hidden item dependencies and a corresponding efficient algo-
rithm IRRMiner captures such implicit relations with implicit
rule inference. Experimental results show that IRRMiner not
only infers implicit rules of various sizes consisting of both fre-
quent and infrequent items effectively, it also runs at least four
times faster than IARMiner, a typical indirect association rule
mining algorithm which can only mine size-2 indirect association
rules between frequent items. IRRMiner is applied to make rec-
ommendations and shows that the identified implicit rules can
increase recommendation reliability.

Index Terms—Hidden dependency, implicit rules, pattern rela-
tion analysis, rule inference.

I. INTRODUCTION

A. Target Problem and Motivation

RULE mining is an important task and a key issue in
knowledge discovery and data mining [1], [2]. The resul-

tant rules are sometimes quite useful for business optimization,
prediction and decision making [3]. Classic rule mining
methods, e.g., association rule mining [4] and causal rule min-
ing [5], are essentially based on explicit co-occurrences only,
and focus on explicit and dependent relations (e.g., associa-
tions and causal relationships) while ignoring more implicit
relations [6]–[8]. For example, association rule mining relies
on the support-confidence framework to select those items
which co-occur frequently to generate rules to infer the explicit
and straightforward associations between them, while causal
discovery discovers the direct cause-effect relations between
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TABLE I
INSTANCE OF THE ERD DATASET

two items (variables) by showing how the variations of one
item cause changes to the other [9].

However, it is not trivial to capture implicit rela-
tions [10], [11] by analyzing rule relations (also called pattern
relation analysis) [8] to make the identified rules action-
able [12]. In this paper, implicit relations [8], [13] refer to
the connections between several items which do not co-occur
frequently but have a high probability of co-occurring with
the third-party identical items. Here, the third-party items are
called link itemset as they serve as bridges to connect those
rarely or never co-occurring items. Such implicit relations can-
not be identified by association rule mining or causal rule
discovery without pattern relation analysis. In some cases,
implicit relations are even more valuable for discovering novel
and unexpected rules to support business events, compared to
straightforward associations or causal relations. By taking the
third-party items (i.e., link items) into account, implicit rules
are also more informative than explicit ones, which only focus
on their main aspects (e.g., antecedent and consequent).

Researchers have realized the significance of implicit rela-
tions between items and have proposed indirect association
mining [14], [15]. However, it is built on association rule min-
ing [16], which only makes it applicable for frequent items
while ignoring infrequent ones. Furthermore, existing indirect
association mining only focuses on pairwise relations (e.g.,
the relation between sprite and coke) while ignoring the com-
plex relations among multiple items (e.g., the relation among
sprite, coke, and pepsi).

Taking the ERD data1 as an example (Table I), the values
0 and 1 in the first and second rows of column 1 indicate that
pizza is not bought in transaction t1 but in t2. It is easy to
infer the implicit rule coke⊕ sprite|pizza, which indicates that
either coke or sprite, but not both, is quite likely to be bought

1An electronic retail transaction dataset from a Chinese E-commerce
platform.
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Fig. 1. Implicit rule inference framework which combines both explicit and hidden dependency.

with pizza. This rule reveals the shopping preferences that coke
and sprite may not be usually bought together since they share
the same function, whereas they are quite likely to be bought
together with the same third-party goods like pizza. This kind
of implicit connection between coke and sprite is conditional
on the link itemset pizza. It can not only help with increas-
ing profit through competitive product analysis [17] (coke and
sprite are competitive products) but can also contribute to
precise recommendations by reducing redundant items (coke
and sprite are likely to be redundant if recommended to one
consumer at the same time). Such implicit relations cannot be
identified by traditional explicit co-occurrence-based rule min-
ing approaches like association rule mining [18] or causal rule
discovery [19] because of their extremely low co-occurrences
and hidden relations between the items involved.

In fact, although some items are implicitly related, it is
possible to identify such relationships. For example, a per-
son may buy pizza and coke for a lunch, but try pizza and
sprite next time. In reality, such partial replacement in prod-
uct combinations is quite popular in areas, such as commerce
and medical services. Capturing such implicit and complex
relations and then inferring implicit rules helps businesses to
deeply understand customer consuming behaviors, which pro-
vides more solid support for business optimization, prediction,
and decision making [20], [21].

B. Our Design and Main Contributions

The above observation shows the importance of counting
implicit relations between items and the feasibility of identi-
fying implicit rules composed of infrequently or even never
co-occurring items. Here, we propose a novel framework to
mine implicit rules.

A “three-step” framework is proposed to mine implicit rule
x⊕y|Z (meaning items x and y are implicitly related with Z as
the link itemset), which is illustrated in Fig. 1 and explained
as follows.

1) Identify all dependent itemsets of each item in the
transactional dataset.

2) For given items x and y, if they share at least one iden-
tical dependent itemset Z, itemset {x, y} is chosen as a
hidden dependent itemset.

3) Compute the implicit relation strength (IRS) between x
and y; if it is larger than a predefined threshold, itemset

{x, y} is selected as an implicitly related itemset. Based
on this, an implicit rule x ⊕ y|Z is inferred.

The main contributions of this paper are as follows.
1) A novel implicit rule inference framework is proposed to

infer implicit relation-based rules (IRRs), which follows
a three-step strategy. We call the implicit IRR implicit
rules for simplification in this paper.

2) An implicit rule inference algorithm, IRRMiner, is
proposed, by which those items which rarely or never
co-occur but are implicitly closely related to each other
are detected.

3) IRRMiner is used in recommendation as a case study,
which enables the recommendations to be more reliable
and precise in real-world business.

II. RELATED WORK

Rule mining is an important research issue and has been
widely explored. Much progress has been achieved in various
subfields in this field. Here, we briefly review some of the work
which is closely related to our proposed implicit rule infer-
ence: association rule mining, correlation rule mining, causal
discovery, and indirect association mining.

A. Association Rule Mining

Well-known algorithms focusing on association rule mining
include AIS [22], Apriori [18], FP-Tree [23] and the linear
prefix tree-based algorithm [24]. All these methods focus on
the improvement of algorithm efficiency and much progress
has been achieved by utilizing more effective candidate gen-
eration methods and pruning strategies. However, they are all
based on the support-confidence framework and target explicit
“co-occurrence” based associations. As a result, they only
capture the explicit and straightforward relations while ignor-
ing implicit relations. They filter out infrequent items which
may be of significance and simply focus on the main aspects
(antecedent and consequent) while ignoring the influence of
other related aspects (e.g., link items).

B. Correlation Rule Mining

Correlation rule mining is another important branch in the
rule mining area. It tries to mine those statistically correlated
items driven by frameworks different from the “support-
confidence” one. Specifically, some measures to describe the
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correlations between distinct items are used as the selection
criteria. In particular, lift and χ2 correlation were introduced
in 1997 to mine correlation rules [25]. Approximate similarity
measures have to be proposed to explore efficient compu-
tation due to the lack of the downward closure property
for lift and χ2. Another two interesting measures for cor-
relation rule mining, all confidence and bond, which were
introduced in 2003 [26], follow the downward closure prop-
erties and can be used to mine correlation rules efficiently.
Some other related work includes mining both associated and
correlated rules [27], the efficient mining of correlation rules
with multiple all-confidence thresholds and so on [28]. The
progress achieved in correlation rule mining can leverage some
of the drawbacks of association rule mining illustrated above
by including infrequent items. However, correlation rules still
only focus on explicit relations while ignoring implicit ones.
In addition, similar to association rules, correlation rules do
not take the influence of related aspects (e.g., link items)
into account when capturing the relations between the main
aspects.

C. Causal Discovery

The three main approaches for causal discovery are:
1) graphical causal modeling; 2) constraint-based approaches;
and 3) association rule-based approaches. Causal relationships
are represented by Bayesian networks or similar probabilis-
tic graphical models in graphical causal modeling [29]. These
methods cannot handle high dimensional data and often incur
high computational cost. To be more efficient, constraint-based
approaches learn several fixed local causal structures, e.g.,
CCC [30] and CCU [31] rather than the complete Bayesian
network [32]. Such methods cannot identify causal relations,
which cannot be represented by these fixed structures and can-
not identify combined causal factors. Association rule mining
has recently been combined with a cohort study to discover
causal association rules and has proven to be quite effec-
tive [33]. However, similar to association rule mining, these
approaches tend to target direct and explicit causal relations,
while more implicit and indirect relations are ignored.

D. Indirect Association Mining

Identifying implicit rules has rarely been explored to the
best of our knowledge. The most related work is indirect
association rule mining. The concept of indirect association
rules infers the relation between two items which are not
associated with each other directly but both of them are
associated with identical third-party itemsets, called media-
tors. Hamano and Sato [14] proposed a framework to mine
indirect association rules to analyze targeting consumers and
competitors. Specifically, given an item pair which co-occurs
infrequently and a mediator itemset, a dependency constraint
μ is used to ensure the strong direct associations between each
item from the item pair and the mediator itemset, and then the
indirect association between the pair of items is derived based
on the strong direct associations. Another algorithm called
IPMA [15] uses a new dependency measure, called critical
relative support, to replace μ while retaining the same other

procedures as the Hamano and Sato framework. Other variants
of indirect association mining include mining temporal indirect
associations [34], mining direct and indirect fuzzy sequen-
tial patterns [35], and mining indirect associations in Web
data for Web recommendation [36]. Although different algo-
rithms and techniques as well as their variants are developed
to capture indirect associations, essentially, their frameworks
are the same as the typical one proposed in [14]. All of these
algorithms take a step forward in capturing implicit relations;
however, they basically extend the association rule mining
framework by simply putting two association rules together
to derive an indirect one [16], which limits them to frequent
items while filtering out infrequent ones. As a result, they can
only discover the indirect associations between two frequent
items. However, implicit relations may also exist between sev-
eral infrequent items and between some infrequent items and
frequent ones. Such two kinds of implicit relations involving
infrequent items are ignored by all the existing methods. This
is caused by frequency-based association rule mining, which
is the foundation of current indirect association mining frame-
works. Another drawback of existing broadly used frameworks
is that they only focus on the relations between two items (e.g.,
i1, i2), which makes them inapplicable for itemsets with more
than two items (e.g., i1, i2, i3 . . .). In addition, most of the
existing work in this area only focus on rule mining algorithm
development while ignore the application mechanisms [37] of
the resultant rules.

In summary, existing work cannot effectively derive implicit
rules from analyzing the explicit and implicit combinations of
items and consider nonoccurring and novel items. In addition,
more recent work highlights the need of discovering actionable
knowledge from data [12], [38] that can support decision-
making. However, quite limited empirical studies have been
conducted to show why the above resultant rules are useful
and how they benefit real-world businesses. To address this
issue, pattern relation analysis [8] is undertaken in this paper
to learn the explicit and implicit item dependency and infer
implicit rules.

III. FRAMEWORK FOR IMPLICIT RULE INFERENCE

We first give the precondition and then illustrate the three-
step framework discussed in the introduction. The three steps
refer to explicit dependency discovery, hidden dependency
derivation, and implicit rule inference by integrating both
explicit and hidden item dependency.

A. Precondition

To identify the implicit rules in which items infrequently
or never co-occur, the first step is to remove those item com-
binations of frequently co-occurring items like {pizza, coke},
i.e., itemsets with high frequency (e.g., {pizza, coke}). This is
because these items are explicitly associated and can be easily
and efficiently mined using frequent pattern mining techniques
like Apriori, which is out of the scope of this paper. Note
that frequent items are still kept to form implicit rules. For
example, both coke and sprite are frequent, but they rarely
co-occur within one transaction, i.e., Sup(coke, sprite) is low,
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and they constitute a typical implicit rule. The precondition
for a given itemset to be implicitly related is that its support
is not larger than a minimum threshold. This precondition
greatly benefits our proposed algorithm by pruning those
frequently co-occurring items thus reducing the search
space.

Precondition 1: It is possible for a given itemset I =
{i1 · · · ij} to be an implicitly related itemset only if it meets
the following precondition:

Sup(I) ≤ minsup (1)

where Sup(I) is the support of itemset I and minsup is the
predefined minimal support.

B. Explicit Item Dependency Discovery

Given a transactional dataset as shown in Table I, each row
indicates a transaction, such as t1, t2, and all the transactions
constitute the transactional set T , T = {t1, t2 . . . t|T|}. Each
column indicates an item like pizza and coke while the value
1 means that an item occurs in the corresponding transaction,
otherwise the value is 0. All the items in the transactional table
constitute the full itemset U, U = {i1, i2 . . . i|U|}. Each transac-
tion t is a subset of U, t ⊆ U. For example, the first transaction
t1 includes two distinct items: 1) napkins and 2) sprite.

With the transactional information, the explicit dependency
between an item and itemsets is identified using point-wise
mutual information (PMI) [39] for its strong ability to capture
both nonlinear and linear dependencies [40], [41]. The PMI
between item i and itemset I is calculated as

PMI(i, I) = log
p(i, I)

p(i)p(I)
(2)

where p(i) and p(I) are the marginal probabilities of i and I,
respectively, while p(i, I) is their joint probability.

Definition 1 (Dependent Itemset): An itemset I is defined as
a dependent itemset of a given item i(i /∈ I) (denoted as Si = I)
if the PMI between them is positive, that is, PMI(i, I) > 0. It
is denoted as Si1, Si2, . . . if item i has more than one dependent
itemset.

Note that generally PMI(i, I) ∈
(−∞, min [− log p(i),− log p(I)]], however, PMI(i, I) ∈
(0, min [− log p(i),− log p(I)]] in our algorithm to ensure the
positive dependency between i and I.

Based on the dependent itemset concept, the dependent
itemset group is defined as follows.

Definition 2 (Dependent Itemset Group): For a given item i,
all its dependent itemsets (Si1, Si2 . . . ) constitute its dependent
itemset group, denoted as Ai

Ai = {Si1, Si2 · · · }. (3)

Example 1: Taking item coke in Table I as an exam-
ple, its dependent itemset group Acoke = {Scoke1, Scoke2} =
{{pizza}, {pizza, napkins}}.

C. Hidden Item Dependency Derivation

Given an itemset I = {i1, i2 . . . ij}, the dependent itemset
group Ai1, Ai2 . . . Aij of each item from I is, respectively, iden-
tified. Aij = {Sij1, Sij2 . . . Sijk}, where Sijk is the kth dependent
itemset of ij.

Definition 3 (Link Itemset and Link Itemset Group): Given
an itemset I = {i1, i2 . . . ij} and the dependent itemset group
Aij of each item ij from I, the link itemset group of I is defined
as the intersection set of all dependent itemset groups of items
within I, denoted as GI . Each element of GI is defined as a
link itemset of I, denoted as HI . It is denoted as HI1, HI2 . . .

when itemset I has more than one link itemset

GI = Ai1 ∩ Ai2 . . . Aij = {HI1, HI2 . . .}. (4)

Definition 4 (Hidden Dependent Itemset): Given an itemset
I, it is defined as hidden dependent if its link itemset group is
not empty. Formally

GI 	= ∅. (5)

Example 2: Let us take itemset {coke, sprite} from Table I
as an example. The dependent itemset groups of items coke
and sprite are Acoke = {{pizza}, {pizza, napkins}} and Asprite =
{{pizza}, {pizza, napkins}}, respectively. Hence, the link item-
set group of {coke, sprite} is G{coke,sprite} = Acoke

⋂
Asprite =

{{pizza}, {pizza, napkins}} 	= ∅. Accordingly, {coke, sprite} is
a hidden dependent itemset with two link itemsets {pizza} and
{pizza, napkins}.

D. Implicit Rule Inference

Given a hidden dependent itemset, we first compute its IRS
and then select those itemsets whose IRS is larger than a min-
imum threshold as implicitly related itemsets. Lastly, we infer
implicit rules based on these itemsets.

Given a hidden dependent itemset I = {i1, i2 . . . ij} together
with its link itemset group GI(GI 	= ∅), its IRS is calcu-
lated under the intuition that if I has more link itemsets and
the items (i1, i2 . . . ij) within I have stronger dependencies on
them, these items are more strongly implicitly connected. As
a result, the IRS of I is larger.

Definition 5 [Conditional IRS (CIRS)]: Given a hidden
dependent itemset I = {i1, i2 . . . ij} and a link itemset HI , its
IRS conditional on HI is computed as

CIRS(I|HI) = min
(
PMI(i1, HI) · · · PMI

(
ij, HI

))
(6)

where CIRS(I|HI) ∈ (0, min(− log p(i1), . . . − log p(ij),
− log(HI)).

Definition 6 (IRS): Given an hidden dependent itemset I =
{i1, i2 . . . ij} and its link itemset group GI , its IRS is computed
by summing its CIRS on all link itemsets. Formally

IRS(I) =
∑

HI∈GI

CIRS(I|HI) (7)

where IRS(I) ∈ (0,
∑

HI∈GI
min(− log p(i1), . . . −

log p(ij),− log(HI)). The larger IRS(I) is, the stronger
the implicit relation that exists between the items within I.
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Definition 7 (Implicitly Related Itemset): An implicitly
related itemset candidate is implicitly related if its IRS is larger
than the minimum threshold. Formally

IRS(I) ≥ minIRS (8)

where minIRS is a predefined threshold to ensure that strong
enough implicit relations exist between the items within I.

Definition 8 (Implicit Rules): Given an implicitly related
itemset I = {i1, i2 · · · ij} and its link itemset group GI =
{HI1 . . . HIn}(n = |GI |), n implicit rules are inferred, which
constitute an implicit rule cluster R0

R0

⎧
⎪⎪⎨

⎪⎪⎩

r01 : i1 ⊕ i2 ⊕ · · · ij|HI1
r02 : i1 ⊕ i2 ⊕ · · · ij|HI2
· · ·
r0n : i1 ⊕ i2 ⊕ · · · ij|HIn.

(9)

All the rules from R0 share the same implicitly related item-
set ({i1, i2, . . . , ij}) but take different link itemsets (e.g., HI1
or HI2) as their conditions. The first rule i1 ⊕ i2 ⊕ · · · ⊕ ij|HI1
implies that once HI1 has been bought, there is great proba-
bility that one out of i1, i2 . . . ij will be bought.

Example 3: Following the implicitly related
itemset candidate {coke, sprite} in Example 2, its
conditional IRS (CIRS) conditional on its link
itemset {pizza} is CIRS({coke, sprite}|{pizza}) =
min(PMI(coke, {pizza}), PMI(sprite, {pizza})) = 0.12.
Similarly, CIRS({coke, sprite}|{pizza, napkins}) = 0.12.
Accordingly, IRS({coke, sprite}) = 0.24. If we set
minIRS = 0.1, {coke, sprite} is an implicitly related
itemset. Based on this, two implicit rules coke ⊕ sprite|pizza
and coke ⊕ sprite|{pizza, napkins} are derived. In reality, such
rules indicate that coke and sprite are rarely bought together,
whereas they are much more likely to be bought together
with other itemsets {pizza} or {pizza, napkins}. This can be
seen from the transactions in Table I. These observations
are consistent with customer shopping behaviors, whereby
one may prefer to buy a basket of products with different
functions rather than the same function.

IV. IRRMINER ALGORITHM

Following the framework illustrated in the previous section,
the IRRMiner algorithm is developed to mine implicit rules.
The following anti-monotonous Property 1 is used to gener-
ate size-L implicit itemset candidates from size-(L-1) ones
directly to reduce the search space. The size of an implicit
rule is defined in (10) in Section V. Applying this property
from lines 16 to 22 in Algorithm 1 guarantees to find all rules
satisfying the given constraints efficiently. Next, we first give
and prove such a property theoretically and then describe the
implicit rule inference algorithm below.

Property 1: Given a candidate itemset I = {i1 · · · ij} and its
IRS (IRS(I)), any subset I′(I′ ⊆ I, |I′| ≥ 2) must not have a
lower IRS, namely IRS(I′) ≥ IRS(I).

Proof: Given a candidate itemset I = {i1, i2 . . . il . . . ij}(|I| ≥
3) and one of its subset I′ = {i1, i2 . . . il}(l < j, |I′| ≥ 2),
according to Definition 3, their link itemset groups are
GI = Ai1 ∩ Ai2 . . . Ail . . . Aij and G′

I = Ai1 ∩ Ai2 . . . Ail ,

Algorithm 1 Implicit Rule Inference
Require: T: binary transaction matrix; minsup: support

threshold; minIRS: IRS threshold; MaxSize: the maximum
size of implicitly related itemsets;

Ensure: P: implicitly related itemsets; H: link itemsets;
1: Mine dependent itemset group Ai of each item i according

to Definition 2 and store items with nonempty Ai in D;
2: while L=2 do
3: Generate all possible size-L itemsets on D and store

them in Q{L};
4: for each itemset I ∈ Q{L} do
5: if GI 	= ∅ then
6: Select I as size-L hidden dependent itemset and

store it in C{L};
7: end if
8: end for
9: for each itemset Ic in C{L} do

10: if IRS(Ic) ≥ minIRS then
11: Store Ic in CC{L};
12: if Sup(Ic) ≤ minsup then
13: Select Ic as implicitly related itemset and store

it in P{L}, and store all its link itemsets in H{L};
14: end if
15: end if
16: end for
17: end while
18: while L=3 :MaxSize do
19: for m = 1 : Size(CC{L − 1}) do
20: for n = m + 1 : Size(CC{L − 1}) do
21: if CC{L − 1}(m)([1 : L − 2]) == CC{L −

1}(n)([1 : L − 2]) and CC{L − 1}(m)(L − 1) 	=
CCL − 1(n)(L − 1) then

22: Store [CC{L − 1}(m), CC{L − 1}(n)(L − 1)] into
Q{L} as size-L itemset ;

23: end if
24: end for
25: end for
26: for each size-L itemset I in Q{L} do
27: if all size-(L-1) sub-itemsets of I are in CC{L − 1}

then
28: Execute the same operations from Lines 4 to 16;
29: end if
30: end for
31: end while

respectively. So GI = G′
I ∩ Ail+1 . . . Aij ⊆ G′

I .
Assume GI = {H1, H2 · · · Hk} while G′

I =
{H1, H2 · · · Hk · · · Hm}(m > k), based on Definitions 5 and 6,
IRS(I) = CIRS(I|H1) + CIRS(I|H2) + · · · CIRS(I|Hk) while
IRS(I′) = CIRS(I′|H1) + CIRS(I′|H2) + · · · CIRS(I′|Hk) +
· · · + CIRS(I′|Hm). Now we compare CIRS(I|H1) and
CIRS(I′|H1), CIRS(I|H1) = min{PMI(i1, H1), PMI(i2,
H1) · · · PMI(il, H1), PMI(il+1, H1) · · · PMI(ij, H1)}
and CIRS(I′|H1) = min{PMI(i1, H1), PMI(i2, H1) · · ·
PMI(il, H1)}, it is clear that CIRS(I|H1) =
min{min{PMI(i1, H1), PMI(i2, H1) · · · PMI(il, H1)}, min
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{PMI (i1+1, H1) · · · PMI(ij, H1)}} = min{CIRS(I′|H1),

min{PMI(i1+1, H1) · · · PMI(ij, H1)}} ≤ CIRS(I′|H1).
Similarly, CIRS(I|H2) ≤ CIRS(I′|H2), . . . , CIRS(I|Hk) ≤
CIRS(I′|Hk), hence IRS(I) ≤ CIRS(I′|H1) + CIRS(I′|H2) +
· · · CIRS(I′|Hk). Recall that CIRS(I|HI) > 0 as illus-
trated in Definition 5, it is easy to conclude that
IRS(I) ≤ CIRS(I′|H1) + CIRS(I′|H2) + · · · CIRS(I′|Hk) +
· · ·+ CIRS(I′|Hm) = IRS(I′). Hence, Property 1 is proved.

Combining Property 1 and Definition 7, it is easy to con-
clude that any subset I′(I′ ⊆ I, |I′| ≥ 2) of an implicitly
related itemset I is also an implicitly related itemset if I′ meets
the precondition Sup(I′) ≤ minsup. Such conclusion not only
reduces the search space in the candidate generation process
but also helps to identify whether a size-L candidate itemset is
implicitly related or not by checking all its size-(L-1) subsets.
This contributes a lot to the space and time efficiency of the
whole IRRMiner algorithm.

Algorithm 1 is divided into three parts: 1) discover depen-
dent itemset groups (line 1); 2) mine size-2 implicit rules and
prepare to mine implicit rules of larger sizes (lines 2–17);
and 3) discover implicit rules with a size larger than 2
(lines 18–31). Specifically, all dependent itemsets are iden-
tified and possible size-2 itemsets are generated on those
items whose dependent itemset group is not empty (lines 1–3).
Then the link itemset group, IRS and support of these gen-
erated itemsets are checked one by one to filter out those
nonpotential implicitly related itemsets step by step while
keeping implicitly related itemsets together with their corre-
sponding link itemsets as the output (lines 4–17). When the
size of an itemset grows larger than 2, the anti-monotonous
Property 1 is utilized to generate larger candidate item-
sets more efficiently based on the pattern growth method
(lines 19–25) and to conduct prefiltering on these itemsets
(lines 26–27). Finally, the implicitly related itemsets and their
link itemsets are achieved by undertaking the same filtering
operations (line 28) as those used in the mining of size-2
implicit rules.

V. EXPERIMENTS AND EVALUATION

A. Experiment Set Up

No existing work can exactly mine our proposed implicit
rules, to the best of our knowledge, and only a typical
indirect association rule mining algorithm (IARMiner) [14]
can partially discover rules similar to ours. The rules mined
by IARMiner are in the form of (M; {x, y}), where item-
set M is the mediator itemset for connecting items x and y.
These rules can be transferred to our implicit rules, such as
x ⊕ y|M. To evaluate our proposed algorithm, we compare
our proposed IRRMiner with the representative indirect asso-
ciation rule mining algorithm IARMiner on four real-world
transactional datasets: ERD, Bookcross,2 MovieLens_1 and
MovieLens_2. Such comparison has some limitations due to
the nonexactly identical goals of the compared algorithms.
Specifically, we can only make a comparison on the capa-
bility of mining size-2 rules instead of larger ones (rules

2Available on http://grouplens.org/datasets/book-crossing/.

of size-3 and size-4) between IRRMiner and IARMiner as
IARMiner can only mine size-2 rules; the mined rules may
not always be completely identical as the constraints used
in IARMiner and IRRMiner are not completely the same.
However, empirical results show that most of the resultant
size-2 rules from both algorithms are the same. MovieLens_1
and MovieLens_2 are extracted from the MovieLens 10M3

dataset by including different parts of transactions. A detailed
description of these datasets is given in Table II. Items, books,
and movies in the experimental datasets are called items uni-
formly in this paper to simplify the terms. Note that all the
four transactional datasets are transferred into 0-1 encodings
as Table I and the density shown in Table II is quantified
by Density = (#entries valued 1/#entries), for instance, the
density of transaction Table I is (15/24) = 62.5%.

Both IRRMiner and IARMiner have two key parameters:
minsup (called t_r in [14]) is shared by the two algorithms
while minIRS and t_μ are used in IRRMiner and IARMiner,
respectively. To be specific, minsup is a frequency-constraint
to ensure the implicitly related or indirect associated items do
not co-occur frequently [e.g., sup(x, y) ≤ minsup]. minIRS
is used to guarantee strong IRS between implicitly related
items [e.g., IRS(x, y) ≥ minIRS] in IRRMiner while t_μ is to
ensure strong dependency between each of the indirectly asso-
ciated items and the corresponding mediate itemset M [e.g.,
μ(x, M) ≥ t_μ]. In addition, two extra parameters t_ f and t_m
are also used in IARMiner, where t_ f is to make sure each
item in an indirectly associated item pair is frequent [e.g.,
sup(x) ≥ t_ f ] and t_m is to guarantee that it co-occurs with
the mediate itemset frequently [e.g., sup(x, M) ≥ t_m]. In all
the experiments, we keep the common parameter minsup(t_r)
identical for both algorithms to ensure fair comparisons while
empirically tuning other noncommon parameters.

In order to show the capacity of IRRMiner to cover infre-
quent items and to mine implicit rules larger than size-2, we
conduct comparisons between IARMiner and IRRMiner in
terms of rule coverage, rule size, and rule number in the fol-
lowing Parts B and C, respectively. To test the efficiency of our
proposed IRRMiner, we compare the run time of IRRMiner
and that of IARMiner in the following Part D. A data factor
test is conducted in Part E to test the outcome difference of our
proposed IRAMiner on datasets with different characteristics.

B. Rule Coverage Comparison

Nearly all the indirect rule mining approaches including
IARMiner can only mine size-2 rules, to make a fair com-
parison, we also limit the size of rules from IRRMiner to 2
when comparing rule coverage. The coverage of the size-2
rules resulting from IARMiner and IRRMiner together with
the average frequency of their covered items are given in
Fig. 2(a) and (b), respectively. Here, coverage is defined
as the ratio of items covered by all the mined rules with
respect to the whole item population, while the frequency
of a certain item is its occurrence times divided by the total
number of transactions in a dataset. On one hand, Fig. 2(a)
shows that the coverage of IRRMiner is obviously larger

3Available on http://grouplens.org/datasets/movielens/.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG AND CAO: INFERRING IMPLICIT RULES BY LEARNING EXPLICIT AND HIDDEN ITEM DEPENDENCY 7

TABLE II
STATISTICS OF EXPERIMENTAL DATASETS

(a) (b)

Fig. 2. Rule coverage and average covered item frequency on different
datasets.

than IARMiner on all the four datasets, which means our
proposed algorithm can discover implicit relations between
more items than IARMiner. On the other hand, Fig. 2(b)
illustrates that the average frequency of the covered items
by IRRMiner is clearly lower than that by IARMiner, which
means our algorithm can discover implicit relations between
more infrequent items. Combining these two figures, it is easy
to conclude that IRRMiner discovers not only the implicit
rules between frequent items as the existing indirect associ-
ation mining approaches do, but also implicit rules between
infrequent items. The reason behind this is easy to find by
looking at the algorithm design, which is different from most
indirect association mining algorithms, which are limited to
frequent items only, due to their base (frequent association
mining). However, our algorithm goes beyond such a base,
and it is not necessary for the items to be frequent.

C. Rule Size and Number Comparison

To make a fair comparison, the corresponding constraints
in IARMiner and IRRMiner are set to be equivalent to each
other. Specifically, the common parameter minsup(t_r) is set
to 10%, 1%, 15%, and 1.5% empirically on ERD, Bookcross,
MovieLens_1, and MovieLens_2, respectively, both in
IARMiner and IRRMiner algorithms. Both minIRS and t_μ

are set to 0 as it is only in this case that these two constraints
are essentially equivalent to each other as proved below.

Proof: Suppose implicitly related itemset I = {x, y}, item-
set M is a link itemset to connect x and y. According to
(2) and (6)–(8), minIRS = 0 indicates IRS(x, y) ≥ 0, which
means there exists at least one link itemset HI which makes
CIRS(I|HI) ≥ 0. Suppose CIRS(I|M) ≥ 0, according to
(6), PMI(x, M) ≥ 0 and PMI(y, M) ≥ 0, namely p(x, M) ≥
p(x)p(M) and p(y, M) ≥ p(y)p(M). On the other hand, accord-
ing to the definition of μ(x, M) in [14], t_μ = 0 means
μ(x, M) = ([p(Mx) − p(M)p(x)]/[p(Mx)(1 − p(x))]) ≥ 0,
which also indicates p(x, M) ≥ p(x)p(M), for the same reason,

p(y, M) ≥ p(y)p(M). So the key constraints IRS(x, y) ≥
minIRS in IRRMiner and μ(x, M) ≥ t_μ in IARMiner are
actually the same when their thresholds are set to 0.

The size of an implicit rule “r : i1 ⊕ i2 ⊕ · · · ij|HI(I =
{i1, i2 · · · ij})” is defined as the size of itemset I, which mea-
sures how many items are implicitly related conditioned on
H_I. Formally

Size(r) = ∣
∣
{
i1, i2 · · · ij

}∣
∣. (10)

Table III shows the number of indirect association rules
mined by IARMiner (IAR. for short) and implicit rules mined
by IRRMiner (IRR). Two main conclusions can be drawn from
this.

1) IRRMiner can mine more size-2 rules than IARMiner
(i.e., 4243 versus 2226 on the ERD dataset). By check-
ing the rules more deeply, we find the rules mined by
IARMiner are a subset of rules from IRRMiner. This
is because IRRMiner targets not only the implicit rules
between frequent items but also the infrequent ones,
as stated in the introduction. Therefore, IRRMiner can
cover more items and generate more rules, which is con-
sistent with the results of the coverage comparison in
Part B.

2) IRRMiner can mine implicit rules with a size larger
than 2 while IARMiner cannot. Theoretically, IRRMiner
can output rules as large as the number of items in the
transaction as long as the dataset supports such rules.
Note that rules with a size larger than 4 are not shown
due to space limitations. Thanks to the design behind
IRRMiner, which considers the implicit relations among
all possible items rather than just the indirect association
between a pair of frequent items as IARMiner does, the
complex implicit relations among multiple items discov-
ered by IRRMiner are more general and more consistent
with the real-world cases compared to the indirect asso-
ciation rules of size-2. In summary, IRRMiner goes far
beyond IARMiner by returning more rules of larger
sizes. Implicit rules of a large size reveal much more
hidden information between multiple items than size-2
rules which only reflect pairwise relations between every
two items. Taking a sample from the ERD dataset as an
example, the triad implicit relation among three books
An Introduction to Secondary Data Analysis, Python
Data Science Handbook, and Microsoft Excel 2013 Data
Analysis is richer than the pair-wised indirect association
between any two of them.

Essentially, the indirect association rule mining framework
is a special case of our proposed framework. When we only
focus on the implicit relations between frequent items and limit



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE III
NUMBER OF MINED RULES BY IARMINER (IAR.)

AND IRRMINER (IAR.)

the rule size to 2, our framework is simplified to the existing
indirect association mining one, and can mine the same rules
as indirect association mining does.

D. Run Time Comparison

To evaluate the efficiency of the developed IRRMiner algo-
rithm, two sets of experiments are organized. One is to
compare the run time of IARMiner and IRRMiner to mine
the same size-2 rules, in which both the rules and rule num-
bers resultant from both algorithms are exactly the same. The
other is to compare the run time of both algorithms to mine
the same number of size-2 rules, where the rules may not be
completely identical.

Recall that IRRMiner can be simplified to indirect associa-
tion mining algorithms and can mine the same rules as them,
as discussed in the last paragraph in Part C. We add an extra
frequency constraint on IRRMiner and limit the rule size to 2
to make sure it only discovers the same rules or the same num-
ber of rules as IARMiner. We keep the values of corresponding
parameters the same in both algorithms for a fair comparison,
namely minIRS and minsup in IRRMiner are equal to t_μ and
minsup in IARMiner, respectively. In addition, we keep both
minIRS and t_μ unchanged (minIRS = t_μ = 0, according to
the proof in Part C) while change minsup in two algorithms
synchronously in the first set of experiments; in the second set
of experiments, the minsup in IARMiner and IRRMiner are
kept equal and unchanged (empirically 10% in ERD, 1% in
Bookcross, 15% in MovieLens_1, and 1.5% in MovieLens_2
for both algorithms) while minIRS in IRRMiner and t_μ in
IARMiner are adjusted accordingly to mine the same number
of rules. The results of these two sets of experiments are given
in Tables IV and V, respectively, in which the symbol “*” rep-
resents the time spent by IARMiner under certain t_μ values.
Note that in the second set of experiments, to achieve the iden-
tical number of rules, t_μ in IARMiner does not necessarily
need to be equal to minIRS in IRRMiner.

It is clear that, in mining either the same implicit size-2 rules
in Table IV or the identical number of size-2 implicit rules in
Table V, our proposed IRRMiner is much more efficient than
IARMiner. The run time is reduced by around 80% on the
ERD dataset and around 90% on the other three datasets by
IRRMiner, compared to IARMiner.

One main contribution to efficiency improvement is the
first step (explicit dependency discovery) in our proposed
IRRMiner, which only exists in our algorithm. It checks
whether an item has dependent itemsets; items without

dependent itemsets are not considered in the subsequent steps.
Many items without dependent itemsets but are frequent are
filtered out in an early stage. However, such items cannot be
removed in the beginning of IARMiner which uses a support
threshold to filter out nonfrequent items in its first step. This
partly explains why IRRMiner is clearly more efficient than
IARMiner.

The time complexity analysis of Algorithm 1 is detailed
in this paragraph. Assume the total number of items in the
transactional matrix is N. Given an implicit rule mining task,
the total process of the IRRMiner algorithm is divided into
two stages: 1) the preparation stage illustrated by lines 1 and
2) the implicit rule mining stage described from line 2 to the
end of the algorithm. Please note that the preparation stage
is a preprocessing operation, once it is ready, various sizes
of implicit rules under different minIRS values can be mined
without the need to conduct the preparation stage again, which
means it is not necessary to run line 1 every time when we
mine implicit rules. Hence, the run time of IRRMiner mainly
depends on the second stage. Specifically, suppose a percent-
age of α of all the N items have dependent itemsets, so C2

αN
possible size-2 itemsets will be generated in line 2, which
result in C2

αN = ([(αN) ∗ (αN − 1)]/2) times of compu-
tation from lines 3 to 7, accordingly, the time complexity
of these lines is O((αN)2). Meanwhile, at most C2

αN hidden
dependent itemsets will be selected in line 5, which results
in the maximum computational times being also C2

αN from
lines 8–15. The time complexity of lines 8–15 is O((αN)2)

too. Overall, the time complexity of the implicit rule mining
stage is O((αN)2) in mining size-2 implicit rules. Similarly,
the time complexity of mining size-3, size-4, . . . , etc. implicit
rules are O((αN)4), O((αN)8), . . ., etc. For the preparation
stage, when we set the maximum length of link itemset to 1, 2,
3, etc., the time complexity is O((αN)), O((αN)2), O((αN)4),
etc. In IARMiner, the time complexity is O((βN)3), O((βN)4),
O((βN)6), etc., when the maximum length of the mediate
itemset is set to 1, 2, 3, etc., where parameter β is the percent-
age of frequent items with respect to all items. To summarize,
when mining size-2 rules, the time complexity of IRRMiner is
O((αN)2), compared to O((βN)3), O((βN)4), O((βN)6), etc.,
of IARMiner if we do not consider the preparation stage of
IRRMiner. Even if we take the preparation into consideration,
the time complexity of IRRMiner is O((αN)2), O((αN)2),
O((αN)4) compared to O((βN)3), O((βN)4), O((βN)6) of
IARMiner, respectively, by setting the maximum length of the
dependent itemsets in IRRMiner to the same as that of the
mediate itemset in IARMiner. Accordingly, IRRMiner reduces
the time complexity of O((N)) and O(N2), respectively, when
we set the maximum length of link itemset to 1 and larger
than 1 with the consideration of preparation. This explains
why IRRMiner is always much more efficient than IARMiner,
especially in a dataset with a large number of items. This is
consistent with the empirical results in Tables IV and V.

E. Data Factor Test

To test the performance of the proposed algorithm on
datasets of different characteristics, we conduct data factor test.
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TABLE IV
RUN TIME (IN SECOND) UNDER DIFFERENT minsup(m.s.)

TABLE V
RUN TIME (IN SECOND) UNDER DIFFERENT minIRS(m.I.)

Specifically, two data factors: density (D) and the total num-
ber of items (N) are selected. Recall the number of possible
size-2, size-3, etc., itemsets are C2

αN , C3
αN , etc., respectively,

as illustrated in the fourth paragraph of Section V-D, it is obvi-
ous that α and N can substantially affect the number of mined
implicit rules by first deciding the number of possible gener-
ated itemsets and candidate itemsets. Furthermore, α is greatly
affected by data density, because the items in a dense dataset
are more likely to be dependent on each other than those in a
sparse one. In other words, data density closely relates to the
number of resultant rules via α.

To make a fair comparison, when one data factor is tested,
we ensure the other data factor is identical on all the datasets
by conducting necessary processing on them. For example,
when testing the effect of density, the number of items in the
three datasets used in 1) is kept the same.

1) Density Test: We test the effect of dataset density on the
number of implicit rules mined by IRRMiner by running it on
three real-world datasets with various density degrees but with
the same number of items. The number of obtained rules is
shown in Fig. 3(a).

It is quite obvious that under the same experimental settings,
the number of rules is significantly influenced by the data
density. Fig. 3(a) shows that the denser a dataset is, the more
rules are obtained. The number of rules of all sizes for the
dataset with a density of 20.6% is much larger than that for
the dataset with density of 10.3%, the latter is also much larger
than that on the dataset with density of 5.2%. In addition, it is
much more likely that larger rules will be obtained for denser
datasets, for instance, only the densest dataset (D = 20.6%)
results in rules of size larger than 9. This is consistent with
the statement in the first paragraph of this section that items
in a dense dataset are more likely to depend on each other and
lead to a higher α for the dataset, and produce more rules.

2) Item Number Test: We test the effect of item number
(N) on the number of implicit rules mined by IRRMiner by
running it on three real-world datasets with different number of
items but with the same density. The number of rules obtained
is shown in Fig. 3(b). The results are also consistent with the
analysis in the first paragraph in this section. When the data
density is unchanged, larger N implies more candidate itemsets
generated and also more rules mined.

(a) (b)

Fig. 3. Rule number comparisons with respect to different data density
degrees (D) or item numbers (N). (a) Test on data density. (b) Test on item
number.

VI. CASE STUDY: IMPLICIT RULES-BASED

RECOMMENDATION

IRRMiner can be applied to different cases, such as product
promotion and cross-saling by exploring the implicit rela-
tions hidden behind various products. Here, we show how
the mined implicit rules assist in pattern-based recommen-
dation [42] to increase recommendation reliability. We first
analyze the theoretical benefits and then justify them with
real-world case studies. Note that the implicit rules used for
recommendations are mined on transactional data, hence we
can only make recommendations based on transactional infor-
mation, which is the typical scenario, where pattern-based
recommendation is applicable. This is quite different from the
well-known content-based or collaborative filtering [43] based
recommendations which are built on the rating data.

One of the most important applications of association rules
or correlation rules is to increase product sales by recom-
mending some items associated with the items that a customer
has just bought. To apply these rules to the recommendation
domain, we introduce the concept of recommendation rules in
the form of X → Y to describe the recommendation strategy,
whereby itemset Y is recommended to those consumers who
have just bought itemset X. In this case, a direct method to
evaluate recommendation quality is to check whether the rec-
ommended items have actually been bought by the customers
or not. The higher possibility of Y to be bought together with
X, the more reliable the recommendation rule X → Y . Based
on such observation, the recommendation reliability of a typ-
ical recommendation rule X → Y is defined as the percentage
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TABLE VI
MEAN RECOMMENDATION RELIABILITY USING IMPLICIT RULES (IM_RULE) AND

CORRELATION RULE (CORE_RULE) WITH RESPECT TO DIFFERENT minIRS

TABLE VII
MEAN RECOMMENDATION RELIABILITY OF TOP-K RULES WHEN minIRS = 1

of transactions with X and Y included with respect to those
including X. Formally

Reliability(X → Y) = #transactions including X and Y

#transactions including X
.

(11)

Usually, different patterns lead to different recommendation
strategies and recommendation rules in pattern-based recom-
mendation [44], which result in different levels of recommen-
dation reliability. Note that here, pattern is a general concept;
implicit rules, association rules, and correlation rules [45]
are all specific forms of patterns. To be specific, association
rule-based recommendation suggests those explicitly associ-
ated items; correlation rule-based recommendation suggests
explicitly correlated items; while implicit rule-based recom-
mendation makes recommendations by considering not only
explicit dependency but also implicit dependency between
items. Since our mined implicit rules are built on the basis
of dependency between items, which is similar to correlation
rules, we compare implicit relation-based recommendation
with correlation rule-based recommendation in terms of relia-
bility. Next, we analyze the recommendation strategies in the
form of recommendation rules based on implicit rules and cor-
relation rules [25], respectively, and then compare these two
kinds of rule-based recommendations in terms of reliability.

Suppose x and y are two distinct items while Z is an itemset
and an implicit rule x⊕y|Z is mined among them. Accordingly,
a recommendation rule Z ∧¬y → x (Z ∧y 	→ x) is derived for
recommending a related item x to those who have just bought
itemset Z based on the explicit dependency between x and Z,
and at the same time the effect of the implicitly related item y
of x is considered. Specifically, when a business plan to pro-
mote or recommend item x to a customer, if the customer has
bought Z but not y (and x), it can be proceeded. However, if the
customer has already bought Z and y, the planed recommen-
dation action should be terminated. In this way, the conditions
(antecedents of recommendation rules) to recommend an item
are more precise, and accordingly, recommendation reliabil-
ity is improved. On the other hand, for items x and y and
itemset Z, two correlation rules [x, Z] and [y, Z] can be easily
obtained due to the strong explicit dependency between x(y)

and Z. Here, [x, Z] infers that x and Z are positively correlated.
Based on these correlation rules, two recommendation rules
Z → x and Z → y are derived for recommending correlated
item x and y to those who have just bought Z. Technically, such
recommendations are less reliable than implicit rule-based rec-
ommendations due to the lack of consideration of the implicit
relations between items (e.g., the implicit relation between x
and y). Unfortunately, both the existing association rule-based
recommendation and correlation rule-based recommendation
do not take such kind of implicit relations into account.

Taking the ERD data as an example, let us consider
under which conditions recommending item coke is more
reliable. Two recommendation rules r1 : pizza → coke and
r2 : pizza ∧ ¬sprite → coke can be derived based on correla-
tion rules and implicit rules, respectively. The left-hand side
of each rule indicates the conditions in which to recommend
the right-hand side items. The first rule r1 infers that once
customers buy pizza we can recommend coke to them while
the second rule means when customers have bought pizza, we
need to check if the other items implicitly related to coke have
already been bought, if they have not been bought, we would
recommend coke. In practice, when we go back to the trans-
actions in Table I, it is obvious that the conditions in which
to recommend coke described by r2 are more precise and reli-
able than that of r1, which can also be illustrated by a higher
reliability of 100% of r2 than a lower reliability of 66.67%
of r1. This shows that taking into account implicit relations
between items contributes to reliable recommendations.

In addition to the above theoretical benefits of implicit rules
in increasing recommendation reliability, we also calculate
the reliability of both implicit rule-based recommendations
and correlation rule-based recommendations on two real-world
datasets: ERD and MovieLens_1. The results are given in
Tables VI and VII, where the mean values of the corresponding
recommendation rules based on implicit rules and correla-
tion rules, respectively, are given. Please note that here the
parameter minIRS only exists in the implicit rule-based rec-
ommendation algorithm (IRRMiner), and under each minIRS
value setting, the identical number of implicit rules and corre-
lation rules are selected to compare their average reliability. It
is obvious that, under all the minIRS value settings, implicit
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rule-based recommendation always has higher reliability than
the correlation rule-based one, as shown in the first column
in Table VI (35.54% for the Im_Rule compared to 33.7% for
the Core_Rule), and in the first column in Table VII (49.41%
for the Im_Rule compared to 43.98% for Core_Rule). It is
clear that the reliability of all implicit rules (shown in the first
column) increases with an increase in the minIRS. This is
because, the implicit rules with weak implicit relations are
filtered out during the increase of minIRS, and fewer and
stronger implicit rules are selected. Such strong rules have
higher reliability. Also less strong correlation rules are selected
to guarantee the identical number of rules as implicit rules, so
the reliability of the correlation rules also increases with an
increase in minIRS. Please note that the top 10, top 5, and top
3 rules are rarely affected by the increase of minIRS as the
IRS of these rules is usually much higher than minIRS.

In addition, some specific recommendation rules based on
implicit rules and correlation rules are selected below. To
differentiate these from recommendation rules, we use p′

1 and
p′

2 to represent two implicit rules mined from the ERD dataset.
Based on the relations between the items included in these
implicit rules, some recommendation rules based on correlation
rules (e.g., r′

11, r′
21) and implicit rules (e.g., r′

13, r′
23) are derived.

In addition, to show the significant effect of the implicitly related
items on recommendation reliability, we also add another rules
(r′

12, r′
22). The name of each item is listed below.

R′
1

⎧
⎪⎪⎨

⎪⎪⎩

p′
1 : i′11 ⊕ i′48|i′12

r′
11 : i′11 → i′12 reliability(r′

11) = 42.4%
r′

12 : i′11 ∧ i′48 → i′12 reliability(r′
12) = 36.3%

r′
13 : i′11 ∧ ¬i′48 → i′12 reliability(r′

13) = 45.1%

R′
2

⎧
⎪⎪⎨

⎪⎪⎩

p′
2 : i′19 ⊕ i′48|i′12

r′
21 : i′19 → i′12 reliability(r′

21) = 41.5%
r′

22 : i′19 ∧ i′48 → i′12 reliability(r′
22) = 38.69%

r′
23 : i′19 ∧ ¬i′48 → i′12 reliability(r′

23) = 43.5%

(12)

i′11: a book titled “An Introduction to Secondary Data
Analysis with IBM SPSS Statistics” (Book 1);

i′12: Philips Peripherals SWR2122/27 Retractable USB
Cable;

i′16: Tableau software for data analysis;
i′19: a book titled “Python Data Science Handbook:

Essential Tools for Working with Data” (Book 2);
i′48: a book titled “Microsoft Excel 2013 Data Analysis

and Business Modeling (Introducing)” (Book 3);
i′61: San-Disk Memory Card.
Please note that we target the scenario that, for a given item,

in what conditions (described by the antecedent of the recom-
mendation rules) it should be recommended to achieve greater
reliability. In practice, a given item can be recommended in
all the different conditions described by different rules (e.g.,
r′

11, r′
12, and r′

13), but usually the market wants to make a rec-
ommendation as reliable as possible. It is quite clear, given
the same item (e.g., retractable USB cable), more reliable rec-
ommendation rules (r′

13, r′
23) can be achieved if more implicit

relations (the relations between Books 3 and 1 and 2, respec-
tively) are taken into consideration. This reflects the common
shopping behavior that customers do not prefer to buy two
similar items within one transaction. For the other dataset

MovieLens_1, the movie name is not given in the source data
MovieLens10M, so we do not show the specific rules mined
on it.

VII. CONCLUSION

Identifying implicit relation-based complex rules is demand-
ing but challenging and extends far beyond the traditional rule
mining framework, such as association rule, causal rule, and
correlation rule mining. In this paper, we have proposed a
new approach which first captures the dependency between
items and then links those items that share the same depen-
dent items (or itemsets) to infer implicitly related rules.
Thanks to the special new structures of implicit rules, the
complex relations between multiple items are comprehen-
sively revealed. Experimental results on real-world datasets
show that our proposed implicit rule mining algorithm is very
promising and can generate implicit rules which cannot be
discovered by existing algorithms. Further, it runs much faster
than an indirect association rule mining algorithm. Case stud-
ies demonstrate that it greatly benefits recommendation by
increasing its reliability and reducing the number of redundant
recommendations. In the future, we will explore the possibility
of incorporating item features into our rule inference frame-
work to reveal low-level intrinsic interitem relations (e.g.,
similarity). Hopefully, more informative implicit rules can be
achieved to better help with real-world business.
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