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Dual-Objective Optimization for Lane Reservation With 
Residual Capacity and Budget Constraints

Peng Wu, Feng Chu, Ada Che, and Yongxiang Zhao

Abstract—With the increase of transport demands, more
pressure and challenges are being imparted into efficient trans-
portation. As a conventional and direct congestion alleviation
strategy, constructing new roads and lanes are increasingly
restricted by limited land resources and high costs. Thus, making
full use of existing transport network via appropriate man-
agement is critical to realize the sustainable development of
transportation systems. As a flexible management strategy, lane
reservation strategy has been widely adopted in real life. The
reserved lanes can improve the efficiency of special transports,
while they bring negative impact such as travel delay for general-
purpose transports. In addition, the setting and operating of
reserved lanes require a certain amount of cost. This paper pro-
poses a new dual-objective integer linear programming model
for optimally determining reserved lanes on a network for
time-guaranteed special transports in order to simultaneously
maximize the benefits and minimize the negative impact brought
by reserved lanes, which incorporates road residual capacity
and limited budget to the actual decision. Moreover, an iterative
weighted sum-based method is proposed to solve it, in which a
new relax-and-optimize algorithm is developed to exactly solve
the single-objective optimization problems. Results of extensive
numerical experiments show the effectiveness and efficiency of
the proposed model and approach.

Index Terms—Lane reservation (LR), modeling and simulation,
multiobjective optimization, relax-and-optimize, transportation.

I. INTRODUCTION

E
FFICIENT transportation constitutes a crucial component
in the sustainable growth of economy, as it supports the
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movement of personnel and goods. Consequently, improving
transportation efficiency has drawn a lot of attention from both
researchers and practitioners. Over the past 30 years, a number
of transportation management problems have been exten-
sively investigated, such as vehicle routing problem [1]–[3],
location routing problem [4]–[6], and vehicle scheduling
problem [7]–[9]. However, due to the rapid growth of travel
demands, traffic congestion has become one of the major
issues faced by many cities around the world, which leads
to many additional mobility-related problems, such as inef-
ficient human’s daily travel and cargo transportation, traffic
accidents, environmental pollution, and energy waste. Besides,
special transport needs bring new challenges to traffic man-
agers. For instance, during large-scale sport events the athletes
are usually required to be delivered from the athlete village(s)
to geographically dispersed stadiums within strict travel dead-
lines. One example is the Guangzhou Asian Games in 2010,
whose organizing committee was required to ship athletes from
athlete villages to any stadium within half an hour. However,
such special transport demand cannot be easily achieved due
to the congested traffic of host city without the development
of effective approaches.

The conventional and direct way to congestion alleviation
is to expand the transportation network capacity by construct-
ing new road infrastructures. However, the growth rate of
network capacity may not meet the continuously growing
travel demands. Moreover, constructing new traffic infrastruc-
tures is restricted by long duration, high expenditure, and
limited geographical space. To make full use of existing trans-
port network via appropriate traffic management becomes
increasingly important and critical to realizing the sustain-
able transportation systems. Recently, as an important traffic
management strategy, lane reservation (LR) strategy has been
widely used in real life. Its basic concept is to convert part
of the lanes on an existing network into reserved ones dur-
ing certain time periods for the exclusive use of specific
transports. With reserved lanes, the travel speeds of special
transports would be increased such that the above-mentioned
time-guaranteed transportation tasks can be achieved. Actually,
the LR strategy has been implemented during the Sydney,
Athens, and Beijing Olympic Games in 2000, 2004, and 2008,
respectively. Another representative application is the exclu-
sive bus lane, which has been widely used to improve bus
transit efficiency.

Clearly, the LR strategy would provide a relatively smooth
transport environment for special transports. However, the
general-purpose transports on adjacent nonreserved lanes may
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become more congested due to reserved lanes and travel delay
may be caused. It is understandable that there is a clear trade-
off between the two aspects, since greater positive benefits,
for example, the greater reduction in total transport time for
the special transport tasks, usually requires to reserve more
lanes, while it will result in a larger negative impact to
general-purpose transports, and vice versa. Decision-makers
may desire to achieve a reasonable balance between the two
aspects. Therefore, it is indispensable to carefully reserve lanes
so as to maximize their benefits and minimize their negative
impact. Moreover, it is necessary to consider the road residual
capacity for special transports, because if the residual capacity
on a road segment is not enough and this road must be passed
by special transports, then the road segment has to be reserved.
In addition, the setting and operating of reserved lanes requires
a certain amount of cost [10], the budget should also be taken
into account.

To address the above-mentioned issues, this paper pro-
poses a new dual-objective integer programming (IP) model
to maximize the benefits and minimize the total negative
impact brought by reserved lanes, while simultaneously satis-
fying the limited total budget, time-guaranteed requirements,
and road residual capacity constraints. An iterative weighted
sum-based method is proposed to solve it. In particular, an
efficient exact relax-and-optimize algorithm is developed to
solve the corresponding single-objective optimization prob-
lems. Numerical experiments are conducted to validate the
effectiveness and efficiency of the proposed model and
algorithm.

The remainder of this paper is organized as follows.
Section II presents the literature review. In Section III, we
formally describe the problem and formulated it as a dual-
objective IP model. In Section IV, an iterative weighted
sum-based method is developed for solving the proposed
model, in which a relax-and-optimize algorithm is proposed to
exactly solve the corresponding single-objective optimization
problems. Numerical experiments are performed in Section V.
The conclusion is presented in the last section, along with the
discussion for future research.

II. LITERATURE REVIEW

In the literature, transportation planning and management
problems, such as vehicle routing, location routing, and vehi-
cle scheduling, have received much attention from researchers.
However, limited attention has been paid on optimal lane
reservation, although it is one of the important problems
in transportation management. Ravi et al. [11] proposed an
LR system for highways, through which drivers paying cer-
tain fees could enjoy congestion-free travel. Wu et al. [12]
first investigated an LR problem (LRP) motivated by the
time-guaranteed transportation requirements arising in the
Guangzhou Asian Games in 2010, for which they developed
an IP model to minimize the LR negative impact that is con-
sidered as the increased time for general-purpose transports.
A constructive heuristic algorithm was proposed to obtain a
satisfactory solution of a real case involving 22 tasks in a
network with 22 nodes. Later, Che et al. [13] proved that the

LRP addressed in [12] is NP-hard and developed an improved
quantum-inspired evolutionary algorithm to solve the problem
in large-scale network environments. Instances with up to 50
tasks in the network with 500 nodes were solved.

The LRP proposed in [12] was significantly expanded and
a number of variants were investigated. Zhou et al. [14]
addressed an LRP for hazardous material transportation to
minimize both the total transportation risk and negative impact.
An ε-constraint and fuzzy-logic-based method was devel-
oped for it. Fang et al. [15] generalized the LRP in [12]
to a capacitated LRP (CLRP) with the residual capacities of
non-reserved road segments. Later, Fang et al. [16] devel-
oped an exact cut-and-solve (CS)-based method for the CLRP.
Instances with up to 120 nodes in the network and 40 tasks
were solved. Fang et al. [17] examined an LRP for auto-
mated truck freight transportation, where a fleet of trucks
should be operated on dedicated truck routes, denoted by
ATP, and proved that the problem is NP-hard. Wu et al. [18]
developed an efficient two-phase algorithm to solve the ATP
to optimality. By taking the link travel time variation into
account, Fang et al. [19] studied a time-dependent LRP and
developed a mixed-integer programming (MIP) model for it.
Wu et al. [20] investigated a robust LRP by considering
the LR robustness and built a bi-objective MIP model for
it. Recently, different from the above works, Bai et al. [21]
incorporated the environmental impact into the optimal LR
decision and presented an IP model to minimize total car-
bon emission index. Besides, Mesbah et al. [22] developed
a bi-level programming model for exclusive bus lane selec-
tion to minimize the total user cost. The model was solved
by a genetic algorithm. Miandoabchi et al. [23] investigated
a road network design problem in which lane reservation is
considered as one of the decision variables. The objective is
to maximize the consumer surplus and demand share of bus
routes. Hybrid meta-heuristics were suggested to solve the
model. Khoo et al. [24] presented a bi-objective optimization
model for bus lane reservation and scheduling problem with
the objective of minimizing the travel time of bus and nonbus
traffic. A nondominated genetic algorithm was suggested for
solving the model. Wu et al. [25] addressed an LRP for station
arrival-time bus transit and presented an IP model to minimize
the total negative impact of reserved lanes.

To the best of our knowledge, this paper differs from the
existing works in two perspectives. First, this paper considers
maximizing the benefits and minimizing the negative impact
generated by the LR decision simultaneously for the first time
such that a balance between the two objectives can be studied
explicitly. Second, the addressed LRP takes limited budget,
time-guaranteed requirements, and road residual capacity into
account together, thereby leading to a more general LRP. As
such, the existing methods proposed for the LRPs in the
literature cannot be directly applied to it. This paper fur-
ther enriches the lane reservation optimization literature. The
main contributions brought by this paper include the following
perspectives.

1) A new dual-objective CLRP (DCLRP) is studied and
formulated as an IP model, which is further improved
by eliminating redundant constraints and adding valid
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inequalities. Besides, the DCLRP is shown to be NP-
hard.

2) To solve the proposed model, an effective and effi-
cient iterative weighted sum-based method is proposed
based on its characteristics. Different from the tradi-
tional weighted sum method in which the correspond-
ing single-objective optimization problems are exactly
solved by using a commercial solver such as CPLEX,
this paper develops a new relax-and-optimize algorithm
to solve them more efficiently. Moreover, the proposed
relax-and-optimize algorithm is adapted to exactly solve
the standard CLRP. Computational results on 330 bench-
mark instances under various settings confirm the effec-
tiveness and efficiency of the proposed approaches for
solving the DCLRP and the standard CLRP comparing
with the existing algorithms.

III. DEVELOPMENT OF THE OPTIMIZATION MODEL

A. Problem Description and Assumptions

The DCLRP addressed in this paper can be defined on a
transportation network which can be represented by a directed
graph G = {N, A}. N and A denote the sets of nodes and
arcs, respectively. A node and an arc can be viewed as a
road intersection and a road segment, respectively. A set of
origin-destination (OD) pairs, denoted by K, k ∈ K, with each
one corresponding to a transportation task is given in the
network.

The DCLRP consists in optimally deciding which road seg-
ments on the transport network to be reserved and design a
time-efficient route for each task subject to the road residual
capacity and limited budget constraints. The objectives are to
maximize the benefits of reserved lanes as well as to minimize
the total negative impact due to the lane reservation.

To better define and formulate the problem, this paper makes
the basic assumptions. First, at most one lane is allowed to be
reserved on a road segment. Second, the capacity of a reserved
lane is assumed to be enough and reserved lanes can be shared
by the tasks. Third, each non reserved road segment has a
residual capacity for the special transports and the budget for
reserving lanes is limited. Finally, the travel speed of task
vehicles can be increased on reserved lanes.

B. Notations

The indices and sets, parameters, and decision variables
used for the formulation are summarized as follows.

1) Indices and Sets:

i, j Nodes.
N Set of nodes.
|N| Number of nodes.
(i, j) Arcs.
A Set of arcs.
|A| Number of arcs.
k Tasks.
K Set of tasks.
|K| Number of tasks.
O Set of origin nodes of tasks.
D Set of destination nodes of tasks.

ok Origin node of task k.
dk Destination node of task k.
2) Parameters:

Bdg Budget for setup and operating reserved lanes.
Tk Expected transport time for completing task k.
fk Number of vehicles per unit time for task k.
capij Residual capacity on a nonreserved lane on arc (i, j).
tij Task vehicle travel time on a reserved lane of arc

(i, j).
t′ij Task vehicle travel time on arc (i, j) without reserved

lanes.
lij Distance of arc (i, j).
fcij Reserved lane setup cost on arc (i, j).
vcij Reserved lane operation cost on arc (i, j).
tdij Negative impact for nontask vehicles resulted by a

reserved lane on arc (i, j).
3) Decision Variables:

zij Binary variable, equals to one if a lane is reserved on
arc (i, j) ∈ A for special transports, otherwise, equals
to zero.

xkij Binary variable, equals to one if task k ∈ K passes a
reserved lane on arc (i, j) ∈ A, otherwise, equals to
zero.

ykij Binary variable, equals to one if task k ∈ K passes a
nonreserved lane on arc (i, j) ∈ A, otherwise, equals
to zero.

C. Basic Model

With the notations defined above, the DCLRP is formulated
as a binary IP model

(P0) min f1 =
∑

k∈K

∑

(i,j)∈A

fk(tijxkij + t′ijykij) (1)

min f2 =
∑

(i,j)∈A

tdijzij (2)

s.t.
∑

(ok,j)∈A

(
xkokj + ykokj

)
= 1 ∀k ∈ K (3)

∑

(i,dk)∈A

(
xkidk

+ ykidk

)
= 1 ∀k ∈ K (4)

∑

(i,j)∈A

(
xkij + ykij

)
=

∑

(j,i)∈A

(
xkji + ykji

)

∀i ∈ N\{ok, dk} ∀k ∈ K (5)∑

(i,j)∈A

(fcij + vcijlij)zij ≤ Bdg (6)

zij ≥
∑

k∈K

xkij/|K| ∀(i, j) ∈ A (7)

ykij + zij ≤ 1 ∀k ∈ K ∀(i, j) ∈ A (8)∑

(i,j)∈A

(tijxkij + t′ijykij) ≤ Tk ∀k ∈ K (9)

∑

k∈K

fkykij ≤ capij(1 − zij) ∀(i, j) ∈ A (10)

zij ∈ {0, 1} ∀(i, j) ∈ A (11)

xkij ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ A (12)

ykij ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ A. (13)
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Objective (1) is to minimize the total transport time of task
vehicles per unit time, with which the total positive benefit
brought by reserved lanes for the special transports is max-
imized, and objective (2) is to minimize the total negative
impact due to reserved lanes. Note that the negative impact is
considered as the increased time of general-purpose transports
due to LR, as is the case in most existing studies. For more
details on the estimation of negative impact, we refer readers
to the related works [12], [15].

Constraints (3)–(5) are to design a feasible path for each
task, where constraint (3) [resp. (4)] ensures that an arc out-
goes from (resp. comes into) the origin (resp. destination)
of task k and constraint (5) is the flow balance constraint.
Constraint (6) represents that the total cost of reserving lanes
should not exceed the given budget. Constraint (7) repre-
sents that the path of any task can pass a reserved lane on
arc (i, j) (i.e., xkij = 1) only if this arc is reserved (i.e.,
zij = 1). Note that constraint (7) can also be formulated
as zij ≥ xkij ∀k ∈ K, (i, j) ∈ A involving |K||A| inequali-
ties, while constraint (7) in its current form contains only |A|
inequalities. Constraint (8) states that task k passes a nonre-
served lane on arc (i, j) only when this arc is not reserved
(i.e., zij = 0). Constraint (9) ensures that the total travel time
of any task should not exceed its expected completing time.
Constraint (10) ensures that the number of task vehicles per
unit time cannot exceed the residual capacity of an arc without
reserved lanes. Constraints (11)–(13) are restrictions on deci-
sion variables. The following theorem gives the complexity of
the DCLRP.

Lemma 1: LRP in [12] and CLRP in [15] are two special
cases of DCLRP.

Proof: When the total budget is large enough, i.e., Bdg =
+∞ such that constraint (6) can be relaxed and only f2 is to
be optimized, a DCLRP turns to be a CLRP. It is an LRP if
the residual capacity of each road segment is large enough,
i.e., capij = +∞ ∀(i, j) ∈ A, such that constraint (9) can be
relaxed.

Theorem 1: The DCLRP is NP-hard.
Proof: LRP and CLRP have been shown to be

NP-hard [13], [15] and they are special cases of DCLRP.
Consequently, the DCLRP is also NP-hard.

D. Further Improvement of the Basic Model

As mentioned above, constraint (8) implies that task k passes
a nonreserved lane on arc (i, j) when not reserved, which was
formulated for the CLRP [15]. In the following, we show that
such constraint is unnecessary for the DCLRP and can be
removed. Let us consider a model P ′

0 formed by P0 removing
constraint (8) and then we analyze the property of its Pareto
optimal solution.

Theorem 2: In a Pareto optimal solution of P ′
0, for any arc

(i, j) ∈ A, if this arc is reserved, then any task k ∈ K passing
this arc will always pass the corresponding reserved lane, i.e.,
ykij + zij ≤ 1 always holds.

Proof: We prove the theorem by contradiction. Suppose that
there exist a Pareto optimal solution such that ykij + zij > 1,
i.e., zij = 1 and ykij = 1. The fact that zij = 1 means that there

is a reserved lane on arc (i, j). On the other hand, ykij = 1
means that task k passes a nonreserved lane on arc (i, j). For
this reason, we can derive a solution with lower total task
completion time due to the fact that tij < t′ij. This contradicts
the optimality of the solution.

Corollary 1: For any Pareto optimal solution to model P ′
0,

if zij = 0, then ykij ≤ 1 and if zij = 1, then ykij = 0 ∀(i, j) ∈
A∀k ∈ K. That is to say, constraint (8) can be relaxed in
model P0.

With Corollary 1, |K||A| constraints in total can be removed
from P0. Take the largest scale instance in [15] as an example,
17 820 constraints can be eliminated. This obviously con-
tributes to reducing the resolution time of P0. Moreover,
it is known that an IP model can often be tightened by
adding valid inequalities, as it is usually solved by a branch-
and-cut algorithm and valid inequalities can help generate
tighter lower bounds in its search. Note that these valid
inequalities would not exclude optimal solutions. To fur-
ther tighten the model, the following valid inequalities are
added:

∑

(i,ok)∈A

(
xkiok

+ ykiok

)
= 0 ∀k ∈ K (14)

∑

(dk,j)∈A

(
xkdkj + ykdkj

)
= 0 ∀k ∈ K (15)

∑

(i,j)∈A

(
xkij + ykij

)
≤ 1 ∀i ∈ N\{ok, dk} ∀k ∈ K (16)

∑

(j,i)∈A

(
xkji + ykji

)
≤ 1 ∀i ∈ N\{ok, dk} ∀k ∈ K (17)

where constraints (14) and (15) specify that there are no arcs
coming into origin nodes and outgoing from destination nodes,
respectively. Inequalities (16) and (17) ensure that any node
can be passed by any task k ∈ K at most once. Then, an
improved model is derived as follows:

(P1) min f1 =
∑

k∈K

∑

(i,j)∈A

fk

(
tijxkij + t′ijykij

)

min f2 =
∑

(i,j)∈A

tdijzij

s.t. (3)−(7) and (9)−(17).

IV. SOLUTION APPROACH

In this section, an iterative weighted sum-based method is
proposed to solve model P1. For the sake of convenience, let
S denotes the feasible solution set of model P , and s ∈ S.
Before proceeding, we first give some basic concepts related
to dual-objective optimization as follows [20], [26].

Definition 1: For two solutions s1 ∈ S and s2 ∈ S, we say
s1 dominates s2, denoted by s1 ≻ s2, if f1(s1) < f1(s2) and
f2(s1) ≤ f2(s2) hold or f1(s1) ≤ f1(s2) and f2(s1) < f2(s2)

hold.
Definition 2: A solution s∗ ∈ S is called a nondominated

solution if no other solution s ∈ S dominates s∗.
Definition 3: All nondominated points in the objective

space is called the Pareto front.
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A. Objective Function Conversion

When dealing with a dual-objective optimization model, it
is usually converted to a single-objective one by using the
weighted sum [27]. For the proposed model, to derive a set
of nondominated solutions, its two objectives are converted to
one. To this aim, we define a coefficient (weight) λ with its
value being between 0 and 1 to combine the two objectives.
In managerial insight, λ could represent the weight of relative
importance between the two objectives. Then, the aggregated
objective is written as

min f = λ · f1 + (1 − λ) · f2. (18)

In objective (18), the coefficient (weight) λ could be set as
0, 0.1, 0.2, . . . , 0.9, 1, i.e., its varying step is set 0.1. This
step could be set according to the scale of the investigated
problem. By changing the value of λ, different solutions can
be obtained. However, note that different objectives in dual-
objective models may have different units. For instance, the
units of f1 and f2 in the proposed model are different. To
solve this problem, we first nondimensionalize the two objec-
tive functions before the objective conversion. Then, we use
the following nondimensionalization method to deal with the
considered objective functions:

f ′
i (s) =

fi(s) − f LB
i

f UB
i − f LB

i

, i = 1, 2 (19)

where f ′
i (s), i = 1, 2 represents the objective function after the

nondimensionalization; and f LB
i and f UB

i denote the lower and
upper bounds of the ith objective function value, respectively.
To better fix the lower and upper bounds for both objective
function values, we first give the definitions of ideal and Nadir
points depicting the precise area of the whole Pareto front as
follows [20], [26].

Definition 4: The ideal point of the DCLRP addressed is
defined as (f I

1 , f I
2), where f I

1 = mins∈S(f1(s)) and f I
2 =

mins∈S(f2(s)), and the Nadir point is defined as (f N
1 , f N

2 ),
where f N

1 = min f1(s), s.t. s ∈ S, f2(s) = f I
2 , and f N

2 =
min f2(s), s.t. s ∈ S, f1(s) = f I

1 .

It is not hard to find that the ideal point is composed of
the lowest values of both objective functions, while the Nadir
point specifies their upper bounds in the Pareto front. Thus,
for i = 1 and 2, f LB

i and f UB
i are set as f I

i and f N
i , respectively.

Since all the single-objective problems defined in Definition 4
are linear, this paper solves them using CPLEX MIP solver to
determine the values of f LB

i and f UB
i . Then, the dual-objective

optimization model P1 is transformed into the following P1(λ):

P1(λ) : min λ · f ′
1 + (1 − λ) · f ′

2

s.t. Constraints (3)−(7) and (9)−(17). (20)

According to Theorem 1, the following corollary holds.
Corollary 2: The complexity of P1(λ) is NP-hard.
We set weight λ as 0, 0.1, . . . , and 1, a set of non-

dominated solutions in the Pareto front can be obtained by
solving the corresponding single-objective optimization mod-
els P1(λ). Note that different from the traditional weighted
sum method in which single-objective problems are solved
by using a commercial solver such as CPLEX, a new

relax-and-optimize algorithm is developed to more efficiently
solve the corresponding single-objective optimization prob-
lems. In the next section, the designed relax-and-optimize
algorithm is presented in details. The overall weight sum-based
method for model P1 is described in Section IV-C.

B. Relax-and-Optimize Algorithm for P1(λ)

As mentioned above, to obtain a set of Pareto solu-
tions of the DCLRP, a sequence of NP-hard single-objective
optimization problems P1(λ) need to be solved. Thus, the
resolution efficiency of P1(λ) would seriously influence the
efficiency of solving the DCLRP. In this paper, in order
to accelerate the resolution of our problem, a new effi-
cient method called relax-and-optimize is proposed to solve
P1(λ) instead of directly using an optimization software, e.g.,
CPLEX.

1) Preprocessing: To speed up the resolution of P1(λ), a
preprocessing similar to that in [15] is first conducted. For
∀k ∈ K, we first define set Ak as follows:

Ak =
{
(ok, i)|toki + τi,dk

> Tk ∀(ok, i) ∈ A
}

∀k ∈ K

A′
k =

{
(j, dk)|τok,j + tjdk

> Tk ∀(j, dk) ∈ A
}

∀k ∈ K

where τi,dk
and τok,j denote the shortest travel time from i to

dk and ok to j, respectively, on an entirely reserved network.
It can be imagined that if each arc (i, j) ∈ A in the network is
with travel time value of tij, then τi,dk

and τok,j can be easily
obtained by using the Dijkstra shortest path algorithm with its
complexity O(|N|2). Meanwhile, it can be found that if arcs in
Ak and A′

k are used by task k, then travel duration constraint (9)
would be violated. Thus, the corresponding variables can be
fixed to 0 and a new model P ′

1(λ) is formulated as follows:

P ′
1(λ) : min λ · f ′

1 + (1 − λ) · f ′
2

s.t. xkoki + ykoki = 0 ∀(ok, i) ∈ Ak ∀k ∈ K (21)

xkjdk
+ ykjdk

= 0 ∀(j, dk) ∈ A′
k ∀k ∈ K (22)

and constraints (3)–(7) and (9)–(17).
Compared with P1(λ), feasible solutions are not excluded

from P ′
1(λ), hence P ′

1(λ) is equivalent to P1(λ).
2) Relax-and-Optimize: It is known that generally it is

much more difficult to solve an IP model than a real linear
program due to the integer variables. Inspired by this observa-
tion, we design a so-called relax-and-optimize algorithm based
on the relaxation of integer variables to solve model P ′

1(λ).
Its core idea is presented as follows.

We first transform the original integer linear program, i.e.,
P ′

1(λ), into a real linear program by relaxing all integer vari-
ables, i.e., zij, xkij, and ykij. The corresponding real linear
program is then exactly solved and an optimal solution is
obtained, in which the values of variables zij, xkij, and ykij

either equal to 0 or 1, or belong to (0, 1). Let z̃ij, x̃kij, and
ỹkij denote the values of variables zij, xkij, and ykij, respec-
tively. For arcs tending to be reserved at first priority, their
corresponding z̃ij have large probabilities of being one in the
optimal solution of the original problem. Implying that these
arcs have large probabilities of being fully reserved. On the
other hand, part of arcs would never be used, owing to their

5



Algorithm 1 Relax-and-Optimize Algorithm for P1(λ)

1: Implement pre-processing and obtain an equivalent integer
linear program P ′

1(λ);
2: Initialize � = ∅, � = ∅, and Y = ∅;
3: Solve RP(λ) exactly and obtain variables zij and ykij’s

values z̃ij and ỹkij;
4: Let � = {(i, j)|0 < z̃ij ≤ 1}, � = {(i, j)|0 < z̃ij < 1}, and

Y = {ykij|0 < ỹkij < 1};
5: while � �= ∅ and Y �= ∅

6: Let all variables zij, ykij,∀(i, j) ∈ � and ∀ykij ∈ Y be 0-1
variables;

7: Solve RP(λ) and obtain variables zij and ykij’s values z̃ij

and ỹkij;
8: � = {(i, j)|0 < z̃ij < 1}, � = � ∪ �, and Y = {ykij|0 <

ỹkij < 1};
9: end while

10: Output the solution and its corresponding objective value.

over-high impact. Their corresponding values z̃ij remain zero.
The remaining variables zij have values falling into interval
(0, 1), implying the partial use of these arcs.

In a relaxed model of P ′
1(λ), the objective function value is

in proportion to the values of zij, xkij, and ykij. However, in the
original model P ′

1(λ), the objective function value is fixed as
long as the values of zij, xkij, ykij > 0. To remedy such distor-
tion, those variables taking values between 0 and 1 should be
set to binary variables in the next iteration. For those variables
taking the value of 1, we set them as binary ones in the next
iteration to save the computational time. Because the value
of decision variable xkij is directly and strongly influenced by
the decision of LR (i.e., zij) via constraint (7), then all vari-
ables xkij keep real, and thus only zij and ykij are considered in
our designed algorithm. The following corollary showing the
influence between zij and xkij holds according to Theorem 2.

Corollary 3: In an optimal solution of P ′
1(λ), for any arc

(i, j) ∈ A, if this arc is reserved, i.e., zij = 1, then any task k ∈ K

passing this arc will always pass the reserved lane, i.e., xkij = 1,
always holds; otherwise xkij = 0 according to constraint (7).

Let � and Y denote the set {(i, j)|0 < z̃ij ≤ 1} and {ykij|0 <

ỹkij < 1}, respectively. Then, the relaxed model is formed as
follows:

RP(λ) : min λ · f ′
1 + (1 − λ) · f ′

2 (23)

s.t. zij ∈ {0, 1} ∀(i, j) ∈ � (24)

ykij ∈ {0, 1} ∀(i, j) ∈ �,∀k ∈ K,∀ykij ∈ Y

(25)

0 ≤ zij ≤ 1 ∀(i, j) ∈ A\� (26)

0 ≤ ykij ≤ 1 ∀k ∈ K ∀(i, j) ∈ A\�,∀ykij /∈ Y

(27)

0 ≤ xkij ≤ 1 ∀k ∈ K ∀(i, j) ∈ A (28)

and constraints (3)–(7), (9)–(10), (14)–(17), and (21)–(22).
We note that if all variables’ values of the obtained solution

are either 0 or 1, i.e., integer, then an optimal solution for
P ′

1(λ) is derived and the algorithm terminates. Otherwise, a
new relaxed model formed and a new iteration repeats.

Algorithm 2 Iterative Weighted Sum-Based Method
for DCLRP

1: Computing f LB
i and f UB

i , i=1 and 2;
2: Obtain f ′

i (s), i=1 and 2, with Eq. (19);
3: Transform P1 to P1(λ) and initialize λ = 0.0, δ = 0.1,

F = ∅ ;
4: while λ ≤ 1
5: Solve P1(λ) calling Algorithm 1, and obtain solution s∗

and the corresponding objective vector (f1(s
∗), f2(s

∗));
6: Let F = F ∪ {(f1(s

∗), f2(s
∗))} and λ = λ + δ;

7: end while

8: Output the Pareto solution set F after removing dominated
solutions.

Based on the description above, the overall algorithm for
model P1(λ) is outlined in Algorithm 1, which is shown to be
able to obtain an optimal solution of P1(λ) after termination.

Theorem 3: When Algorithm 1 terminates, the current
incumbent solution is optimal.

Proof: Since RP(λ) is a liner relaxed or partial relaxed
problem of P1(λ), the optimal objective value of RP(λ)

optimal solution is a lower bound of P1(λ). If all decision
variables of the current incumbent solution take integer val-
ues, its objective value is also an upper of P1(λ). So in this
case, the current incumbent solution, the optimal solution of
RP(λ) is also an optimal solution of P1(λ).

Although Algorithm 1 is specially developed for solving
the addressed problem, the idea of relax and optimize may
be adapted to solve other kinds of combinatorial optimization
problems of similar structure. For example, facility location
problems in which the location decisions would influence other
decisions such as assignment decisions. In this paper, we have
shown that it can be easily adapted to solve the standard
CLRP and is more efficient than the existing algorithm in
Section V-B.

C. Iterative Weighted Sum-Based Method for DCLRP

As mentioned above, a set of nondominated solution in
the Pareto front can be obtained by solving a series of
P ′

1(λ) with iteratively varying the value of λ. The iterative
weighted sum-based method of the DCLRP can be summa-
rized in Algorithm 2.

V. EXPERIMENTS AND RESULTS

Extensive numerical experiments are conducted to validate
the effectiveness and efficiency of the proposed model and
algorithm, which are divided into two categories: 1) resolution
of the DCLRP and 2) resolution of the standard CLRP [15].
In the first category, we focus on solving the DCLRP by the
proposed approach. As the proposed model and algorithm can
be easily adapted to solve the CLRP, thus in the second cat-
egory, we also test the proposed model and algorithm for
solving the standard CLRP. All these experiments are per-
formed on a laptop with 2.5 GHz and 2.95 GB RAM running
Windows 10. The models and algorithms are implemented by
C++ linked with CPLEX 12.6 using the Concert Technology.
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TABLE I
COMPARISON RESULTS FOR THE INSTANCES OF DCLRP WITH |N| = 100

The computational time limit is set to 7200 CPU seconds.
Note that each value reported in the result table calculates the
average value of five instances in an experimental problem set.

A. Results on the DCLRP

Results of the proposed algorithm on two sets of DCLRP
instances are presented in this section. Table I contains the
results on the instances with 100 fixed number of nodes while
Table II reports the results on the instances with varying nodes
from 50 to 120. The test problems are constructed based on
the benchmark instances of CLRP [15], which comprise 33
problem sets where each involves five instances (i.e., 165
instances in total).

For each instance, the transportation network was generated
using the model reported by [28], where the nodes are ran-
domly distributed within a rectangle and the existence of an arc
is decided by a probability function. OD pairs are randomly
generated from the node set N. t′ij is defined as lij/vij, where
vij is the average travel speed on arc (i, j). tij = αijt

′
ij where αij

is a travel time discount via a reserved lane and is generated
in U(0.5, 0.8), where U(a, b) denotes a uniform distribution
between a and b with a < b. Travel delay tdij is estimated as
t′ij/(mij−1), where mij denotes the number of lanes on arc (i, j).
It approximately computes the increased time due to a reserved
lane [12], [15]. fk and cij are randomly generated in [5, 10] and
[20, 30], respectively. Tk is defined as τk +βk(τ

′
k − τk), where

τk and τ ′
k denote the shortest travel time from ok to dk via

an entirely reserved path and an exclusively nonreserved path,
respectively, and βk is randomly generated in U(0, 1). fcij and
vcij are set as 1000 Yuan and 10 000 Yuan/km, respectively.
Bdg is set as

∑
(i,j)∈A(fcij + vcijlij) ∗ U(0.1, 0.2).

To validate the effectiveness and efficiency of the proposed
algorithm, we compare it with the traditional weighted sum
method based well-known commercial optimization solver
CPLEX, denoted by Algorithm 2′, which is defined as
Algorithm 2 in which P1(λ) is solved by using CPLEX MIP
solver instead of Algorithm 1. The symbols used to report the
results are presented as follows.

1) NbAlgo2′ : Number of Pareto optimal solutions obtained
by Algorithm 2′.

2) NbAlgo2: Number of Pareto optimal solutions obtained
by Algorithm 2.

3) TAlgo2′ : The CPU time (s) of Algorithm 2′.
4) TAlgo2: The CPU time (s) of Algorithm 2.

Fig. 1. Pareto points for problem set with |N| = 100 and |K| = 5.

Fig. 2. Pareto points for problem set with |N| = 100 and |K| = 25.

From Table I, we can see that the proposed algorithm
(i.e., Algorithm 2) can obtain the same number of Pareto
points as Algorithm 2′ over problem sets 1–8. On aver-
age, Algorithm 2 can obtain more Pareto optimal solutions
than Algorithm 2′, since for the largest scale instance set 9,
Algorithm 2′ cannot find the same number of Pareto optimal
solutions as Algorithm 2 within 7200 s. These results show
that the proposed algorithm outperforms the weighted sum-
based CPLEX method. Furthermore, it can be observed that
the average number of Pareto optimal solutions has an increas-
ing trend as the number of tasks |K| increases. This is mainly
because that problems with more tasks enjoy larger solution
space, implying more Pareto optimal solutions.

On the other hand, Algorithm 2 takes less computational
time than Algorithm 2′ on each set, especially for large scale
ones. We can observe that the CPU time of Algorithm 2′

increases sharply with the number of tasks |K|, while that
of Algorithm 2 increases relatively slightly. TAlgo2′ increases
from 51.30 to 7200 s when |K| increases from 5 to 45, while
TAlgo2 increases from 49.53 to 2814.42 s. Moreover, it can be
seen that the value of TAlgo2/TAlgo2′ has a decreasing trend
as |K| increases. On average, the proposed algorithm only
spends 44% CPU time of the weighted sum-based CPLEX
method. These results indicate that Algorithm 2 outperforms
Algorithm 2′ in terms of computational efficiency and the
proposed relax-and-optimize Algorithm 1 is more efficient
than CPLEX in solving single-objective problem P1(λ). In
summary, the proposed algorithm is able to efficiently solve
the considered DCLRP with fixed number of nodes and
varying number of tasks.
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Fig. 3. Pareto points for problem set with |N| = 100 and |K| = 45.

In order to clearly illustrate the tradeoff between the two
objectives of the DCLRP, the Pareto fronts for the instances
of three representative sets, i.e., the small-size set 1, medium-
size set 5, and large-size set 9 are shown in Figs. 1–3. It can
be observed from these figures that for the instance in the
larger-size set, there exist more Pareto optimal solution and
we can see that the obtained solutions are well-distributed in
its corresponding objective space. Decision-makers can choose
their desired solution from these alternatives according to their
specified requirements.

To further test the proposed method, we also solve instances
with nodes varying from 50 to 120. From Table II, we can
see that Algorithm 2 can derive the same number of nondom-
inated points as Algorithm 2′. This again indicates that the
proposed algorithm is able to obtain Pareto solutions of high
quality when solving the DCLRP. The Pareto solutions for the
instances of each set are not presented here due to the space
limitation, but we note that the images constituted by them
are similar to those in Figs. 1–3. We again note that the aver-
age computational time of Algorithm 2 is less than that of
Algorithm 2′ for each problem set. Meanwhile, the compu-
tational time of the proposed method increases more slightly
than that of Algorithm 2′. The above numerical results indi-
cate that the proposed algorithm is effective and efficient in
solving the DCLRP with varying number of nodes.

B. Results on the CLRP

Fang et al. [15] have proved that the standard CLRP is NP-
hard and showed that problem instances with 100 nodes and
45 tasks cannot be solved by their proposed algorithm within
acceptable time. As mentioned above, the proposed relax-and-
optimize algorithm, i.e., Algorithm 1, can be easily adapted
to solve the standard CLRP. Moreover, the existing model for
the CLRP can be further improved. For the sake of clarity, the
existing model, improved model, and proposed algorithm for
the standard CLRP are stated in the Appendix.

To further validate the performance of the improved model
and relax-and-optimize algorithm, we also test 165 benchmark
instances of the standard CLRP. The following notations are
used to report the results.

1) OB: The objective value obtained by the proposed relax-
and-optimize algorithm.

2) TF: The computational time (s) of CPLEX for solving
the existing model of CLRP.

TABLE II
COMPARISON RESULTS FOR THE INSTANCES OF

DCLRP WITH |K| = 20, 25, 30

TABLE III
COMPARISON RESULTS FOR THE INSTANCES OF CLRP WITH |N| = 100

3) TW : The computational time (s) of CPLEX for solving
the improved model of CLRP.

4) Tcs: The computational time (s) of the existing algo-
rithm [16] for solving CLRP.

5) TAlgo3: The computational time (s) of the relax-
and-optimize algorithm, i.e., Algorithm 3 detailed in
Appendix, for solving CLRP.

Table III reports the computational results for problems sets
with 100 fixed nodes while the number of tasks increases from
5 to 45. From Table III, we can conclude the following.

1) The improved model is more efficient than the exist-
ing one as TW is less than TF over all problem sets.
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TABLE IV
COMPARISON RESULTS FOR THE INSTANCES OF

CLRP WITH |K| = 20, 25, 30

Moreover, with the improved model the largest scale
problem set 42 can be solved to optimality within
2097.64 s while the existing model fails within 7200 s.

2) We can see that TAlgo3 varies from 6.43 to 350.73 s
while TW and Tcs increase from 1.50 to 2097.64 s and
1.17 to over 7200 s, respectively, and TAlgo3 is less than
TW and Tcs over all sets except the smallest sized sets
34–36. These results show that our relax-and-optimize
algorithm outperforms the existing algorithm [16] and
commercial software CPLEX in terms of computational
efficiency.

Table IV summarizes the results of instances with |N|
increasing from 50 to 120 and |K| being 20, 25, and 30. From
Table IV, we can observe the following.

1) TW is less than TF over all problem sets 43–66. TF

varies from 6.79 to 566.42 s with its average value being
113.20 s while TW varies from 5.35 to 245.44 s with its
average value being 67.16 s. The improved model only
takes an average 59.33% (67.16/113.20) computational
time of the existing one. This indicates that the proposed
model is more efficient than the existing one.

2) The average value of TAlgo3 is smaller than that
of TW and the proposed algorithm spends 76.37%
(51.29/67.16) computational time of CPLEX. In addi-
tion, our algorithm spends less average computational
time than the existing method. This demonstrates that

Algorithm 3 Relax-and-Optimize Algorithm for the CLRP
1: Implement pre-processing for Wu-model and obtain an

equivalent model;
2: Initialize � = ∅, � = ∅, and Y = ∅;
3: Solve the equivalent model and obtain variables zij and

ykij’s values z̃ij and ỹkij;
4: Let � = {(i, j)|0 < z̃ij ≤ 1}, � = {(i, j)|0 < z̃ij < 1} and

Y = {ykij|0 < ỹkij < 1};
5: while � �= ∅ and Y �= ∅

6: Let all variables zij, ykij,∀(i, j) ∈ � and ∀ykij ∈ Y be 0-1;
7: Solve the model again and obtain variables zij and ykij’s

values;
8: � = {(i, j)|0 < z̃ij < 1}, � = � ∪ �, and Y = {ykij|0 <

ỹkij < 1};
9: end while

10: Output the solution and its corresponding objective value.

the proposed algorithm outperforms CPLEX and the
existing algorithm in terms of solution efficiency.

VI. CONCLUSION

This paper addresses a dual-objective optimization issue
for lane reservation in transportation network with limited
budget, time-efficient transport requirements, and road resid-
ual capacity constraints for the first time. Its objective is to
simultaneously maximize the LR benefit achieved by minimiz-
ing the total task transportation time and minimize negative
impact due to reserved lanes. We first formulate a dual-
objective IP model for the problem and it is further enhanced
by adding valid inequalities and eliminating redundant con-
straints. Its complexity is analyzed. Since it is NP-hard, an
iterative weighted sum-based method is proposed to efficiently
derive Pareto optimal solutions. Computational results for 165
instances under various parameters settings show that the
proposed algorithm is efficient in generating Pareto solutions
of high quality for the DCLRP. The results can be used to
guide decision-makers in making reasonable tradeoff between
the LR benefit and the total negative impact caused. Moreover,
the comparison results on the standard CLRP show that the
proposed improved model and algorithm are more efficient
than the existing ones.

The proposed method is shown to be effective and efficient
for solving the DCLRP, but it also has some limitations. On
one hand, we observe that there exist some redundant itera-
tions in the computational procedure of our method, which
are a bit time-consuming for large-size instances. To design
effective redundant iterations avoidance mechanisms to further
improve the proposed method would be an interesting future
research direction. On the other hand, the computational time
of the proposed method still increases with the problem size
due to the NP-hardness of the DCLRP. More effective and
efficient algorithms [29]–[33] for solving larger-size problems
should be tested in the future. Moreover, the proposed model
may be further expanded by taking into account other practical
requirements, i.e., dynamic link travel time, giving stochastic
or/and time-dependent models.
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APPENDIX

We first state the IP model for the standard CLRP proposed
by Fang et al. [15], denoted by Fang-model, and it is
then improved by eliminating constraints and adding valid
inequalities. Fang-model is laid out below

(Fang-model) min
∑

(i,j)∈A

tdijzij (29)

s.t. xkij ≤ zij ∀k ∈ K ∀(i, j) ∈ A (30)

and constraints (3)–(5) and (8)–(13).
We show that constraint (8) is redundant and can be relaxed

by the following theorem.
Theorem 4: For an optimal solution of the CLRP, con-

straint (8) is redundant and can be relaxed from Fang-model.
Proof (Case 1): zij = 0, in Fang-model, constraint (8)

becomes yk
ij ≤ 1, ∀k ∈ K ∀(i, j) ∈ A. We note that such

restriction has been included in constraint (13). Hence, it is
not necessary to add constraint (8) in this case.

Case 2: zij = 1, then constraint (8) requires that yk
ij =

0, ∀k ∈ K, ∀(i, j) ∈ A. However, we show that removing
it would not exclude optimal solutions as follows.

Let R-Fang-model be Fang-model excluding constraint (8),
i.e., R-Fang-model is a relaxed model of Fang-model. Assume
that s = (
z, 
x, 
y) is an optimal solution of R-Fang-model and
there exist for some arcs and tasks, zij = 1 but yk

ij = 1. In the
following, we show that a new solution s′ = (
z, 
x′, 
y′), where

x′ and 
y′ is formed from 
x and 
y by respectively changing
xk

ij = 0 to xk
ij = 1 and yk

ij = 1 to yk
ij = 0 is optimal for

Fang-model.
It is not hard to find that s′ still satisfies the related con-

straint (9) of R-Fang-model due to the fact that tij < t′ij, hence
s′ is optimal for R-Fang-model as well. To this step, s′ satisfies
constraint (8) and thus it is optimal for Fang-model.

Hence, the above proof shows that constraint (8) is redun-
dant for Fang-model as an optimal solution of R-Fang-model
can be easily adjusted to be optimal for Fang-model.

Similarly, valid inequalities (14)–(17) can be used to tighten
the existing model. Then, an improved model for the standard
CLRP, denoted by Wu-model, is presented as follows:

(Wu-model) min
∑

(i,j)∈A

tdijzij

s.t. Constraints (3)−(5), (7), and (9)−(17).

In addition, the proposed relax-and-optimize algorithm for
P1(λ) is adapted to solve the CLRP, whose procedure is shown
in Algorithm 3.
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