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Abstract—Multiple solutions are often needed because of 

different kinds of uncertain failures in a plan execution process 

and scenarios for which precise mathematical models and 

constraints are difficult to obtain. This work proposes an 

optimization strategy for multi-robot task allocation (MRTA) 

problems and makes efforts on offering multiple solutions with 

same or similar quality for switching and selection. Since the 

mentioned problem can be regarded as a multimodal optimization 

one, this work presents a niching immune-based optimization 

algorithm based on Softmax regression (sNIOA) to handle it. A 

pre-judgment of population is done before entering an evaluation 

process to reduce the evaluation time and to avoid unnecessary 

computation. Furthermore, a guiding mutation operator inspired 

by the base pair in theory of gene mutation is introduced into 

sNIOA to strengthen its search ability. When a certain gene 

mutates, the others in the same gene group are more likely to 

mutate with a higher probability. Experimental results show the 

improvement of sNIOA on the aspect of accelerating computation 

speed with comparison to other heuristic algorithms. They also 

show the effectiveness of the proposed guiding mutation operator 

by comparing sNIOA with and without it. Two MRTA application 

cases are tested finally. 

 
Index Terms—Multi-robot task allocation, multimodal 

optimization, niching immune-based optimization algorithm, 

Softmax regression, guiding mutation operator. 

I. INTRODUCTION 

ULTI-robot cooperative systems attract much attention 

due to their distributed parallel processing abilities in 

recent decades. They are considered to be promising and 

of wide applications, such as path planning [1], exploration [2], 

tracking [3], foraging [4], and transportation [5], and have been 
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applied to many domains like social science [6] and industrial 

engineering [7]. With the increasing demand for multi-robot 

cooperation in complex applications, the significance of 

multi-robot task allocation (MRTA), which is to determine an 

efficient and intelligent task assignment to improve the system 

performance [8], is recognized by more and more researchers 

[9-13]. 

A single optimal allocation plan may be insufficient. First, 

uncertain emergencies occur occasionally during actual 

execution processes of multi-robot cooperative systems, such 

that the predefined optimal task allocation schemes cannot be 

realized as expected. In the light of tackling different types of 

failures, outstanding work has been done to handle them. For 

the contention of resources, the interference is modeled when 

multiple robots use the same resource [14]. For dynamic 

settings of uncertain costs, a probabilistic cost representation is 

introduced to incorporate uncertainty and interdependency via 

distributional models [15]. For the varying coupling 

relationships, an ontology-based behavior modeling and 

checking system is proposed [16]. However, these methods can 

only cope with specific types of events. There is a lack of 

methods able to handle all kinds of unexpected failures. Hence 

a group of optimal assignments are highly desired, such that the 

predetermined scheme can be switched to another one when it 

cannot continue anymore. Second, precise mathematical 

models and constraints with comprehensive considerations are 

difficult to be summarized in some realistic application 

environments. Nevertheless, decision-makers are surely 

conscious of the feasibility of given solutions. Multiple 

solutions are needed as candidates. Finally, for a redundant 

circumstance, more robots are available for limited tasks. A 

group of assignment schemes can all satisfy the task 

requirement. Based on the above analysis, we conclude the 

necessity to provide multiple solutions for an MRTA problem. 

Multiple optimal solutions are common in industrial 

manufacturing processes as well and have highly valued 

practical applications. First, apart from uncertain failures of a 

system, physical or energy constraints have impact on the 

long-term execution of a unique optimum as well. Next, 

multiple solutions with same or similar quality are important to 

foster the robustness and flexibility of a system and are useful 

for the sensitivity analysis of a problem. Lastly, multiple 

optimal solutions, as calculated by a centralized controller, can 

act as the prior information of a distributed multi-robot system 

to guide cooperative work and decrease the chances of resource 

conflict and system deadlock.  

In general, this kind of problems belongs to the field of 

multimodal optimization. Classical heuristic algorithms, 

because of their rapid convergence to an optimum, likely a local 

one, cannot be applied to multimodal optimization problems 
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directly. Yet as a base, they may properly be combined with 

other techniques to deal with such problems well.  

Commonly used algorithms include Genetic Algorithm (GA) 

[17], Particle Swarm Optimization (PSO) [18], Ant Colony 

Optimization (ACO) [19] and Differential Evolution (DE) [20]. 

The Big Bang-Big Crunch (BB-BC) algorithm is improved for 

multimodal optimization because of its low computational cost 

[21]. The Estimation of Distribution Algorithms (EDAs) are 

improved to deal with multimodal one by considering their 

advantages in preserving high diversity [22].  

Niching methods are widely taken as ideal techniques to 

maintain a balance between the exploration and exploitation of 

multiple solutions [23]. Related researches are done from the 

perspective of overcoming shortcomings and enhancing 

performances of basic methods. A classical niching method 

requires setting a niche distance threshold [24]. For this 

problem, a Twin-space Crowding (TC) is introduced to build a 

parameter-free paradigm to eliminate the effect caused by a 

parameter value [25]. A distance-based Locally Informed 

Particle Swarm (LIPS) optimizer is proposed in [18] to 

eliminate the need for specifying any niching parameter and 

enhance the fine search ability of PSO. A PSO algorithm using 

a ring neighborhood topology, which does not require any 

niching parameters, is described in [26]. In order to avoid the 

time complexity caused by pairwise distance calculations, the 

work [27] proposes a fast niching technique by introducing the 

locality sensitive hashing, which is an efficient algorithm for 

approximately retrieving nearest neighbors. An improved 

information-sharing mechanism among individuals is 

introduced in [28] to induce more stable and efficient niching 

behavior, and a newly proposed parent-centric mutation 

operator is combined with a synchronous crowding 

replacement rule in [29]. Besides niching methods, new paths 

to gain the multimodal optimization ability are established. For 

example, in Gaussian Classifier-based Evolutionary Strategy 

(GCES) [30], multimodal optimization problems are regarded 

as classification ones, and the locations and basins of optima 

are saved by using Gaussian mixture models. In the 

cluster-based differential evolution [31], the clustering partition 

is used to divide the whole population into subpopulations for 

locating different optima.  

An Artificial Immune System (AIS) is a parallel distributed 

self-adaptive system including features of evolutionary 

learning, pattern recognition and associative memory. Clonal 

Selection Algorithm (CSA), which evolves multiple 

populations simultaneously, is suitable for solving multimodal 

optimization problems. A hyper-mutation operator appears in 

CSA often. However, it is semi-blind and inefficient to handle 

complex circumstances. To overcome such drawback, the work 

[32] embeds Baldwinian learning and orthogonal learning in 

CSA. Thus, the hybrid learning CSA can perform effectively 

and robustly as expected. An immune-inspired affinity model is 

studied for the container multimodal transport emergency relief 

to schedule a multimodal transportation flow of the chain 

efficiently and reliably [33]. A biological notion in vaccines is 

introduced into AIS to lead antibodies to unexplored areas. 

Consequently, the exploration can be promoted in a search 

space for solving multimodal function optimization problems 

[34]. A fusion of the immune network and predication performs 

well in regulating local and global search and guiding the 

determinate direction of local search, thus improving search 

ability for dealing with multimodal problems [35]. 

Most of the research achievements inspired by AIS for 

multimodal optimization are able to improve search ability, 

convergence speed and solution quality. In spite of some work 

like [33] caring about time efficiency as well, the existing 

methods are based on the idea of accelerating search processes. 

Considering characteristics of AIS and niching techniques, the 

computational complexity remains at a much-the-same level. In 

regard to the causes of the computational complexity, one of 

them is an expensive fitness evaluation process in complex 

environments and realistic applications, for example, our 

concerned MRTA problem.  

In this work, considering that the fitness evaluation process 

is one of reasons causing much time consumption, Softmax 

regression [36] embedded in a Niching Immune Optimization 

Algorithm (sNIOA) is proposed to filter newly produced 

antibodies via pre-judgment based on historical information 

and reduce the number of individuals who enter an evaluation 

process. The computational procedure can be accelerated 

through the way of decreasing the time otherwise required for 

fitness evaluation. Furthermore, a Guiding Mutation (GM) 

operator is proposed to enhance the effective generation of new 

antibodies in order to improve the search ability of sNIOA, 

thereby resulting in its extension called sNIOA-GM. In 

comparison with sNIOA, the proposed sNIOA-GM is able to 

search in a larger space while requiring less computational 

resource. In simulation experiments, values of parameters are 

analyzed for better performance; comparisons with other 

multimodal optimization algorithms on benchmarks are 

conducted; and two scenarios of MRTA problems containing 

multiple solutions are tested.  

The rest of this paper is constructed as follows: Section II 

presents the proposed sNIOA. Section III introduces the GM 

operator and sNIOA-GM. Section IV analyzes the multimodal 

optimization ability of sNIOA and influences of its parameters 

on its performance and compares it with other heuristic 

algorithms. It also presents the performance of the GM operator 

and shows task assignment results for MRTA problems. The 

conclusion and future work are given in Section V. 

II. NICHING IMMUNE-BASED OPTIMIZATION ALGORITHM 

BASED ON SOFTMAX REGRESSION 

The flowchart of the proposed sNIOA is shown in Fig. 1. 

First, initial antibodies are generated according to an antigen 

recognized, which represent initial solutions for a problem. 

Their fitness values are calculated through an evaluation 

process to determine affinity to the antigen. Then, these 

antibodies and their fitness compose the training set of Softmax 

regression. A pre-judgment model is built by it. New 

population, produced by operators of selection, mutation and 

crossing, is prejudged by this regression model such that 

non-ideal (low-quality) antibodies can be eliminated before 

entering an evaluation process. In this way, the time of fitness 

evaluation can be reduced. The niche technology based on a 

niching distance is used to maintain distribution and 

multimodal performance of solutions. 
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Fig. 1. The flowchart of sNIOA. 

A. Immune-based Optimization Algorithm 

AIS is described as the one that incorporates many properties 

of natural immune systems, including diversity, distributed 

computation, error tolerance, dynamic learning and adaptation, 

and self-monitoring [37]. Therefore, it offers effective and 

efficient inspiration for complex optimization problems. Based 

on the mentioned properties, a series of intelligent algorithms 

have been proposed. Their typical representative is an 

immune-based optimization algorithm (IOA). 

IOA is a combination of algorithms based on an immune 

self-regulation mechanism and immune response
 
[38]. It shares 

similarities with other immune algorithms and possesses 

unique and distinctive characteristics of keeping population 

diversity and converging to the optimum rapidly. Attributing to 

them, IOA is a preferable approach for multimodal 

optimization. Its implementation procedure is shown in Section 

A of the Supplementary File. 

First, aiming at a recognized antigen, which corresponds to 

an objective function in an optimization problem, initial 

antibodies are generated randomly. 

Then, individuals enter an evolution procedure based on 

affinity values with the antigen and keep diversity by 

considering concentration values among antibodies. This is an 

application of the immune system antibody concentration 

regulation principle, i.e., the antibody with worse values of 

fitness as well as concentration is suppressed during the process. 

Thus, the population diversity can be preserved along with the 

reservation of matched antibodies. More specifically, the 

evaluation phase is based on three indexes of individuals. The 

first one is fitness, which corresponds to the value of an 

objective function in optimization. The second one is 

concentration, which indicates population diversity. The third 

one is excellence, which is calculated based on their fitness and 

concentration: 

 
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i i
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where 
if

I , 
icI  and 

ieI  denote values of fitness, concentration 

and excellence of individual i , respectively; and 
epI  is the 

multiplicity evaluation parameter to balance fitness and 

concentration as a weight. 

Next, excellent antibodies constitute the parent population 

and the best part of these is kept in the memory cell. The 

memory unit helps the corresponding antibodies for an antigen, 

which has come up, to be generated faster than before. 

After that, new population is generated through three phases. 

The first one is selection that is based on the roulette selection. 

The individual with a greater value of excellence is chosen with 

a higher probability. The second one is mutation used to 

produce new individuals. It can search more space. The third 

one is crossing that contributes to reserving gene segments of 

good individuals and passing them on to future generations.  

Two terminal conditions are used in this work. One is the 

limited number of iterations. The other is that the average 

fitness value of individuals reaches a predetermined threshold. 

B. Niche Technology 

The niche technology is an abstraction from a biological 

phenomenon. In an ecological environment, fierce 

competitions among intraspecific creatures may occur 

sometimes for limited resources. However, such a relationship 

does not appear among different species. In this way, in the 

process of population evolution, the fittest one can be preserved 

in a certain kind of creatures. At the same time, the species 

diversity can be maintained. The introduction of a niche 

technology to IOA is able to equip IOA with multimodal 

optimization ability while maintaining diversity of solutions. 

There are a variety of ways to implement niche techniques. 

This work uses the one based on niche distance. First, a niche 

distance threshold is defined. Then, the distance between each 

pair of individuals is calculated. If the calculated distance is less 

than the threshold, the individual that has worse fitness is 

inflicted with a penalty. Thus it may be eliminated with a larger 

probability later on. In other words, there is only one 

satisfactory solution within the range of some niche distance. 

The pseudo-code of this niche technology based on niche 

distance for a maximization problem is shown in Section B of 

the Supplementary File. 

The niche distance is an important parameter of the niche 

technology and has great impact on multimodal optimization 

performance. A large niche distance may lead to 

non-convergence of an algorithm. On the contrary, a tiny one 

can result in non-uniformity of solutions, especially for the 

function with continuous solution intervals, even missing the 

optima.  
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C. Softmax Regression 

At the beginning of sNIOA, antibodies are initialized and 

their fitness values are computed. These values are contiguous. 

Hence, a fitness threshold should be given in order to replace 

fitness values by class labels. The fitness threshold t  is 

called classification threshold and defined as: 

 
 

ˆ ˆˆ ˆ , maximization

, minimization

f f f for

f f f for

 

 

   


  


,               (2) 

where f  is the fitness value of an antibody and   is the 

parameter of a classification threshold. For maximization 

problems, an antibody whose fitness is more than ̂ , is 

expected to be preserved. For minimization problems, an 

individual whose fitness is less than  , is a better choice. In 

our concerned MRTA problems, the individuals with better 

fitness values are regarded as ideal ones. Others are called 

non-ideal antibodies. After being labeled, the initialized 

individuals and corresponding labels are input to a Softmax 

training process as a sample database and then a prediction 

model is obtained.  

During iterations, when new antibodies are produced after 

selection, mutation and crossing operations, their qualities are 

determined via the mentioned prediction model. The non-ideal 

(low-quality) individuals are eliminated directly. The ones with 

predicted high qualities enter an evaluation process to obtain 

their precise fitness values. 

The newly computed antibodies and their labels are 

embedded into the sample library of Softmax regression. The 

classification threshold is recomputed, and the individuals are 

relabeled with the new threshold to raise the standard of better 

individuals gradually. The description of Softmax regression is 

given in Section C in the Supplementary File. 

III. GUIDING MUTATION OPERATOR FOR SNIOA 

In this section, the GM operator is proposed to strengthen the 

optimization ability of sNIOA, which is inspired by the theory 

of gene mutation [39], thus yielding sNIOA-GM. In accordance 

with the mutational pattern of a base, gene mutations can be 

divided into frameshift mutations and base substitutions. The 

former is caused by the insertion or deletion of a number of 

nucleotides. For example, a segment of genes “A T C T” 

changes to “A T A C T” by the insertion of “A” or “A T T” by 

the deletion of “C”. The latter therein refers to a kind of 

mutations that one base pair is replaced by another different 

base pair. The GM operator is inspired by base substitutions. 

Many of base substitutions originally derive from the 

mutation of a single base. When a single base is changed, 

another base in this base pair is also replaced by others in the 

next gene replication. For example under the influence of 

nitrites, a cytosine (C) mutates into a uracil (U) stimulated by 

the oxidative deamination. During the gene replication, the 

uracil (U) does not pair up with a guanine (G) but with an 

adenine (A). As a result, the C-G base pair mutates into a T-A 

base pair as shown in Fig. 2.  

C

G

U

G

U

A

C

G

U

A

T

A

 
Fig. 2. Example of base substitution under the influence of nitrites. 

With the inspiration mentioned above, dividing one antibody 

into several “gene pairs” is taken into consideration. A 

traditional gene pair consists of two bases. Herein, the number 

of genes in a “gene pair” may be more than two. In other words, 

the wording of “gene group” should be more exact. When a 

certain gene mutates, the other genes in a same group have a 

higher probability of mutation. 

The definition of a gene group also makes sense to our 

MRTA problem. For example, a proper group among many 

available robots has been chosen but with the inferior 

connections with tasks as shown in Fig. 3(a), where triangles 

stand for tasks and circles represent robots. In this case, it is less 

helpful if there is only one assignment line being changed as 

shown in Fig. 3(b). When these tasks are regarded as a gene 

group, others have a higher probability of mutation when one of 

them is altered. Thus the combination has more chances to be 

modified comprehensively as shown in Fig. 3(c).  

   
(a)                                  (b)                                    (c) 

Fig. 3. Illustration of the gene group in a MRTA problem. 

In the above-mentioned scenario, the formation of a gene 

group mainly depends on the locations of tasks. In other words, 

tasks which are relatively close to each other tend to be in a 

same gene group. So, the Mean-shift algorithm is used to do 

this herein. Some examples are shown in Section D of the 

Supplementary File. Different kinds of symbol shapes 

represent different gene groups. The results of clusters can 

adapt to different application demands by tuning the threshold 

in the Mean-shift algorithm. 

After the creation of gene groups, individuals are determined 

to be whether mutated or not depending on mutation probability 

mp . In the process of mutation, when one gene of an individual 

is chosen to be changed, each of the rest of genes in the same 

group continues to be decided with a higher mutation 

probability 
hmp . The GM operator is summarized as shown in 

Algorithm I. 

Based on above discussions, the procedures of sNIOA-GM 

for MRTA problems are proposed as shown in Algorithm II. 

Given population size N , sample library size S  and gene 

group size G , the GM operator costs    O N G O N  , 

where G ≪ N . The niche technology takes  2O N . The 

training and predicting processes of Softmax regression spend 
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 O S  and  O N , respectively. In summary, the proposed 

sNIOA-GM’s complexity is    2O N O S .  

Furthermore, the entire algorithm’s complexity depends on 

the objective function being optimized as well. If it is a simple 

function, it takes  O N  to evaluate the population. However, 

when it comes to a complex context, especially appearing in 

real applications, the evaluation process is complicated. When 

its complexity exceeds  O S , the proposed algorithm can 

exhibit its great advantage than those without using Softmax 

regression.  

ALGORITHM I. GUIDING MUTATION OPERATOR 

1:   Base groups creation; 

2:   For each individual in population, generate a random number r ; 

3:       If mr p  

4:            Choose one base randomly and activate corresponding base group; 

5:            Base mutation; 

6:            For each of the rest of the base group, generate a random number r ; 

7:                If 
hmr p  

8:                    Base mutation; 

9:                End if 
10:          End for 

11:      End if 

12:  End for 

 
ALGORITHM II. SNIOA-GM 

Step 1: Generate initial solutions according to the problem statement. Calculate 

fitness values as the initial training set. 
Step 2: Use the niche technique to obtain multimodal optimization 

performance. 

Step 3: Evaluate the excellence ie  of each ideal individual by the combination 

of fitness if  and concentration ic  through a multiplicity evaluation 

parameter ep . Stop if the termination criterions are met. 

Step 4: Update the training set and create the prediction model. 
Step 5: Preserve good solutions in the memory cell.  

Step 6: Generate new population through the way of selection, GM operator 

and crossing.  
Step 7: Use Softmax regression to eliminate non-ideal solutions. Others are 

preserved and combined with the memory cell as the parent 

generation.  
Step 8: Increase the iteration count by one and go to Step 2. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, the multimodal optimization ability of the 

proposed sNIOA is shown by comparing with other popular 

heuristic algorithms. This work provides the simulation results 

of sNIOA-GM for two MRTA application cases. 

A. Multimodal Optimization Ability of sNIOA 

In this phase, the multimodal optimization ability of sNIOA 

is tested to ensure the existence of alternative solutions. 

Schaffer’s F6 function is a typical multimodal function 

described by 

 
 

 

2 2 2

2
2 2

sin 0.5
, 0.5

1 0.001

x y
f x y

x y

 
 

  
 

.                 (3) 

In order to make the solution space including multiple 

equivalent optimal areas,  2 20.001 x y  is set to 0. That is to 

say, the oscillations of function do not attenuate and each of the 

peaks is a continuous interval. With the purpose of a clear 

observation, this optimization problem is considered to search 

for its maxima. The range of x  and y  is [-4, 4]. 

A group of random initial solutions are shown in Fig. 4(a). 

The optimization results of IOA and sNIOA are shown in Fig. 

4(b) and Fig. 4(c), respectively. 

 
(a) Solution space of test function and initial solutions 

 
(b) Optimal solutions of IOA 

 
(c) Optimal solutions of sNIOA 

Fig. 4. Illustration of multimodal optimization ability. 

According to Fig. 4, both IOA and sNIOA can find the 

optimization solutions of the revised Schaffer’s F6 function. 

The result obtained by IOA, however, converges to one optimal 

solution. To the contrast, obtained solutions of sNIOA can 

distribute over the entire optimal solution intervals uniformly. 

The theoretical reason is that, when an excellent antibody is 

once generated, other antibodies are influenced by this 

excellent one through the crossing operation during iterations. 

Thus, they all converge to the excellent one in the end of IOA. 

In sNIOA, a niche distance is defined. Because of this, there is a 

fixed distance between each pair of candidate solutions, such 

that solutions cannot gather to one point only. The training and 

predicting processes, which are introduced to reduce the 

evaluation time in sNIOA, do not have an effect on this 

performance. To sum up, the uniform multimodal optimization 

ability of sNIOA can be guaranteed. 

B. Analysis of Parameters in sNIOA 

The niche distance is a significant parameter of sNIOA. If it 

is too small, it is difficult for sNIOA to find all optimal 

solutions and leads to a premature convergence. On the other 

hand, large niche distance is unfavorable for functions that have 

steep peaks. In addition, the uniformity of optimal solutions in 

the same continuous interval is also related to the distance 

parameter. 

The classification threshold as a parameter also impacts 
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optimization results. A loose threshold lets more ordinary 

antibodies enter the evaluation process such that the advantage 

of a fast computational speed cannot be shown dramatically. In 

contrast, a tight threshold may impose restrictions on 

population diversity. 

These two parameters mentioned above have great influence 

on optimization performances of sNIOA. In this part, the 

impacts of niche distance and classification threshold are 

discussed through tests on the Branin function. Their values 

and resulting experimental results are shown in TABLE 1. 

TABLE 1 
PARAMETERS ANALYSIS EXPERIMENTAL RESULTS 

Parameters Experimental Results 

n    

Deviation 

of 

Optimal 
Value 

Deviation 
of Mean 

Value 

Standard 

Deviation 

Evaluation 

Time 

Actual 
Peak 

Number 

0.02 

1/12 1.64E-03 0.0541 0.0309 22739.6 3 

1/3 7.38E-03 0.1884 0.1192 14616.2 3 

2/3 4.96E-03 0.2953 0.1744 9018 3 

11/12 5.80E-03 0.0696 0.0397 10635.4 3 

0.05 

1/12 1.78E-03 0.1337 0.0963 22432.4 3 

1/3 5.30E-03 0.2493 0.1530  16547.2 3 

2/3 7.20E-03 0.3719 0.2196 10296.2 3 

11/12 6.08E-03 0.2028 0.1179 10308 3 

0.1 

1/12 1.98E-03 0.2493 0.1739 22287.4 3 

1/3 5.20E-03 0.4675 0.4395 15172.2 3 

2/3 1.48E-03 0.5104 0.3103 10473.2 3 

11/12 1.25E-03 0.3817 0.2861 11317.4 3 

0.2 

1/12 3.78E-03 0.8018 0.5330  22890 3 

1/3 4.50E-03 0.9707 0.6108 15034.6 3 

2/3 5.10E-03 1.1528 0.6932 11694.4 3 

11/12 7.48E-03 1.0844 0.7796 9778 3 

According to TABLE 1, all the experimental combinations 

can find all optimal peaks. The deviations of optimal value 

approach to 0 almost, i.e. sNIOA can find all optimal solutions 

of this test function and achieve the optimization goal. 

Furthermore, we use the prior computation time of NIOA as a 

reference, which is 24080 evaluation times. From TABLE 1, 

the times of fitness evaluation of all experimental combinations 

are less than 24080. It proves that sNIOA can reduce the 

evaluation time and show a satisfied computational 

performance. 

Next, the effect of classification threshold is analyzed. 

According to above discussions, this parameter mainly has 

impact on the time of computation. This conclusion is verified 

by Section E in the Supplementary File, that the evaluation time 

decreases with the raise of classification threshold parameter. 

The reason for this is that, in the process of Softmax training for 

minimizing problems, an individual is regarded as a preferable 

antibody when its fitness is less than  . When   increases in 

the experiments,   goes down, i.e. only antibodies whose 

fitness is much smaller than others can be preserved at the end 

of Softmax prediction. In consequence, fewer individuals go to 

the evaluation process, such that the evaluation time can be cut 

down drastically, e.g., 62.55%. The bigger value of this 

parameter, however, may not be better. When this value 

increases to more than 2/3, the evaluation time has a slight drop 

or remains unchanged till the end and even increases in some 

cases. 

The niche distance mainly has effect on the deviation of 

mean value and standard deviation of optimal solutions. Along 

with the niche distance’s growth, both deviations are on the rise 

as shown in Section F of the Supplementary File. The 

explanation of this trend is that, when the niche distance 

increases, optimal solutions are more scattered around the 

peaks. Therefore, a bigger deviation is caused. Nevertheless, a 

smaller niche distance may lead to non-uniformity of solutions, 

especially for the problem which has continuous solution 

intervals, even missing optima sometimes.  

To sum up, for different problems, the specific combination 

of parameters should be designed accordingly. 

C. Comparison with other heuristic algorithms 

In order to prove its efficiency, we compare sNIOA with 

other popular heuristic algorithms on test functions next.  

These algorithms are all proposed for solving multimodal 

optimization problems including NIOA, Niching Genetic 

Algorithm (NGA) and Niching Particle Swarm Optimization 

(NPSO). They are selected because of their validated 

performance [40-42] and use of the niching technique. The 

parameters in each algorithm are shown in TABLE 2, where 

N  is population size; L  is the length of binary coding; I  is 

the number of iterations; M  is the capacity of memory; cp  

and mp  are probabilities of crossing and mutation, respectively; 

s  is the parameter that balances fitness and concentration of an 

antibody; ̂  and   are parameters of classification threshold 

for maximization and minimization problems, respectively; n  

is the niche distance; max  and min  are the ranges of the 

inertia weight; and 1c  is the learning factor.  

TABLE 2 

PARAMETERS IN COMPARISON EXPERIMENTS OF EACH ALGORITHM 

sNIOA NIOA NGA NPSO 

N  100 N  100 N  100 N  100 

L  22 L  22 L  22 L  22 

I  200 I  200 I  200 I  200 

M  20 M  20 cp  0.9 max  1 

cp  0.9 cp  0.9 mp  0.05 min  0 

mp  0.3 mp  0.3 - - 1c  2 

s  0.15-0.95 s  0.15-0.95 - - - - 

̂  
2

3
 n  0.01-0.1 - - - - 

  
1

3
 - - - - - - 

n  0.01-0.1 - - - - - - 

All parameters are selected carefully to ensure that each 

algorithm performs well. For example, the mutation probability

mp  appears both in sNIOA, NIOA and NGA. However, the 

one used for NGA is 0.05 and is much less than 0.3 used in 

sNIOA and NIOA. We try several values of the mutation 

probability and choose the one that leads to the best 

performance of each algorithm by testing them on the revised 

Schaffer’s F6 function. The explanation can be offered from the 

theoretical perspective. In NGA, since the final goal is to bring 

the population to convergence, selection and crossing happen 

very often. Mutation, attempting to occasionally break a 

number of individuals out of local optima as a way to maintain 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

diversity, should occur less frequently. In sNIOA and NIOA, 

there is a memory cell preserving well-behaved individuals in 

each generation inspired by AIS. Thus the excellent solutions 

are not eliminated in the following iterations when increasing 

the probability of searching more areas. As a result, a large mp  

is preferred. 

Test functions are shown in TABLE 3. Within specified 

limits, the revised Schaffer’s F6 function includes multiple 

continuous global optimization intervals. Himmelblau function 

and Branin function have multiple global optimal peaks 

without local optima. Rosenbrock function is actually a 

unimodal function with a continuous gradual interval beside the 

peak. There are two optimal solutions and four local optima in 

Six-Hump Camel Back function. Cross-in-Tray function and 

Rastrigin function include four and one global optimal peak, 

respectively, both with many local optima. Shubert function 

includes two global optimal peaks, a small number of local 

optima and many slight fluctuation peaks. Note that when the 

minima of a function are negative, we move this function to 

upward. Thus, the lower boundaries are 0 for all test functions. 

These functions cover various kinds of characteristics of 

multimodal functions, such as continuous intervals and steep 

peaks, global optima with and without local optima and 

maximization and minimization problems. They are also 

chosen as commonly-used benchmarks by many researchers 

[42-44]. Therefore, we use them as our benchmarks. 

The experimental results keep a record of the deviation from 

the optimal value, deviation from mean value, standard 

deviation, evaluation time and number of peaks found as shown 

in TABLE 4. Here the deviation from the optimal (mean) value 

is the difference between the optimal (mean) values obtained 

from optimization algorithms and theoretical optima. The 

standard deviation is used to measure stability of solutions. The 

evaluation time indicates the time performance. The number of 

peaks found is applied to evaluate the multimodal optimization 

ability. In addition to the number of iterations, the termination 

condition of each algorithm also takes the deviation from the 

mean value into consideration. In this way, meaningless 

calculation does not proceed when the optimal value cannot be 

improved any more during iterations. All of the data are mean 

values of ten times repeated trials. 

From this table, the excellent time performance of sNIOA 

can be seen in comparison with other heuristic algorithms. The 

proportion of evaluation time reduces on average by 41.01%, 

38.38% and 39.34% compared with NIOA, NGA and NPSO, 

respectively. Its maximum time reduction can reach 53.78%, 

68.74% and 69.63% in comparison with its three peers. Its other 

performance measures fall in normal ranges of optimization 

results. Some of its performances are the best. It is easy to 

conclude that sNIOA can speed up the computation 

dramatically while showing comparable optimization 

performance in comparison with its three peers. 

From the point of view of multimodal optimization ability, 

sNIOA is able to find all optimal peaks. Antibodies do not 

converge to local optima in most of the functions due to the 

repulsion of the niche distance, except Rastrgin function with a 

large number of local extremums. However, the limitation of 

sNIOA cannot be denied, i.e., the non-uniformity of individuals 

is evident when peaks are steep. The experimental results show 

that NGA has strong convergence ability. Because of this, 

NGA’s ability to search unknown optimal peaks is reduced as 

shown in Himmelblau and Branin functions in TABLE 4. The 

search ability of NPSO is uncertain and unstable. It sometimes 

results in convergence to local optima as shown in Branin, 

Six-Hump Camel Back and Shubert functions. 

From the perspective of three deviation values, sNIOA 

performs noticeably well in the experiments of revised 

Schaffer’s F6, Branin and Shubert functions. Other results are 

of the same order of magnitude and approach to the optimal 

values. 

TABLE 3 

TEST FUNCTIONS AND PARAMETERS 

Test Function Equation Range Max Min 

Revised 
Schaffer’s F6 

   2 2 2, sinf x y x y   -4 , 4x y   1 0 

Himmelblau      
2 2

2 2, 11 7f x y x y x y       -6 , 6x y   2200 0 

Branin    
   

 

2
2

2

5.1 5 5 5 1
, 10 6 10 1 cos 5 10

4 8

x x
f x y y x

  

    
              

 -10 , 10x y   250 0 

Rosenbrock      
2 22, 100 1f x y y x x     -2 , 3x y   2200 0 

Six-Hump 

Camel Back 
   

4
2 2 2 2, 4 2.1 4 4

3

x
f x y x x xy y y

 
       
 

 -3 , 3x y   5 0 

Cross-in-Tray  

2 2
0.1

100

, 0.0001 sin sin 1

x y

f x y x ye





 
 

   
 
 

 -4 , 4x y   1 0 

Shubert 
            

          

, 1 cos 2 1 2cos 3 2 3cos 4 3 4cos 5 4 5cos 6 5

1 cos 2 1 2cos 3 2 3cos 4 3 4cos 5 4 5cos 6 5

f x y x x x x x

y y y y y

          

         
 -2 , 2x y   350 0 

Rastrgin      2 2, 20 10cos 2 10cos 2f x y x x y y       -5 , 5x y   80 0 
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TABLE 4 

EXPERIMENTAL RESULTS ON TEST FUNCTIONS OF DIFFERENT HEURISTIC OPTIMIZATION ALGORITHMS 

Test Function 
Optimal 

Value 

Optimization 

Algorithm 

Deviation of 

Optimal Value 

Deviation of 

Mean Value 

Standard 

Deviation 

Evaluation 

Time 

Actual (Ideal) 

Peak Number 

Schaffer’s F6 
1 

(max) 

sNIOA 1.69E-08 9.59E-05 1.08E-04 6195 5(5) 

NIOA 1.76E-08 9.51E-05 1.19E-04 7163 5(5) 

NGA 1.90E-13 4.81E-04 1.76E-03 19820 5(5) 

NPSO 0 1.27E-02 7.76E-02 20400 5(5) 

Himmelblau 
0 

(min) 

sNIOA 1.70E-03 1.3200 0.9378 11553.9 4(4) 

NIOA 4.54E-04 0.9820 0.6493 24080 4(4) 

NGA 3.20E-04 1.0500 0.7300 20100 3.5(4) 

NPSO 3.07E-03 4.0534 3.9987 20400 4(4) 

Branin 
0.397887 

(min) 

sNIOA 3.27E-03 0.2525 0.1581 14346.1 3(3) 

NIOA 1.77E-04 0.3044 0.2049 24080 3(3) 

NGA 5.44E-05 0.2553 0.1686 20100 2.8(3) 

NPSO 2.58E-03 1.3908 0.9989 20400 4(3) 

Rosenbrock 
0 

(min) 

sNIOA 7.72E-03 0.2574 0.1508 14036.2 1(1) 

NIOA 6.14E-02 0.3093 0.0894 24080 1(1) 

NGA 1.06E-02 0.2066 0.1431 20100 1(1) 

NPSO 5.50E-04 0.4576 0.4708 20400 1(1) 

Six-Hump 

Camel Back 

-1.0316 

(min) 

sNIOA 1.21E-03 0.0953 0.0655 12280.5 2(2) 

NIOA 8.61E-05 0.0739 0.0509 24080 2(2) 

NGA 1.97E-05 0.0275 0.0185 20100 2(2) 

NPSO 5.69E-04 0.4158 0.3252 20400 3.8(2) 

Cross-in-Tray 
-2.0626 

(min) 

sNIOA 4.29E-05 2.93E-03 2.03E-03 11130.1 4(4) 

NIOA 1.19E-06 2.05E-03 1.33E-03 24080 4(4) 

NGA 1.86E-06 1.08E-03 8.33E-04 20100 4(4) 

NPSO 1.71E-05 1.23E-02 1.54E-02 20400 4(4) 

Shubert 
-186.73 

(min) 

sNIOA 6.81E-02 7.8764 5.0709 14071.5 2(2) 

NIOA 1.18E-03 8.4319 5.2265 24080 2(2) 

NGA 3.32E-04 12.6556 8.5062 20100 2(2) 

NPSO 1.65E-01 106.8010 52.1314 20400 15.5(2) 

Rastrgin 
0 

(min) 

sNIOA 7.53E-02 3.2800 1.2984 15389.1 14.6(1) 

NIOA 1.94E-03 2.9933 1.2430 24080 13.5(1) 

NGA 5.53E-09 2.2137 0.8807 20100 9(1) 

NPSO 4.52E-01 6.8802 3.8715 20400 27.4(1) 

Next, we illustrate if there are significant differences 

between sNIOA and other heuristic algorithms. The significant 

difference p value at a two-tail t-test is given with the 

significance level of 5%. The null hypothesis is that there are no 

significant differences between sNIOA and other algorithms. 

As the results of four indexes shown in TABLE 5 for the 

revised Schaffer’s F6 function as an illustrative example, if the 

p value is smaller than 0.05, the null hypothesis is rejected, i.e. 

there is a significant difference between two algorithms on the 

corresponding index. The four indexes are divided into two 

parts. The first part describes the optimization ability, which 

consists of the deviation of optimal value, the deviation of mean 

value and the standard deviation.  

TABLE 5 

T-TEST RESULTS ON SCHAFFER’S F6 FUNCTION 

Compared 

Optimization 

Algorithms 

p value 

Deviation 

of Optimal 
Value 

Deviation of 

Mean Value 

Standard 

Deviation 

Evaluation 

Time 

sNIOA vs NIOA 0.95554 0.66327 0.10946 0.040021 

sNIOA vs NGA 0.15213 0.0043328 0.037891 3.4412e-19 

sNIOA vs NPSO 0.15214 5.1572e-05 1.3226e-07 6.4315e-13 

As shown in TABLE 5, some results obtained from sNIOA, 

for example the deviations from the mean value of sNIOA and 

NGA, show significant differences. However, accompanying 

with results shown in TABLE 4, the corresponding index of 

sNIOA is better than NGA’s. Therefore, a conclusion can be 

obtained that sNIOA has at least the same optimization ability 

as other heuristic algorithms do. The second part describes the 

time performance represented by the evaluation time. 

Regarding this index, sNIOA performs the best on computation 

speed as shown in TABLE 4. By means of the hypothesis 

testing, significant differences are verified between sNIOA and 

other algorithms as shown in TABLE 5. To sum up, 

considering all experimental results synthetically, sNIOA 

achieves the original intention of this work with competitive 

multimodal optimization performances, and clear advantage on 

computation speed over its three peers. 

Next, two application cases are provided to illustrate the 

merits of sNIOA-GM in solving MRTA problems. 

D. Application Case 1 

Assume that there are q  robots  1 2, , , qR r r r  and s  tasks 

 1 2, , , sT t t t . At a certain moment each task needs to be 

executed by one robot and each robot can only perform one task. 

ij  is a binary variable and presents the allocation relationship 

between robot ir  and task jt . ijc  is the execution cost of task 

jt  by robot ir . Denote the priority level of task jt  as jp . A 

smaller jp  implies a higher priority of task jt . The MRTA 

problem can be stated as follows. 

1

min
s

ij ij j

j

f c p


                                     (4) 

s.t.  
1

1, 1,2, ,
s

ij

j

i q


                                                        (5) 
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1 1

, 1,2, , ; 1,2, ,
q s

ij

i j

s i q j s
 

                             (6) 

s q                                                                                           (7) 

        0,1 ,ij i j                                                                     (8) 

In this scenario, ten groups of simulations are done with the 

number of tasks increasing from 10 to 100 and the number of 

robots increasing from 20 to 200. The tasks have different 

priority levels from 1 to 5. Tasks and robots are dispersed over 

a 100×100 square area randomly. All the experimental 

combinations are repeated for 10 times. Then average values 

are taken as the final results. 

The performances of sNIOA-GM are discussed from two 

perspectives: run time and obtained cost, respectively. For the 

former, due to the pre-judgment of Softmax regression, sNIOA 

and sNIOA-GM both show better time performance than the 

original IOA as shown in Fig. 5(a). Regarding the cost, the GM 

operator can account for the elimination of second half 

iterations of sNIOA-GM as shown in Fig. 5(b). When the 

number of tasks is small, optimal solutions can be found under 

the same conditions by all of these three methods. However 

when it comes to large-scale task allocation problems, in the 

case of same limited number of iterations which is 200, the GM 

operator can make antibodies mutate toward a better direction 

and  help find the preferable solutions, while solutions given by 

IOA and sNIOA cannot converge to optimal values. 

In closing, sNIOA-GM can realize effective optimization in 

the concerned MRTA scenarios by achieving rapid 

computation speed and better solutions, especially for 

large-scale problems.  

 
(a) Run time 

 
(b) Value of cost function 

Fig. 5. Comparison between IOA, sNIOA and sNIOA-GM. 

E. Application Case 2 

Assume that there are w  robot stations. For each station, g  

heterogeneous robots are expected to be available. The total 

number of robots is q wg . All of the robots are labeled with 

number 1 to q . There are s  tasks scattered on an area waiting 

for execution labeled with number 1 to s . Each task needs to be 

executed by one robot. One robot can perform multiple tasks in 

turn. The goal is to assign robots to perform tasks and design 

the execution sequence of each robot for the sake of minimizing 

total energy consumption, which is mainly related to the 

travelling distances of robots. The concerned context can be 

proved to be an NP-hard problem [45]. The mathematical 

model is built as follows.  

Let A  denote the th robot station. Given a set T , T  is 

the number of members in T . A robot ir  is one of the robots 

departing from station A  to accomplish a sequence of 

assigned tasks  1 2, , , iT

i i i iT t t t  to ir  and return to the same 

place after finishing its jobs. Its destination set 

 , ,i iD A T A   is labeled with number 1 to 
iD . uv  is 

taken as the distance between destinations u  and v . uv  is 

defined as the binary variable representing the relationship that 

the path goes from u  to v . Then the concerned MRTA 

problems can be formulated as follows: 

1 1 , 1

min
i iD Dq

uv uv

i u v u v

f  
   

                                               (9) 

s.t.    
1

q

i
i

T T


 ,                                                                     (10) 

 0,1 , , vuv u   ,                                                       (11) 

1
i iA v uA   .                                                              (12) 

For solving the above-mentioned problem by an 

immune-inspired method, an antibody is initialized as a vector 

whose length is s  as shown in Fig. 6. Each position of the 

antibody represents the label of a robot being assigned to 

accomplish the task. One robot can be allocated to multiple 

tasks. 

Task ID

Antibody 5 1 q� � 3

Robot ID

1 2 3 4 � s

 
Fig. 6. An antibody of sNIOA-GM for MRTA. 

For this MRTA problem, the procedure to compute the total 

cost is given as Algorithm III. The population size is N . In 

order to obtain the sequence that a robot performs a set of tasks, 

the Simulated Annealing Algorithm [46] is used to design a 

shortest path and its number of iterations is L . Therefore, the 

evaluation process needs  O N q L  , which is 

approximately equal to  2O N . Comparing with  O N , 

which a simple objective function takes, it is reasonable to 

expect that the computational cost can be decreased when the 

time of fitness evaluation is shortened in this problem. 
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ALGORITHM III. FITNESS COMPUTATION FOR APPLICATION CASE 2 

1:  Population size is N ; 

2:  For 1:i N  

3:    0Total distance  ; 

4:     Collect assigned tasks for each robot; 

5:     For 1:j q  

6:         Compute the shortest path with use of Simulated Annealing algorithm 

 (Number of iterations is L ); 

7:        Total distance Total distance Shortest Path  ; 

8:      End for 

9:      Return Total distance  as the fitness value for thi  antibody; 

10: End for 

There are three robot stations 1A , 2A  and 3A  in an 

environment located on [0, 70], [50, 0] and [100, 30], 

respectively. Three robots at each station are used to deal with 

20 tasks scattered on a 100  100 area. 1

AC , 2

AC  and 3

AC  

denote the number of required robots from each station, 

respectively. Multiple solutions and related data are given in 

TABLE 6 and Section G of the Supplementary File. There are 

different kinds of allocation ways with different numbers of 

robots dispatched from different robot stations. According to 

these results, decision makers can choose one from them 

depending on their situations.  

For example, in this application case, the number of robots is 

three at each station. However, when a set of tasks arrives, 

some robots may be charged or have been already dispatched to 

execute other jobs. It results in the reduction of available robots. 

In traditional approaches, managers collect data, build models 

and compute solutions at that time. This process consumes 

much time before starting execution and thus delays the 

completion of tasks. Besides, it needs to be done every time as 

long as tasks arrive. With the use of our method, a group of 

strategies covering different cooperative ways between robot 

stations and execution paths can be obtained previously 

according to the original information that each station has three 

robots. In such circumstances, decision makers can easily 

choose one from them regardless of the number of real-time 

available robots.  

Furthermore, it is also helpful to avoid complex modeling of 

robot energy. For example, considering TABLE 6 and Section 

G of the Supplementary File, if a robot in station 2A  has 

insufficient power to finish a large-scale set of tasks, strategies 

(c), (e) and (f) are more appropriate than (a) even though the 

latter one has the shortest path length. 

TABLE 6 

EXPERIMENTAL RESULTS OF APPLICATION CASE 2 

No. Path Length 1

AC  2

AC  3

AC  

(a) 476.36 1 1 1 

(b) 520.44 1 2 1 

(c) 535.55 1 1 2 

(d) 555.00 1 2 2 

(e) 555.34 2 1 1 

(f) 567.40 2 1 2 

(g) 570.55 0 2 2 

(h) 573.72 1 0 3 

(i) 604.00 2 2 2 

(j) 610.67 2 2 1 

V. CONCLUSION 

In this work, an optimization strategy to provide multiple 

solutions with same or similar quality is proposed for MRTA 

problems. First, in order to decrease time of fitness evaluation 

and accelerate computation, sNIOA is designed. The new 

population is prejudged by the regression model such that 

non-ideal antibodies can be eliminated before entering their 

evaluation process and unnecessary computations are thus 

avoided. Then, the GM operator inspired by the base pair is 

proposed. Genes of an antibody are divided into several gene 

groups. When a gene mutates, others in the same gene group 

may mutate with a higher probability. The GM operator is 

helpful to find preferable solutions when the number of 

iteration is limited and the scale of a MRTA problem is 

large-sized. To verify the effectiveness and efficiency of the 

proposed algorithms, this work conducts a series of 

experiments on test functions and compares them with several 

heuristic algorithms. The results demonstrate the high speed of 

sNIOA and search ability of GM. Furthermore, application 

cases show that the proposed sNIOA-GM can well handle 

MRTA problems by providing multiple solutions. 

Different from other task allocation methods, the major 

advantages of sNIOA-GM are: 1) it can provide multiple 

solutions with same or similar quality for decision makers to 

select and switch plans whenever such needs arise; 2) because 

of the pre-judgment by a regression model, sNIOA is able to 

reduce the evaluation time and computational cost; 3) the GM 

operator reveals a potential connection between genes and 

strengthens the optimization ability of sNIOA. 

The further studies may include a selection mechanism and 

switching strategy given multiple candidate solutions. Besides, 

considering the balance between multimodal optimization 

ability and uniformity of solutions, the proposed sNIOA-GM 

still has some room for further improvement. Furthermore, 

preserved individuals should be judged more accurately to 

obtain different mutation probabilities according to their fitness 

values.  
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