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Abstract—Virtual network embedding (VNE) is an important
problem in network virtualization for the flexible sharing of
network resources. While most existing studies focus on central-
ized embedding for VNE, distributed embedding is considered
more scalable and suitable for large-scale scenarios, but how vir-
tual resources can be mapped to substrate resources effectively
and efficiently remains a challenging issue. In this paper, we
devise a distributed VNE system with historical archives (HAs)
and metaheuristic approaches. First, we introduce metaheuris-
tic approaches to each delegation of the distributed embedding
system as the optimizer for VNE. Compared to the heuristic-
based greedy algorithms used in existing distributed embedding
approaches, which are prone to be trapped in local optima, meta-
heuristic approaches can provide better embedding performance
for these distributed delegations. Second, an archive-based strat-
egy is also introduced in the distributed embedding system to
assist the metaheuristic algorithms. The archives are used to
record the up-to-date information of frequently repeated tasks.
By utilizing such archives as historical memory, metaheuristic
algorithms can further improve embedding performance for fre-
quently repeated tasks. Following this idea, we incorporate the
set-based particle swarm optimization (PSO) as the optimizer
and propose the distributed VNE system with HAs and set-
based PSO (HA-VNE-PSO) system to solve the VNE problem
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in a distributed way. HA-VNE-PSO is empirically validated in
scenarios of different scales. The experimental results verify that
HA-VNE-PSO can scale well with respect to substrate networks,
and the HA strategy is indeed effective in different scenarios.

Index Terms—Distributed systems, metaheuristic, particle
swarm optimization (PSO), virtual network embedding (VNE).

I. INTRODUCTION

NETWORK virtualization is a promising technology for
the future development of the Internet that allows

multiple users to rent the infrastructure simultaneously [1]–[3].
In network virtualization environments, the instantiations of
virtual infrastructures are heterogeneous and they can coex-
ist on a shared substrate network (SN). One main chal-
lenge in network virtualization is the deployment of virtual
networks (VNs) on an SN, called VN embedding (VNE).
Due to the capacity limitation of SNs, the number of VNs
that can be embedded on a specific SN is restricted. Optimal
embedding results can make an SN accept more VN requests.
Besides, from the perspective of infrastructure providers
(InPs), the optimal deployments of VNs will reduce the
costs and energy consumption, which can bring more prof-
its and improve the quality of services. Therefore, searching
for optimal solutions to VNE problems is of great significance
in network virtualization.

VNE problems have been proven nondeterministic
polynomial hard [4], [5] and many approaches with
different methodologies were proposed, including exact
approaches [6], [7], heuristic approaches [8]–[12], and meta-
heuristic approaches [13]–[17]. Traditional exact algorithms,
such as the sequential request processing [6] and the VNE
with delay, routing, and location constraints [7], ensure that
globally optimal solutions can be found, but may incur
exponentially increasing running time when the problem scale
increases. To overcome such deficiency, many researchers
have turned to finding near optimal solutions. Some heuristics
for VNE problems, e.g., the algorithm based on subgraph
isomorphism detection (ASID) [18] and VNE with Monte
Carlo search [11], have been proposed. Although heuristic
approaches have shown good performance in some scenarios,
most of them are easily trapped into local optima which
might be far away from the global optima [1], [13]. To further
optimize the deployments of VNs, metaheuristic approaches
were applied in solving VNE problems, such as the unified
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enhanced particle swarm optimization (UEPSO) [13] and
the particle swarm optimization (PSO) variant with random
walk [17]. Metaheuristic approaches utilize iteratively
searching techniques to find near optimal solutions, and
thus they may consume more running time than heuristic
approaches but they can find much better solutions.

Until now, most VNE algorithms are centralized [1] which
means all tasks are performed on one centralized node.
Centralized approaches may cause problems in two ways. First,
centralized approaches rely on a single node to compute all
embedding tasks so that the scalability of algorithms is limited,
even for metaheuristic and heuristic approaches. In reality, the
size of SN topologies might be more than one million nodes
(e.g., Amazon EC2 [19]), thus the scalability and the effi-
ciency of approaches in large-scale network topologies need
to be considered. Second, in centralized algorithms, multiple
users are not allowed to operate the resources of SNs simul-
taneously. Therefore, all VN requests have to be carried out
by service providers (SPs) one by one, which is infeasible for
the systems that serve millions of users [19]. On the contrary,
in distributed VNE approaches [20]–[23], the computational
tasks are assigned to several nodes instead of a single node
and multiple users are allowed to operate the resources of SNs
concurrently. In this way, the scalability and the concurrency of
VNE systems can be guaranteed. Hence, considering the scal-
ability and the concurrency, distributed VNE approaches are
more appropriate than centralized ones in large scale scenarios,
such as the agent-based distributed VNE (ADVNE) [21] and
the distributed and parallel VNE (DPVNE) [22].

In the literature, existing distributed approaches are com-
bined with heuristic VNE algorithms to embed VNs. Due to
the greedy search behavior in heuristics, solutions obtained
by heuristic VNE algorithms are usually local optima espe-
cially when the size of SNs increases as aforementioned.
As a result, poor optimizing capability of heuristics degrades
the performance of distributed approaches. Moreover, as dis-
tributed approaches are only aware of the local states of SNs,
they merely search for solutions in the local area of SNs
instead of the whole problem space. Therefore, this charac-
teristic makes heuristic VNE algorithms become even worse
in the distributed environment. Based on the above analysis,
the combination of heuristic algorithms limits the development
of distributed VNE approaches in practice.

In this paper, we propose a distributed system for solving
VNE problems. The proposed system has the following two
features.

1) We combine metaheuristic approaches and the dis-
tributed VNE framework together. On the one hand,
metaheuristic approaches of VNE have shown promising
performance compared to exact approaches and heuris-
tic approaches [13], [16]. Therefore, the combination of
metaheuristics can improve the optimizing capability of
distributed VNE approaches. On the other hand, meta-
heuristic approaches might be time-consuming since
they search for solutions iteratively. The combination
of metaheuristics and distributed approaches is able to
improve the efficiency of metaheuristics in return. In
this paper, we devise a set-based PSO for VNE (SPSO-
VNE) and incorporate SPSO-VNE as the optimizer for

embedder nodes. To the best of our knowledge, we are
the first to apply metaheuristics in solving distributed
VNE problems.

2) We introduce archives to record historical embedding
information and utilize these archives to embed com-
ing VNs. Under many circumstances, the phenomenon
of users or enterprises submitting their VN requests
repetitively, is extremely common especially in the
molecular dynamics [24], [25] and the computational
biology [26], [27]. While embedding these repeated VNs,
historical embedding results can be utilized to improve
the performance of VNE systems. Therefore, we intro-
duce archives to record historical embedding results and
devise the historical-archive (HA) strategy, which uses
the historical information to embed coming VNs. In this
way, the quality of embedding can be further improved.

Synthesizing above two features, we propose the distributed
VNE system with HAs and set-based PSO (HA-VNE-PSO) to
solve VNE problems in a distributed way.

The rest of this paper is organized as follows. In Section II,
the network model and the VNE problem formulation are
presented. In Section III, we introduce the background of this
paper. In Section IV, the proposed HA-VNE-PSO system is
described. In Section V, we evaluate the effectiveness and scal-
ability of our system on the scenarios with different scale.
Finally, Section VI concludes this paper.

II. NETWORK MODEL AND PROBLEM STATEMENT

The objective of the VNE problem is to find the optimal
deployment of VNs on a specified SN to fully utilize substrate
resources. In this section, we present the network model in this
paper and describe the VNE problem in detail.

A. Network Modeling

The SN is represented by an undirected weighted graph,
Gs = (Ns, Ls, An

s , Al
s), where Ns is the set of substrate nodes

and Ls is the set of substrate links. The An
s and Al

s are the
attributes of substrate nodes n ∈ Ns and substrate links l ∈ Ls,
respectively. Here, the subscript “s” stands for SNs. Without
loss of generality, we consider the CPU capacity for sub-
strate nodes and consider the bandwidth capacity for substrate
links [9], [13], [18]. The residual CPU of the substrate node
n is represented by cn

s and the residual bandwidth of the sub-
strate link l is represented by bl

s. All loops-free paths of the
SN are denoted by Ps. As shown in Fig. 1, vertices A–F are
substrate nodes, which compose the SN. The weights on the
edges represent the available bandwidth and the numbers on
nodes represent the available CPU resources.

Similarly, an undirected weighted graph Gv =
(Nv, Lv, Rn

v, Rl
v) is used to represent a VN where Nv is

the set of virtual nodes and Lv is the set of virtual links. To
be consistent with SNs, Rn

v , and Rl
v are CPU requirements

for virtual nodes n ∈ Nv and bandwidth requirements for
virtual links l ∈ Lv, respectively. Here, the subscript “v”
stands for VNs. The CPU requirements of the virtual node
n is represented by cn

v and the bandwidth requirements of
the virtual link l is represented by bl

v. As shown in Fig. 1,
vertices a–c are virtual nodes, which compose the VN1.
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Fig. 1. Examples of VNE.

The weights on edges represent the bandwidth demands
and the numbers on nodes represent the CPU demands. In
online VNE systems, the ith VN request VNRi = (Gv, ta, td)
submitted by a customer at time ta has its duration time td.
Suppose the ith VN request VNRi arrives at time ta, if there
are enough available resources in the SN, the InP allocates
corresponding resources to VNRi, including residual CPU and
bandwidth. VNRi will stay in the SN for td time units until
the task finishes. After td time units, VNRi will depart from
the SN and the allocated resources will be released as well.

B. VNE Problem Statement

Given the SN Gs = (Ns, Ls, An
s , Al

s) and the VN Gv =
(Nv, Lv, Rn

v, Rl
v), the VNE problem can be abstracted as two

mappings: 1) the virtual node mapping (VNoM) Mn : Nv → N
′
s

and 2) the virtual link mapping (VLiM) Ml : Lv → P′s, where
N′s ⊂ Ns and P′s ⊂ Ps. As shown in Fig. 1, the VNoM is
{a→B, b→E, c→C} and the VLiM is {(a, b) → (B, E), (a,
c)→ (B, C), (b, c)→ (E, D, C)}. A binary variable xu

i is used
to represent the VNoM. If the virtual node u∈Nv is mapped to
the substrate node i ∈ Ns, xu

i is equal to 1, else xu
i is equal to

0. The VLiM is represented by a binary variable f uv
ij as well.

If the virtual link luv∈ Lv is mapped to substrate link lij ∈ Ls,
then f uv

ij is equal to 1, else f uv
ij is equal to 0. Due to the limita-

tion of substrate resources, following constrained rules should
be obeyed. First, each node in a VN must be mapped to the
only one substrate node, formally,

∀u ∈ Nv,
∑

i∈Ns

xu
i = 1 (1)

and two virtual nodes in the same VN cannot be assigned to
the same substrate node, formally,

∀i ∈ Ns,
∑

u∈Nv

xu
i ≤ 1. (2)

Then, the resource requirements of VNs need to be satisfied.
The CPU resources provided by substrate nodes should be
larger or equal to those demanded by virtual nodes, such that

∀u ∈ Nv ∀i ∈ Ns, xu
i × cu

v ≤ ci
s. (3)

Obviously, the bandwidth resources provided by substrate
links should also be larger than or equal to those demanded
by virtual links, such that

∀lij ∈ Ls ∀luv ∈ Lv, f uv
ij × bluv

v ≤ b
lij
s . (4)

When embedding a single VN, there might be more than
one feasible solution and of course, the assigned substrate
resources are different. In our network model, the CPU
resources allocated for virtual nodes are identical among dif-
ferent solutions. However, the assigned bandwidth resources
for the virtual links depend on the substrate path length,
which means mapping virtual links to longer substrate paths
will consume more bandwidth resources. In this paper, like
previous cost-optimizing VNE algorithms [13], [15], the cost
function of metaheuristics when embedding a single VN is
formulated as

min
∑

luv∈Lv

∑

lij∈Ls

f uv
ij × bluv

v . (5)

In the above formula, the costs of bandwidth are evaluated by
the sum of all occupied bandwidth in the SN. Lower costs
of bandwidth represent less allocated resources and better
deployments of VNs.

In an online VNE system, VNs arrive at and depart from the
system frequently. As future VNs are unknown to the system,
VNs are handled one by one. When a VN comes to the system,
it will be embedded on the SN with the specified VNE algo-
rithm. If there are enough resources, the VN will stay in the
system until it finishes. Otherwise, the VN will be rejected.

III. BACKGROUND

In this paper, we combine the distributed VNE approach
with metaheuristics to improve its optimizing capability. In
this section, we first briefly introduce metaheuristics and then
the related work about VNE approaches is reviewed.

A. Particle Swarm Optimization

PSO is a population-based stochastic optimization algo-
rithm inspired by birds flocking and fish schooling, which
is first proposed by Kenndy and Eberhart [28]. PSO is com-
posed of a population of NP (NP = 1, 2, 3 . . .) particles
and each particle of PSO represents a potential solution to
the problem. The ith particle in PSO maintains two vectors,
a position vector Xi = (x1

i , x2
i , . . . , xn

i ) and a velocity vector
Vi = (v1

i , v2
i , . . . , vn

i ) where n is the dimension of the problem.
First, PSO randomly initializes the population including posi-
tions and velocities. Then, each particle iteratively updates its
position and velocity according to the best solutions found by
itself and the swarm so far. The updating rules for the ith
particle on dimension j are given by

vj
i ← wvj

i + c1rj
1

(
pbestji − xj

i

)
+ c2rj

2

(
gbestj − xj

i

)
(6)

xj
i ← xj

i + vj
i (7)

where pbesti and gbest are the best solution historically found
by the ith particle and the entire swarm, respectively. r1 and
r2 are random numbers uniformly distributed in [0, 1]. w is
the inertial weight. c1 and c2 represent the relative importance
between cognition and social influence. After updating, par-
ticles can fly to better positions and the best position of the
swarm is the near optimal solution found by the algorithm.
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PSO was designed for continuous optimization problems,
but most practical optimization problems are defined on dis-
crete space. To utilize PSO in solving discrete optimization
problems, the updating rules of velocities and positions need to
be modified. Chen et al. proposed set-based PSO (S-PSO) [29]
which uses crisp sets to represent the discrete space. Given the
universal set E of a specific problem, the position of the ith
particle Xi is defined as the subset of E, Xi⊂ E. The veloc-
ity of the ith particle Vi is defined as a set with possibilities,
given by

Vi = {e\p(e)|e ∈ E} (8)

where p(e) ∈ [0,1] is the possibility of selecting e.
The velocity updating rule and position updating rule in

S-PSO are redefined on crisp sets and sets with possibilities. In
velocity updating, the promising elements of the best solutions
can be found through the subtraction operator. The promising
elements are assigned with high possibilities in updated veloc-
ities. In this way, these promising elements are more probable
to be reused in future generations. After velocity updating,
particles in S-PSO update their positions to find optimal solu-
tions. The position updating in S-PSO is step-by-step and
problem-related heuristic information can be combined easily
in position updating. The experimental results in [29] verify
that S-PSO performs well in solving discrete combinatorial
optimization problems.

B. Metaheuristic Approaches for VNE

Metaheuristic approaches are a class of algorithms
inspired by natural phenomena, such as the genetic algo-
rithm (GA) [30], ant colony optimization (ACO) [31]
and PSO [32]. Metaheuristic approaches utilize iterative
optimization to find near optimal solutions, which are widely
applied in solving intractable optimization problems [33],
such as multiobjective optimization [34] and bearing fault
detection [35].

Recently, researchers have proposed several metaheuristics
to solve VNE problems [13], [14], [16] which can achieve
promising performance. Zhang et al. [13] applied PSO to
solve VNE and proposed UEPSO. In UEPSO, the operators
of position updating and velocity updating are redefined on
the discrete space and thus particles in UEPSO can fly to bet-
ter positions guided by the best solution found so far. Based
on the operators of UEPSO, Cheng et al. [17] proposed the
PSO with Markov RW (RWPSO). RWPSO devises a heuristic
indicator, node rank, which can reflect the topology attributes
of networks to evaluate the importance of substrate and vir-
tual nodes. Although the updating operators in RWPSO and
UEPSO are similar, RWPSO can achieve better performance
since network structures are considered in the optimization.
Su et al. [14] devised a new energy-aware model for VNE
(EA-VNE) to study the energy consumption when maintain-
ing a VNE system. To solve the EA-VNE problem, they
proposed an efficient heuristic approach and a PSO-based
approach (EA-VNE-PSO). The experimental results in [14]
show that EA-VNE-PSO can save more energy than heuristic
approaches.

Fajjari et al. [15] applied ant colony metaheuristics to solve
VNE (VNE-AC). VNE-AC first divides a VN into a set
of solution components in which virtual access nodes are
removed. Then the artificial ant colony is released to find
the mapping of solution components step by step. At the end
of each iteration, the pheromone trail is evaporated for all
solution components and is enhanced by the best solution.
Zhu and Wang [16] proposed a modified ACO for VNE based
on graph decomposition (ACO-TD). The topology of a VN
is decomposed into a combination of ring and tree structures.
The ring structures are mapped first before the tree structures.
Different solution constructing rules and heuristic information
are devised for ring and tree structures. Due to the decomposi-
tion mechanism, ACO-TD can handle more complicated VNs
than previous ACO approaches. Chang et al. [36] used GAs to
solve VNE and proposed two GA-based approaches, CB-GA
and RW-GA. Both approaches use chromosomes to repre-
sent candidate solutions to VNE. The one-point crossover and
mutation are applied to each chromosome with a predefined
probability. The difference of CB-GA from RW-GA is that
CB-GA only uses network resources to evaluate substrate
nodes while RW-GA considers the topology similarity of
substrate nodes.

In general, compared to heuristic VNE algorithms, meta-
heuristic approaches are more probable to escape from local
optima due to the learning mechanism [1]. Hence, the quality
of solutions obtained by metaheuristics can be improved.

C. Distributed Approaches for VNE

Contrary to centralized approaches that are studied inten-
sively, there is a lack of distributed solutions to VNE problems
currently [1].

ADVNE [20], [21], proposed by Houidi et al. in 2008, is
the first fully distributed VNE approach. In ADVNE, each
VN is subdivided into several hub-and-spoke clusters and each
cluster is assigned to a substrate node in the SN to execute
the embedding task. Based on multi agents, these clusters are
embedded on SNs in a distributed approach. However, since
each substrate node in ADVNE is autonomic, the message
overhead among substrate nodes is unavoidable. The message
overhead will increase rapidly when the size of SN increases,
which might decrease the efficiency and scalability of ADVNE
in large scale situations. In addition, the quality of embed-
ding (e.g., embedding costs), and the constraints of SNs (e.g.,
CPU and bandwidth constraints) are neglected in ADVNE. As
a result, the practicality of ADVNE is limited in real life appli-
cations. Similarly, co-operative VNE [37] utilizes autonomic
and independent substrate nodes to embed VNs in a distributed
way. They coordinate centralized and distributed algorithms to
achieve successful VNE process.

In order to reduce the message overhead and improve the
embedding quality, DPVNE was proposed by Beck et al. [22],
[23] in 2013. First, the SN is partitioned into sub-SNs hierar-
chically and these sub SNs are stored as a binary tree. Then,
some substrate nodes are selected to be delegation nodes,
which determine the entrance of external VN requests from
customers. Delegation nodes receive VN requests and assign
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Fig. 2. HA-VNE-PSO system.

them to sub-SNs based on heuristic information. By integrat-
ing with a heuristic algorithm, DPVNE attempts to embed
VNs within the assigned sub-SNs. The embedding procedure
is executed by the embedder node in each sub-SN. In this
way, multiple VN requests are allowed to demand substrate
resources simultaneously since several delegation nodes are
selected. Furthermore, Hahn et al. [38] studied DPVNE in the
real multicore environment and each host application runs on
a CPU core, which makes the simulation more practical.

Compared to ADVNE [20], DPVNE reduces the mes-
sage overhead and improves the embedding quality.
Consequently, DPVNE is more promising in real dis-
tributed systems [39], [40]. Nevertheless, DPVNE uses
heuristics, such as ASID [18] and RW-MaxMatch [17], as
the embedding algorithm. Heuristic VNE approaches are only
suitable in small scale applications since it might easily get
stuck in local optima when the SN scale increases. Besides,
the hierarchical partition of the SN makes DPVNE search for
solutions in the local area and hence heuristic algorithms are
more inappropriate in the distributed VNE approaches.

Up to now, most studies of distributed VNE problems only
consider the combination of heuristics. Since metaheuristic
approaches of VNE have shown promising performance, it is
reasonable to combine metaheuristics in distributed VNE prob-
lems. In this paper, we combine the distributed VNE system
with the proposed SPSO-VNE to enhance the performance of
distributed approaches, which will be elaborated in the next
section.

IV. PROPOSED HA-VNE-PSO SYSTEM

In this paper, we propose the HA-VNE-PSO system to solve
distributed VNE problems. Compared to existing works, HA-
VNE-PSO has the following two features.

1) HA-VNE-PSO combines metaheuristics rather than
heuristics as the optimizer. The metaheuristics used in
HA-VNE-PSO is the SPSO-VNE, which is specially
devised for discrete VNE problems.

2) HA-VNE-PSO introduces archives to store historical
information and uses archives to embed repeated VNs,
which can further improve the performance of dis-
tributed VNE systems. In this section, we first present
the basic procedure of HA-VNE-PSO and then each
functional module of the system is introduced.

A. Basic Procedure of HA-VNE-PSO System

The basic procedure of HA-VNE-PSO system is depicted in
Fig. 2. In the beginning, the SN is partitioned into several sub-
SNs and some substrate nodes are assigned as delegation nodes
forming the delegation layer. Each delegation node manages
the resources of its sub-SNs and it is responsible for delegating
VN requests to sub-SNs. The SN partition and the selection
of delegation nodes are carried out in the initialization phase.

At first, customers ask for network services from the SP and
submit VN requests to it. The collected VNs in the SP will
be delivered to delegation nodes through the load balancer.
The load balancer checks the state of all delegation nodes
to identify whether they are free and available, and assigns
VNs to the free delegation nodes. If a delegation node is busy
for handling a VN, it cannot handle another one at the same
time. Then, delegation nodes delegate VNs to the sub-SNs
and these VNs will be embedded on the sub-SNs. In HA-
VNE-PSO, we incorporate metaheuristics and introduce the
archive-recording mechanism to optimize the embedding. If
there are enough resources within the sub-SN, the VN will be
deployed on it and corresponding resources will be allocated
to the VN. Meanwhile, archives will be updated to record the
up-to-date embedding results. Otherwise, the VN will be del-
egated to other sub-SNs which might be managed by other
delegation nodes. Therefore, delegation nodes need to com-
municate with each other to deliver VNs. Finally, embedded
VNs will depart from the system and release the allocated
resources when they are complete.

As multiple delegation nodes are selected from the SN,
multiple VNs are allowed to be delegated to sub-SNs simul-
taneously. In this way, VNs can be embedded on different
sub-SNs at the same time so that HA-VNE-PSO is able to
handle VN requests in a distributed approach.

B. Initialization Phase

Before embedding the first VN, the HA-VNE-PSO system
needs to be initialized and this only happens once. The ini-
tialization includes the partition of the SN and the assignment
of delegation nodes. We adopt the initialization procedure for
distributed VNE systems proposed in [22].

The SN partition is a recursive process. First, one SN is
divided into two parts. The size of each part is about half
of the initial SN size and the substrate nodes in each part
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Algorithm 1 Delegating
input: The VN request v to be delegated, delegation node n, list subs

of all sub SNs managed by n.
1: If this type of v has been recorded in archive arc
2: Delegate v to the same sub SN sn in arc;
3: If vn can be embedded on sn
4: Return;
5: End If
6: Else
7: For each sn in subs
8: If π (sn, v) > 1.0 (Eq.(9)) && size of sn >= size of v
9: Add sn to candidate list candi;
10: End If
11: End For
12: Sort candi ordered by π (ascending);
13: For each sn in candi
14: Delegate v to sn;
15: If v can be embedded on sn
16: Return;
17: End if
18: End For
18: End If

are highly interconnected, which is similar to the network
clustering process. Then, in each part, the partition process
is executed again and two smaller sub parts are obtained from
each part. The partition process is repeated until the size of
sub-SNs is small enough and thus the hierarchical partition
is completed. Fig. 3 depicts an example of hierarchical par-
tition. There are eight substrate nodes in the SN and the SN
is recursively partitioned twice. The partition algorithm used
in hierarchical partition is the multilevel recursive bisection
partitioning algorithm, proposed by Karypis and Kumar in
1998 [41], which can divide a well-connected network into
nonoverlapping partitions.

The assignment of delegation nodes is based on the hierar-
chical partition. In each sub-SN, a substrate node is marked
as an embedder node that is able to run the specified embed-
ding algorithm. Some embedder nodes that are located on the
same layer are assigned as delegation nodes. For example in
Fig. 3, node 1 and node 6 can be assigned as delegation nodes
at the same time while node 1 and node 2 cannot. Each del-
egation node manages sub-SNs within its range. For example
in Fig. 3, if node 1 is assigned as delegation node, it only
manages sub-SNs (b), (d), and (e). In this way, different dele-
gation nodes can delegate VNs to mutually exclusive sub-SNs
simultaneously so that the consistency and the concurrency of
the SN are maintained.

C. Embedding Phase

The embedding phase is carried out after initialization.
As repeated VN requests are identical in topologies and
resource requirements, in the embedding phase, we mark
repeated VNs with the same type and introduce archives
to record the embedding information of them. Each archive
records one type of VNs. The content of archives might be
problem-dependent. In the context of our network model, the
information stored in each archive contains the type of the VN,
the occurrence frequency of the VN and the results of VNoM

Fig. 3. Hierarchical partition of an SN with eight nodes.

Algorithm 2 HA Strategy
input: the archive arc, the VN Gv, the parameter p.
1: For each individual ind in population pop
2: Generate a random number r1 in [0,1];
3: If r1 > 0.5 // about half of the population use archives
4: Initial ind randomly;
5: Else // use archives
6: Construct virtual node mapping node_map = {};
7: Sort the virtual nodes according to NR values defined

in (10)
8: For each virtual node v in Gv
9: Generate a random number r2 in [0,1];
10: Select substrate node s = arc_map(v) from arc;
11: If r2< p && is_available(v, s)
12: Add mapping (v, s) to node_ map;
13: Else
14: Select the substrate node s randomly;
15: Add mapping (v, s) to node_map;
16: End If
17: End For
18: Construct virtual link mapping link_map from node_map;
19: Add link_map and node_map to ind;
20: End If
21: End For
output: initialized population pop

and VLiM. The information in archives will be utilized in
following procedures.

1) Delegating VNs: Delegation nodes delegate VNs to the
appropriate sub-SNs. There are two issues that should be
considered in delegating. First, as a VN is mapped on the
sub-SN, the embedding results of the VN (including VNoM
and VLiM) are related to that sub-SN. In other words, the
embedding results of a VN only make sense under a specified
sub-SN. For example in Fig. 3, the embedding results of a VN
on sub-SN (b) cannot be applied in sub-SN (c) for they have
different topologies. Therefore, to utilize the historical embed-
ding information in archives, VNs need to be delegated to the
sub-SNs that are the same as those in the archives. Second,
as sub-SNs have different residual resources (e.g., the num-
ber of substrate nodes and residual bandwidth), VNs should
be delegated to the sub-SNs that have enough resources. For
example, a VN with four virtual nodes should be delegated to
the sub-SNs with no less than four substrate nodes.

Based on the above analysis, we devise the delegating pro-
cedure for HA-VNE-PSO presented in Algorithm 1. When
a coming VN v needs to be delegated to a sub-SN, we first
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Algorithm 3 Updating Archives
input: The archive list: arc_list; the new embedded VN vn; the maxi-

mum size of archive list: max_arc; the minimum recording size
of the VN: min_VN.

1: For each archive arc in arc_list
2: If the type of arc == the type of vn
3: Replace arc with vn;
4: Return arc_list;
5: End If
6: End For
7: If the size of vn >= min_VN && the size of arc_list

< max_arc
8: Add vn to arc_list;
9: Return arc_list;
10: End If
11: If the size of arc_list == max_arc
12: u = the VN in arc_list with the lowest frequency;
13: If the frequency of u < the frequency of vn
14: Delete u from arc_list;
15: Add vn to arc_list;
16: Return arc_list;
17: End If
18: End If
output: the updated arc_list

check whether the VN type of v has been recorded by archives
or not (the archive-recording mechanism will be introduced
later). The VN type is an attribute stored in archives by the
system and we use the VN type as ID to justify whether two
VNs are identical. If v has been recorded by archives before, it
will be delegated to the sub-SN recorded in archives to utilize
historical embedding information (lines 1 to 2 in Algorithm 1).
Nevertheless, if the VN v is not recorded before or the his-
torical sub-SN fails to host v, v will be delegated to other
sub-SNs with enough resources managed by the delegation
node. Inspired by the heuristic information proposed in [22],
we evaluate the resource potential of each sub-SN G′s relative
to the VN Gv, formulated as

π
(
G′s, Gv

) =
⎛

⎝
∑

n∈N′s

cn
s

/∑

n∈Nv

cn
v

⎞

⎠×
⎛

⎝
∑

l∈L′s

bl
s

/
w×

∑

l∈Lv

bl
v

⎞

⎠

(9)

where w is a parameter to control the amount of expected
substrate bandwidth and is set to 10 according to [22]. A sub-
SN G′s with a larger potential π means it has more substrate
resources relative to the VN Gv. If the potential of a sub-SN is
larger than 1.0, then this sub-SN will be added to a candidate
list. The candidate list is sorted in ascending order by the
potential and the VN v will be delegated to sub-SNs in the
list one by one until it is successfully embedded (lines 12–17
in Algorithm 1). In the delegating procedure, the archives are
also sent to sub-SNs to utilize the historical embedding results,
which will be introduced in the next section.

Based on the delegation mechanism, metaheuristics can be
combined with the distributed VNE approach. As shown in
Fig. 3, the SN is hierarchically partitioned into several sub-
SNs and two delegation nodes are assigned (i.e., node 1 and
node 6). As these two delegation nodes can embed VNs with
metaheuristics simultaneously, the total time for embedding

VNs is reduced and thus the efficiency of the metaheuristic
VNE system can be improved overall. In addition, since the
scale of sub-SNs is smaller than the whole SN, the search-
ing space of embedding VNs is reduced, which can further
improve the efficiency of VNE systems.

2) Embedding VNs With Archives: After delegating VNs,
the embedder node in the sub-SN will run the embedding algo-
rithm to embed the VN on the sub-SN. In HA-VNE-PSO, we
combine the distributed VNE system with the SPSO-VNE and
devise the HA strategy to improve the embedding quality of
distributed approaches.

a) HA strategy: HA strategy is an initialization strat-
egy for metaheuristics to use historical information stored in
archives, which is presented in Algorithm 2. The initialization
for VNE is to find the initial solutions including VNoM and
VLiM. Most metaheuristics for VNE initialize the population
randomly [13], [14], [17]. As repeated VNs have identical
topologies and resource requirements, the historical embed-
ding results can be reused in initialization to enhance the
optimization.

There are two issues that need to be considered in initial-
ization. The first one is the diversity of the population. If all
individuals use the same archive to initial themselves, individ-
uals might be similar to each other. Thus, the diversity of the
population might be lost, which makes the population trap in
local optima easily and converge prematurely. To avoid this, in
the HA strategy, only about half of the population is initialized
with archives and the rest uses random initialization (lines 3
and 4 in Algorithm 2). Besides, we introduce the parameter
p∈[0, 1] to control the use of embedding results in archives.
p = 1 means all node mappings in the archive will be reused
and p = 0 means the opposite. In this way, even though the
individuals are initialized with the same archive, the initializa-
tion for each individual is different. The second issue is the
change of SNs. As old VN requests depart from SNs and new
VN requests arrive, the resources of SNs change frequently.
Due to this fact, the embedding results in archives cannot
be utilized directly. Therefore, every time the history results
are reused, the availability of the reused elements should be
checked.

In HA strategy, for the individuals that are initialized with
archives, we first find the VNoM for each virtual node. The
resources demanded by virtual nodes are various and the
virtual nodes that demand more resources are usually more
critical to the embedding quality. As a result, we embed these
virtual nodes in priority. The resources demanded (or offered)
by a virtual (or substrate) node are evaluated by the NR
metric [13], defined as

NR(n) =
{

cn
v ×

∑
l∈L(n) bl

v, if n ∈ Nv

cn
s ×

∑
l∈L(n) bl

s, if n ∈ Ns
(10)

where L(n) is the set of adjacent links of a node n. The virtual
nodes are sorted in descending order according to NR values
so that the virtual nodes with large NR values, which means
they demand more substrate resources, will be mapped first.
We use function arc_map(.): Nv → Ns to represent the VNoM
results stored in archives and the function is_available(.):
Nv, Ns →Boolean is used to represent the availability of the
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Fig. 4. Examples of updating archive lists.

substrate nodes. If the substrate node s is already used by other
virtual nodes in the same VN [constraint (2)] or the residual
CPU of substrate node s is not enough to host virtual node
v [constraint (3)], the function is_available(v, s) will return
false. Otherwise, it will return true. Then, for embedding each
virtual node v, if the substrate node s is available for v and
the generated random number is smaller than parameter p, v
will be mapped to s (lines 10–12 in Algorithm 2).

If individuals are not initialized with archives (to keep the
diversity of the population) or the historical embedding results
in archives are unavailable, the random initialization is utilized
(lines 4 and 14 in Algorithm 2). In the random initialization,
the substrate node to host the virtual node v is selected from
the candidate set S whose elements are the substrate nodes
which satisfy the constraints in (2) and (3). The selection
probability of each substrate node i in S is defined as

probabilityi = NR(i)

/∑

j∈S

NR(j). (11)

Finally, we select a substrate node in the candidate set S by
roulette wheel selection.

A complete solution to the VNE problem includes the
node mappings and link mappings. After all virtual nodes in
the VN request are mapped based on HA strategy, the VLiM
can be constructed by several methods, such as K-shortest
path [8]. Actually, some metaheuristic VNE approaches only
utilize the VNoM to represent their population [13], [17],
so that the operation of adding VLiM to individuals can
be omitted (lines 18 and 19 in Algorithm 2). In this way,
the HA strategy can also be used in other population-based
metaheuristics for VNE.

b) SPSO-based optimizer for VNE: With the HA strat-
egy, the initial population (solutions) is obtained. After initial-
ization, the integrated metaheuristics will iteratively search for
optimal solutions within the sub-SN. In this paper, we propose

Fig. 5. Delegation procedure of VNs. Specially, the red curves S1–S4 rep-
resent the delegation of unsuccessfully embedded VN1. VN1 is embedded on
sub-SN (d), (e), (b), (c), and (a) successively.

SPSO-VNE as the optimizer, which is based on the set-based
PSO framework.

In SPSO-VNE, we use set notation to represent the VNoM
and VLiM. For the kth particle, the VNoM is denoted as a crisp
set Xk = {(u, v)|u ∈ Nv, v ∈ Ns} and the VLiM is denoted
as Yk = {(l, p)|l ∈ Lv, p ∈ Ps} where Ps is the set of
loops-free paths in the SN. Since Yk can be obtained from Xk

with existing algorithms [8], [13], Xk is used to represent the
position of the kth particle. The velocity for the kth particle
Vk is defined as a set with possibilities, Vk = {(u, v)\γ |u ∈
Nv, v ∈ Ns, γ ∈ [0, 1]}. γ implies the potential of VNoM
elements. A large γ means the VNoM element is promising
and is more probable to be selected in the new solutions.

In velocity updating, we update velocities to find the flying
direction of particles. For the kth particle, we first find the dif-
ference between the current position Xk and the best solution
found by the population gbest (or itself pbestk)

E = gbest− Xk = {(u, v)|(u, v) ∈ gbest and (u, v) /∈ Xk}.
(12)

Then the elements in E are associated with the probability γ

c× E = {(u, v)\γ |(u, v) ∈ E, γ ∈ (0, 1)} (13)

where the parameter c plays the similar role of parameter c1r1
in (6). The inertia of velocities is also maintained. Given the
inertia weight w ∈ (0, 1), we have

w× Vk = {(u, v)\γ · w|(u, v)\γ ∈ Vk}. (14)

Finally, we compare the probability for the same VNoM
elements and larger ones will be kept

wVk + cE = {(u, v)\max(γ1, γ2)|
(u, v)\γ1 ∈ wVk, (u, v)\γ2 ∈ cE}. (15)

In position updating, the promising elements in updated
velocities will be selected to construct new solutions. For
each virtual node u, the substrate node v is selected in three
steps. First, u is selected from the candidate set S, where the
probability of the elements in S are larger than the randomly
generated threshold α ∈ (0, 1)

S = {v ∈ Ns|γ ≥ α, (u, v)\γ ∈ Vk}. (16)

This is because the VNoM elements with small values are not
worthy of learning. Then, if no substrate nodes can satisfy the
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above requirement, the substrate node in the previous posi-
tion is reused. Finally, if the reused substrate node is still not
available, u is randomly selected from the SN.

The optimization of SPSO-VNE is based on the popula-
tion initialized with archives. Hence, historical information
is utilized during the optimization. If the best solution
found by metaheuristics is valid, VNs will be deployed
on the sub-SN. Otherwise, VNs will be delegated to other
sub-SNs.

3) Updating Archives: Every time a VN is embedded suc-
cessfully on a sub-SN, the archives will be updated to record
up-to-date embedding results. Each archive records the embed-
ding results of one type of VNs and these archives are
organized as lists. There are several archive lists in the system
and they are maintained by two kinds of nodes, the delegation
nodes and the embedder nodes above the layer of delegation
nodes. The embedder nodes below the delegation nodes are not
necessary to maintain archive lists for they can get archives
from delegation nodes.

In reality, the type of VNs is numerous, so that recording all
kinds of VNs in the archives is not practical. Accordingly, we
only record a portion of VNs, which means the size of archive
lists is limited. Two rules are devised to record valuable VNs in
archive lists. First, the frequency of different VN types might
be various. Some VN requests are demanded frequently and
some of them are not. As a result, recording the VNs that
are demanded more frequently is reasonable. Second, the dif-
ficulty of embedding is related to the size of VNs. It is usually
difficult to embed VNs with large size. Hence, recording the
VNs with the large size is also reasonable.

According to the above analysis, we introduce two param-
eters to control the archive-recording process, the maximum
size of an archives list, max_arc, and the minimum size of
recorded VNs, min_VN. Actually, these two parameters are
independent of the algorithm and they are only related to prob-
lems. For example, in real VNE systems, the information of
all embedded VNs might be stored in a database or a cloud
server. We can refer to them to obtain previous information
of services, such as the scale, frequency and the type of VNs.
Then the parameter max_arc and min_VN can be evaluated
manually.

We only record the VNs that are embedded successfully.
To facilitate understanding, we use examples to illustrate the
archive updating procedure, as shown in Fig. 4 where each
box is an archive entry related to a VN, “type” indicates the
VN’s type, “fre” represents the VN’s occurrence frequency,
and “solu” represents the solution to the embedding of VNs.
During updating archives, if this type of the VN has been
already recorded in the archive list before, the information
stored in the archive list is replaced by the up-to-date results
directly [e.g., Fig. 4(2)]. Otherwise, the size of the VN and
archive list needs to be checked. If the size of the VN is not
smaller than min_VN and the current size of the archive list is
smaller than max_arc, the new embedded VN will be added to
the archives list [Fig. 4(3)]. If the current size of the archive
list is equal to max_arc, then we compare the lowest frequency
of the VN from the archive list and the frequency of the new
VN, and select the larger one into the archive list [Fig. 4(4)],

TABLE I
COMPARED APPROACHES IN THE EXPERIMENTAL STUDIES

TABLE II
EXPERIMENTS DESIGN ON MODERATE SCALE SNS

The selection strategy can be formulated as

max{vn.frequency, u.frequency}, u = arg min
i∈ arc_list

{i.frequency}
(17)

where vn.frequency is the frequency of the new embedded
VN vn and arc_list is the archive list. The complete updating
procedure is presented in Algorithm 3.

4) Delegating Unsuccessfully Embedded VNs: The success-
fully embedded VNs will be recorded in the archives while
the unsuccessfully embedded VNs will be delegated to other
sub-SNs. At first, the failed VN is delegated to the sub-SNs
that satisfy the potential requirement (9) within the delegation
node (line 13 in Algorithm 1, curves S1 and S2 in Fig. 5). If
all of these sub-SNs cannot host the failed VN, the VN will
be delivered to other delegation nodes (curve S3 in Fig. 5) in
the same layer, namely delegation layer. If the VN still cannot
be embedded within other delegation nodes, it will be repeat-
edly delegated to the sub-SNs in the upper layer(s) of the
delegation layer until the VN is successfully embedded (curve
S4 in Fig. 5). Finally, if the VN cannot be embedded on the
largest sub-SN (i.e., the whole SN), it will be discarded by the
system.

During the delegating, if a failed VN from the delegation
node A is delivered to the delegation node B, the delega-
tion node A will be locked and cannot handle coming VNs
until the failed VN is successfully embedded or rejected.
This mechanism can avoid inconsistencies of the system [22].
In the limiting case, all delegation nodes cannot embed the
failed VN on sub-SNs and the failed VN will be handled by
the whole SN. In this case, all delegation nodes are locked
and thus HA-VNE-PSO behaves like centralized approaches.
Therefore, delegating failed VNs influences the efficiency
of HA-VNE-PSO, which will be studied in experiments
later.
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V. EXPERIMENTAL STUDIES

In this section, to verify the effectiveness of the proposed
approach, we test the HA-VNE-PSO system in various scenar-
ios and compare it with other approaches. First, we present
the experimental environment and parameter settings of all
compared approaches. Second, we introduce several metrics
to measure the embedding quality. Then, to investigate the
performance between distributed approaches and the central-
ized algorithm, we conduct experiments on moderate scale
SNs. As one of the advantages of distributed approaches is
the scalability, we analyze the scalability of distributed VNE
approaches with metaheuristics in large scale SN topologies.
In addition, we compare the message overhead and the load
balance of distributed approaches. Besides, to be more realis-
tic, we conduct experiments under real transit-stub topologies
and consider the location constraints of substrate and virtual
nodes. Finally, we study the sensitivity of the parameter p in
HA-VNE-PSO.

A. Evaluation Settings

Two kinds of SN scale, moderate scale (SNs with
200 nodes) and large scale (SNs with 300 to 800 nodes),
are investigated [22]. The average connectivity rate is fixed
at 10% for SNs and 50% for VNs [13]. For fair comparisons,
the network topologies of SNs and VNs are generated by the
GT-ITM tool [42] similar to previous work [9]. The range of
bandwidth and CPU is distributed uniformly from 1 to 50 for
VNs and from 50 to 100 for SNs [17]. To be more realistic,
the lifetime of each VN request follows the exponential distri-
bution with an average of 500 time units [17]. Two kinds of
VN series, the number of virtual nodes ranging from 2 to 20
(denoted as VN2-20) [13] and ranging from 2 to 40 (denoted
as VN2-40), are studied. The number of virtual nodes in each
VN follows a uniform distribution within its range as well.
The maximum number of iterations is set to 100 for VN2-20
and is set to 150 for VN2-40 to ensure the convergence of
metaheuristics.

There are three parameters in HA-VNE-PSO, parameter
min_VN and max_arc in Algorithm 3 and parameter p in
Algorithms 2. The parameters min_VN and max_arc are
dependent on problems. min_VN represents the minimum size
of VNs that can be recorded in archives. Since recording large
VNs is more meaningful, min_VN is set to the average level of
VN series. Hence, min_VN is set to 10 for VN2-20 and is set
to 20 for VN2-40. max_arc represents the size of archive lists
maintained by the system. It might be related to the substrate
equipment and service scale. For easy comparisons, max_arc
is set to 10 which means at most ten kinds of VNs are recorded
in archives. The parameter p is set to 0.8 and we will discuss
its sensitivity later. We select the layer 2 as delegation level,
which means HA-VNE-PSO and DPVNE can embed at most
4 VNs at the same time [23].

HA-VNE-PSO is compared with DPVNE-RWMM [22]
(DPVNE is combined with the heuristic VNE algorithm RW-
MaxMatch), DPVNE-PSO (DPVNE is combined with the
metaheuristic SPSO-VNE devised in this paper) and the cen-
tralized algorithm with the S-PSO based optimizer. In addition,

we combine our distributed system with CB-GA and CB-
ACO [36] to investigate different metaheuristics in solving
distributed VNE problems. All compared approaches are con-
cluded in Table I. All algorithms are implemented in Java
and the programs are performed on a machine with Intel Core
i3-4310 CPU at 3.40 GHz. The operating system is Linux and
the JDK version is 1.8.

B. Metrics for Embedding Quality

The objective of embedding a single VN is to reduce the
costs of embedding (5). However, the objective of embedding
multiple VNs is more complicated, especially in online VNE
systems.

First, an excellent VNE system needs to earn more rev-
enue for SPs and InPs. The revenue mainly comes from
the demanded resources (CPU and bandwidth) in VNs.
Given a VN Gv = (Nv, Lv, Rn

v, Rl
v), similar to previous

works [10], [13], the revenue obtained from Gv at time t
is evaluated as the sum of demanded CPU and bandwidth
resources, formulated as

R(Gv, t) =
∑

n∈Nv

cn
v +

∑

l∈Lv

bl
v. (18)

From the long-term view, the long-term average revenue is
defined as

avgR = lim
T→∞

T∑

t=0

R(Gv, t)/T. (19)

avgR reflects the average revenues obtained by all accepted
VNs and the larger the avgR, the better the VNE system.

The costs for embedding same VNs are various and they
also influence the quality of embedding. The costs mainly
come from the use of substrate resources of SNs. Given the
VN Gv = (Nv, Lv, Rn

v, Rl
v) and the SN Gs = (Ns, Ls, An

s , Al
s),

the cost of embedding the VN Gv at time t is defined as the
sum of assigned CPU and bandwidth resources in the SN,
formulated as

C(Gv, t) =
∑

n∈Nv

cn
v +

∑

luv∈Lv

∑

lij∈Ls

f uv
ij × bluv

v . (20)

Similar to the long-term average revenue, the long-term R/C
ratio is defined as the ratio of the revenue to cost, formulated as

R/C = lim
T→∞

(
T∑

t=0

R(Gv, t)

/ T∑

t=0

C(Gv, t)

)
. (21)

The range of R/C is (0, 1] and generally, a higher R/C ratio
means that less substrate resources are allocated to VNs.
Theoretically, a value of 1.0 would be optimal, indicating that
the assigned resources in SNs equal the demanded resources
by VNs.

The third metric is the acceptance ratio of VNs, defined as
the ratio of accepted VNs to total VNs, formulated as

lim
T→∞

(
T∑

t=0

VNRa

/ T∑

t=0

VNR

)
(22)

where VNR is the number of total VNs from users and VNRa

is the number of accepted VNs. The range of acceptance ratio
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Fig. 6. Comparison results of DPVNE-RWMM, DPVNE-PSO, HA-VNE-PSO, and the centralized SPSO-VNE on moderate SNs.

Fig. 7. Combination of different metaheuristics in distributed VNE problems.

Fig. 8. Average running time for embedding single VN by DPVNE-PSO,
HA-VNE-PSO, and centralized algorithms on moderate SNs.

is [0, 1]. Theoretically, a value of 1.0 would be optimal, indi-
cating that all VNs can be accepted by the VNE system.
Obviously, a larger acceptance ratio represents better quality
of service.

C. Experiments on Moderate Scale SNs

We design two kinds of scenarios in this section concluded
in Table II, where the column “scenario” is the combination of
VN series and SNs. For example, “VN40SN200” represents
the experiments on the VN series varying from 2 to 40 nodes
and the size of SN is 200 nodes. In our experiments, it is
assumed that there are total 40 different types of VNs uni-
formly distributed in each VN series. The column “arriving
rate” is the probability of generating VNs. VN requests from
customers arrive in a Poisson process with a specified arriv-
ing rate. The simulation runs for 40 000 time units and the
average number of generated VN requests (the column “avg
No. VN”) can be evaluated. For example, with an arriving
rate of 0.05, the average number of generated VN requests is
about 40 000 × 0.05 = 2000. Here, the time unit used in the
simulation is one second.

Fig. 6 presents partial comparison results for online VN
requests with regard to average revenue, R/C ratios and accep-
tance ratios. More experimental results are presented in the

supplementary material. The abscissa of all figures is the num-
ber of generated VNs which are the same in all compared
approaches. First, the centralized algorithm outperforms the
distributed approaches (DPVNE-RWMM, DPVNE-PSO, and
HA-VNE-PSO) in terms of average revenue and R/C ratio in
all scenarios. The results are reasonable because the central-
ized algorithm is able to utilize the global information of SNs
to optimize the embedding whereas the distributed approaches
only utilize the local information of SNs. Hence, the cen-
tralized algorithm is more probable to get global optima.
Fortunately, as long as the size of SNs is large enough,
the quality of local optima in distributed methods will be
improved. Hence, the gap between the distributed approaches
and the centralized algorithm will narrow.

Compared to DPVNE-PSO, HA-VNE-PSO outperforms it
in terms of the average revenue, R/C ratios and acceptance
ratios in all scenarios. Owing to the proposed archive mech-
anism and HA strategy, the historical embedding results are
utilized in future optimizations and thus the quality of embed-
ding is improved, which is reflected in the higher R/C ratio
of HA-VNE-PSO. As for acceptance ratios, HA-VNE-PSO
is competitive to the centralized algorithm and is better than
DPVNE-PSO in the scenarios VN20SN200. The combination
of heuristics (i.e., DPVNE-RWMM) is the worst although
its R/C ratios are not bad. The results of heuristics indi-
cate that the combination of metaheuristics can improve the
performance of distributed VNE systems.

We also compare other metaheuristics including ACO-
based and GA-based approaches in distributed VNE prob-
lems, and the comparison results are shown in Fig. 7.
First, the approaches with HAs can achieve better results
in most instances. The results verify that the HA mecha-
nism can improve the performance of different metaheuristics
in distributed VNE problems. Second, the approaches with
SPSO-VNE can outperform other GA-based and ACO-based
approaches, especially in R/C ratios. The superiority of SPSO-
VNE indicates that the redefined operators on crisp sets are
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Fig. 9. Comparison results of DPVNE and HA-VNE-PSO on large scale SNs.

helpful for finding better solutions, even in the distributed
environment.

To investigate the efficiency of the distributed approaches
with metaheuristics, the running time for embedding single VN
by the centralized S-PSO, DPVNE-PSO, and HA-VNE-PSO
is recorded in Fig. 8. The average running time in distributed
approaches is much faster than that in the centralized algorithm
in all scenarios, which is the primary advantage of distributed
approaches. The efficiency of distributed approaches comes
from two sides. On the one hand, the hierarchical partitions for
SNs reduce the searching space for embedding small VNs and
thus reduce the computational complexity at the same time;
on the other hand, the delegation mechanism allows multiple
VNs to be embedded in the shared SN simultaneously so that
the embedding tasks are executed parallel and concurrently. In
average time, HA-VNE-PSO spends a little more running time
than DPVNE-PSO. The extra running time might come from
maintaining archives and utilizing historical results. Although
HA-VNE-PSO consumes more running time, it is still much
more efficient than the centralized algorithm. In addition, the
gap between HA-VNE-PSO and DPVNE-PSO in efficiency
will narrow when the SN scale increases, which will be shown
in the next section.

Generally speaking, in moderate scale SNs, distributed
approaches cannot show their superiority in terms of opti-
mizing capability compared with the centralized algorithm.
However, distributed approaches can show more efficiency
than the centralized one. It is hard to say which approach
is better in moderate scale SNs. If the price of infrastructure
is really expensive, the centralized approach is a better choice
due to the less use of resources. If customers emphasize the
concurrency and efficiency of services, obviously, distributed
approaches are preferred.

D. Experiments on Large Scale SNs

In order to investigate the scalability of distributed
approaches with metaheuristics, we conduct experiments on
large scale SNs. As the execution time of the centralized

algorithm in large scale scenarios would easily exceed sev-
eral days or even weeks [22], we only compare the distributed
approaches, DPVNE-PSO and HA-VNE-PSO, in this part. The
size of SNs varies from 300 nodes to 800 nodes and the VN
series ranges from 2 to 20 nodes with the fixed arriving rate
0.05. Other settings of networks are the same as those in the
former experiments.

Parts of the experimental results are depicted in Fig. 9. As
the size of SNs increases, all generated VNs are accepted by
large scale SNs, which indicates that the acceptance ratio is
equal to 1.0 and the average revenue is same for DPVNE-
PSO and HA-VNE-PSO. So we only compare the metric R/C
ratio and the metric average time. From Fig. 9, it is impor-
tant to note that HA-VNE-PSO extends well for large scale
SNs as well as DPVNE-PSO and the optimizing capability
of HA-VNE-PSO is still better than DPVNE-PSO, which is
reflected in R/C ratio. These results validate that our proposed
archive mechanism and HA strategy are still effective in large
scale SNs. The improvement of R/C ratios is less apparent
in large scale experiments. This is because that, as the size
of SNs increases, more VNs can be embedded on small sub-
SNs, which makes the embedding process easier. In this way,
the room for improving optimization is decreased as well. For
example, in the SN with 100 nodes, there are 5 partitions
with 20 nodes while there are 40 such partitions in the SN
with 800 nodes. Therefore, as long as the resources of sub-
SNs are enough for VNs, more VNs will be embedded on
these small sub-SNs instead of large ones. The average time
for embedding a VN in HA-VNE-PSO is a little longer than
DPVNE-PSO. Meanwhile, when the SN size increases, the
difference of average time between two approaches narrows.
For the SN size with more than 500 nodes, the average time
of both approaches is similar or comparable.

Fig. 10 and Table III depict the trend of the final R/C
ratios and running time for both approaches over the increase
of SN size. We can observe that the R/C ratios of both
are improved when the SN size increases. This phenomenon
indicates that the influence of local optima in distributed
approaches is reduced as long as the size of SNs is large
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Fig. 10. Trend of final R/C ratio and total time.

enough. An interesting phenomenon shown in Fig. 10 and
Table III is that, the running time of both approaches is
decreased when the SN size increases. This result comes from
two sides. First, larger SNs imply that more VNs can be
embedded on small sub SNs which reduces the overall compu-
tational complexity. Second, each delegation node can manage
more resources in large scale SNs and thus more VNs can be
embedded within the scope of delegation nodes. Hence, the
message overhead among delegation nodes is decreased so that
the concurrency of the system is improved. Consequently, the
efficiency of the distributed approaches is improved when the
SN size increases.

E. Message Overhead and Load Balance

The embedder nodes in DPVNE-PSO and HA-VNE-PSO
need to send messages to communicate with each other,
including delegating VNs, deploying VNs, and so on. We
compare the passing messages among delegation nodes. In
large scale SNs, all VNs can be embedded within the scope
of delegation nodes. Therefore, the message overhead among
delegation nodes is zero. As a result, we only compare the
message overhead for both distributed approaches in moderate
scale SNs, presented in Table IV.

From Table IV, it can be seen that the message overhead
of two approaches is similar. This is because they use the
similar mechanism of delegation nodes. Actually, the HA strat-
egy might reuse the same sub-SNs frequently. The overuse of
same sub-SNs might increase the probability of unsuccessfully
embedding, which causes a little more message overhead than
DPVNE-PSO in some scenarios. This shortcoming will also
be weakened when the SN size increases.

Another metric, load balance, is studied in our experi-
ments. The load balance plays an important role in distributed
systems. We devise the node load and link load to measure
the load of the SN Gs. The node load at time t, NL(t), is
formulated as

NL(t) =
⎛

⎝
∑

n∈Ns

UN(n)/|Ns|
⎞

⎠/ max
n∈Ns

UN(n) (23)

where the function UN(n) represents the utilization ratio of
the substrate node n and ‖.‖ represents the number of sub-
strate nodes in Gs. The node load is defined as the ratio of
the average utilization ratio of substrate nodes to the maxi-
mum utilization ratio among all substrate nodes. The range of
NL(t) is (0, 1]. Theoretically, a value of 1.0 would be optimal
which implies that the utilization ratio of all substrate nodes is

the same and the load of the distributed system is completely
balanced in nodes. From the long-term view, the average node
load is defined as

avgNL = lim
T→∞

T∑

t=0

NL(t)/T. (24)

Similarly, the link load at time t, LL(t), is defined as

LL(t) =
⎛

⎝
∑

l∈Ls

UL(l)/|Ls|
⎞

⎠/ max
l∈Ls

UL(l) (25)

where the function UL(l) represents the utilization ratio of
substrate link l and ‖.‖ represents the number of substrate
links in Gs. The range of LL(t) is also (0, 1] and theoretically,
a value of 1.0 would be optimal as well. From the perspective
of long term, the average link load is defined as

avgLL = lim
T→∞

T∑

t=0

LL(t)/T. (26)

The node load and link load in moderate scale SNs are
presented in Figs. S13 and S14 in the supplementary mate-
rials. From the figures, we can see that the node load in
HA-VNE-PSO is obviously better than that in DPVNE-PSO
in moderate scenarios. The link load obtained by HA-VNE-
PSO is competitive or slightly better than that obtained by
DPVNE-PSO. In general, the load in HA-VNE-PSO is more
balanced than that in DPVNE-PSO in moderate SNs which
indicates HA-VNE-PSO is more reliable than DPVNE-PSO.

F. Simulations Under Location Constraints and Trans-Stub
Topologies

To be more realistic, we consider the location constraints for
virtual and substrate nodes. The network model is modified to
include the location property. The location of the substrate
node ns ∈ Ns and the virtual node nv ∈ Nv is represented by
loc(ns) and loc(nv), respectively. During the node assignment,
the location constraints should be satisfied, such that [43]

dis(loc(nv), loc(ns)) ≤ D (27)

where dis(i, j) measures the distance between the locations of
two nodes i and j, and D is the maximum distance between two
nodes. All virtual and substrate nodes are randomly located
in the 100 × 100 grid [44]. Moreover, the topologies of SNs
are generated by the real transit-stub networks [36], which are
provided with 200 nodes and around 1000 links. The transit
domains and nodes per transit are set to 4 and 2, respectively.
The stubs per transit node and nodes per stub are set to 4 and
6, respectively. These topology parameters of SNs are similar
to the work [36]. The number of virtual nodes ranges from
2 to 20 and the arriving rate is 0.1. Other attributes, such as
CPU and bandwidth resources, are identical to the previous
experiments. The experimental results are presented Fig. S17
in the supplementary materials.

The experimental results confirm that the combination
with metaheuristics can indeed improve the performance
of distributed VNE approaches (compare DPVNE-PSO and
DPVNE-RWMM). Moreover, using historical information in



940 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 2, FEBRUARY 2021

TABLE III
AVERAGE TIME FOR EMBEDDING ONE VN AND TOTAL

R/C RATIOS ON LARGE SCALE SNS

HA-VNE-PSO

TABLE IV
MESSAGE OVERHEAD AMONG DELEGATION NODES

ON MODERATE SCALE SNS

archives can further improve the average revenue and accep-
tance ratios in transit-stub topologies (compare DPVNE-PSO
and HA-VNE-PSO). There is an interesting result that the R/C
ratios obtained by the centralized algorithm are lower than
distributed approaches. This is because transit-stub topolo-
gies have small-world characteristics. Since distributed VNE
approaches partition the whole SN into small sub-SNs, the
dependency among sub-SNs becomes less. Hence, embedding
VNs on sub-SNs is more effective.

At the same time, we record the usage ratio UR of historical
mappings on these scenarios, which is computed as follows:

UR = used_map

all_map
(28)

where used_map represents the number of using historical
mappings to initialize particles, and all_map represents the
total number of node mappings stored in archives. The exper-
imental results are presented in Fig. S5 and Table S1 in the
supplementary materials. It can be seen that more than 40%
historical mappings in archives are reused when embedding
repeated VNs although the status of SNs changes frequently.
The results verify that the HA mechanism is available in
dynamic situations.

G. Impact of Parameter p

There are three parameters in HA-VNE-PSO, max_arc,
min_VN, and p (in Algorithm 2). The parameter max_arc and
min_VN are problem dependent so p is the only parameter we
need to investigate in HA-VNE-PSO. We test the parameter p
varying in {0.1, 0.3, 0.5, 0.7, 0.8, 0.9} on moderate scale sce-
narios VN20SN200 to find the appropriate value of p. We also
compare the algorithm without HA strategies as baselines.

The results for different p values are presented in Fig. S15 in
the supplementary materials. According to the depicted results,
we can observe that the behaviors for different values of p are
unstable and it is difficult to assert which value of p is the

best of all scenarios. This is reasonable because the topology
structures of SNs and VNs are varied and the resources of SNs
change frequently over time. It can also be observed that the
performance with different values of p is similar. Therefore, for
fair and easy comparison, we set p with the value which can
make HA-VNE-PSO obtain relatively moderate performance.
Thus, we set p = 0.8 in all our experiments which implies
that about 80% VNoMs in the archives might be reused with
the HA strategy.

VI. CONCLUSION

In this paper, we develop a new distributed system, HA-
VNE-PSO, to handle the distributed VNE problem. In HA-
VNE-PSO, we combine the distributed system with the
devised SPSO-VNE to improve its optimizing capability.
Furthermore, we propose the HA strategy to utilize the histor-
ical information in the archives. HA-VNE-PSO is compared
with other approaches on moderate and large scale scenar-
ios. The experimental results verify that HA-VNE-PSO is
promising. In this paper, HA-VNE-PSO cannot survive phys-
ical failures. If some nodes or links fail in HA-VNE-PSO,
the system cannot work normally. Therefore, technology to
improve the reliability and robustness of distributed systems
should be further studied in the future. Besides, extending
the proposed distributed system to continuous space will be
studied [45], [46].
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