Abstract:
In lifelong machine learning (LML) systems, consecutive new tasks from changing circumstances are learned and added to the system. However, sufficiently labeled data are ...Show MoreMetadata
Abstract:
In lifelong machine learning (LML) systems, consecutive new tasks from changing circumstances are learned and added to the system. However, sufficiently labeled data are indispensable for extracting intertask relationships before transferring knowledge in classical supervised LML systems. Inadequate labels may deteriorate the performance due to the poor initial approximation. In order to extend the typical LML system, we propose a novel hierarchical lifelong learning algorithm (HLLA) consisting of two following layers: 1) the knowledge layer consisted of shared representations and integrated knowledge basis at the bottom and 2) parameterized hypothesis functions with features at the top. Unlabeled data is leveraged in HLLA for pretraining of the shared representations. We also have considered a selective inherited updating method to deal with intertask distribution shifting. Experiments show that our HLLA method outperforms many other recent LML algorithms, especially when dealing with higher dimensional, lower correlation, and fewer labeled data problems.
Published in: IEEE Transactions on Systems, Man, and Cybernetics: Systems ( Volume: 51, Issue: 2, February 2021)