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Crowd Behavior Simulation with Emotional
Contagion in Unexpected Multi-hazard

Situations
Mingliang Xu, Xiaozheng Xie, Pei Lv, Jianwei Niu, Hua Wang

Chaochao Li, Ruijie Zhu, Zhigang Deng and Bing Zhou

Abstract—Numerous research efforts have been conducted to simulate crowd movements, while relatively few of them are
specifically focused on multi-hazard situations. In this paper, we propose a novel crowd simulation method by modeling the
generation and contagion of panic emotion under multi-hazard circumstances. In order to depict the effect from hazards and
other agents to crowd movement, we first classify hazards into different types (transient and persistent, concurrent and non-
concurrent, static and dynamic) based on their inherent characteristics. Second, we introduce the concept of perilous field for
each hazard and further transform the critical level of the field to its invoked-panic emotion. After that, we propose an emotional
contagion model to simulate the evolving process of panic emotion caused by multiple hazards. Finally, we introduce an Emotional
Reciprocal Velocity Obstacles (ERVO) model to simulate the crowd behaviors by augmenting the traditional RVO model with
emotional contagion, which for the first time combines the emotional impact and local avoidance together. Our experiment results
demonstrate that the overall approach is robust, can better generate realistic crowds and the panic emotion dynamics in a crowd.
Furthermore, it is recommended that our method can be applied to various complex multi-hazard environments.

Index Terms—crowd simulation, emotional contagion, multi-hazard, emotional reciprocal velocity obstacles
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1 INTRODUCTION

THe advances in the study of typical crowd behav-
iors (such as stampede incidents and terrorist at-

tacks) in various domains including psychology, secu-
rity management, and computer science, have pointed
out that simulating both the sentimental state evolu-
tion and decision-making of a crowd under different
circumstances is an efficient way to show inherent
laws of nature [1]. This problem has been considered
as a system that as a class of multi-input multi-output
systems in the non-strict feedback structure [2]. As
a result, it is important to accurately model both
the simulation environment and emotional contagion
among individuals for realistic crowd simulation.

Recent research efforts of crowd simulation in emer-
gency circumstances have been mostly focused on
those situations where there is only one hazard in the
area of interest [3], [4], [5], [6], [7], [8], [9]. However,
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in some real-world cases, multiple hazards may occur
in the same area over a period of time, such as the
two sequential bombing attacks in Boston in 2013.
Traditional crowd simulation algorithms with a single
hazard in the scenario cannot be applied to these cases
directly because of the following reasons:

1) A multi-hazard scenario, including different
types of hazards, different critical levels of haz-
ards, dynamic changes of hazards, various evacuation
strategies, and so on, is more complex than the case
with a single hazard. The traditional single-hazard
models are very difficult to handle all the above
factors in a unified way.

2) The emotional contagion in multi-hazard envi-
ronment is a complex combining process of emotional
spreading, concerning both direct effects from hazards
and indirect effects from neighboring individuals.
However, existing emotional contagion models are
mainly designed for single-hazard scenes and cannot
be applied to multi-hazard scenes directly.

3) Traditional multi-agent navigation algorithms,
like Reciprocal Velocity Obstacles (RVO) [8], have not
considered the emotion of individuals, which means
they are short of the mechanism to deal with the con-
flict between obstacle avoidance and panic escaping.
Therefore, the simulation results under multi-hazard
circumstance by these algorithms appear less realistic.

In order to tackle the above challenges, in this pa-
per, we propose a novel multi-hazard scene model to
describe different effects of various types of hazards,
which is mainly applied to fire and explosion situa-
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tions. In this model, the hazards are classified into six
different types according to three kinds of inherent
attributes: durations, time of occurence and dynamics.
Based on the definitions of these hazards, we further
propose the concept of perilous field and a conversion
function to map the criticality of the perilous field
to the emotion of individuals. It is noteworthy that
emotion in this paper mainly refers to the panic mood
of individuals in emergency situations.

In order to depict the complex process of panic
spreading, we put forward a new emotional contagion
model specially designed for multi-hazard situations
by combining panic emotions from different hazards
and individuals. Finally, an Emotional Reciprocal Ve-
locity Obstacles(ERVO) model, inspired from the tra-
ditional RVO model, is proposed to drive the crowd
movement. Different from the existing RVO model,
the ERVO model integrates the emotional effect into
velocity decision for the first time.

The contributions of this paper are:
• We propose a novel multi-hazard scene model for

the description of emergency fire and explosion
situations, containing six different types of haz-
ards with their dynamic changing process and an
unified criticality conversion function.

• We propose a new emotional contagion model in
multi-hazard scenarios, which combines different
emotional effects from hazards and individuals in
a crowd.

• We propose a novel crowd behavior simulation
method, the ERVO to simulate how people under
a panic mode choose their paths to safe places or
planned goals in a realistic way.

The rest of this paper are organized as follows.
Background and related work are reviewed in Section
2. The overview of our work is introduced in Section
3. The definition of multiple types of hazards and
emergency scenes are described in Section 4. The
emotional contagion process is explained in detail in
Section 5. The simulation method of crowd movement
is described in Section 6. Our experiments are pre-
sented in Section 7. Finally, this paper is concluded in
Section 8.

2 RELATED WORK
Although numerous research efforts have been con-
ducted to simulate crowd movements, relatively lit-
tle literature has been specifically focused on emer-
gency evacuation simulation involved with multi-
ple hazards. In this section, we will mainly review
recent works that are clearly related to our work.
For more comprehensive review on crowd simulation
techniques, please refer to [10].

2.1 Crowd evacuation with social or physical
model
One kind of important crowd movement scenarios
is to simulate the emergency evacuation. Helbing

et al. [3] employ the social force model, combined
with social psychology and physics models for the
first time, to describe the panic behavior in evacu-
ation. After that, the lattice gas model [11], multi-
grid model [12], agent-based model [5], virtual hin-
drance model [13], etc., have also been proposed to
describe the dynamical behaviors of the emergency
crowd. The commonness among these methods is
that they choose some typical characteristics of the
crowd first, and then use corresponding models to
describe different evacuation behaviors. Other studies
considering more factors in crowd evacuation process,
Narain et al. [4] simulate the clustering behaviors
of a high density crowd in a combined macro-micro
perspective. Funge et al. [14] put forward a cognitive
model to direct autonomous characters to perform
specific tasks, which outperforms many traditional
behaviors models. Durupinar et al. [15] analyze the
impact of psychological factors on the crowd move-
ment from the perspective of social psychology. Lai et
al. [16] aim at a problem of adaptive quantized control
for a class of uncertain nonlinear systems preceded
by asymmetric actuator backlash, which is similar
with our motion analysis with agents in unexpected
situations. Wang et al. [17] propose a semantic-level
crowd evaluation metric, which analyze the semantic
information between real and simulated data. Basak
et al. [18] validate and optimize crowd simulation
by using a data-driven approach, which proves the
parameters learned from the real videos can better
represent the common traits of incidents when simu-
lation. Oguz et al. [1] use continuous dynamic model,
to simulate the movements of agents in outdoor emer-
gency situations successfully. In this paper, our crowd
behavior model mainly focuses on the micro-level
behavior simulation. According to different multi-
hazard environments, we divide the crowd movement
into various cases and design crowd behaviors for
each case specially.

2.2 Crowd simulation with psychological model

In the real world, emotional state of an individ-
ual plays a vital role in his/her decision-making,
which fundamentally determines his/her movements
at each time step [19], [20]. Therefore, many recent
works start to consider the psychological factors of
agents, especially during the simulating process of
crowd movement [21]. Belkaid et al. [22] stress the
important role that emotional modulation plays on
behavior organization by analyzing the relationships
between emotion and cognition. Bosse et al. [23]
propose the absorption model based on the heat
dissipation theory in thermodynamic, which embod-
ies the role of authority figures in the process of
emotional contagion. Tasi et al. [24] devise a multi-
agent evacuation simulation tool ESCAPES, where an
agent will accept the emotion of other agents who
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has the strongest mood or has special identity. Le et
al. [25] propose an agent-based evacuation model by
considering emotion propagation among individuals
to make the simulation more realistic. Lhommet et
al. [26] also propose a computational model of emo-
tional contagion based on individual personality and
relationships. Durupinar et al. [15] create a system
that enables the specification of different crowd types
ranging from audiences to mobs based on a compu-
tational mapping from the OCEAN personality traits
to emotional contagion. Tsai et al. [27] combine the
dynamics-based and epidemiologicial-based models
to describe the dynamics of emotional spreading from
the perspective of social psychology. Fu et al. [28] use
a modified SIR model, originally proposes in [29], to
model the emotion evolving in the process of emer-
gency crowd movement. The work in [30] proposes
a stress model to realize the interactive simulation of
dynamic crowd behaviors. Although stress is similar
to our panic emotion in terms of the impact on crowd
behaviors, there are still some inherent differences.
For one certain crowd scene, they mainly model one
type of stress in it and the stress of external envi-
ronment on individuals. The mutual influence impact
among different individuals is ignored. In addition,
their model only focuses on the changes of individu-
als’ velocities caused by the magnitude of stress. By
contrast, in our paper, the emotional state of agents
in emergency situations is mainly the panic emotion.
Due to different emotional spreading and reception
for various agents, we analyze the emotional conta-
gion by involving the personality factors. Since the
panic effect is not only coming from various hazards
but also from neighboring individuals, a new micro-
continuous emotion contagion model is designed.

2.3 Crowd path planning

Generally, path planning can be regarded as the multi-
objective optimization [31] and local information in-
teraction [32], [33] problems. In the process of crowd
evacuation, an individual’s action decision [34], [35],
[36], [37], [38], [39], [40] is dependent on the evac-
uating directions of nearby agents, the locations of
hazards, and the obstacles in the scene.

Some researches develop a variety of methods to
avoid the collision problem through the calculation
of possible positions of individuals at the next time
step [41], [42]. On the premise of collision avoidance,
Kluge and Prassler [43] use a local obstacle avoidance
approach, combined with individual’s emotion states
to calculate the movements of agents iteratively. Van
den Berg et al. [8] propose the well-known Recip-
rocal Velocity Obstacles (RVO) model to drive the
multi-agent navigation without collision. Concretely,
the reactive behavior of one agent at each time step
depends on the behaviors of all the other agents. In
their method, a collision-avoidance velocity for each

agent is chosen by taking into account the positions
and reciprocal velocities of all agents in the scenario.
By constructing visual trees, Belkhouche [44] proposes
a shortest path without conflict. Guy et al. [9] propose
an optimization method for collision avoidance on the
basis of the RVO model for real-time simulation of
large-scale crowd movement. In addition, they also
propose an energy-saving simulation method with the
minimum energy consumption as the guidelines [45].
Furthermore, a series of path planning and navigation
algorithms [46], [47], [48], [49] are also described in
mass population under complex background. In this
paper, we enhance the traditional RVO model with
emotional contagion in multi-hazard circumstances.
Panic is used to describe the emotional state of each
agent, which is changed dynamically and affect the
behaviors of individuals.

3 SYSTEM OVERVIEW

As shown in Figure 1, the main methodology of this
work is divided into three parts: multi-hazard envi-
ronment modeling in Section 4; emotional contagion
process under multi-hazard situations in Section 5;
crowd behavior simulation based on emotional recip-
rocal velocity obstacle in Section 6.

Specifically, in order to simulate the crowd behavior
in multi-hazard situations realistically, we analyze dif-
ferent types of hazards according to their properties,
the time of occurrence and duration. After that, we
propose a perilous field consisting of multiple hazards
and define a conversion function to map the intensity
of danger to panic emotion. Besides the direct effects
from hazards, panic propagations also exist among
different agents in emergency scenes. So we build
an emotional contagion model (ECM) to handle the
above cases. The ECM computes the panic emotion
of each agent in the dangerous field according to the
distance between this agent and the hazards using
the above conversion function. At the same time, the
ECM accumulates the contagious panic emotion from
other agents to obtain the final emotion of each agent.
To realize multi-agent navigation with panic emotion
under multi-hazard situations, we propose an ERVO
model to simulate the crowd behaviors. The major
contribution of ERVO is a new mechanism of velocity
decision by integrating both the traditional RVO and
panic emotion.

4 MULTI-HAZARD ENVIRONMENT MODEL-
ING

The characteristics of complexity, interactivity and
time-varying make crowd behavior simulation chal-
lenging, especially in multi-hazard environments. In
order to achieve realistic simulation results, we first
need to model multi-hazard simulation environment
quantitatively.
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Fig. 1: The framework of crowd behavior simulation in multi-hazard situations, consisting of three parts: (a)
the estimation of crowd panic in multi-hazard environment, (b) panic propagation in emergency situation
and (c) the impact on crowd movement from panic emotion. The red solid circle represents the hazard in our
circumstance, different blue solid circles in (a) represent agents with different panic emotion values. The darker
the color, the greater the panic emotion. In (b), the panic emotion of one agent (blue solid circle) is affected
by other agents (green solid circles) in its perceiving range. Stress safety directions, emotional directions and
combined directions of agents are annotated by yellow arrows shown in (c).

According to their durations, we divide hazards
into two different types: transient and persistent. The
former only lasts for a moment, while the latter lasts
for relatively long time. Both of them would cause
drastic changes to the psychological state of a crowd,
and individuals in the dangerous area would respond
immediately. The difference between them is that a
transient hazard only threats those individuals at the
time when it is happening. Once it disappears, the
threat will also disappear immediately. By contrast,
a persistent hazard will continue to impact those
individuals in the dangerous area during its existence.

According to their generation time, we divide haz-
ards into concurrent and non-concurrent. Specifically,
when some hazards occur concurrently, their influ-
ences on neighboring agents can be treated as a single
one. These influences should be accumulated together.
For non-concurrent hazards, we need to consider the
status of the crowd each time when a new hazard
happens. If an agent has already been affected by
other hazards before or has its own emotion, the new
effect needs to be accumulated.

More importantly, the static and dynamic char-
acteristics of hazards also play vital effects on the
crowd movement in complex situations. Based on this

fact, we classify the hazards with fixed position and
influence radius as static ones. Other cases, such as
fixed position with variable influence radius, variable
position with fixed or variable influence radius are
regarded as dynamic hazards. For dynamic hazards,
they may have different states over the time, which
determine their position and area of influence dynam-
ically.

The above six basic types of hazards have obviously
different impacts on the crowd movement. Realistic
multi-hazard scenarios usually consist of these basic
types and their combinations.

After analyzing these hazards qualitatively, we give
quantitative descriptions for them. We first define a
perilous field as the circular area with the hazard
position as the center and a radius. Each agent is
aware of the existence of hazards in the scene through
self-perception or neighbor contagion. The influence
of danger is limited in space: the farther the distance
to the hazard, the weaker influence to the crowd. For
different types of hazards, due to the uncertainty of
their location and range, new perilous fields will be
formed constantly along with the time. Defining the
hazard position as Ps, for example, it can affect all
agents in its perilous field with radius, defined as rs,
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in the existence time, defined by U . If the diffusion
velocity and diffusion time for the hazard is vs and
ts, respectively, where vs = {vs1,vs2, ...,vsn}, n → ∞
depicts all possible directions for the diffusion, the
new hazard point P ′s can be defined as Equation 1:

P
′
s = Ps + ts · vs

= {Ps + ts · vs1, Ps + ts · vs2, ..., Ps + ts · vsn}
(1)

The dangerous range As after the diffusion forms a
closed area consisting of Ps as the source point and
all points P ′s as the boundary. Then we divide this
area into two parts using a line between 1 and n

2 , and
this area can be expressed as the sum of integration
of these two parts.

As =

∫ n
2

1

(Ps + ts · vs)dvs −
∫ n

2

n

(Ps + ts · vs)dvs (2)

According to the above description, the dangerous
impact on each agent is related to the dangerous range
of hazard and the distance between the hazard and
an agent. The farther the distance is, the smaller the
impact, all points with the same distance from hazard
share the same dangerous impact. In order to depict
this symmetry and attenuation, which is inspired by
the work in [1], a Gaussian distribution function is
chosen to depict this procedure by Equation 3.

Γs (P, t) =

 1√
2π·rs

e
− (P−Ds)2

2rs2 if ‖P −Ds‖ < rs and t ∈ U

0 otherwise
(3)

Here, Γs(P, t) is the strength of danger at the po-
sition P produced by hazard s at time t. U is the
duration of hazard s. Ds is the intersection position
of line PPs and the hazard area As(Ds can be seen
as the hazard position Ps in static hazard situations),
and rs is its influence radius. It is noteworthy that
danger strength will be 1.0 if position P is within the
dangerous range As.

5 EMOTIONAL CONTAGION MODEL CON-
STRUCTION

The emotional contagion model under multi-hazard
situations needs to consider the panic emotion in-
voked directly by the hazards, panic propagation
among individuals, and panic attenuation. The final
panic emotion of each agent can be obtained by
summing up these three components.

5.1 Emotional impact from multiple hazards
In Section 4, we have defined the perilous field and
the strength of danger of different hazards. Since the
normalized value of the strength of danger is within
the range [0, 1] , which is the same as the property of
emotional value [28], therefore, we adopt the strength

of danger, perceived by the agent directly, as the panic
value at the current position in Equation 4.

Ehi (P, t) =

n∑
s=1

Γs (P, t) (4)

Here, Ehi (P, t) represents the panic value of agent i
affected by all the hazards s at time t and position P ,
where n denotes the total number of hazards.

5.2 Emotional contagion among individuals

In real life, individuals escaping from the perilous
field will carry panic emotion and propagate the
panic continuously to infect other individuals within
a certain distance when they are moving. Individuals
who perceive this panic may also be affected by
them, incorporate into their emotions and then pass
them out. In addition, emotional contagion among
different agents are totally different. The extent of
emotional transmission among agents depend on their
personalities, which affect their ability of expression
and reception.

In order to depict the above process, we use the
emotional contagion model proposed in [15], which
incorporate a complex but easy-to-use psychological
component into agents to simulate various crowd
types. one personality model and two thresholds are
used in this process. Specifically, OCEAN person-
ality model [50] defines a five-dimensional vector
〈ΨO,ΨC ,ΨE ,ΨA,ΨN 〉 to characterize the individuals’
five kinds of personality: openness, conscientiousness,
extraversion, agreeableness and neuroticism. Each di-
mension takes a value between -1 and 1. Moreover,
personality can also affect the decision of agent in
different situations. The two thresholds are expres-
siveness and susceptibility. Expressiveness correlated
with extroversion, represents the ability to diffuse
emotion. Susceptibility represents the minimum value
of agent be affected by other agents. Taking agent i
and agent j as an example, if the emotional value for
agent j at certain time is higher than its expressive
force threshold, it will express the emotion to others.
At the same time, if all emotions agent i received
exceeds its susceptibility threshlod, agent i can be
affected by this emotion. The expressiveness threshold
for agent j and susceptibility threshlod for agent i are
defined as follows:

eTj ∼ N
(

0.5− 0.5ψEj ,
((

0.5− 0.5ψEj
)
/10
)2)

(5)

susTi (t) ∼ N
(

0.5− 0.5εj , ((0.5− 0.5εj) /10)
2
)

(6)

Where N(., .) represents a normal distribution with
the former as mean and the later parameter as a
standard deviation, the empathy value εi(εi ∈ [−1, 1])
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in Equation 7 for agent i can be described as follows
[51] :

εi = 0.354ψO + 0.177ψC + 0.135ψE + 0.312ψA + 0.021ψN (7)

Then for the susceptible agent i, all effect caused
by all agent j who is expressive and in the perceived
range of it at time t can be computed by Equation 8:

Eci (P, t) =

t∑
t′=t−k+1

n∑
j=1

di (t′)Ec
′

j (Pj , t
′) (8)

Where di(t
′) ∼ N (0.1,0.0001) represents the dose

values which agent i accepted from agent j at time t′,
Ec
′

j (Pj , t
′) is the panic emotion of agent j within the

perceiving range of agent i at time t′. The value of k
is set as 10 based on [15], which means the emotional
accumulation of agent i at time t is determined by the
emotional values in the last 10 consecutive time steps.

5.3 Emotion combination
Based on the documented observations [15], the panic
emotion of individuals will decay over time gradually
until to the normal state. So we define an emotional
attenuation function to describe this process, where
a parameter η is the emotional decay rate. For agent
i at time step t, its new panic can be computed as
following:

Edi (P, t) = Ei(P
pre, t− 1) · η η ∈ (0, 1] (9)

As mentioned at the beginning of this section, the
final panic emotion of each agent can be obtained by
combining all above three components. Considering
the Equations 4, 8 and 9, the incremental panic of the
agent i, who is at the position P and at time t, can
be computed by Equation 10. With this incremental
value, we can obtain the panic emotion by Equation
11. It is noteworthy that the emotional value Ei(P, t)
needs to be normalized after update.

∆Ei (P, t) = Ehi (P, t) + Eci (P, t)− Edi (P, t) (10)

Ei (P, t) = Ei (P pre, t− 1) + ∆Ei (P, t) (11)

6 EMOTIONAL RECIPROCAL VELOCITY OB-
STACLE

After the panic of each agent in a multi-hazard envi-
ronment is computed during evacuation, the stress-
ful behaviors of these agents affected by the panic
emotion can be determined. The location and mov-
ing direction of an agent are denoted as P and

→
V ,

respectively. When the agent has perceived the impact
from a hazard s at location Ps, it will try to follow

the stress safety direction
→
PsP to escape from the

hazard instinctively. By contrast, those agents who

Fig. 2: Stress safety direction invoked by hazards. Red
solid circles represent hazards, dotted circles are the
perilous fields of the hazards. The original directions
of agents are represented by blue triangles, while the
stress safety directions of affected agents are denoted
by red triangles.

are not within the impacted area of any hazard, will
follow their original moving directions. If an agent is
affected by multiple hazards, then all the stress safety
directions of interest will be the result of a weighted
sum. So, the stress safety direction of an agent in
multi-hazard situations can be described by Equation
12:

→
V s
i (P, t) =


n−1∑
s=0

Γs (P, t) ·
→

PsP if‖P − Ps‖ < rs and t ∈ U

→
V otherwise

(12)

Here,
→

V si (P, t) is defined as the safety evacuation
direction for agent i at the position P and time t. U
is the duration of hazard s. Figure 2 shows different
safety evacuation directions chosen by a group of
individuals.

Besides the direct emotional impact from hazards,
the contagious panic emotion received from its neigh-
bors may also alter agents’ original moving directions.
As mentioned in [3], we assume the probability of
agent i following its original direction is pi and the
probability 1−pi to follow the others’ directions. Thus,
the new direction can be defined as the addition of
these two direction vectors. In this paper, the proba-
bility pi is equal to the panic value Ei(P, t) of agent
i. The updated moving direction of agent i at time t
is defined as below:

→
V ci (P, t) = Ei(P, t)

→
V si (P, t) + (1− Ei(P, t))

∑
j∈R(i)

→
V cj (Pj , t) (13)

Here,
→

V ci (P, t) represents the moving direction
of agent i who is at the position P at time t.
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∑
j∈R(i)

→
V cj (Pj , t) is the combined moving directions of

those agents who are in the emotional perception
range of agent i. R(i) denotes neighboring agents
within the perception range of agent i. When the
agent is going to change its direction, we assume the
magnitude of its velocity will remain. In other words,
the velocity module of the agent at that time should
be Vc

i .
In Equation 13, the moving direction of agent i

is only influenced by panic emotion. However, in
the actual crowd movement, the final direction of an
agent is also influenced by its planned targets and
other neighboring moving agents. In other words, the
local obstacle avoidance and global path planning for
agents also need to be considered. The RVO model
[8] is an efficient and safe multi-object automatic
navigation algorithm. However, during the obstacle
avoidance, the RVO model focuses on the position and
velocity of the current agent and other agents (refer
to Equation 14), but does not take into account the
emotional impact on speed selection invoked by sur-
rounding obstacles and existing hazards. In Equation
14, RV Oij(Vj ,Vi, α

i
j) is the collision area for agent i

caused by agent j (illustrated in the grey area around
the white circle of Figure 3 (RVO)), which means that
agent i and agent j will collide with each other once
the velocity of agent i fall into this area. Vi and Vj

represent the velocity for agent i and agent (or hazard)
j. αij is the effort chosen by agent i to avoid the
collision with agent (or hazard) j, which is implicitly
assumed to 1

2 in the original RVO model. For more
details of the RVO model, please refer to [8].

RV Oij(Vj ,Vi, α
i
j) = {V

′

i| 1αi
j

V
′

i + (1− 1
αi

j

)Vi ∈ V Oij(Vj)} (14)

Inspired by the RVO model, we propose a new
ERVO model by integrating emotional contagion into
crowd movement planning. This new model con-
structs a new collision area (shown by the grey tri-
angle areas in Figure 3 (ERVO)) by considering the
current velocity Vi and the updated velocity Vc

i of
the agent, and also the velocity Vj as described in
Equation 15. The effort made by agent i to avoid col-
lision with agent (or hazard) j is defined in Equation
16.

ERV Oij(Vj ,Vi,Vc
i , α

i
j) = {V′i| 1αi

j

(V
′

i + Vc
i )

+ (1− 1
αi

j

)Vi ∈ V Oij(Vj)}
(15)

αij =
Ej(P, t)

Ei(P, t) + Ej(P, t)
(16)

During the crowd simulation, for agent i, if Vi is
outside of the emotional reciprocal velocity obstacle
of agent (or hazard)j, both of them will never collide.
The ERVO model can be used to navigate a large
number of agents in a complex multi-hazard scenario.

For each agent i in the scene, it has a current position
P , a current velocity Vi, an updated velocity Vc

i , a
current panic emotion Ei(P, t), and a goal location
Gi. For a hazard s, it has position Ps and duration t.
For obstacle o, it has current position Po and velocity
Vo. Static obstacles have zero velocity in particular. In
our experiments, we choose a small time step ∆t to
simulate crowd behaviors. Within this time step, we
select a new velocity for each object independently
and update its position according to the surrounding
environment until all of the agents have reached the
safe area or their goals.

7 EXPERIMENT RESULTS

We run a diverse set of crowd simulations in multi-
hazard situations, all experiments are realized by us-
ing C++ in the Visual Studio and Unity 3D platform.
Our experiment results show that our method can
soundly generate realistic movement as well as panic
emotion dynamics in a crowd. In Section 7.1, we
simulate crowd behaviors in four different outdoor
multi-hazard scenes. In Section 7.2, we analyze the
importance of our emotional contagion mechanism
and different influence in different scenarios. Then the
emotional contagion model is proved more suitable
for our multi-hazard situations in Section 7.3. Fur-
thermore, we validate the realism of our simulation
results by comparing them with the crowd movement
in real world in Section 7.4 and the effectiveness of our
method in different virtual environments in Section
7.5.

7.1 Crowd simulation under different multi-hazard
scenarios
As discussed before, different hazard types have
various effects on crowd movement. We simulate
emergency behaviors in a crowd with the following
two-hazard situations: (1) persistent hazards occur
at the same time; (2) transient hazards occur at the
same time; (3) persistent hazards occur at different
moments; (4) transient hazards occur at different mo-
ments. All simulations run in open field, and each
simulation involves forty agents. The persistent haz-
ards and transient hazards are represented by fire
and explosion, respectively. The time step is set to
0.25s, other parameters in our system are set exper-
imentally: the influence radius rs = 10 m, emotional
decay parameter η = 0.01, the personality parameters
ΨO,ΨC ,ΨE ,ΨA,ΨN are set to the random number
between -1 and 1 for simplify to depict different
agents, and the perceived scope is set to 4 for all
agents.

Path flow maps for all agents are used to depict
the crowd movement differences among this four
conditions. As illustrated in Figure 4, the black points
are the original positions of all agents, lines of dif-
ferent colors are used to depict different paths of
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Fig. 3: The collision area computed by the traditional RVO model and our ERVO model for agent i. Grey
triangle areas around white circles and red solid circles represent the collision areas caused by agents and
hazards, respectively. The black, blue, green and red arrows are separately the original direction, stress safety
direction, emotional contagion direction and final direction of one agent. The emotional contagion direction of
an agent is determined by combining its safety stress direction with those of its neighbors. The final direction
is determined by combining its original direction and emotional contagion direction.

Fig. 4: Movement trajectories of forty agents in different types of hazard scenarios. In each scenario, black
points represent the initial positions of all agents, the lines drawn by different colors are used to depict different
paths of agents, while trajectories for the same agent use the same color in different conditions. In addition,
the red solid and hollow circles represent persistent and transient hazard positions, respectively. While the
green one represent the positions of the second hazards in the concurrent conditions.

agents, while trace flows for the same agent indicated
by the same color in four conditions, the red solid
and hollow circles represent persistent and transient
hazard positions in our scenarios, respectively. While
the second hazards occur in the concurrent conditions
draw by green.

If two hazards occur at the same time as shown
in Figure 4(a), Figure 4(b). Agents around these two
hazards will change their routes to be distant far
away from them. When compared with the transient
condition, based on the persistent effect from hazards,

more emotional contagion lead to jittery for many
paths of agents (shown in Figure 4(a)), while trajectory
for the agents in transient conditions are smoother
owing to the disappear of hazards in this scenario
(shown in Figure 4(b)).

If two hazards occur at different moments, as
shown in Figure 4(c), Figure 4(d). When the first haz-
ard occurs, agents in the perilous field of this hazard
will change their movement direction far away from
it, while other agents keep the original movement.
When the second hazard occurs, if the first one does
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not disappear, agents will escape away from both of
the two hazards (shown in Figure 4(c)). By contrast,
some agents’ path may move to or pass through the
area where the first hazard disappeared (shown in
Figure 4(d)).

In addition to that, the panic emotion changes
of agents are also important during this procedure.
Figure 5 illustrate a snapshot in the condition of per-
sistent hazards occur at the same time, where we use
a cylinder to represent an agent and visualize its panic
value using different colors. Despite those two dead
agents drawn by the black cylinders, the white, light
red, red, dark red and red black are used to represent
Ei = 0, Ei ∈ (0, 0.3], Ei ∈ (0.3, 0.5], Ei ∈ (0.5, 0.7] and
Ei ∈ (0.7, 1.0], respectively. The larger the panic value
is, the darker its color. For more dynamic simulation
details in different multi-hazard conditions, we refer
readers to our supplemental video.

Fig. 5: One snapshot in the condition of persistent
hazards occur at the same time, where the cylinders
are used to depict agents, different colors represent
different panic values of them, the darker the color is,
the larger its panic value.

7.2 Analysis of emotional contagion

In order to validate the effectiveness of emotional
contagion in our method, we run crowd simulations
in a scene with and without this mechanism, re-
spectively. Figure 6 shows the moving trajectories
of three selected agents in the situation with one
transient hazard. Agents with emotional contagion
will adjust their moving directions to escape away
from the hazard even when they have not reached
the nearby region of the hazard. In contrast, agents
without emotional contagion will keep moving along
the original planned directions. The trajectory of one
agent is illustrated by one colorful line. From these
results, we can infer that the crowd movement in a
hazard environment is affected by the panic emotion
significantly.

(a) without emotional contagion model

(b) with emotional contagion model

Fig. 6: The comparison of crowd movements with and
without emotional contagion.

In the previous section, we have discussed the effect
of emotional propagation on crowd movement quali-
tatively. Here we mainly focus on the change of panic
emotion of each agent during the crowd evacuation,
especially when persistent/transient hazards occur at
the same time. From Figure 7, we can see that the
panic emotion value will increase to the maximum
when a persistent hazard happens. The reason is that
although the agent is moving far away from the
hazard, the agent is still in the perilous field and the
panic value is accumulated. When agents are out of
the perilous field, their panic values will decay and
reach to a similar low level due to the effect of emotion
contagion. For a transient hazard, the panic emotion
will reach to the maximum immediately when the
hazard occurs, then it will decrease gradually.

7.3 Comparisons with another emotional conta-
gion model
In order to validate the effectiveness of our emotional
contagion model among agents, we compare our sim-
ulation results to an agent-based emotional contagion
model proposed in [52]. Same personality and original
state are chosen for fifty agents in this two mod-
els, then the overall difference caused by emotional
contagion can be caught. After bomb occurs, agents
may have different panic emotions and movements
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(a) panic changes caused by persistent hazards

(b) panic changes caused by transient hazards

Fig. 7: The panic emotion changes in a crowd in
different situations. The simulation contains 15 agents
and each colored line represents the panic emotion of
one agent in the scene.

in different time. Panic emotion of all agents and
movements simulation results can be shown in Figure
8, Figure 9.

In Figure 8, the number distribution of agents panic
emotion are illustrrated by five levels defined in Sec-
tion 7.1, Where 0 as the lowest panic emotion values
0 and level 5 represents the highest panic emotion
values from 0.7 to 1.0. We choose the explosion time
at 4s as the start time, which can be seen that all agents
have the high panic emotion almost the whole evacu-
ation process when used emotional contagion model
mentioned in [52], but in our model, the number of
lower emotion levels decrease first and increase as
following, the higher level ones reverses. The reason
of this phenomenon is that [52] considers all agents
in the whole scenes once a hazard occurs, and does
not take emotion decay into account. While in our
emotional contagion model, each agent have a percep-
tion range as well as expressiveness and susceptibility
to accept emotional contagion from others, and their
panic emotion change along with the movement.

In addition, the simulation results in this two condi-
tions shown in Figure 9. The movement of agents after
explosion in our model are more dispersed as labeled
by red ellipses, while in another model, all agents
behave towards an aggregation states. With consider-
ing the different emotion changes in this two models,

(a) panic emotional interval distribution over time in
model [52]

(b) panic emotional interval distribution over time in
our model

Fig. 8: The agent numbers in different panic emotional
interval during the evacuation. five panic emotion
levels depicted by 0-4 with different colors, the higher
this value, the higher the panic emotion.

lower panic emotion lead to a more independent
movement direction (shown in Figure 9(a)) instead
of gathered movement based on stronger emotional
contagion(shown in Figure 9(b)). In real world, panic
emotions will decrease when the crowd are away
from hazards. From the results of these two different
models, where be seen that our emotional contagion
model is more realistic and suitable to simulate the
crowd movement in the multi-hazard situations.

7.4 Comparisons with real-world crowd behaviors

In order to validate our approach, we also compare
the simulation results with real-world crowd evacua-
tion video. Two crowd evacuation video are chosen in
this part, first one is chosen from the public available
dataset of normal crowd videos from University of
Minnesota (UMN) [53], which is designed to test the
abnormal detection method originally. In this scene,
movement details are used to verify the similarity
between real-world crowd behaviors and our simu-
lation results. Although no pre-defined goals are set
in advance, agents can still be driven to escape in a
realistic way by our method.Illustrated in Figure 10,
three images in each row are the crowd movement
states at initial random conditions, at the beginning of
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(a) with our emotional contagion model

(b) with emotional contagion model proposed in [52]

Fig. 9: The comparison of crowd movements with
another emotional contagion model.

the evacuation, one moment after the hazard occurs.
The trajectories of agents are shown by the blue lines.
From the trajectories we can find that movement
trends of our simulation results are similar with that
in real scenes. Furthermore, we also compare the
trajectory length and the maximum speed of each
agent from the moment when hazard occurs to the
end of simulation, as shown in Table 1 (comparison
with the grassland scene) and Table 2 (comparison
with the square scene), where can be seen that our
mean trajectory length and mean maximum speed are
close to the true video data. Thus we can see both the
overall movement trend of the crowd and individuals’
movement details in the crowd are similar to those in
the recorded real-world crowd video. More animation
comparison details can be found in our supplemental
video.

The second one is the 911 terrorist attacks with
two explosion, while when considering the camera
shaking and crowd occlusion, movement details of
agents cannot be obtained accurately, thus this scene
is mainly used to verify the similarity of group move-
ment trends between our simulation result and true
situation. In this circumstance, two bombs occurred
concurrent on the building, and all agents straight
forward in the whole procedure. As shown in Figure
11, the crowd movement directions are indicated by

TABLE 1: The comparison between our simulation
result and real grassland scene

Agent ID
Trajectory length

in simulation result
(pixel)

Trajectory length
in real video

(pixel)

Maximum speed
in simulation result

(pixel/frame)

Maximum speed
in real video
(pixel/frame)

1 111.8814 94.1773 6.0828 8.0156
2 121.1261 121.4284 5.5902 8.0000
3 117.4920 155.8467 5.8310 9.0000
4 106.193 89.5567 5.4083 9.8234
5 94.7727 50.7417 5.3852 6.2560
6 86.9983 32.9509 8.0623 6.5765
7 83.7936 60.6989 5.0000 3.6056
8 110.8647 110.0192 6.5192 11.5109
9 57.6991 61.0370 5.5227 9.8489
10 45.4759 42.4537 3.6401 7.5664
11 35.5255 39.0000 3.5355 8.5586
12 73.6405 42.2433 4.7170 5.3852
13 84.6207 81.6077 3.5355 9.0000
14 90.2147 98.1849 5.0000 10.0000
15 96.3887 116.4673 7.5000 10.0000
16 113.0668 128.4863 4.5277 13.5370

mean 95.3169 88.3267 5.3661 8.5405

TABLE 2: The comparison between our simulation
result and real square scene

Agent ID
Trajectory length

in simulation result
(pixel)

Trajectory length
in real video

(pixel)

Maximum speed
in simulation result

(pixel/frame)

Maximum speed
in real video
(pixel/frame)

1 84.9795 93.1883 6.8007 5.5902
2 36.1059 49.7452 4.6098 4.5277
3 32.0000 56.9671 4.0000 3.5355
4 39.0000 70.1650 3.6056 7.1589
5 65.1402 121.4701 5.4083 9.7082
6 37.3852 64.8521 3.2016 6.5765
7 32.3006 66.2214 3.2016 3.6056
8 85.3429 135.1380 5.5902 9.5525
9 86.2274 80.3388 6.2650 6.1033
10 38.7559 88.4081 5.0249 6.0208
11 136.2666 83.5291 12.2577 6.5192
12 109.6164 120.4088 7.0711 9.0139
13 124.5751 69.5775 13.0096 13.2004
14 159.8465 152.3059 9.1788 10.5000
15 176.6732 191.3627 12.0934 8.0156

mean 82.9477 96.2452 6.7546 7.3086

red arrows, more details can be found in our supple-
mental video.

7.5 Applications in different scenarios
We apply our method to simulate crowd evacuation
simulations in office building ( Figure 12) and cross-
roads ( Figure 13 ) with multiple hazards to check the
effectiveness of our method.

In an office building, we numbered its four rooms
as 1, 2, 3, 4 from left to right and up to bottom.
The corridor in the middle connects all these rooms
together and there are no exits on both sides. At the
beginning, 50 agents located in different rooms move
randomly in Figure 12(a) . At the 8th frame, there
are two bomb explosions in room 1 and room 4 at
the same time in Figure 12(b). At the 64th frame,
there is a fire in room 2 in Figure 12(c). From the
simulation results, we observe the following: when
bomb explosions occur, in order to avoid the danger,
agents in the rooms begin to move to room 2 and
room 3, respectively. When room 2 is on fire, the
agents in or aiming to room 2 try to escape. At last,
all of the agents move to the safe room 3 in Figure
12(d).

The crossroad scene contains 50 pedestrians and
two non-current car bombs. When the simulation
starts, agents cross the road freely in Figure 13(a). At
the 16th frame, one black car bomb explodes in Figure
13(b) and another red car bomb explodes at the 24th
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(a) Recorded video data (ground-truth)

(b) Our simulation result (corresponding to (a))

(c) Recorded video data (ground-truth)

(d) Our simulation result (corresponding to (c))

Fig. 10: Snapshots of ground-truth crowd evacuations on the outdoor ground and our corresponding simulation
results. Three images from left to right is: initial random status, at the beginning of the evacuation, one moment
in the evacuation. The movement trajectories for all agents are drawn by the blue lines.

frame as shown in Figure 13(c). When the first car
bomb occurs, the agents nearby evacuate immediately.
Some agents affected by their neighbors move away
from the black car bomb. Since the dangerous field of
black car bomb is limited, the agents far away from
it continue to move along their original paths. When
the red car bomb occurs, these agents who are in the
perilous field also begin to evacuate, while others just
move in their original directions. Figure 13(d) is the
result at the end time (at the 60th frame). Animation
details can be found in our supplemental video.

8 DISCUSSION AND CONCLUSION

Crowd behavior simulation under multi-hazard en-
vironment is a very challenging problem, and exist-
ing models with a single hazard cannot be applied
to these cases directly. In this paper, we present a
novel evacuation simulation method by modeling the
generation and contagion of panic emotion under
multi-hazard circumstances. First, we model multi-
hazard environment by classifying hazards into differ-
ent types based on their inherent characteristics and
introducing the concept of perilous field for a hazard.
Then, we propose a novel emotion contagion model to
simulate the panic emotion evolving process in these
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(a) True video data (911 terrorist attacks)

(b) Simulation result

Fig. 11: Snapshots of the true video and our simu-
lation result of 911 scenario, where the red arrows
represent the movement trends of crowd.

situations. Finally, we introduce an emotional Recip-
rocal Velocity Obstacles(ERVO) model by augmenting
the traditional RVO model with emotional contagion,
which combines the panic emotion impact and local
avoidance together for the first time. By comparing
our simulation results with the ground-truth data and
applying our algorithm in different virtual environ-
ments, our experiment results show that the overall
approach is robust and can better generate realistic
crowds as well as the panic emotion dynamics in a
crowd in various multi-hazard environments.

There are still several limitations in our current
work. The first one is that our current method relies
on some important assumptions, such as all agents
in our scenario are treated equally in the face of
hazards except the different personalities, thus they
can perceive the danger level and be affected by the
hazards once he/she enter into the influence radius
of them. Besides that, safe exits chosen in the simula-
tion environment in advance, especially in the office
building situations, where the doors are chosen as
the sole exit for each room. In real world, this is not
very common. So we need to improve the sensing
capability of the agents in an unknown multi-hazard
scenario. The second is, in spite of considering agents
personalities, expressiveness and susceptibility, di-
verse crowd movements are shown in our simulation
results, many other complex personality traits and
prior expertise may also affect the emotion changes
and motion choices of each agent. In addition, the
personality parameters in our emotional contagion
model are set randomly to depict different agents,

while it may not include all agents or some agents
with special characters. Thus, more factors need to be
considered. Furthermore, our method is sensitive to
some key parameters, such as the strength of danger.
In the future, we want to utilize a large number
of surveillance video clips to calibrate and further
improve our model.
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