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Abstract—The power grid is rapidly transforming, and while
recent grid innovations increased the utilization of advanced con-
trol methods, the next-generation grid demands technologies that
enable the integration of distributed energy resources (DERs)—
and consumers that both seamlessly buy and sell electricity.
This paper develops an optimization model and blockchain-
based architecture to manage the operation of crowdsourced
energy systems (CES), with peer-to-peer (P2P) energy trading
transactions. An operational model of CESs in distribution
networks is presented considering various types of energy trading
transactions and crowdsourcees. Then, a two-phase operation
algorithm is presented: Phase I focuses on the day-ahead schedul-
ing of generation and controllable DERs, whereas Phase II is
developed for hour-ahead or real-time operation of distribution
networks. The developed approach supports seamless P2P energy
trading between individual prosumers and/or the utility. The
presented operational model can also be used to operate islanded
microgrids. The CES framework and the operation algorithm are
then prototyped through an efficient blockchain implementation,
namely the IBM Hyperledger Fabric. This implementation allows
the system operator to manage the network users to seamlessly
trade energy. Case studies and prototype illustration are pro-
vided.

Index Terms—Energy Crowdsourcing, Blockchain, Energy
Trading, Peer-to-Peer Energy Management.

I. INTRODUCTION

SMART grid technologies, such as microgrids and
distributed energy resources (DERs), have drastically

changed the way electricity is generated and consumed in two
dimensions. First, the rapid increase in energy prosumers intro-
duces new grid participants and provides a more decentralized
and open power grid. Second, this changes the role of a system
operator or utility from a power retailer to a service provider—
renting transmission/distribution lines to prosumers, rather
than solely selling units of energy. This paradigm shift requires
the creation of new trusted software platforms, distributed
operation/control algorithms, and computational methods to
enable reliable grid operations, prosumer engagement, and
incentivize utility business model innovations.
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Fig. 1. Blockchain-assisted architecture of operation in CESs.

Crowdsourcing [2] is a major drive for various industries,
and has been utilized in various disciplines such as medicine,
cyber physical systems, and engineering system design. The
central theme in crowdsourcing is the utilization of the crowd’s
power to achieve system-level objectives. To see how crowd-
sourcing can be applied in energy systems, we provide an
analogy from the most popular crowdsourcing markets, the
Amazon Mechanical Turk (MTurk) [3], which enables people
to post jobs with monetary rewards and expiry dates. Energy
crowdsourcing offers the possibility of the transformation in
energy systems, and this paper puts forth operational models
of crowdsourced energy system for collaborative production
and consumption in energy markets, shown in Fig. 1. The
tasks in crowdsourced energy system can be plugging in
an electric vehicle, charging/discharging a battery, deferring
loads, and supplying the power network with renewable energy
via solar panels—with the objective of satisfying a near-real-
time demand shortage/surplus. These tasks can be automated
via smart inverters, plugs, and meters while interfacing with
power utilities and a distributed blockchain implementation.

This transformation in sustainable energy systems, where
energy management is crowdsourced by prosumers, will be
supported by two key, disruptive scientific technologies: (i)
new modeling and crowdsourcing-centered methods that per-
form real-time grid management while maintaining the grid’s
stability. (ii) A secure cyber-infrastructure design to man-
age and coordinate millions of energy-trading transactions
(prosumer-prosumer or prosumer-operator trades).

The majority of the new modeling methods are based on
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optimal power flow (OPF) operation models and the secure
cyber-infrastructure design is implemented by the promising
blockchain technology. However, both the new modeling meth-
ods and the implementation of blockchain have limitations.
First, the computed OPF setpoints for DERs and controllable
loads might not be eventually adopted by crowdsourcees and
prosumers. Second, it is unclear how energy trading between
prosumers can take place within the operational models.
Third, the utilized blockchain architectures are not scalable
to include millions of energy trading transactions—especially
that blockchain-based trades consume a significant amount
of energy. The paper addresses these gaps, and the main
contributions and organization are given as follows.
• An operational framework and model of crowdsourced

energy systems in distribution networks is presented con-
sidering various types of energy trading transactions and
crowdsourcees. The presented framework enables P2P en-
ergy trading at the distribution level, where ubiquitous
distribution-level asset owners can trade with each other.
This has not done before in association with distributed
OPF routines and blockchain-enabled architecture. In such
a framework, an operator is needed to clear the market
and ensure there is no violation of any technical constraints
(e.g., distribution line limits). A distribution system operator
can assume this role running the presented CES operational
model (Section III). Extensions to operator-free, islanded
microgrids are also showcased.

• A two-phase, near real-time operation algorithm for crowd-
sourced energy systems is explored. The first phase focusing
on the day-ahead scheduling of generation and control-
lable DERs manages the bulk of grid-operation, while the
second phase is developed to balance hour-ahead even
real-time deficit/surplus in energy via monetary incentives.
The developed two-phase algorithm supports arbitrary P2P
energy trading between prosumers and utility, resulting in a
systematic way to manage distribution networks amid P2P
energy trading while incentivizing crowdsourcees to con-
tribute to this ecosystem. The algorithm supports operation
of islanded, self-autonomous microgrid (Section IV).

• The CES framework is implemented and prototyped within
IBM Hyperledger Fabric platform—an efficient blockchain
implementation. This implementation allows the system
operator to manage the network and supports users to
log in, manage their own account and carry on the en-
ergy trading with utilities or neighborhoods. This prototype
communicates with the two-phase algorithm presented in
this paper, is open source, and can be used by utilities
(Section V). Finally, numerical tests on a distribution net-
work and blockchain prototype illustration are provided
(Section VI).

II. LITERATURE REVIEW

A. Grid Operation, OPF, and Demand Response

Recent studies have investigated integrating the operation of
DERs in distribution networks. The focus of majority of these
studies [4], [5] is on unit commitment, economic dispatch
problems, scheduling of DERs, and maintaining the grid’s

TABLE I
VARIOUS IMPLEMENTATIONS OF BLOCKCHAIN. POW AND RBFT STAND

FOR PROOF OF WORK AND REDUNDANT BYZANTINE FAULT TOLERANCE.

Bitcoin Ethereum Hyperledger Fabric
Cryptocurrency Bitcoin Ether None

Network public public permissioned
Transactions anonymous anonymous public/confidential
Consensus PoW PoW RBFT

Smart Contracts None Solidity Chaincode
Language C++ C++/Golang Golang/Java

frequency and voltage within acceptable ranges while given
uncertainty from renewables and load forecasts.

Another branch of related work [6] studies the design of
demand response signals and incentives to drive DER owners
to contribute to energy production. In summary, there are
three approaches to demand response: (a) Reducing demand
by using local DERs. (b) Reducing demand through shifting
controllable loads. (c) Designing efficient generator setpoints
to reduce the total generation [7]. The majority of demand
response schedules focus on operational timescale. Further, the
need for real-time regulation and distributed dynamic pricing
as a function of the grid’s physical status motivates new
physics-aware pricing mechanisms [8], [9]. Background on
blockchain and energy trading routines is given next.

B. Blockchain and Energy Trading Systems

Blockchain is a distributed ledger based on a set of com-
munication and consensus protocols that ensure the ledger in-
tegrity through interlinked, cryptographically signed, and time-
stamped blocks that define transactions [10]. The blockchain
concept originated with the Bitcoin protocol, which utilized
a proof of work (PoW) consensus mechanism where miners
combine transactions into Merkle tree-based blocks and com-
pete to find a random nonce that produces a hash digest within
a predefined range. However, this approach has many limita-
tions including its significant energy consumption, scalability
in the number of transactions/seconds, privacy concerns with a
public ledger, and single purpose application (i.e., an exchange
of the Bitcoin cryptocurrency [19]). A number of additional
blockchain technologies have been introduced to address these
challenges as suggested below:
• Efficient consensus mechanisms: A consensus protocol is

used to ensure the unambiguous ordering of transactions and
guarantees the integrity and consistency of the blockchain
across distributed nodes [20]; the annual estimated elec-
tricity consumption of Bitcoin PoW consensus is 47.1
Terawatt-hour—a staggering 0.21% of worlds electricity
consumption [21]. Furthermore, PoW techniques typically
have limitations on the number of transactions per sec-
ond, which limits use in high performance environments.
Other consensus mechanisms, such as Proof of Stake (e.g.,
Ethereum Casper [22]) or Redundant Byzantine Fault Tol-
erance (RBFT) (e.g., IBM Hyperledger Fabric [23]), can be
used to reduce energy consumption.

• Smart contracts: Smart contracts provide protocols and Tur-
ing complete virtual machines that enable nodes to execute
some program based on the results of new transactions and
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TABLE II
VARIOUS FOCUSES OF TYPICAL P2P ENERGY TRADING SYSTEMS.

Reference [11] [12] [13] [14] [15] [16] [17] [18]

Market Mechanism

Information System Blockchain Blockchain Blockchain Blockchain Blockchain Blockchain

(Consensus) PoW(Public) Self-designed Self-designed NA NA NA NA PoW
Optimization +

Grid Constraints

Scenario Microgrid EV EV EV Microgrid Microgrid EV Microgrid

means not considered; means partially considered; means fully considered; NA means not applicable or the authors do not cover the
aspect; Self-designed means that authors design a new, corresponding consensus mechanism for their own blockchain implementation;

allow the blockchain to support sophisticated logic. Smart
contracts and blockchain provide an excellent platform
to perform energy trading transactions. In particular, the
authors in [24] provide a high-level description to the main
merits of using cryptocurrency and blockchain in energy
systems.

• Permissioned and privacy mechanisms: Blockchain plat-
forms can be categorized into public and private, where
public implies that any miner can contribute to the consensus
and block creation, while permissioned chains restrict block
creation to a predefined set of parties. Therefore, permis-
sioned chains may be preferred in applications with defined
authorities or entities with management responsibilities.

Tab. I summarizes the attributes of different implementations
of current blockchains, and Section V provides additional
discussion on why the Hyperledger platform is selected to
implement the proposed crowdsourced energy system scheme.

In Tab. II, various focuses of recent P2P energy trading
routines are compared according to focus aspects; the first
three aspects are derived from [25]. These aspects reflect
corresponding modules in Fig. 1, and are explained here.
First, The market mechanism including the participant setup,
and pricing mechanism is designed to incentivize participants
while maximizing the social welfare. The participant setup
defines market participants, and the form of energy trading,
while pricing mechanism, i.e., incentive design, and bidding
strategy, comprises the markets allocation and payment rules.
Second, the information system is designed to connect all
market participants, provide the market platform, offer mar-
ket access, and monitor the market operations. Nowadays
blockchain is suitable to implement part of information system.
Third, the optimization and grid constraints refer to scheduling
of DERs while maintaining the grid in an optimal way as we
discussed in Section II-A. Our corresponding implementation
of the above aspects are presented in Section V-B. Finally, as
for the scenario in these papers, we notice that most papers
focuses on microgrids and electric vehicles.

After comparing the typical papers in Tab. II, we notice
the following. First, references [11]–[14], [17] focus more on
approach to managing the grid with the assistance of simple
negotiation, auction, or bidding mechanism and implementing
the information system via thriving blockchain technology,
since the security and privacy can be guaranteed. Specifically,
The contribution of [12] is more about the multi-agent system

based trading negotiation mechanism. The authors in [13]
propose a contract based blockchain for secure EV charging,
and a reputation based Byzantine fault tolerance consensus
algorithm is proposed. In [17], the new and hybrid charging
scenario, i.e., mobile charging vehicle-to-vehicle, and grid-
to-vehicle are considered. Second, the authors in [15], [16],
[18] pay attention on designing different marketing/pricing
mechanism, but the power flow model is ignored in their
optimization. For example, game theoretical approaches are
adopted to achieve real-time pricing in [15], [26], [27]. Besides
the typical paper listed above, the attack/threat model are
explored further in energy blockchain in [28], [29] to enhance
the security and privacy. Especially in [29], the authors design
a special trust authority node with a veto power to prevent
malicious voting. However, the marketing/pricing mechanism
and platform design for P2P energy markets do not receive
too much attention and still are an open research area.

Beyond research-oriented studies, companies (i.e., [30]–
[32]) mainly focus on the development of business models,
and the possibility of introducing those models to local energy
market and design of control systems are not fully considered.

III. INTEGRATED OPERATIONAL MODEL OF CESS

In this section, we present an integrated operational model
of crowdsourced energy systems that considers a wide range
of DERs, different types of crowdsourcees and energy trading
transactions in distribution networks. For simplicity, we focus
on radial distribution networks with a single feeder connected
to traditional generation and utility-scale renewables. We con-
sider a CES at the feeder level with n buses modeled by a
tree graph (N , E), where N = {1, . . . , n} is the set of nodes
and E ⊆ N ×N is the set of lines. Define the partition N =
G⋃ C⋃L, where G = {1, . . . , ng} collects the ng utility-
scale power generation connected to the feeder/substation;
C = {1, . . . , nc} collects the buses containing nc users who
signed up for crowdsourcing schedules; L = {1, . . . , nl}
collects load buses.

The crowdsourcer, one type of participants, here is the
utility company or any other system operator, we distin-
guish between two types of crowdsourcees in C. Type 1
crowdsourcees commit in the day-ahead markets (and perhaps
monthly or yearly) to the crowdsourcing tasks requested by the
operator. Type 1 crowdsourcees also include users who give
complete control of their DERs to the operator. In return, the
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Fig. 2. A radial network with different types of crowdsourcees: CT 1 (blue)
and CT 2 (red).

ET
T 

Ty
pe

 A

CT2CT1

Utility

ETT Type A

ETT

TypeB

Energy

Transactions
TradingAut

om
at

ica
lly

 

Con
tro

lle
d 

 b
y U

til
ity

Sem
i-Autonom

ously

(Sell energy to utility 

given designed incentive)

Fig. 3. Types of crowdsourcees and energy trading transactions.

operator provides socio-economic incentives or discounts on
the electric bill. Type 2 crowdsourcees provide near real-time
adjustments or decisions based on real-time notifications and
decisions from the operator. For example, the operator informs
Type 2 crowdsourcees about the crowdsourced task (e.g.,
charging/discharging an electric vehicle) which depends on
the users’ location in the network and the physical state of the
grid. Type 1 crowdsourcees provide operators with day-ahead
planning flexibility, in contrast with Type 2 crowdsourcees
who operate on a faster timescale. The distinction between
these two types of users is needed as it resembles projected
market setups [33]. We define these two types as CT 1 and
CT 2, with C = CT 1

⋃ CT 2; this is depicted in Fig. 2.
We consider two types of energy trading transactions

(ETT). Type A: This is akin to what takes place in today’s
grids, where Type 1 or 2 crowdsourcees feed the grid with
power. This type of transaction is solely between crowd-
sourcees and the network operator. Type B: Crowdsourcees can
trade energy with each other where the seller injects power
into the grid. Fig. 3 shows the types of crowdsourcees and
transactions. Since energy production and demand response
from Type 1 crowdsourcees are controlled by the operator,
Type B transactions only occur among Type 2 crowdsourcees.
However, Type A transactions can also take place between
Type 2 crowdsourcees and the utility. The participants and the
transaction types are showed in detail in Fig. 3. The Brooklyn
Microgrid [34] project is an example of Type B transactions
for Type 2 crowdsourcees.

A. Operational Model of Generators, Loads and DERs

Let i ∈ N denote the bus index of the distribution system
and t denote the time-period. We consider bulk, dispatchable
generation from traditional synchronous generators, renewable
energy generation from solar panels, fully controllable station-
ary batteries, uncontrollable loads, and shapeable loads.

1) Dispatchable Generators: Dispatchable generators are
considered in this paper with a quadratic cost function. Dis-
patchable generation Sgi,t = P gi,t + jQgi,t for i ∈ G at t are

considered to have quadratic cost functions as Ci,t(P
g
i,t) =

αi,t(P
g
i,t)

2 +βi,tP
g
i,t + γi,t where αi,t, βi,t, and γi,t are given

parameters for the cost function of the i-th generator at t.
2) Solar Energy Generation: Solar panels generate real

power P ri,t for bus i ∈ C at t. Note that CT 1 crowdsourcees do
not control whether P ri,t is fed into the grid or not (it is con-
trolled by the utility/operator), whereas CT 2 crowdsourcees
dictate whether to use P ri,t locally or sell it to the CES operator
or other users.

3) Stationary Batteries: Batteries are modeled as dispatch-
able loads that can be controlled to withdraw or inject power.
The quantity P bi,t defines the output power of the batteries
where i ∈ C. Negative P bi,t implies that power is withdrawn.
The battery operational model [11] is described as:

Ebi,t = Ebi,t−1 +Hb
i,tηi,in −Db

i,t/ηi,out (1a)

P bi,t = Db
i,t −Hb

i,t (1b)

0 ≤ Db
i,t ≤ P bi,t,dis (1c)

0 ≤ Hb
i,t ≤ P bi,t,cha (1d)

Eb,min ≤ Ebi,t ≤ Eb,max. (1e)

In the above battery model, we consider a unit time-period;
ηi,in and ηi,out represent charging and discharging efficiency
constants. Hb

i,t and Db
i,t is the charging and discharging

power—both are optimization variables. The variable Ebi,t,
upper and lower bounded by Eb,min and Eb,max, denotes the
energy stored in battery at time t. The net power P bi,t at t is
the difference between the power of discharging and charging.
P bi,t,dis stands for the limitation of discharging power, P bi,t,cha
has a similar meaning for charging power. All of variables
related to batteries model are included in a single vector
variable xbi,t := (Ebi,t, H

b
i,t, D

b
i,t, P

b
i,t).

4) Uncontrollable Loads: Uncontrollable loads (lights, plug
loads, street lights, et cetera) are considered to be given and
are denoted by Sui,t for all i ∈ L (loads can include reactive
power), where Sui,t = Pui,t + jQui,t.

5) Shapeable Loads: We consider shapeable loads, defined
by Ssi,t = P si,t+ jQsi,t for i ∈ L, such as plug-in electric vehi-
cles and loads from appliances with flexible power profile but
fixed energy demand Esi,demand in 24 hours. These shapeable
loads must be satisfied between ti,start and ti,end. The model
describing the shapeable loads [11] is given next.

Esi,demand =
∑T
t=1 S

s
i,t∆t (2a)

Ssi,t = 0, for t = 1, . . . , ti,start, ti,end, . . . , T (2b)

Ss,min
i ≤ Ssi,t ≤ Ss,max

i , (2c)

where T is the length of the time-horizon and ∆t is the
time interval. Similarly, a single vector variable xsi,t := (Ssi,t)
collects variables related to shapeable loads.

B. Distribution Network Model
For each bus i ∈ N , denote Vi = |Vi|ejθi as its complex

voltage and vi = |Vi|2 as its magnitude squared. Let si =
pi + jqi be node i’s net complex power injection. Also, pi
denotes net real power injection. From Section III-A, the net
real power injection for each bus i at t can be expressed as

pi,t = P gi,t + P bi,t + P ri,t − Pui,t − P si,t. (3)
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Similarly for the net reactive power injection. For each line i ∈
E , we denote bus i’s parent and children buses as Ai and Ci.
Let zi = ri+jxi be its complex impedance, Ii be the complex
branch current from bus i to Ai, and li = |Ii|2 be its magnitude
squared. The variable Si = Pi+jQi denotes the branch power
flow from bus i to Ai. For all buses in the network, define
xt := (xb,xs)t as a variable vector collecting the variables
related to batteries and shapeable loads. Since two types of
crowdsourcees are defined, xt is divided into two variables x1t

and x2t , which stands for the variables belong to Type 1 and
Type 2 crowdsourcees and hence xt = (x1,x2)t. Let yt :=
(Pui,t, P

r
i,t) be a variable vector collecting the variables related

to uncontrollable loads and solar energy. The preferences and
setting parameters of crowdsourcees including the willingness
to sell energy, constants related to batteries, solar panel or
loads are communicated with the utility or the operator are
denoted by Xt.

To model power flow in distribution networks, we use the
branch flow model [35], [36]. This model eliminates the phase
angles of Vi and Ii and uses only (vi, li, si, Si).

vAi = vi − 2(riPi + xiQi) + `i(r
2
i + x2i ) i ∈ E (4a)∑

j∈Ci
(Pj − `jrj) + pi = Pi i ∈ N (4b)∑

j∈Ci
(Qj − ljxj) + qi = Qi i ∈ E (4c)

P 2
i +Q2

i = vi`i i ∈ E (4d)

Due to (4d), the branch flow model is not convex. However,
the model can be convexified using the second order cone
program (SOCP) relaxation [37] and rewritten as∥∥∥∥∥∥∥∥

2 0 0 0
0 2 0 0
0 0 1 −1



Pi
Qi
vi
li


∥∥∥∥∥∥∥∥ ≤

[
0 0 1 1

] 
Pi
Qi
vi
li

 (5)

The nonconvex branch flow model can be cast through
convex SOCP constraints denoted by CvxFlowModel(zt)
that collects equations (4a)–(4c) and (5), and can be solved
efficiently by interior-point method in polynomial time [38].
In this paper, all branch flow variables are collected in a single
vector variable zt := (v, l, s,S)t at time t. Tab. III lists all
variables introduced in this study. The next section introduces
the CES optimal power flow formulation and incentive design.

IV. CES-OPF AND INCENTIVES DESIGN

In this section, we propose a two-phase algorithm mini-
mizing the cost of generation and thermal losses by reschedul-
ing users’ shapeable loads and DERs ahead of time. The
algorithm also designs localized incentives that persuade users
to participate in crowdsourced energy system. In addition, the
presented algorithm supports P2P energy trading transactions
between different crowdsourcees and the utility. The developed
two-phase algorithm supports arbitrary P2P energy trading
between prosumers and utility, resulting in a systematic way to
manage distribution networks amid P2P energy trading while
incentivizing crowdsourcees to contribute to this ecosystem.
The algorithm also supports the operation of islanded, self-
autonomous microgrids. The algorithm is described next.

TABLE III
NOTATION FOR VARIOUS DERS IN CES∗ .

Symbols Description
Sg
i,t Dispatchable generation

P r
i,t Real power generated from solar panel
P b

i,t Output power of the battery
Su
i,t Apparent power of uncontrollable load
Ss
i,t Apparent power of shapeable load
pi,t Net real power injection at each bus
xb

i,t A variable collecting all of the variables in battery model
xs

i,t A variable collecting all of the variables in shapeable model
xt A variable collecting variables in battery and shapeable model
yt A variable collecting the variables of uncontrollable loads and solar energy
zt A variable collecting all of the branch flow variables
Xt Preferences and setting parameters of crowdsourcees

∗Symbols with or without subscript i, t have the same meaning for simplicity.

TABLE IV
ETT TYPES AND THE CORRESPONDING IN RELEVANCE TO THE

TWO-PHASE ALGORITHM.

Seller Buyer Pricing Mechanism Optimization Phase
ETT Type A CT 1 Utility Contract pricing Phase I
ETT Type A CT 2 Utility Incentive pricing Phase II
ETT Type B CT 2 CT 2 Negotiated pricing Phase I

The first phase of the algorithm is akin to day-ahead
scheduling given load, solar forecasts, which belongs to op-
timization and grid constraints in Section II-B. This phase
takes into account the types of crowdsourcees and their day-
ahead preferences as well as the pre-scheduled ETTs among
crowdsourcees. Given the day-ahead solutions from the first
phase, the second phase reflecting market mechanism in
Section II-B performs two significant operations. First, rec-
tifying the mismatch in the day-ahead forecasts and hence the
demand shortage/surplus by (a) obtaining more accurate, hour-
ahead forecasts and (b) solving for real-time deviations in the
generator and DER setpoints. Second, allowing for real-time
energy transactions through the design of monetary incentives
that reward crowdsourcees. Tab. IV summarizes the ETT
types in relevance to the two-phase algorithm. For different
phases and users, the pricing mechanism also changes. Con-
tract pricing is decided by contract between CT 1 and utility,
incentive pricing for CT 2 is further explained in Section IV-B.
Negotiated pricing is determined between the crowdsourcees
and their neighbors. In short, the first phase manages the larger
chunk of operations, whereas the second phase deals with the
mismatch in load and renewable energy generation. The next
two sections present the details of the two-phase algorithm.

A. Phase I: Day-Ahead CES Operation

As discussed in Section III, the network operator com-
pletely controls CT 1 users’ DERs according to the signed
contract, while CT 2 users decide to participate or not in
the crowdsourcing schedules based on their preferences and
the offered incentives. E.g., CT 2 users can sell their surplus
solar power to the utility if designed incentive is sufficient
or acceptable in the hour-ahead or real-time markets. This
entails—and due to the nature of CT 2 users—that the output
from solar panels P ri,t, batteries P bi,t, and shapeable loads P si,t
for users i ∈ CT 2 are uncontrollable by the utility. Hence, if
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Type 2 crowdsourcees declare that they would not trade energy
with other users (Type B transactions), then in this phase these
quantities are excluded in (3) by setting them to zero yielding

P ri,t = P bi,t = P si,t = 0, i ∈ CT 2. (6)

Otherwise, the sellers and buyers should send the energy
supply-demand requests for P2P energy trading day ahead
to the utility. These requests for CT 2 users in time-period
t are expressed as constraint EnergyTrading(x2t ,yt). This
constraint ultimately transforms variables x2t ,yt to mere
predefined constants since the users decide to inject (or re-
ceive) a certain amount of energy into (from) the grid. The
Crowdsourced Energy System Optimal Power Flow (CES-
OPF) is formulated as

CES-OPF: min
xt,zt
P g

t

∑T
t=1 Jt(xt, zt,P

g
t )

s.t. (1)− (3), (6),yt = yf−24hr
t ,xt ∈ Xt (7)

CvxFlowModel(zt), z
min
t ≤ zt ≤ zmax

t

P gt ∈ P, EnergyTrading(x2t ,yt).

The objective function of CES-OPF at time t is defined as

Jt(xt, zt,P
g
t ) =

ng∑
i=1

Ci,t(P
g
i,t) +

|E|∑
i=1

li,tri +

|CT 1|∑
i=1

Ui(xt).

The objective is to minimize the generator’s cost function,
given by

∑ng

i=1 Ci,t(P
g
i,t), in addition to the thermal losses that

are characterized by
∑|E|
i=1 li,tri, and crowdsourcees’ disutility

function Ui(xt) = ui(S
s
i,t − Ss,max

i )2,∀t ≤ Tset designed
to compensate for the inconvenience caused by rescheduling
shapeable load. The parameter ui ∈ [0, 1] stands for the
urgency to finish a certain task before a setting time Tset;
the Ss,max

i is the same parameter appearing in (2); and ui is
parameter determined by users through preferences Xt.

The CES-OPF captures the cost of power losses between
two peers through the second term of Jt(·) which sums the
losses for all lines E in a distribution network. These lines
include the distribution lines between any two users/peers,
including traditional energy consumers. Preferences set by
users are included in Xt and are assumed to be linear and
time-dependent; yf−24hr

t is the day-ahead uncontrollable load
and solar energy forecasts. Constants zmin

t and zmax
t are lower

and upper bounds on branch flow model variable zt; i.e. , the
voltage in p.u. at each node is in [0.95 1.05]. The linear ramp
constraints and upper/lower bounds on P g

t are denoted by P .
The CES-OPF can be decomposed into small optimization

sub-problems by decoupling variables and constraints—the
overall problem can be then solved through a decentralized al-
ternating direction method of multipliers (ADMM) algorithm;
see [39]. Another approach is to simply solve CES-OPF in
a centralized fashion after requesting the user’s preferences
Xt ahead of time for medium- or small-scale distribution
networks and microgrids. Another way of making CES-OPF
more computationally tractable is to replace the convexified
branch flow model with the LinDistFlow(zt) model [40]
which is linear in zt; this transforms CES-OPF to a quadratic
program that can be solved for large-scale networks.

After solving CES-OPF, we obtain the equilibrium Sg,eq
i,t =

P g,eq
i,t + jQg,eq

i,t and xeq
1t

which includes P b,eq
i,t and Ss,eq

i,t . This
entails that the utility-scale generation, batteries and shapeable
loads belonging to CT 1 users will be fixed with this equi-
librium for the next 24 hours. To compensate crowdsourcees
for their contributions, the distributed locational marginal
price (DLMP)—the time-varying electricity price for users at
various buses in the network—is computed by finding the dual
variables associated with the real power balance constraint in
the convexified branch flow model, and denoted by λeqi,t.

B. Phase II: Real-Time CES Incentives Design

As outlined in Section IV-A, we solve CES-OPF and
obtain setpoints for utility-scale power plants and Type 1
crowdsourcees, knowing that some enery trading transactions
will take place between crowdsourcees. In this section, the
presented crowdsourcing incentive design performs the two
key functions: (a) Incentivizes Type 2 crowdsourcees to sell
excess solar power to the utility; (b) Mitigates and balances
the unexpected load and solar output fluctuations due to the
forecast error in the grid. The formulation presented in this
section is solved every hour or less, depending on the avail-
ability of hour-ahead forecasts and the operator’s preference.

Here, we outline the design of crowdsourcing incentives
that provide near real-time ancillary services to relieve real-
time demand shortage or surplus—and hence the additional
incentives which based on the amount of energy provided to
the grid are offered for CT 2. For i ∈ CT 2, the amount of
energy provided to the grid is depicted by the net injection
power P ni

i,t and computed as

P ni
i,t = P ri,t − P si,t + P bi,t, i ∈ CT 2. (8)

This indicates when solar panels produce more power, and the
shapeable load reduces, more net injected power can be sold
to the utility or other crowdsourcees through energy trading.
Here, for i ∈ CT 2, shapeable loads and batteries cannot be
scheduled 24 hours ahead since no contract exists between
Type 2 crowdsourcees and the utility. Hence, P si,t and P bi,t
belonging to variable x2t are treated now as uncontrollable
loads for CT 2 in Phase II. In addition, solar energy is also
known ahead of time. Hence, P ni

i,t is known and not an
optimization variable for Type 2 crowdsourcees from (8). The
crowdsourcing incentive design routine for crowdsourcees i at
time t is formulated as

CES-ID: min
xt,zt
P g

t ,λ
a
t

bt

ng∑
i=1

Ci,t(P
g
i,t − P g,eq

i,t ) +

|E|∑
i=1

li,tri +

|CT 2|∑
i=1

bi,t

s.t. (1)− (3), (8),x1t = xeq
1t
,x2t ∈ X2t

yt = yf−1hr
t , zmin

t ≤ zt ≤ zmax
t (9)

CvxFlowModel(zt), P
g
t ∈ P

bi,t = P ni
i,t(λ

eq
i,t + λai,t), bi,t ≥ 0, i ∈ CT 2∑|CT 2|

i=1 bi,t ≥ btotalt , i ∈ CT 2.

In CES-ID, the objective is to minimize (a) the deviation in the
cost of generation from the day-ahead operating point, (b) the
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network’s thermal losses, and (c) the budget
∑|CT 2|
i=1 bi,t (in

$) which the operator has allocated to spend on the real-time
incentives at the feeder level. The constraints are explained as
follows. We set variables P bi,t, S

s
i,t ∈ x1t to the equilibrium

P b,eq
i,t , Ss,eq

i,t ∈ xeq
1t

which is obtained by CES-OPF to schedule
DERs that are controlled by the utility. For i ∈ CT 2, the
willingness to sell energy to the utility is set in preference X2t

which sent to system operator. The constraints on yt, zt, P
g
t

are the same as CES-OPF (7) except that yt is set to the hour-
ahead (or shorter) available forecast yf−1hr

t .
Besides the optimization variables mentioned above, we

consider that Type 2 crowdsourcees receive the final incentive
price λeqi,t+λ

a
i,t where λai,t, additional variable, is an adjustment

price which varies with the net energy injected to grid and
location of CT 2; λeqi,t is DLMP computed by CES-OPF. The
variable budget bi,t for i ∈ CT 2 at t is equal to P ni

i,t(λ
eq
i,t+λ

a
i,t),

which is always greater than 0. As mentioned P ni
i,t, λ

eq
i,t are

known. When the crowdsourcee i has no energy to sell to
utility (P ni

i,t ≤ 0), variable λai,t is forced to approach −λeqi,t to
make bi,t as 0+ (a small positive value which is approximately
close to zero). Hence no incentive is offered to those who
inject no power into the grid. When P ni

i,t > 0 which means
crowdsourcee i at t has excess energy to sell, variable λai,t is
forced to be small while also minimizing the final incentive
price λeqi,t +λai,t and budget bi,t for all Type 2 crowdsourcees.
At time t, the total budget for CT 2 is btotalt , which can be set
as a reasonable value. For example, this can be set to the cost
for dispatchable generation to produce

∑|CT 2|
i=1 P ni

i,t. Further
explanations and examples are presented in Section VI-B.

Notice that both CES-OPF and CES-ID are based on branch
flow model which is convex, and can be solved with great
efficiency in polynomial time by interior-point optimizer. The
CES-ID is solved hourly, and the computed incentives are sent
to users at the end of the day. Thus, the energy trading (Type
A transactions) between CT 2 users and the utility is finished.
The transactions are done by the assist of blockchain, which
is explained in next section.

V. BLOCKCHAIN AND SMART CONTRACTS
IMPLEMENTATION FOR CESS

In this section, we discuss an implementation for
blockchain that is scalable to accommodate millions of crowd-
sourcees and energy trading transactions. An algorithm to
integrate the optimization models in Section IV with this
blockchain implementation is also presented.

A. Blockchain and Smart Contracts Implementation for CESs

While Tab. I summarizes the attributes of different
blockchain platforms, this section identifies the properties
most applicable for the proposed crowdsourced energy sys-
tem model and algorithms introduced in Section III and IV.
Specifically, the blockchain platform must adequately address
the goals to incorporate a precise set of CES users, the com-
putational requirements of the crowdsourced energy system
algorithms, the performance of the consensus algorithms, and
the privacy demands of the users. The CES requirements
and blockchain properties for each of these domains are

TABLE V
CES REQUIREMENTS MAPPING TO BLOCKCHAIN FEATURES.

CES Requirements Blockchain Features

Participants

The CES will be operated
for a distribution grid, so
users will be confined to a
geographic area users

Permissioned chain as
users should be restricted
to those currently within
that distribution area

Computation

CES must require perform-
ing non-linear optimiza-
tions such as solving power
flow and economic dis-
patch

Efficient smart contracts
requiring the ability to ex-
ecute Turing complete pro-
grams on large quantities
of data without heavy cost

Consensus
Minimal energy usage to
ensure energy sustainabil-
ity goals of CES

Avoid computationally ex-
pensive PoW consensus al-
gorithms

Privacy
Crowdsourcee preferences
and usages likely exposes
privacy data

Permissioned model that
protects crowdsourcee data
from external observers

identified in Tab. V. Based on this analysis, the Hyperledger is
selected to meet the required CES requirements and necessary
blockchain features. As previously mentioned, Hyperledger
uses RBFT for consensus, which should minimize the energy
required for each transaction. Furthermore, Hyperledger’s per-
missioned model ensures that the participants are restricted
to those within the distribution grids service region, and also
prevents the exposure of privacy data from crowdsourcees.
Finally, the smart contracts can be implemented through the
chaincode mechanisms, which does not require the per-
operation execution costs that are enforced on other public
blockchains.

This, unlike other blockchain applications, still requires a
central authority—the utility company or the system operator
to manage the grid, provide technical supports for each small-
scale energy trading, clear the market, and ensure there is no
violation of any technical constraints (e.g., distribution line
limits). Small-scale energy trading without a central authority
can take place (see [41]), yet the scaling of these transactions
to include thousands of people and millions of daily energy
transactions without the utility coordinating the communica-
tion among small-scale energy trading systems is remote in
todays markets. To this end, the presented architecture in
this paper requires a central authority to manage the grid but
can also autonomously be run in islanded microgrids as we
showcase in the case studies section.

B. Blockchain Implementation using Hyperledger Fabric
We integrate and implement blockchain and smart contracts

with the optimization models given in Section IV. This is
shown in Fig. 4. The presented CES implementation consists
of three modules—surrounded by the dotted lines in Fig. 4.
Module I, corresponding to optimization and grid constraints
in Section II-B, includes the optimization problems in Sec-
tion IV which are coded by CVXPY [42]. Module II is a
Node.js application, also take care of the communication
between Python-written optimization problem and Module III.
This process is finished by the child_process standard
library which generates a python process and computes the
solutions to CES-OPF (7), CES-ID (9) while returning results
back to Node.js program.
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Fig. 4. Architecture of combining blockchain and smart contract with the optimization formulations presented in this paper.

Module III, the information system in Section II-B, is im-
plemented by the IBM Hyperledger Fabric Network deployed
in cloud to provide the blockchain service. The network
consists of many peers that communicate with each other, runs
smart contracts called chaincode which is written by Go
language, holds state and ledger data. Peers in the Hyperledger
Fabric Network are different from the ones in the other
blockchain implementations. The roles of peers relate to the
life-cycle of transactions which is one key difference between
Hyperledger Fabric and many other blockchain platforms. The
life-cycle of a transaction in other blockchain platforms is
usually order-execute, which means that transactions are added
to the ledger in a specific order and executed sequentially. But
in Hyperledger Fabric, it is a three-step process: execute-order-
validate. First, transactions are executed in parallel considering
any order. Second, they are ordered by an ordering service.
Third, each peer validates and applies the transactions in
sequence. The roles of peers also have a strong relationship
with robust privacy and permission support, the reader is
referred to [43] for more information.

The crowdsourcees shown in Fig. 4 are the end-users in
the distribution network and can perform energy trading.
Thousands of crowdsourcees are allowed to connect and sign
up to the Fabric network via a browser after receiving a
code from the operator. The operator also can log in via
browser to manage the overall system—screen shots are given
in the next section showing the graphical user interface. After
enrolling in the network via Fabric-CA [44], a certificate
needed for enrollment through a software development kit
(SDK), crowdsourcees can communicate with the network
through fabric-sdk-node [45], update their preferences
to blockchain and store it in World State [46] which is the
database. Peers in Hyperledger are used to commit trans-
actions, maintain the world state and a copy of the ledger
(consists of blocks). The chaincode in Hyperledger Fabric
is deployed into peers and is executed as a user satisfies
their commitments. Then, ordering service, akin to mining in
Bitcoin, generates new blocks in Fabric. Every peer updates
their local blockchain after receiving ordered state updates in
the form of blocks from the ordering service. In this way,
the order and number of blocks, a form of blockchain, are

Algorithm 1 Blockchain-Assisted CES Operation
Phase I:
Obtain crowdsourcees preferences Xt

Request/obtain day-ahead P2P ETT requests via blockchain imple-
mentation developed (Fig. 4)
Estimate day-ahead forecasts yf−24hr

t

Solve CES-OPF (7) and obtain generator and DER schedules
Establish Type A ETTs smart contracts for users i ∈ G

⋃
CT 1

Establish Type B ETTs smart contracts for users i ∈ CT 2

Phase II:
while t ∈ 1, . . . , 24 hrs do

Select Type 2 crowdsourcees willing to sell solar power to the
utility at time t according to the preferences X2t

Obtain hour-ahead forecasts yf−1hr
t

Solve CES-ID (9) at time t
Communicate to crowdsourcees i ∈ CT 2 incentives λeq

i,t +λa
i,t

Establish Type A ETTs smart contracts for users i ∈ CT 2

end while
Reconcile payments weekly or monthly

maintained and synchronized for all peers. The ETTs records
are included in blockchain stored at each peer’s repository and
protected by this mechanism.

This specific implementation is endowed with the following
characteristics: (i) Scalable to million of crowdsourcees, (ii)
Requires little understanding of the blockchain technology
from the users’ side, (iii) Communicates seamlessly with
any optimization-based formulation, and (iv) Requires very
little energy to run blockchain. Algorithm 1 illustrates how
the developed optimization routines are implemented with
blockchain and smart contracts.

VI. CASE STUDIES

A. Simulation Setup

The numerical tests are simulated in Ubuntu 16.04.4 LTS
with an Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50 GHz.
We use the Southern California Edison (SCE) 56-bus test
feeder [47] as a distribution network. Reasonable uncontrol-
lable load profile P u is generated for T = 24 hrs from
California Independent System Operator (CAISO) [48] and
normalized to ensure that the optimization problems have
feasible sets for different time-periods. We modify SCE 56-bus
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Fig. 5. Scenarios of energy trading transactions.
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Fig. 6. Aggregate load profile and generation after solving CES-OPF (7).

test feeder as shown in Fig. 2 and place stationary batteries,
solar panels, uncontrollable and shapeable loads at each bus
in the network; see Fig. 5. Similar to [11], batteries are set up
with a power capacity of 80% of the peak uncontrollable load
at the bus, an 4-hour energy storage capacity with 20% initial
energy storage. We assume that the solar generation power
profile is given and contributes to 50% of the uncontrollable
load at peak for each bus. Shapeable loads have net energy
demand that is up to 20% the peak power consumption of the
uncontrollable loads and can be charged for 4–8 hours. The
scheduling time of shapeable loads is from 8 am to 11 pm.

We also assume that each bus is connected to a crowd-
sourcee of Type 1 (CT 1) or Type 2 (CT 2). We make the
following assignment: If the number of a bus is a prime
number, then the user belongs to CT 2, otherwise they belong
to CT 1 (we have |CT 1| = 40 and |CT 2| = 16). From
the above setup, Nodes 2, 43 and 53 belong to CT 2 in
Fig. 5. As we present in Tab. IV, two types of energy trading
transactions take place in crowdsourced energy systems. Type
A transactions occur between CT 1 or CT 2 with utilities,
while the trading transactions among CT 2 users are Type B
transactions. In Fig. 5, we present two scenarios of energy
trading transaction for further explanation: (i) ETT Type A
where Node 2 decides to sell excess solar energy to the utility,
(ii) ETT Type B where Node 43 chooses to buy energy from
Node 53. The next section presents the outcome of the two-
phase optimization discussed in Section IV.

B. Results and Discussions

In order to present the effectiveness of our algorithm, we
compare the cases with and without considering the energy
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trading among crowdsourcees based on the modified SCE 56
bus test feeder illustrated in Section VI-A.

1) Phase I: Day-Ahead CES Operation: solving CES-
OPF (7). Fig. 6 shows Pu, P sorig and P gorig (the aggregate
uncontrollable load, shapeable load, and the output of gen-
erator) when our algorithm is not applied—in the absence
of energy crowdsourcing or trading between crowdsourcing.
Fig. 6 also shows the aggregate load profile and generation
after solving the CES-OPF for T = 24 hrs. The figure
shows that battery variable P bCES−OPF charges when the solar
panel produces and injects power P rCES−OPF into network.
The reason why the curve of P bCES−OPF does not change
significantly is that the solar panels do not generate enough
energy in this setup. Hence the algorithm is less inclined to
store energy into batteries. As for the scenarios when the solar
panel produces enough energy, please refer to Fig. 11 in the
section of Islanded Microgrid Test (VI-B3). Fig. 6 indicates
that shapeable loads of CT 1 are rescheduled to P sCES−OPF.
The updated power generation P gCES−OPF is smaller than P gorig
due to the injections of solar power, scheduling of batteries and
shapeable loads from crowdsourcees CT 1.Fig. 7 presents the
changes in the DMLPs with and without scheduling DERs in
the distribution network through CES-OPF (7) for Nodes 1
and 55. The DLMPs for both nodes are smaller due to the net
injection from Type 1 crowdsourcees (shaded orange area in
Fig. 6). This illustrates how the DLMP price becomes lower
when rescheduling DERs and injecting renewable energy into
the grid.
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Fig. 9. Final incentive price, net injection and incentive money for Node 53.

TABLE VI
TRANSACTION DETAILS FOR NODE 53.

Time Seller Buyer Energy ETT Type Phase
6 am–9 am Node 53 Utility 0.0385 MWh Type A Phase II
9 am–2 pm Node 53 Node 43 0.119 MWh Type B Phase I

14 pm–5 pm Node 53 Utility 0.062 MWh Type A Phase II

2) Phase II: Real-Time CES Incentives Design: CES-ID
is solved once every hour but it can also be solved ev-
ery 5–15 minutes depending on the availability of accurate
weather/load forecasts. The monetary rewards offered to Type
2 crowdsourcees are obtained from CES-ID. We assume that
the crowdsourcees of Type 2 at Nodes 2, 43, and 53 accept
the designed incentives.

Fig. 8 shows the final incentive price, net injection, and
overall incentive money for Node 2. The time-varying nature
of the final incentive price of a node is due to variations of its
DLMP and its net injection. We assume that the solar panel
produces energy between 6 am and 7 pm. The solar panel
of Node 2 produces solar power and incentives are earned
by the customer between 6 am and 2 pm as shown in Fig. 8.
However, the load at Node 2 starts to consume energy at 5 pm
making the net injection of Node 2 is 0 MWh. Hence, no
monetary incentives are offered from 7 pm to 11 pm. Fig. 9
presents the results for Type B transactions for CT 2 user at
Node 53. The user at Node 43 decides to charge the battery at a
constant charging rate between 9 am and 2 pm, and the excess
solar energy produced from Node 53’s solar power can satisfy
this demand shortage. Notice that Node 43 only consumes
energy while Node 53 earns incentive rewards from the utility
and negotiated money from Node 43 during different time
periods. The transaction details between these crowdsourcees
are summarized in Tab. VI.

Fig. 10 depicts the aggregate load profile and generation af-
ter Algorithm 1 terminates. More renewable energy is injected
into the grid and traded via the designed incentives for CT 2

crowdsourcees. The net contribution of CT 2 crowdsourcees
is shaded in red. It is noteworthy to mention that the utility
cannot schedule the shapeable loads of CT 2 crowdsourcees.
The blue area in Fig. 10 displays the unexpected load demand
of CT 2 crowdsourcees. The generator at the substation covers
this demand shortage; see Fig. 10 where P gCES−ID is greater
than P gCES−OPF from 3 pm to 11 pm.
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3) Islanded Microgrid Test: After implementing P2P en-
ergy trading, we simulate a scenario of a small islanded,
autonomous microgrid. In this microgrid, we assume the fol-
lowing. First, all users have (a) enough solar power to produce
enough energy to supply the grid, and (b) the microgrid
has a battery with sufficient capacity to store excess solar
energy. Second, each user agrees to participate in the program
and their DERs would be fully controlled by the microgrid
management algorithm akin to Algorithm 1. The simulation
setup remains the same as in Section VI-A except the solar
panels produce more energy and the capacities of batteries
are enlarged. Fig. 11 shows the outcome of the autonomous
microgrid operation. Between 6 am and 7 pm, the solar panel
on each crowdsourcees’ roof not only produces enough energy
to meet the real-time load demand but also stores excess
energy into batteries for night use. At night, batteries start
to discharge energy to cover the demand shortage facilitating
energy trading transactions with crowdsourcees in need for
energy using blockchain and smart contracts.

4) Blockchain and ETT GUI: Fig. 12 shows a web-based
user prototype that we implemented using Hyperledger Fab-
ric as described in Section V. The web application shows
the system operation which includes creating crowdsourcees,
selling energy to the utility or neighborhood, and listing all
energy trading transactions with information about the prices
and the users. This web-based prototype interacts with the
optimization solvers and algorithms that generate forecasts, as
well as the crowdsourcees.

VII. PAPER SUMMARY, LIMITATIONS AND FUTURE WORK

The paper introduces the notion of blockchain-assisted
crowdsourced energy systems with a specific implementation
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Fig. 12. Web-based user interface for CESs with Hyperledger Fabric.

and prototype of blockchain that scales to include millions
of crowdsourcees and P2P energy trading transactions. A
thorough review of the blockchain technology for energy
systems is given. Various types of crowdsourcees and energy
trading transactions are introduced to mimic current and
projected energy market setups. Then, an operational OPF-
based model of CESs with batteries, shapeable loads, and other
DERs is introduced for distribution networks—considering
energy trading transactions and crowdsourcees preferences—
yielding a day-ahead market equilibrium. Monetary incentives
are designed to attract crowdsourcees in hour-ahead and real-
time markets to the computed equilibrium while satisfying a
demand shortage or surplus. Furthermore, an implementation
of blockchain through the IBM Hyperledger Fabric is dis-
cussed with its coupling with the optimization models. This
implementation allows the system operator to manage the
network users to seamlessly trade energy. Finally, case studies
are given to illustrate the practicality of the presented methods
for classical distribution networks, as well as self-sufficient and
islanded microgrids.

There is still a uncontrollable risk in blockchain based
energy trading system, i.e., the attack from malicious market
operator, stakeholders or outsider. (1) A malicious market
operator will attempt to modify the operation of the market
algorithms in order to produce results that provide an output
(market price, load demand) providing them with a financial
advantage over the authentic price or demand outputs. (2) A
malicious stakeholder might try to produce a false clearing
price offering them with reduced energy costs. However,
because Hyperledger messages are digitally signed, the con-

sensus results will not be manipulated as long as there are
2f + 1 total operators, where f is the number of malicious
operators. (3) A malicious outsider will try to remotely tamper
with all messages communicated between the crowdsourcees
and market operators. Their goal is to manipulate the resulting
market operations in order to either manipulate (i) the load
demand bids submitted by the crowdsourcees or (ii) the market
clearing prices.

In future work, we plan to extend the presented research
to address distributed consensus mechanisms for blockchain
in crowdsourced energy system, and threats from malicious
crowdsourcees, market operators, and outsiders.
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