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Fault Diagnosis for Energy Internet Using

Correlation Processing Based Convolutional Neural

Networks

Abstract—Fault feature extraction based on prior knowledge
and raw data is increasingly becoming more challenging in energy
internet fault diagnosis due to complicated network topology
and coupling disturbances introduced into the systems. Deep
learning methods that have emerged in recent years, such as the
convolutional neural networks (CNNs), have shown a number of
advantages and great potentials in the field of feature extraction
and image recognition. However, CNNs does not work well in
fault diagnosis for industrial systems, due to the totally different
data representations between images used in recognition and
signals obtained from industrial processes. This paper tackles
this problem by introducing a novel and generic fault diagnosis
method for complicated system namely the Spearman rank
correlation based CNNs (SR-CNN). By imposing the Spearman
rank correlation image layer on the typical CNNs, the multiple
time series signals measured by the phasor measurement units
(PMUs) is converted to appropriate data images, which are then
fed to the CNNs. With the aid of this novel design, different fault
features can be comprehensively extracted while the fault can be
identified more quickly and precisely than other conventional
approaches. To validate the efficacy of the proposed approach,
an IEEE defined power gird with multi new energy resources are
used as the test platform. The experimental results confirm the
effectiveness and superiority of the proposed method in energy
internet fault diagnosis over conventional methods.

Index Terms—Fault diagnosis, convolutional neural network,
multiple data processing, spearman rank correlation.

I. INTRODUCTION

FAULT diagnosis is a critical and non-trivial task in com-

plex system network applications such as energy internet

to improve the reliability and reduce the loss caused by a

large number of potential incidents [1], [2]. The fault diagnosis

algorithms and methods introduced so far can be categorized

as follows [3]

• mechanism model based analysis

• analysis based on expertise and prior knowledge

• wide area monitoring based signal processing

The mechanism model is often built on the basis of the phys-

ical principles and around some fault scenarios, such as the

voltage sag or the power flow. The model is thus established

to monitor the consistency between the measured outputs and

the model outputs [4]–[8]. However, these methods become

increasingly difficult to detect faults occurring in the energy

internet, since the network complexity increasing significantly

due to the introduction of distributed renewable generations

and a variety of new loads such as electric vehicles. The

mechanism model for analysis or control thus often becomes

too complicated to build [9], [10]. In addition, single model

can only be used to detect a single type of fault, which limits

its applications for the energy internet.

Fault analysis based on expertise and prior knowledge can

handle some situations where the acquired information is

incomplete [11]–[13]. Yet, the complexity of energy internet

in terms of the size and coupling is growing exponentially

in recent years due to the roll-out of a large number of

distributed generations and loads. These coupled characters

among subsystems and components are under-researched and

not explicit at this stage. That means this kind of methods can

hardly keep in pace with the exponentially growing network

complexity, and its applicability can be even worse.

Signal processing method utilizes widely measured signals

using specific equipment such as phasor measurement units

and the Supervisory Control And Data Acquisition (SCADA).

Instead of exploring the mechanism or the model of the fault,

this kind of method can analyze the features of the acquired

signals and associate them with the fault state. Numerous algo-

rithms have been proposed so far, such as the wavelet analysis,

spectral analysis, and model analysis, etc [14]–[19]. However,

these traditional methods still request some prior knowledge

and demand significant amount of on-line computational re-

sources. These methods are becoming increasingly difficult to

handle fault diagnosis for energy internet applications where

the sheer system complexity presents the most challenging

bottleneck.

Deep learning method is originated from the artificial neu-

ral networks (ANNs) field and it offers a greater potential

for complex signal processing. In artificial neural networks,

multiple hidden layers are contained to recognize features and

patterns [20]. While particularly in the image processing and

pattern recognition field, the convolutional neural network is

a typical application of deep learning method.

CNNs based methods for fault diagnosis are proposed in

recent years, there are many researches of applying CNNs to

one-dimensional (1D-CNN) signal. For example, the literature

[21] proposes a novel intelligent diagnosis method to identify

different health conditions of wind turbine gearbox. A novel

method is proposed to automatically select the impulse re-

sponses from the vibration signals for early fault detection in

[22]. The literature [23] detects the fault of rolling element

bearing using the vibration signals. A feature learning model

is proposed for condition monitoring based on CNNs in [24].

A fault identification and classification method for gearboxes

based on its vibration signals is presented in [25].

However, other researchers believe that these one-

dimensional based deep learning methods cannot work well

in complex system network application, since methods like

CNNs are proposed for image recognition, and there are

great differences between the two-dimensional images (2D
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images) and the raw signals [26]. In other words, the biggest

challenge for CNNs based fault diagnosis is how to overcome

the information presentation where traditional CNNs is mainly

developed for images, while most fault diagnosis applications

in the energy internet are based on time series signals.

To address this challenge, the literature [27] develops a

novel diagnosis framework called dislocated time series CNNs

to dislocate the input signals and establish the corresponding

image representation. The literature [28] presents a conver-

sion method converting signals into 2D representations and

then extract the fault features in a manufacturing system. A

novel computational intelligence-based electrocardiogram sig-

nal classification methodology using a deep learning machine

is developed in [29]. The literature [30] presents a method for

fault diagnosis and fault selection based on CNNs using the

current signals in a power transmission system. The literature

[31] introduces an architecture that automatically learns a

robust set of feature representations from raw spatio-temporal

tomography sensor data. The literature [32] presents a novel

deep convolutional neural network cascading architecture for

performing localization and detecting defects in insulators. A

time-frequency gray scale images are acquired by applying the

continuous wavelet transform (CWT) and used for earth fault

detection in [33].

These above reported methods and applications only use

a single type of signals or images for feature extraction.

However, in practical applications of the energy internet, many

variables of system networks are measured and recorded, each

of them contains some partial fault features. That means the

fault features are distributed in multiple signals irregularly,

and this kind of complicated non-linear relationship is hard

to analyze. That requires a comprehensive analysis using all

available signal types with novel data mining techniques.

This paper proposes a novel fault diagnosis method, namely

the SR-CNN. The rationale is that the variations in the

Spearman rank correlation can reflect the feature of different

faults. Therefore, the massive time series signals measured

in energy internet can be converted to 2D images to allow

for feature extraction and image recognition in CNNs. The

proposed method not only overcomes the challenge when the

CNNs is applied to the fault diagnosis in energy internet

applications, but also increases the interpretability of the rec-

ognized results. Further, the proposed method presents a great

potential to handle fault diagnosis for systems and networks

with increasing complexity in terms of multiple signals and

strong coupling of elements.

The primary contributions of this paper can be summarized

as follows.

• A new and generic method namely SR-CNN is pro-

posed to analyze faults in complex system network using

multiple signals based on deep learning method. It is

especially suitable for energy internet because of its

structural characteristic and preferable performance.

• The proposed method offers a number of merits:

– more accurate fault diagnosis eliminating the impact

of distributed generations, direction of power flow

and fault impedance;
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Fig. 1. The schematic of PMUs based wide area monitoring system in energy
internet

– conversion of multiple signals to a series of 2D

images for CNNs based feature recognition;

– faster diagnosis of multiple fault types than conven-

tional approaches;

– requires no priori knowledge or empirical analysis

of faults.

• The method can be broadly used for signal processing

with a wide range of system signals, which contains

complicated and coupled characteristics.

The rest of this paper is organized as follows. In Section

II, the measurement configuration in application scenario is

presented together with the correlation theory. In Section III,

the proposed SR-CNN framework and its technical details are

given. Section IV presents the case studies of the proposed

methods with experimental results. Section V concludes the

paper.

II. DATA COLLECTION AND SPEARMAN CORRELATION

A. Measurement Configuration in Application Scenario

Wide area measurement system (WAMS) using Phasor Mea-

surement Units (PMUs) has been widely deployed worldwide

in recent years. WAMS can measure and transmit multiple sig-

nals according to the GPS synchronous clock. Several kinds of

variables can be measured by PMUs, including node voltage,

branch current, phase angle, active and reactive power, and so

on. These signals are gathered at every sampling instant and

transmitted to the master station. Therefore, the synchronized

data can be grouped and stored. Fig.1 is a schematic of the

wide area monitoring system using PMUs.

In this schematic, there are two types of measurement

nodes in the regional network, namely the sending nodes and

the receiving nodes. Even though the direction of the power

flow can be changed due to the introduction of distributed

generators, it does not affect the performance of the proposed

method, because the model established by this method is

purely based on the PMUs signals. Therefore, the whole

energy internet consists of several measurement structures like

this. The optimal PMUs placement has been discussed [34]–

[37]. This paper assumes that the locations of the measurement

nodes are appropriate such that the collected signals contain

sufficient information of faults in the energy internet.
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B. Spearman Rank Correlation

Dependency analysis is an important step for data process-

ing. The product-moment correlation (often referred to Pearson

product-moment correlation) and rank correlation (often also

referred to the Spearman’s Rank-Order Correlation) are two

crucial dependency analysis approaches. The Pearson product-

moment assumes normal distribution or approximately normal

distribution of the observations, which is not suitable for

variables measured by PMUs in energy internet. While, the

rank correlation does not need such assumptions. For each

two vectors Xn×1 and Yn×1, the Spearman rank correlation

can be calculated as

ρ =
cov(x, y)

σxσy

=
E[(x− µx)(y − µy)]

σxσy

=

n
∑

i=1

xiyi − nx̄ȳ

√

(
n
∑

i=1

x2i − x̄2)(
n
∑

i=1

y2i − ȳ2)

(1)

where, x or y are the rank vectors of the raw vectors X and

Y , which are measured synchronized electric signals from the

PMUs at the sending and the receiving node, respectively.

µ, σ are the mean value and variance, respectively. Spearman

correlation assesses monotonic relationships between two rank

variables.

Since the rank is a consecutive positive integer,

x̄, ȳ,
n
∑

i=1

x2,
n
∑

i=1

y2,
n
∑

i=1

xiyi can be calculated as [38]

x̄ = ȳ =
1

n
(1 + 2 + · · ·+ n) =

n+ 1

n
n
∑

i=1

x2 =

n
∑

i=1

y2 = 12 + 22 + · · ·+ n2

=
n(n+ 1)(2n+ 1)

6
n
∑

i=1

xiyi =
1

2

n
∑

i=1

[x2i + y2i − (xi − yi)
2
]

=
n(n+ 1)(2n+ 1)

6
−

1

2

n
∑

i=1

d2i

(2)

where,di = xi − yi. Therefore, (1) can be rewritten as

ρ = 1−
6
∑

di
2

n(n2 − 1)
(3)

Intuitively, the correlation between two variables will be

higher when the observations have a similar rank (i.e. relative

position label of the observations within the variable: 1st, 2nd,

3rd, etc.), and lower when observations have a dissimilar (or

fully opposite for a correlation of 1) rank between the two

variables. Thus, the Spearman coefficient is appropriate for

both continuous and discrete ordinal variables [39].
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III. PROPOSED FAULT DIAGNOSIS METHOD

This section proposes a novel method for signal processing

with applications to the energy internet wide area monitoring.

By imposing a Spearman rank correlation image layer on

the conventional CNNs, the multiple PMUs signals can be

converted to more appropriate 2D images to improve the fault

diagnosis performance. The modeling process of the proposed

SR-CNN is an off-line supervised learning and the trained

model analyze the fault using on-line signals. The overall flow

chart of fault diagnosis is shown in Fig.2.

A. Relationship Between Fault Features and Spearman Rank

Correlation

In order to illustrate the relationship between the fault

features and the Spearman rank correlation qualitatively, and

to demonstrate the feasibility of fault diagnosis based on the

SR-CNN, an equivalent fault network is presented. When the

fault occurs between two measurement nodes, the distributed

parameters can be viewed as two nonlinear functions from the

fault position. The equivalent fault network is illustrated in

Fig.3.

Supposing a fault occurs at the position indicated in the

equivalent network, the influence caused by the fault spreads

to both the sending node and the receiving node. Thus, the
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regularity they follow as be formulated as two nonlinear

functions, denoted as NS and NR, which obviously depends

on the type of the fault as well as the type of the signal.

According to the superposition principle, the signal from the

sending node and the receiving node can be represented as

Ψs = ψs ⊕NSψ(fault)

Ψr = ψr ⊕NRψ(fault)
(4)

where, Ψs and Ψr are the after-fault signal from both the

sending and the receiving node, respectively. ψs and ψr are the

pre-fault signal from both the sending and the receiving node,

respectively. Symbol ⊕ is the vector addition operation that

adds each element of vector 1 to the corresponding element

of vector 2. Therefore, the spearman rank correlation of Ψs
and Ψr can be depicted as

ρ′ = 1−
6
∑

(x2Ψs,i − y2Ψr,i
)

n(n2 − 1)

= 1−
6
∑

D2
i

n(n2 − 1)

where,D2
i = [(xψs,i + xNS,i)− (yψr,i + yNR,i)]

2

(5)

The vector dimension is fixed and
∑

D2
i is the key factor to

reveal the relationship between the spearman rank correlation

and the fault features. According to the associative law and

the commutative law,
∑

D2
i can be depicted as

∑

D2
i =

∑

[(xψs,i − yψr,i) + (xNS,i − yNR,i)]
2

=
∑

d2ψ,i +
∑

[2dΨ,idψ,i + d2Ψ,i]

where, dψ,i = xψs,i − yψr,i

dΨ,i = xNS,i − yNR,i

(6)

Therefore, the variation of spearman rank correlation be-

tween pre-fault signals and after-fault signals can be formu-

lated as

∆ρ = ρ− ρ′

= (1−
6
∑

d2ψ,i
n(n2 − 1)

)− (1−
6
∑

D2
i

n(n2 − 1)
)

=
6
∑

(2dΨ,idψ,i + d2Ψ,i)

n(n2 − 1)

(7)

It is clear that ∆ρ is related to dΨ,i, which are related to

the nonlinear functions NS and NR. Thus, ∆ρ retains reveals

the fault features.

Traditionally, a mechanism model is established to analyze

this change quantitatively. However, the increasingly compli-

cated topology, distributed generations and massive loads as

well as a large quantity of coupling disturbances subsequently

introduced into the system significantly increase the difficulty

of modeling and diagnosis. In addition, these mechanism

methods request large amounts of on-line computation re-

sources and one model can only detect one fault type. The

applicability of mechanism models is becoming very limited.

Machine learning is generally considered to be capable

of handling massive data with great potentials to unveil the
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Fig. 4. The Spearman rank correlation image (SR-image) built by SR-image
layer

coupling relationships among a large amount of variables.

It can use off-line data to model the patterns of variations

between the Spearman rank correlation and fault features, then

perform fault diagnosis using online data based on the trained

model. The difficulties associated with traditional approaches

can thus be overcome.

B. Spearman Rank Correlation Image Layer

Data preprocessing plays an important role in data-driven

methods. In this proposed method, for the signal vector in×1

and jn×1, which are two kinds of system signal consisted of n
sample points, the correlation coefficient ρij can be calculated

based on (3) using the rank of these vectors. Suppose that

the serial number i and j are the position coordinates, and

each two signal vectors of the energy internet can obtain an

element ρ. Therefore, the Spearman rank correlation matrix

can be established as

SR−matrix =











ρ11 · · · ρ1n
...

. . .
...

ρn1 · · · ρnn











(8)

However, each pixel of the 2D image is an integer between

0 and 255. Thus, the scaling transformation needs to be

employed to satisfy this requirement. For each element ρij of

the Spearman rank correlation matrix, its corresponding pixel

can be calculated as

Pij = R(
ρij − ρmin
ρmax − ρmin

× 255) (9)

where, Pij is the pixel of the SR-image and R is the rounding

function. ρmin and ρmax are the minimum and the maximum

of Spearman rank correlation, respectively.

Therefore, the Spearman rank correlation image layer (SR-

image layer) converts the multiple raw signals to an appropri-

ate 2D images at each sample point, as illustrated in Fig.4.

Compared with the data images established based on the

time series data using the traditional method, the advantages

of SR-image can be summarized as follows.

• Within the local receptive field, the correlation of pixels is

enhanced and the distribution is more regular. These kind
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of characters will significantly enhance the performance

and the efficiency of fault recognition by CNNs.

• The locations of fault features in the images are fixed,

hence the recognition is not affected by the fault occur-

ring time.

• The number of fault features is likely increased, hence

helps to train the convolution kernels more easily and

quickly. The increased number of fault features also eases

the situation where insufficient fault data is available.

• The SR-images are also able to contain a large amount

of signals as the correlations analysis does not limit the

data in terms of size and dimension, in contrast to the

traditional methods.

C. Spearman Rank Correlation Based Convolutional Neural

Architecture

The specific SR-CNN architecture established in this paper

is graphically illustrated in Fig.5. According to the PMUs

data collected, the SR-image layer processes these data by

correlation calculations and image reconstruction. Its output

generates suitable images for the initial convolutional layer.

Let z = 3/8 defining that there are 8 convolution kernels with

a 3 × 3 initial convolutional layer, and x = y represent the

size of an SR-image. Each kernel filters the input image and

produces a feature map. The second convolutional layer, which

is defined as 3/16, filters the feature map produced by the

previous layer. Hence, the fault features are extracted from

a local field to the advanced field. The process of convolution

can be formulated as

C
(

x, y
)

=

∞
∑

−∞

∞
∑

−∞

K(n, n) ∗ F(x− n, y − n) (10)

where, K is the convolution kernel, and F is the object matrix

for convolution.

The volume of feature maps increases rapidly after twice

convolution and some redundant information are produced.

Therefore, the down-sampling operation is proceeded by a

2 × 2 max-pooling layer. Then, the third convolutional layer

defined as 3/32 is used to extract the global feature. After

another max-pooling, the feature map is flattened to a large

vector. The fully connected layer maps the complex nonlinear

relationship by its hidden neurons. The activation function

used in this framework is defined as

f
(

x
)

=

{

x, x >= 0

αx, x < 0
(11)

where, α is a small constant. By using this activation function,

also often named as the leaky ReLU, the information from the

negative axis can be partially reserved and thus the vanishing

gradient can be relieved.

The output vector of a fully connected layer is used as the

input of a softmax layer and the final output vector is the

probability of diagnosis for different fault types. Apparently,

a fault that occurs in the energy internet presents the highest

probability value. The optimization objective of the proposed

TABLE I
FAULT TYPES IN THE EXPERIMENT MODEL

Numbers FaultType

0 Normal state

1 Single-phase ground fault

2 Two-phase short circuit fault

3 Two-phase ground fault

4 Three-phase short circuit fault

5 Three-phase ground fault

architecture is the convolution kernels and the connection

weights. Besides, the loss function is defined by the cross

entropy as

J (θ) =−
1

m

m
∑

i=1

y(i) log(hθ(x
(i)))

+ (1− y(i)) log(1− hθ(x
(i)))

(12)

where, hθ(x
(i))) is the hypothesis function, and it is defined

as

hθ(x
(i))) =

1

1 + e−θT x(i)
(13)

Therefore, the optimization is proceeded by taking the

derivative of J (θ) and then modifying the kernels and weights.

In summary, in the proposed architecture, appropriate 2D

images are constructed using the PMUs data and the fault

features can be extracted and recognized using the deep

neural network. The SR-CNN architecture not only takes

full advantage of massive and multiple dimensional signals

obtained by the WAMS, but also promote the wide-spread

applications of CNNs in energy internet environment.

IV. EXPERIMENTS

A. Simulation Model and Parameterization

The standard IEEE 14-bus power system is established using

the PSCAD/EMTDC to verify effectiveness and superiority of

the proposed method. The network structure and configuration

of the simulation model is shown in Fig.6. In this model,

different fault types occur at four positions respectively and

the fault types are listed in Table 1. In addition, the frequency

of this standard model is 60Hz, so the sampling frequency

is 6 kHz which is achievable because the PMUs can sample

ten thousand points per second. According to the Nyquist’s

sampling law, this sampling frequency is greater than the duple

system frequency, so the sample data can express the system

state. In addition, the generator power and the load power in

this experiment are also shown in Fig.6.

B. Fault Data Image Construction

The fault type 1, 2, and 4 take place at location 1, re-

spectively. The fault occurring time is set as 0s. When the

fault occurs, a massive number of signal samples are available
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covering each sampling instant, thus can be used to detect the

fault.

Several methods have been proposed to convert time-series

data to data images [27], [28]. Although these methods per-

form well with vibration signals in industrial application, they

are hard to deal with multiple signals. According to these

papers, the fault data image can be established and illustrated

in Fig.7. The gray image is converted to the heat map in this

paper in order to reveal the data feature more clearly.

As shown in Fig.7, the three phase electrical quantities

(active power, reactive power, phase angle, branch current,

node voltage) from both the sending node and the receiving

node constitute the x-axis, while a window of time series data

of the electrical variables constitute the y-axis. Therefore, a

fault data image is equivalent resembles a moving window of

data, and as a new data sample moves in, the very first data

is then removed.

Though this kind of data images meet the fundamental

input requirement for CNNs, they are far from the optimal

representation of the raw data for effective and efficient fault

diagnosis. For example, the magnitudes of these variables

on the x-axis are significantly different and there is few

correlation between the adjacent element on the x-axis. These

characters lead to weak correlations of information at local

receptive field in the 2D image, thus impact the performance

of CNNs for fault recognition.

Further, for time series data, the location of fault features

can vary significantly if this kind of data images are used. Fig.8

illustrates the fault data images established by the traditional

methods at 0.05s, 0.10s and 0.15s of different faults. There

exhibits only one obvious fault feature in these images and

they can be viewed as feature lines rather than feature maps,

which do not reveal two-dimensional structure. This implies

that the multi-level and nonlinear extraction of fault features

using the convolution kernels is not appropriate enough. The

data distribution is also skewed due to the differences between

multiple variables. Besides, fault type 1 does not reveal any

obvious feature at 0.05s in the basic data images. It is

also difficult to distinguish the features between fault type 1

and fault type 4 at 0.10s and 0.15s. The accuracy of fault

recognition will be affected beacuse CNNs can only handle

the location variation to some extent [40].

To overcome the aforementioned problems with this kind

of images, the fault data represented in the SR-image layer

is illustrated in Fig.9. Apparently, the SR-images are proper

2D images, which reveal strong correlations in the local

receptive field. These images not only contain several evident

features for fault diagnosis, but also the locations of these

features in the images are fixed. In addition, after the fault

occurs, the distinction of different faults is also evident even

in a very short time, so the diagnosis can be made rapidly,

hence offering great potential to improve the system reliability.

Fig.10 illustrates the SR-image of all six states at 0.15s.
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Type 2

Type 4

Type 1 

0.05s 0.10s 0.15s

Fault feature

Fig. 8. Images of different fault types established by the traditional methods

Type 2

Type 4

Type 1 

0.05s 0.10s 0.15s

Fault feature

Fig. 9. The SR-image of different fault types at different sampling point

C. Validation of SR-CNN

In order to verify the performance of SR-CNN compre-

hensively, three levels validation are used: efficiency based

on insufficient data, accuracy based on massive data, and

timeliness of fault diagnosis. Further, the universal training

method, namely batch gradient descent (BGD) is used to

obtain the optimal results. Table 2 lists three sets of data

and the basic parameters for verification. The fault will be

diagnosed when its diagnostic probability is maximal in the

softmax vector, which can be formulated as

(a) (b) (c)

(d) (e) (f)

Fig. 10. The SR-image of different fault types at 0.15s. (a) Type 0. (b) Type
1. (c) Type 2. (d) Type 3. (e) Type 4. (f) Type 5.

TABLE II
THREE SETS OF ESSENTIAL DATA FOR VERIFICATION

Set Location Types Data Size

1 1 1-5 1500

2 1,2,3 1-5 9800

3 4 1-5 1500

Faulttype =Max(softmax) =Max(P0, · · · , P5) (14)

Firstly, the efficiency of fault diagnosis based on the insuffi-

cient data is tested. In this scenario, only the first set of data in

Table 2 is used for training and testing. In order to evaluate the

performances of the proposed SR-CNN, some other methods

are selected to compare performance in this case. They are

1D signal based CNNs (1D-CNN) [21], a conversion method

based CNNs (CMCNN) [28], and Google’s VGG11 fed with

the SR-image. The k-fold cross validation method is used for

the comparison, two conditions k = 5 and k = 10 are taken

into account. Moreover, thirty times experiments are carried

out with fine tuning the model parameters, such as the number

of hidden layers, the activation function and the learning rate.

In each step, the data set has randomly shuffled to ensure

the fairness. The average results of the accuracy, the number

iterations and the proportion of convergence are shown in

Table 3.

The SR-CNN peaks at about 67th epoch and its average

accuracy is about 11 percent higher than the 1D-CNN. Since

this new designed deep learning model is more suitable for the

recognition of time series data such as vibration signal, and not

appropriate for the image based analysis for mutiple signals in

the energy internet application. The result also shows that the

image recognition is more suitable for multiple signals analysis

than the data filtering in the complex system application.

Furthermore, the average accuracy of SR-CNN is about 7

percent higher than the CMCNN and 8 percent higher than the

VGG11. Meanwhile, the SR-CNN also shows the significant

performance on the ability of convergence compared with

other methods.

Generally speaking, the convolution kernels and the weights

of CNNs need to be trained based on enormous data to extract

specific fault features. It is clear that modeling process can be

shortened if the fault features are easy to recognize. Further,

the increasing number of useful fault features can fully take the

advantage of the multiple convolutional layers, so that all of

their kernels are used to distinguish the different features even

though the data is insufficient. This implies that the SR-CNN

can make more accurate diagnosis even the available data is

insufficient. This characteristic can be particularly useful when

the historic fault data is no longer sufficient.

Secondly, massive data are used to verify the accuracy of

the fault diagnosis of SR-CNN. In this test, the modeling

is based on the extension of the previous step. Therefore,

the epoch of training can be shortened. The second set of

data is added for training and the results are illustrated in
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TABLE III
COMPARISON RESULT BASED ON THE K-FOLD CROSS VALIDATION

Methods
Average Accuracy

Iterations Proportion
k = 5 k = 10

SR-CNN 0.9275 0.9474 67 ± 3 93.3%

CMCNN 0.8513 0.8772 65 ± 5 73.3%

1D-CNN 0.8146 0.8391 71 ± 5 86.7%

VGG11 0.8336 0.8625 65 ± 2 63.3%
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Fig. 11. Comparison of accuracy based on the massive data

Fig.11. It is clear that, the accuracy of SR-CNN is better

than the other methods: about 10 percent higher than the

1D-CNN and at least 3 percent higher than other methods.

That demonstrates its learning and generalization capacity.

That means the proposed network has proper topology and

can take full advantage of massive data, extract the feature of

multiple variables and make a very precise fault diagnosis for

the energy internet.

Thirdly, the final set of data is used to verify the timeliness

of fault diagnosis using the model developed in the previous

step. Fig.12 illustrates the probability of diagnosis for different

faults type in time series. It is clear that, the diagnostic

probability of the normal state decreases with time when the

fault occurs at 0s in the system. While the probability of the

fault, which has occurred, increases gradually until reaching

close to one. More specifically, for fault type 3 and 4, the

probability is almost 0.9 at 0.05s and while for type 1 and 2

faults at 0.10s. For fault type 5, the probability increases at a

slightly slower pace because its fault feature is close to the type

4. However, the fault is confirmed only when its probability

reaches the highest. Thus, the fault type 5 can also be detected

precisely at 0.15s by SR-CNN. Further, Fig.13 compares the

average timeliness of fault diagnosis and other mehtods. It

confirms that SR-CNN is able to produce rapid and accurate

fault diagnosis in the energy internet applications.

According to the average results shown in Fig.13, more than

60 percent accurate diagnosis can be achieved by SR-CNN

about 0.10s after the fault occurs and it increases to more than

90 percent when the time is 0.15s. This efficient result can be

illustrated by two aspects: on the one hand, the proposed SR-

image layer can explore and express the fault feature at the

very beginning, earlier than the traditional methods; on the

(a)
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(b)
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(c)
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(d)
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(e)
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Fig. 12. The sequential probability of different fault types at 0.15s. (a) Type
0. (b) Type 1. (c) Type 2. (d) Type 3. (e) Type 4. (f) Type 5

0.05 0.08 0.1 0.15 0.18

SR-CNN 0.4173 0.5561 0.6287 0.9151 0.9867

CMCNN 0.3536 0.4728 0.5513 0.8369 0.9285

1D-CNN 0.3847 0.4126 0.5733 0.8106 0.9082

VGG11 0.4269 0.4954 0.8816 0.9433
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Fig. 13. Comparison of the timeliness for rapid diagnosis

other hand, the location of fault features in the established 2D

image is settled, so that the convolution process, which has

not any attention mechanism, can reach its ideal effect. That

confirms the ability of SR-CNN for early detection of the fault

in energy internet applications.

As for the influence of measurement uncertainty like packet

loss, which is caused by the restriction of signal strength or

transmission equipment, can also be relieved by the SR-CNN

to some extent. It is because that the proposed SR-image

layer calculates each pixel using two different vectors, and

this kind of vectors contains a time series sampled point. That

means the SR-image represents the relative variation tendency

of multiple signals in a period of time and a handful of loss

or redundancy has little influence on the image features. In

general, the proposed method can make an accurate diagnosis

even using the incomplete data, but the accuracy rate will

decline along with the increase of measurement uncertainty.

V. CONCLUSION

In this paper, a novel and generic fault diagnosis method,

namely SR-CNN is proposed for complicated system network,

especially in energy internet applications. Benefiting from

the imposition of the SR-image layer, the multiple variables

measured by PMUs can be converted to generate 2D images
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suitable for fast recognition by CNNs, benefiting from the

increasing number, fixed position and obvious identity of fault

features. The SR-CNN not only can retain the superiority of

CNNs on image recognition, but also take full advantages of

the massive data made available acquired by PMUs in the

energy internet. The experimental results confirm that the SR-

CNN is able to offer accurate and fast fault diagnosis even

with insufficient data. Further, the diagnosis accuracy and

timeliness are also investigated, and the results confirm the

precision and rapidity of the SR-CNN based fault diagnosis

in the energy internet. The proposed method can serve as the

reference for fault diagnosis in the complex systems, so the

network structure can be adjusted appropriately for the specific

application scenarios. Moreover, there are still something need

to improve of the proposed approach. For example, since its

modeling is a supervised learning process, the classification

of training data has a great influence on the accuracy of

analysis. That also means the approach cannot analyze the

fault type, which has not contained in the training data or has

no appropriate category labels. That may be the direction of

further research.
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