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Nonlinear Pose Filters on the Special Euclidean
Group SE(3) with Guaranteed Transient and

Steady-state Performance
Hashim A. Hashim, Lyndon J. Brown, and Kenneth McIsaac

Abstract—Two novel nonlinear pose (i.e, attitude and position)
filters developed directly on the Special Euclidean Group SE (3)
able to guarantee prescribed characteristics of transient and
steady-state performance are proposed. The position error and
normalized Euclidean distance of attitude error are trapped to
arbitrarily start within a given large set and converge system-
atically and asymptotically to the origin from almost any initial
condition. The transient error is guaranteed not to exceed a
prescribed value while the steady-state error is bounded by a
predefined small value. The first pose filter operates based on a
set of vectorial measurements coupled with a group of velocity
vectors and requires preliminary pose reconstruction. The second
filter, on the contrary, is able to perform its function using a set of
vectorial measurements and a group of velocity vectors directly.
Both proposed filters provide reasonable pose estimates with
superior convergence properties while being able to use measure-
ments obtained from low-cost inertial measurement, landmark
measurement, and velocity measurement units. The equivalent
quaternion representation and complete implementation steps of
the proposed filters are presented. Simulation results demonstrate
effectiveness and robustness of the proposed filters considering
large error in initialization and high level of uncertainties in
velocity vectors as well as in the set of vector measurements.

Index Terms—Attitude, position, pose estimation, nonlinear
observer, special orthogonal group, special Euclidean group,
SO(3), SE(3), prescribed performance function, transient, steady-
state error, transformed error, feature measurement, PPF, IMU.

I. INTRODUCTION

ROBOTICS and engineering applications such as aerial
and underwater vehicles, satellites and space crafts are

concerned with accurately estimating the pose of a rigid-body
in 3D space. In essence, the pose of a rigid-body consists
of two elements: orientation and position. The orientation
of a rigid-body in 3D space is often referred to as attitude,
therefore, orientation and attitude will be used interchangeably.
One of the basic methods of attitude reconstruction is the
algebraic approach. It allows to reconstruct the attitude given
the availability of two or more non-collinear inertial-frame
vectors and their body-frame vectors utilizing algorithms such
as QUEST [1], or singular value decomposition (SVD) [2].
However, the process of attitude reconstruction is vulnerable
to the effects of noise and bias contaminating the body-frame
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measurements which causes [1,2] to produce unsatisfactory
results. This is particularly true in the context of a rigid-body
fitted with low-cost inertial measurement unit (IMU) [3–5].

Gaussian filters or nonlinear deterministic filters have been
used historically to address the challenge of attitude estimation
[3]. The family of Gaussian filters, which includes Kalman
filter (KF) [6], extended KF (EKF) [7], and multiplicative
EKF (MEKF) [8], often consider the unit quaternion in attitude
representation [3,5]. For good survey of Gaussian filters visit
[3]. However, it is crucial to note the nonlinear nature of
the attitude problem. Nonlinear attitude filters such as [3,4,9–
11] are evolved directly on the Special Orthogonal Group
SO (3). In particular, nonlinear deterministic attitude filters
outperform the Gaussian filters in many respects, namely they
are simpler in derivation and representation, they demand less
processing power, and they show better tracking convergence
[3,4]. Attitude estimation is an essential part of the pose
estimation problem. Taking into consideration the remarkable
advantages of nonlinear attitude filters, attitude-position (pose)
filtering problem is best approached in a nonlinear sense.

The pose estimation problem relies on filters evolved on the
Special Euclidean Group SE (3) which require a measurement
derived from a group velocity vector, vectorial measurements
that could be provided by IMU, landmark measurements
collected, for example, by a vision system and an estimate
of the bias associated with velocity measurements. Pose esti-
mation commonly involves a computer vision system with a
monocular camera and IMU [12–15]. The pose filter described
in [13] was developed directly on SE (3) and its performance
has been proven to be exponentially stable. Although, the filter
in [13] requires pose reconstruction for the implementation,
the nonlinear filter can be modified to function based solely
on a set of vectorial measurements avoiding the need for
pose reconstruction [16,17]. In spite of the simplicity of
the filter design in [13,16,17], numerical results show high
sensitivity to noise and bias attached to the measurements.
In addition, no systematic convergence is observed in [12–
14,16–20], such that the tracking error does not follow a
predefined transient and steady-state measures. Accordingly,
successful pose estimation for spacecraft control applications,
such as [21–24], cannot be achieved without pose filters which
are robust against uncertain measurements, demonstrate fast
tracking performance, and satisfy a certain level of transient
and steady-state characteristics.

Prescribed performance implies confining the error to ini-
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tially start within a predefined large set and decay system-
atically and smoothly to a predefined small residual set [25].
The error trajectory is constrained by a prescribed performance
function (PPF) to satisfy transient as well as steady-state
performance. The main objective of prescribed performance is
to relax the constrained error to its unconstrained form, termed
transformed error, which allows to keep the error within the
decaying dynamic boundaries, and thereby achieve successful
estimation or control applications. These applications include
but are not limited to two degrees of freedom planar robots
[25,26], uncertain nonlinear systems [27], servo mechanism
with friction compensation [28], and uncertain multi-agent
system [29,30].

In this paper two robust nonlinear pose filters on SE (3)
with predefined transient as well as steady-state measures are
proposed. The main contributions are as follows:

1) The proposed filters guarantee boundedness of the
closed loop error signals with constrained error and
unconstrained transformed error being proven to be
almost globally asymptotically stable such that the error
in the homogeneous transformation matrix is regulated
asymptotically to the identity from almost any initial
condition. Most significantly, the exceptional perfor-
mance is guaranteed even when the measurements are
supplied by a low-cost measurement unit, for instance,
an IMU module equipped with a gyroscope, a vision
unit, and a GPS.

2) The proposed filters guarantee systematic convergence
of the error controlled by the dynamic reducing bound-
aries forcing the error to start within a predefined
large set and decrease systematically and smoothly to
a residual small set, unlike [12–14,16–18].

3) The proposed pose filters are more efficient at ensur-
ing fast convergence compared to similar estimators
described in the literature, for instance [12–14,16–18].

The fast convergence is mainly attributed to the dynamic
behavior of the estimator gains. The first filter requires a
group of velocity vectors and a set of measurements to obtain
an online algebraic reconstruction of the pose. The second
filter uses the group of velocity vector and the set of vectorial
measurements directly.

The remainder of the paper is organized as follows: Section
II gives an overview of SO (3) and SE (3), mathematical
notation and identities. The pose problem is formulated, vector
measurements are demonstrated and prescribed performance
is introduced in Section III. The two proposed filters and the
related stability analysis are presented in Section IV. Section V
elaborates on the effectiveness and robustness of the proposed
filters. Finally, Section VI draws a conclusion of this work.

II. PRELIMINARIES AND MATHEMATICAL IDENTITIES

In this paper R+ refers to the set of nonnegative real
numbers. Rn and Rn×m denote a real n-dimensional space
column vector and real n×m dimensional space, respectively.
The Euclidean norm of x ∈ Rn is ‖x‖ =

√
x>x with > being

the transpose of the component. λ (·) denotes a set of singular

values of a matrix with λ (·) being its minimum value. In
stands for an n-by-n identity matrix, while 0n ∈ Rn is a zero
column vector. The frame notation is as follows: {B} refers
to the body-frame and {I} represents the inertial-frame.

Define GL (3) as a 3-dimensional general linear group
which is a Lie group with smooth multiplication and inversion.
The orthogonal group, denoted by O (3), is a subgroup of
GL (3) defined by

O (3) =
{
M ∈ R3×3

∣∣M>M = MM> = I3

}
with I3 being a 3-by-3 identity matrix. Let SO (3) denote the
Special Orthogonal Group which is a subgroup of O (3). The
orientation of a rigid-body in 3D space is termed attitude,
denoted by R, and defined as follows:

SO (3) =
{
R ∈ R3×3

∣∣RR> = R>R = I3, det (R) = +1
}

with det (·) being the determinant of the associated matrix.
SE (3) stands for the Special Euclidean Group, a subset of the
affine group GA (3) = SO (3)× R3 defined by

SE (3) =
{
T ∈ R4×4

∣∣R ∈ SO (3) , P ∈ R3
}

where T ∈ SE (3), termed a homogeneous transformation
matrix, represents the pose of a rigid-body in 3D space with

T =

[
R P
0>3 1

]
∈ SE (3) (1)

where P ∈ R3 and R ∈ SO (3) denote position and attitude
of a rigid-body in 3D space, respectively, and 0>3 is a zero
row. so (3) is a Lie-algebra related to SO (3) defined by

so (3) =
{
A ∈ R3×3

∣∣A> = −A
}

where A is a skew symmetric matrix. Define the map [·]× :
R3 → so (3) as

[α]× =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 ∈ so (3) , α =

 α1

α2

α3


For any α, β ∈ R3, we define [α]× β = α × β with × being
the cross product. The wedge operator is denoted by ∧, and
for any Y =

[
y>1 , y

>
2

]>
with y1, y2 ∈ R3 the wedge map

[·]∧ : R6 → se (3) is defined by

[Y]∧ =

[
[y1]× y2

0>3 0

]
∈ se (3)

se (3) is a Lie algebra of SE (3) and can be expressed as

se (3) =

{
[Y]∧ ∈ R4×4

∣∣ ∃y1, y2 ∈ R3 : [Y]∧ =

[
[y1]× y2
0>3 0

]}
The inverse of [·]× is defined by vex : so (3) → R3, and for
α ∈ R3 and [α]× ∈ so (3) we have

vex([α]×) = α ∈ R3 (2)

Pa stands for an anti-symmetric projection operator on the
Lie-algebra so (3) while its mapping is given by Pa : R3×3 →
so (3) such that

Pa (M) =
1

2
(M −M>) ∈ so (3) , M ∈ R3×3 (3)
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The normalized Euclidean distance of the attitude matrix R ∈
SO (3) is given by

‖R‖I =
1

4
Tr{I3 −R} (4)

with Tr {·} being a trace of a matrix, while ‖R‖I ∈ [0, 1]. To
reconstruct the orientation of any rigid-body in 3D space it is
sufficient to know unit-axis u ∈ R3 in the sphere S2 and angle
of rotation α ∈ R about u. This type of parameterization is
termed angle-axis parameterization and its mapping to SO (3)
is given by Rα : R× R3 → SO (3) such that

Rα(α, u) = I3 + sin (α) [u]× + (1− cos (α)) [u]
2
× (5)

For α, β ∈ R3, R ∈ SO (3), A ∈ R3×3 and B = B> ∈ R3×3

the following mathematical identities

[α× β]× =βα> − αβ> (6)

[Rα]× =R [α]×R
> (7)

[α]
2
× =− α>αI3 + αα> (8)

B [α]× + [α]×B =Tr {B} [α]× − [Bα]× (9)

Tr{B [α]×} =0 (10)

Tr{A [α]×} =Tr{Pa (A) [α]×} = −2vex(Pa(A))
>α (11)

will be used in the subsequent derivations.

III. PROBLEM FORMULATION WITH PRESCRIBED
PERFORMANCE

Pose estimator relies on a set of vectorial measurements
made on inertial-frame and body-frame. This section aims
to define the pose problem and present the associated mea-
surements. Next, the pose error and its reformulation are
geared towards attaining desired characteristics of transient
and steady-state performance.

A. Pose Kinematics and Measurements

The pose of any rigid-body in 3D space consists of two
elements: attitude and position, and this work aims to estimate
both elements. The attitude of a rigid-body is commonly rep-
resented by a rotational matrix R ∈ SO (3) defined relative to
the body-frame such that R ∈ {B}. Position of a rigid-body is,
on the contrary, defined by P ∈ R3 with respect to the inertial-
frame P ∈ {I}. The pose problem can be characterized by
the homogeneous transformation matrix T ∈ SE (3) as

T =

[
R P
0>3 1

]
(12)

The pose estimation problem of a rigid-body in 3D space is
depicted in Fig. 1.

Let the components associated with body-frame and inertial-
frame be assigned superscripts B and I, respectively. The
attitude can be obtained given NR known non-collinear inertial
vectors, available for measurements at a coordinate fixed to the
moving body. IMU exemplify sensors, which could provide
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Fig. 1. Pose estimation problem of a rigid-body in 3D space.

those measurements. The ith body-frame vector measurement
is given by[

v
B(R)
i

0

]
= T−1

[
v
I(R)
i

0

]
+

[
b
B(R)
i

0

]
+

[
ω
B(R)
i

0

]
such that

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (13)

with v
I(R)
i being the ith known vector in the inertial-frame,

and b
B(R)
i and ω

B(R)
i being unknown bias and noise com-

ponents added to the ith measurement, respectively, for all
v
B(R)
i , v

I(R)
i ,b

B(R)
i , ω

B(R)
i ∈ R3 and i = 1, 2, . . . , NR. The

known inertial vector v
I(R)
i and the available body-frame

measurement v
B(R)
i in (13) can be normalized such that

υ
I(R)
i =

v
I(R)
i∥∥∥v
I(R)
i

∥∥∥ , υ
B(R)
i =

v
B(R)
i∥∥∥v
B(R)
i

∥∥∥ (14)

Thus, the attitude of a rigid-body can be extracted using υI(R)
i

and υB(R)
i in (14) rather than v

I(R)
i and v

B(R)
i . Let us introduce

the following two sets

υI(R) =
[
υ
I(R)
1 , . . . , υ

I(R)
NR

]
∈ {I}

υB(R) =
[
υ
B(R)
1 , . . . , υ

B(R)
NR

]
∈ {B} (15)

where the two sets in (15) include the normalized vectors
in (14) for all υI(R), υB(R) ∈ R3×NR . The position of the
moving body can be extracted if its attitude R has already
been determined and there exist NL known landmarks (feature
points) obtained, for example, by a vision system. The ith
body-frame landmark measurement is given by[

v
B(L)
i

1

]
= T−1

[
v
I(L)
i

1

]
+

[
b
B(L)
i

0

]
+

[
ω
B(L)
i

0

]
such that

v
B(L)
i = R>

(
v
I(L)
i − P

)
+ b
B(L)
i + ω

B(L)
i (16)
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where v
I(L)
i is the ith known fixed landmark located in the

inertial-frame, b
B(L)
i and ωB(L)

i are the additive unknown bias
and noise vectors of the ith measurement, respectively, for all
v
B(L)
i , v

I(L)
i ,b

B(L)
i , ω

B(L)
i ∈ R3 and i = 1, 2, . . . , NL. Define

the set of inertial-frame and body-frame vectors associated
with landmarks by

vB(L) =
[
v
B(L)
1 , . . . , v

B(L)
NL

]
∈ {B}

vI(L) =
[
v
I(L)
1 , . . . , v

I(L)
NL

]
∈ {I} (17)

In case when more than one landmark is available for mea-
surement, it is common to obtain a weighted geometric center
of all the landmarks, which can be calculated as follows:

GIc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
I(L)
i (18)

GBc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
B(L)
i (19)

such that kL
i is the confidence level of the ith measurement.

Assumption 1. (Rigid-body pose observability) The pose of a
rigid-body in 3D space can be extracted given the availability
of at least two non-collinear vectors from the sets in (15)
(NR ≥ 2) and at least one feature point from the sets in (17)
with NL ≥ 1. In the case when NR = 2, the third vector can
be obtained by the means of cross multiplication: υI(R)

3 =

υ
I(R)
1 × υI(R)

2 and υB(R)
3 = υ

B(R)
1 × υB(R)

2 .

According to Assumption 1 a set of vectorial measurement
described in (15) is sufficient to have rank 3. Accordingly,
the homogeneous transformation matrix T can be extracted if
Assumption 1 is met. For simplicity, the body-frame vectors
v
B(R)
i and v

B(L)
i are considered to be noise and bias free in the

stability analysis. In the Simulation Section, on the contrary,
the noise and bias corrupting the measurements of v

B(R)
i and

v
B(L)
i are taken into consideration. The pose kinematics of the

homogeneous transformation matrix T in (12) are given by[
Ṙ Ṗ
0>3 0

]
=

[
R P
0>3 1

] [
[Ω]× V

0>3 0

]
such that

Ṗ = RV

Ṙ = R [Ω]× (20)

Ṫ = T [Y]∧ (21)

with Ω ∈ R3 and V ∈ R3 being the true angular and
translational velocity of the moving body, respectively, and
Y =

[
Ω>, V >

]> ∈ R6 being the group velocity vector. The
angular velocity can be measured by a gyroscope, for example,
and expressed as follows:

Ωm = Ω + bΩ + ωΩ ∈ {B} (22)

where bΩ is an unknown constant or slowly time-varying
bias, and ωΩ is an unknown random noise attached to the
measurement, for all bΩ, ωΩ ∈ R3. Likewise, the translational

velocity measurement of a moving body can be obtained using
a GPS, for instance, and defined by

Vm = V + bV + ωV ∈ {B} (23)

with bV ∈ R3 denoting an unknown constant or slowly time-
varying bias, and ωV ∈ R3 being random noise attached to
the translational velocity measurements. The group of velocity
measurements and bias associated with it can be defined by
Ym =

[
Ω>m, V

>
m

]> ∈ R6 and b =
[
b>Ω , b

>
V

]> ∈ R6, respec-
tively. For the sake of simplicity, we consider ωΩ = ωV = 03

in the analysis. However, in the implementation it is used
ωΩ 6= 03 and ωV 6= 03. Considering the normalized Euclidean
distance of the rotational matrix R in (4) and the identity in
(11), the true attitude kinematics in (20) can be expressed in
view of (4) as

||Ṙ||I = −1

4
Tr{Ṙ}

= −1

4
Tr{Pa (R) [Ω]×}

=
1

2
vex(Pa(R))>Ω (24)

Accordingly, the problem of pose kinematics in (21) can be
reformulated and expressed in vector form as[

||Ṙ||I
Ṗ

]
=

[
1
2vex(Pa(R))> 0>3

03×3 R

] [
Ωm − bΩ
Vm − bV

]
(25)

with 03×3 being a zero matrix and ωΩ = ωV = 03. Let the
estimate of the homogeneous transformation matrix in (12),
denoted by T̂ , be given by

T̂ =

[
R̂ P̂
0>3 1

]
(26)

with R̂ and P̂ being the estimates of R and P , respectively. Let
us define the error in the homogeneous transformation matrix
from body-frame to estimator-frame by

T̃ = T̂ T−1 =

[
R̃ P̂ − R̃P
0>3 1

]
=

[
R̃ P̃
0>3 1

]
(27)

where R̃ = R̂R> and P̃ are the errors associated with attitude
and position, respectively. The aim of this work is to drive
T̂ → T which in turn guarantees driving P̃ → 03, R̃ → I3,
and T̃ → I4. Lemma 1 presented below will prove useful in
the subsequent filter derivation.

Lemma 1. Let R ∈ SO (3), M = M> ∈ R3×3, M have rank
3, Tr {M} = 3, and M̄ = Tr {M} I3−M , while the minimum
singular value of M̄ is λ := λ(M̄). Then, the following holds:

||vex(Pa(R))||2 = 4(1− ||R||I)||R||I (28)
2

λ

||vex(Pa(RM))||2

1 + Tr{RMM−1}
≥ ‖RM‖I (29)

Proof. See Appendix A.
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B. Prescribed Performance

Considering the error in the homogeneous transformation
matrix as in (27) and in view of the pose kinematics in (25),
let us define the error in vector form by

e = [e1, e2, e3, e4]
>

=
[
||R̃||I , P̃>

]>
∈ R4 (30)

The objective of this subsection is to reformulate the problem
such that the error in (30) satisfies transient as well as steady-
state measures predefined by the user. This can be achieved by
guiding the error vector e to initiate within a large known set
and after decaying smoothly and systematically settle within
a predefined small set using prescribed performance function
(PPF) [25,29]. The PPF is defined by ξi (t) which is a positive
smooth time-decreasing function which satisfies ξi : R+ →
R+ and lim

t→∞
ξi (t) = ξ∞i > 0 and can be expressed by [25]

ξi (t) =
(
ξ0
i − ξ∞i

)
exp (−`it) + ξ∞i (31)

with ξi (0) = ξ0
i being the initial value of the PPF and the

upper bound of the known large set, ξ∞i being the upper bound
of the narrow set, and `i being a positive constant controlling
the convergence rate of ξ (t) from ξ0

i to ξ∞i for all i = 1, . . . , 4.
The error ei (t) is guaranteed to follow the predefined transient
and steady-state boundaries, if the conditions below are met:

−δξi (t) < ei (t) < ξi (t) , if ei (0) > 0 (32)
−ξi (t) < ei (t) < δξi (t) , if ei (0) < 0 (33)

with δ ∈ [0, 1]. For clarity, define ei := ei (t) and ξi := ξi (t).
Also, let us define ξ = [ξ1, ξ2, ξ3, ξ4]>, ` = [`1, `2, `3, `4]>,
ξ0 =

[
ξ0
1 , ξ

0
2 , ξ

0
3 , ξ

0
4

]>
, and ξ∞ = [ξ∞1 , ξ∞2 , ξ∞3 , ξ∞4 ]

> for all
ξ, `, ξ0, ξ∞ ∈ R4. The systematic convergence of the tracking
error ei, from a given large set to a given narrow set in
accordance with (32) and (33) is depicted in Fig. 2.

Time(sec)

Fig. 2. Graphical representation of the systematic convergence of tracking
error ei with PPF satisfying (a) Eq. (32); (b) Eq. (33).

Remark 1. In accordance with the discussion in [25,29],
knowing the upper bound and the sign of ei (0) is sufficient
to force the error to satisfy the performance constraints and
maintain the error regulation within predefined dynamically
reducing boundaries for all t > 0. If the condition in (32) or
(33) is met, the maximum overshoot is sufficient to be bounded
by ±δξi, the steady-state error is bounded by ±ξ∞i , and |ei|
is trapped between ξi and δξi as presented in Fig. 2.

Define the error ei by

ei = ξiZ(Ei) (34)

where ξi ∈ R is defined in (31), Ei ∈ R is a relaxed form of the
constrained error referred to as transformed error, and Z(Ei)
is a smooth function that behaves according to Assumption 2:

Assumption 2. The smooth function Z(Ei) has the following
properties [25]:

1. Z(Ei) is smooth and strictly increasing.
2. Z(Ei) is constrained by the following two bounds
−δi < Z(Ei) < δ̄i, if ei (0) ≥ 0
−δ̄i < Z(Ei) < δi, if ei (0) < 0
with δ̄i and δi being positive constants satisfy δi ≤ δ̄i.

3.
lim
Ei→−∞

Z(Ei) = −δi
lim
Ei→+∞

Z(Ei) = δ̄i

 if ei ≥ 0

lim
Ei→−∞

Z(Ei) = −δ̄i
lim
Ei→+∞

Z(Ei) = δi

 if ei < 0

such that

Z (Ei) =

{
δ̄i exp(Ei)−δi exp(−Ei)

exp(Ei)+exp(−Ei) , δ̄i ≥ δi if ei ≥ 0
δ̄i exp(Ei)−δi exp(−Ei)

exp(Ei)+exp(−Ei) , δi ≥ δ̄i if ei < 0
(35)

The transformed error could be extracted through the inverse
transformation of (35)

Ei(ei, ξi) = Z−1(ei/ξi) (36)

with Ei ∈ R, Z ∈ R and Z−1 ∈ R being smooth functions.
For simplicity, let Ei := Ei(·, ·), δ̄ = [δ̄1, δ̄2, δ̄3, δ̄4]>, δ =

[δ1, δ2, δ3, δ4]>, E =
[
ER, E>P

]>
for all δ̄, δ, E ∈ R4 with

ER = E1 ∈ R and EP = [E2, E3, E4]> ∈ R3. In fact, the
transformed error Ei translates ei from the given constrained
form in (32) or (33) to its unconstrained form as in (36). From
(35), the inverse transformation can be expressed as

Ei =
1

2

{
ln δi+ei/ξi
δ̄i−ei/ξi

, δ̄i ≥ δi if ei ≥ 0

ln δi+ei/ξi
δ̄i−ei/ξi

, δi ≥ δ̄i if ei < 0
(37)

Remark 2. Consider the transformed error in (37). The
transient and steady-state performance of the tracking error
(ei) is bounded by the performance function ξi, and therefore,
the prescribed performance is achieved if and only if Ei is
guaranteed to be bounded for all t ≥ 0.

Proposition 1. Consider the error vector in (30) with the
normalized Euclidean distance error ||R̃||I being given by
(4). From (34), (35), and (36) let the transformed error be
expressed as in (37) provided that δ = δ̄. Then the following
statements are true.

(i) The only possible representation of E1 is as follows:

E1 =
1

2
ln
δ1 + e1/ξ1
δ̄1 − e1/ξ1

=
1

2
ln
δ1 + ||R̃||I/ξ1
δ̄1 − ||R̃||I/ξ1

(38)

(ii) The transformed error E1 > 0∀||R̃||I 6= 0.
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(iii) E = 04 only at e = 04 and the critical point of E
satisfies e = 04.

(iv) The only critical point of E is T̃ = I4.

Proof. Given that 0 ≤ ||R̃ (t) ||I ≤ 1,∀t ≥ 0 as defined
in (4), one can find that the upper part of (37) holds ∀t ≥ 0
which proves (i). Since δ = δ̄ with the constraint ||R̃||I ≤ ξ1,
the expression in (38) is (δ1 + ||R̃||I/ξ1)/(δ̄1 − ||R̃||I/ξ1) ≥
1∀||R̃||I 6= 0. Thus, E1 > 0∀||R̃||I 6= 0 which confirms (ii).
Considering δ = δ̄ with the constraint ei ≤ ξi, it is clear
that (δi + ei/ξi)/(δ̄i − ei/ξi) = 1 if and only if ei = 0.
Accordingly, Ei 6= 0∀ei 6= 0 and Ei = 0 only at ei = 0 which
proves (iii). For (iv), from (4) and (27), ||R̃||I = 0 and P̃ = 0
if and only if T̃ = I4. Thus, the critical point of E satisfies
||R̃||I = 0 and P̃ = 0 which in turn satisfies T̃ = I4 and
proves (iv). Define µi := µi (ei, ξi) such that

µi =
1

2ξi

∂Z−1 (ei/ξi)

∂ (ei/ξi)
=

1

2ξi

(
1

δi + ei/ξi
+

1

δ̄i − ei/ξi

)
(39)

Hence, one can find that the derivative of Ėi is as follows:

Ėi = µi

(
ėi −

ξ̇i
ξi
ei

)
(40)

More simply, the expression in (40) is

Ė =

[
ΨR 0>3
03 ΨP

](
ė−

[
ΛR 0>3
03 ΛP

]
e

)
(41)

with ΛR = ξ̇1
ξ1

, ΛP = diag
(
ξ̇2
ξ2
, ξ̇3ξ3 ,

ξ̇4
ξ4

)
, ΨR = µ1, and

ΨP = diag(µ2, µ3, µ4) for all ΛR,ΨR ∈ R and ΛP ,ΨP ∈
R3×3. The following section introduces two nonlinear pose
filters on SE (3) with prescribed performance characteristics
which for 0 ≤ |ei (0)| < ξi (0) guarantee Ei ∈ L∞,∀t ≥ 0
and, therefore, satisfy (32) or (33).

IV. NONLINEAR COMPLEMENTARY POSE FILTERS ON
SE (3) WITH PRESCRIBED PERFORMANCE

This section aims to provide a comprehensive description
of the two nonlinear complementary pose filters evolved on
SE (3) with the error vector, introduced in (30), behaving in
accordance with the predefined transient as well as steady-
state measures specified by the user. The first proposed filter
is named a semi-direct pose filter with prescribed perfor-
mance and the second one is termed a direct pose filter
with prescribed performance. The difference between the two
lies in the fact that while the semi-direct filter requires both
attitude and position to be reconstructed through a set of
vectorial measurements given in (15) and (17) combined with
the measurement of the group velocity vector as described
in (22) and (23), the direct filter only utilizes the above-
mentioned measurements in the filter design. The structure
of the proposed pose filters described in the two subsequent
subsections is nonlinear on the Lie group of SE (3) and is
given by

˙̂
T = T̂ [Ŷ]∧

with Ŷ = [Ω̂>, V̂ >] ∈ R6 such that ˙̂
R = R̂[Ω̂]× and ˙̂

P = R̂V̂ .

A. Semi-direct Pose Filter with Prescribed Performance

Recall the error in (30) e =
[
||R̃||I , P̃>

]>
. Define T y =[

Ry Py
0>3 1

]
as a reconstructed homogeneous transformation

matrix of the true T . Ry corrupted by uncertain measurements
can be reconstructed as in [1,2] or for simplicity visit the
Appendix in [3,14]. From (18) and (19) Py is reconstructed
in the following manner

Py =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i

(
v
I(L)
i −Ryv

B(L)
i

)
= GIc −RyGBc (42)

Consider the following pose filter design

˙̂
R =R̂

[
Ωm − b̂Ω − R̂>WΩ

]
×

(43)

˙̂
P =R̂(Vm − b̂V −WV ) (44)
˙̂
bΩ =

γ

2
ΨRERR̂>vex(Pa(R̃))

+ γR̂>
[
P̃ − P̂

]
×

ΨPEP (45)

˙̂
bV =γR̂>ΨPEP (46)

WΩ =2
kwΨRER −ΛR/4

1− ||R̃||I
vex(Pa(R̃)) (47)

WV =R̂>
(
kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)
(48)

with R̃ = R̂R>y , P̃ = P̂ − R̃Py , ER, EP , ΨR and ΨP being
defined in (39), and (40), respectively, kw and γ being positive
constants, and each of b̂Ω and b̂V being the estimates of bΩ
and bV , respectively. The equivalent quaternion representation
and complete implementation steps of the semi-direct filter are
given in Appendix B.

Define the error between the true and the estimated bias by

b̃Ω = bΩ − b̂Ω (49)

b̃V = bV − b̂V (50)

where b̃ =
[
b̃>Ω , b̃

>
V

]>
∈ R6 is the group error bias vector.

Theorem 1. Consider the pose dynamics in (21), the group
of noise-free velocity measurements in (22) and (23) such
that Ωm = Ω + bΩ and Vm = V + bV , in addition to other
vector measurements given in (15) and (17) coupled with
the filter kinematics in (43), (44), (45), (46), (47), and (48).
Let Assumption 1 hold. Define U ⊆ SE (3) × R6 by U :={

(T̃ (0) , b̃ (0))
∣∣∣Tr{R̃ (0)} = −1, P̃ (0) = 03, b̃ (0) = 06

}
.

From almost any initial condition such that Tr{R̃ (0)} /∈ U
and E (0) ∈ L∞, all signals in the closed loop are bounded,
limt→∞ E (t) = 0, and T̃ asymptotically approaches I4.

Theorem 1 guarantees that the observer pose dynamics in
(43), (44), (45), (46), (47), and (48) are stable with E (t)
asymptotically approaching the origin. Since E (t) is bounded,
the error vector e in (30) is constrained by the transient and
steady-state boundaries introduced in (31).
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Proof. Consider the error in the homogeneous transforma-
tion matrix from body-frame to estimator-frame defined as
(27). From (20) and (43) the error dynamics are

˙̃R = R̂
[
b̃Ω − R̂>WΩ

]
×
R> =

[
R̂b̃Ω −WΩ

]
×
R̃ (51)

where
[
R̂b̃Ω

]
×

= R̂
[
b̃Ω

]
×
R̂> as given in identity (7). In

view of (20) and (24), one can express the error dynamics in
(51) in terms of normalized Euclidean distance as

d

dt
||R̃||I =

d

dt

1

4
Tr{I3 − R̃}

= −1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
Pa(R̃)

}
=

1

2
vex(Pa(R̃))>(R̂b̃Ω −WΩ) (52)

with Tr

{
R̃
[
b̃−W

]
×

}
= −2vex(Pa(R̃))>(b̃ −W ) being

defined in (11). Since the position error is given by P̃ =
P̂ − R̃P in (27), one can find the derivative of P̃ to be

˙̃P =
˙̂
P − ˙̃RP − R̃Ṗ

=
˙̂
P −

[
R̂b̃Ω −WΩ

]
×
R̃P − R̃R(Vm − bV )

= R̂(b̃V −WV ) +
[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ) (53)

with
[
R̂b̃Ω

]
×
P̂ = −

[
P̂
]
×
R̂b̃Ω. From (52) and (53), and in

view of (25), the dynamics of the error vector in (30) become[
|| ˙̃R||I

˙̃P

]
=

[
1
2vex(Pa(R̃))> 0>3[

P̂ − P̃
]
×

R̂

] [
R̂b̃Ω −WΩ

b̃V −WV

]
(54)

Accordingly, the derivative of the transformed error in (41) can

be represented with direct substitution of e =
[
||R̃||I , P̃>

]>
in addition to the result in (54). Now, consider the following
candidate Lyapunov function

V (E , b̃Ω, b̃V ) =
1

2
||E||2 +

1

2γ
||b̃Ω||2 +

1

2γ
||b̃V ||2 (55)

Differentiating V := V (E , b̃Ω, b̃V ) in (55) results in

V̇ =E>Ė − 1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV

=ERΨR

(
1

2
vex(Pa(R̃))>(R̂b̃Ω −WΩ)−ΛR||R̃||I

)
+ E>P ΨP

(
R̂(b̃V −WV ) +

[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ)

)
− E>P ΨPΛP P̃ −

1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV (56)

Consider ||R̃||I = 1
4
||vex(Pa(R̃))||2

1−||R̃||I
as defined in (28). Using

the result in (56) and directly substituting ˙̂
bΩ, ˙̂

bV , WΩ and WV

with their definitions in (45), (46), (47), and (48), respectively,
one obtains

V̇ = −1

4
kwE2

RΨ2
R

||vex(Pa(R̃))||2

1− ||R̃||I
− kwE>P Ψ2

PEP

= −kwE2
RΨ2

R||R̃||I − kwE>P Ψ2
PEP (57)

The result obtained in (57) indicates that V (t) ≤ V (0) ,∀t ≥
0. Given that V (t) ≤ V (0) ,∀t ≥ 0, R̃ (0) /∈ U and E (0) ∈
R4, b̃ remains bounded, and E is bounded and well defined
for all t ≥ 0. Consequently, P̃ , ||R̃||I and vex(Pa(R̃)) are
bounded, which in turn signifies that ˙̃P , || ˙̃R||I , ĖR and ĖP are
bounded as well. From the result in (57) it follows that

V̈ =− kw
(

2ERΨR(ĖRΨR + ERΨ̇R)||R̃||I + E2
RΨ2

R||
˙̃R||I
)

− 2kwE>P Ψ2
P ĖP − 2kwE>P ΨP Ψ̇PEP (58)

Since ΨR = µ1 and ΨP = diag(µ2, µ3, µ4) defined in (39),
µ̇i can be expressed as follows for all i = 1, 2, . . . , 4

µ̇i =− 1

2

δiξ̇i + ėi
(δiξi + ei)2

− 1

2

δ̄iξ̇i − ėi
(δ̄iξi − ei)2

(59)

with ξ̇i = −`i(ξ0
i − ξ∞i ) exp(−`it). Due to the fact that ėi is

bounded for all i = 1, 2, . . . , 4, µ̇i is bounded and V̈ in (58)
is uniformly bounded for all t ≥ 0. It should be remarked
that E1 > 0 for all ||R̃||I > 0, and E1 → 0 as ||R̃||I → 0
and vice versa as stated in property (ii) of Proposition 1. In
addition, Ei 6= 0∀ei 6= 0 and Ei = 0 if and only if ei =
0 as indicated in property (iii) of Proposition 1. Therefore,
V̇ is uniformly continuous, and in consistence with Barbalat
Lemma, V̇ → 0 as t → ∞ signifies that Ei → 0 and ei →
0. As mentioned by property (iv) of Proposition 1, E → 0
implies that T̃ asymptotically approaches I4 which completes
the proof.

B. Direct Pose Filter with Prescribed Performance

The reconstructed homogeneous transformation matrix T y

defined in Subsection IV-A consists of two elements: Ry and
Py . Although, Ry can be statically reconstructed applying,
for example, QUEST [1], or SVD [2], the aforementioned
methods of static reconstruction could significantly increase
processing cost [9,31]. Thus, the pose filter proposed in this
Subsection avoids the necessity of attitude reconstruction and
instead uses measurements from the inertial and body-frame
units directly. Let us define

MT =

[
MT mv

m>v mc

]
=

NR∑
i=1

kR
i

[
υ
I(R)
i

0

] [
υ
I(R)
i

0

]>

+

NL∑
j=1

kL
j

[
v
I(L)
j

1

] [
v
I(L)
j

1

]>
(60)
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such that MT = MR + ML with

MR =

NR∑
i=1

kR
i υ
I(R)
i

(
υ
I(R)
i

)>
ML =

NL∑
j=1

kL
j v
I(L)
j

(
v
I(L)
j

)>
mv =

NL∑
j=1

kL
j v
I(L)
j

mc =

NL∑
j=1

kL
j (61)

where kR
i and kL

j are constant gains of the confidence level
of ith and jth sensor measurements, respectively. Define

KT =

[
KT kv

m>v mc

]
=

NR∑
i=1

kR
i

[
υ
B(R)
i

0

] [
υ
I(R)
i

0

]>

+

NL∑
j=1

kL
j

[
v
B(L)
j

1

] [
v
I(L)
j

1

]>
(62)

such that mv =
∑NL

j=1 k
L
j v
I(L)
j and mc =

∑NL

j=1 k
L
j as defined

in (61), and

KT =

NR∑
i=1

kR
i υ
B(R)
i

(
υ
I(R)
i

)>
+

NL∑
j=1

kL
i v
B(L)
j

(
v
I(L)
j

)>
kv =

NL∑
j=1

kL
j v
B(L)
j (63)

In this work kR
i is selected such that

∑NR

i=1 k
R
i = 3. It

can be easily deduced that MR is symmetric. Assuming that
Assumption 1 holds, MR is nonsingular with rank(MR) = 3.
Accordingly, the three eigenvalues of MR are greater than
zero. Define M̄R = Tr{MR}I3−MR ∈ R3×3, provided that
rank(MR) = 3, then, the following three statements hold (
[32] page. 553):

1) MR is a positive-definite matrix.
2) The eigenvectors of MR coincide with the eigenvectors

of M̄R.
3) Assuming that the three eigenvalues of MR are

λ(MR) = {λ1, λ2, λ3}, then λ(M̄R) = {λ3 + λ2, λ3 +
λ1, λ2+λ1} with the minimum singular value λ(M̄R) >
0.

In the remainder of this Subsection, it is considered that
rank(MR) = 3 in order to ensure that the above-mentioned
statements are true. Define

υ̂
B(R)
i = R̂>υ

I(R)
i (64)

Defining the error in the homogeneous transformation matrix
as in (27), the attitude error can be expressed as R̃ = R̂R>

and the position error is defined by P̃ = P̂ − R̃P . Also,
let the bias error be as in (49) and (50). In order to derive
the direct pose filter, it is necessary to introduce the following

series of equations written in terms of vectorial measurements.
According to identity (6) and (7), one has[
R̂

NR∑
i=1

kR
i

2
υ̂
B(R)
i × υB(R)

i

]
×

= R̂

[
NR∑
i=1

kR
i

2
υ̂
B(R)
i × υB(R)

i

]
×

R̂>

= R̂

NR∑
i=1

kR
i

2

(
υ
B(R)
i

(
υ̂
B(R)
i

)>
− υ̂B(R)

i

(
υ
B(R)
i

)>)
R̂>

=
1

2
R̂R>MR −

1

2
MRRR̂

>

= Pa(R̃MR)

such that

vex(Pa(R̃MR)) = R̂

NR∑
i=1

(
kR
i

2
υ̂
B(R)
i × υB(R)

i

)
(65)

Thus, R̃MR is defined in terms of vectorial measurements by

R̃MR = R̂

NR∑
i=1

(
kR
i υ
B(R)
i

(
υ
I(R)
i

)>)
(66)

The normalized Euclidean distance of R̃MR is found to be

||R̃MR||I =
1

4
Tr{(I3 − R̃)MR}

=
1

4
Tr

{
I3 − R̂

NR∑
i=1

(
kR
i υ
B(R)
i

(
υ
I(R)
i

)>)}

=
1

4

NR∑
i=1

(
1−

(
υ̂
B(R)
i

)>
υ
B(R)
i

)
(67)

Let us introduce the following variable

Υ(MR, R̃) =Tr
{
R̃MRM−1

R

}
=Tr

{(
NR∑
i=1

kR
i υ
B(R)
i

(
υ
I(R)
i

)>)

•

(
NR∑
i=1

kR
i υ̂
B(R)
i

(
υ
I(R)
i

)>)−1
 (68)

where • is a multiplication operator of the two matrices. From
(60) and (61), one obtains

T̃MI =

[
R̃MT + P̃m>v R̃mv + mcP̃

m>v mc

]
(69)

The above-mentioned result can be additionally expressed as

T̃MI =

[
R̂ P̂
0>3 1

] [
KT kv

m>v mc

]
=

[
R̂KT + P̂m>v R̂kv + mcP̂

m>v mc

]
(70)

As such, from (69) and (70), the position error can be
reformulated with respect to vectorial measurements as

P̃ = P̂ +
1

mc

(
R̂kv − R̃MRM−1

R mv

)
(71)
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with R̃MR being calculated as in (66) and mc 6= 0 for at
least one landmark. Consequently, vex(Pa(R̃MR)), R̃MR,
||R̃MR||I , Υ(MR, R̃), and P̃ will be obtained through a set
of vectorial measurements as defined in (65), (66), (67), (68),
and (71), respectively, in all the subsequent derivations and
calculations. Let us modify the vector error in (30) to be

e = [e1, e2, e3, e4]
>

=
[
||R̃MR||I , P̃>

]>
(72)

with ||R̃MR||I and P̃ being defined in (67) and (71), respec-
tively. Thus, all the discussion in Subsection III-B is to be
reformulated using the error vector in (72) instead of (30).
Define the minimum eigenvalue of M̄R as λ := λ(M̄R), and
consider the following filter design

˙̂
R =R̂

[
Ωm − b̂Ω − R̂>WΩ

]
×

(73)

˙̂
P =R̂(Vm − b̂V −WV ) (74)
˙̂
bΩ =

γ

2
ΨRERR̂>vex(Pa(R̃MR))

+ γR̂>
[
P̃ − P̂

]
×

ΨPEP (75)

˙̂
bV =γR̂>ΨPEP (76)

WΩ =
4

λ

kwΨRER −ΛR

1 + Υ(MR, R̃)
vex(Pa(R̃MR)) (77)

WV =R̂>
(
kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)
(78)

with Υ(MR, R̃) and vex(Pa(R̃MR)) being specified in (68)
and (65), respectively, E = [ER, E>P ]> = [E1, E2, E3, E4]>,
Ei := Ei(ei, ξi) and µi := µi(ei, ξi) being defined in (38)
and (39), respectively, while e is as in (72), kw and γ are
positive constants, and b̂Ω and b̂V are the estimates of bΩ and
bV , respectively. The equivalent quaternion representation and
complete implementation steps of the direct filter are given in
Appendix B.

Theorem 2. Consider coupling the pose filter in (73), (74),
(75), (76), (77), and (78) with the set of vector measure-
ments in (15) and (17), and the velocity measurements in
(22) and (23) where Ωm = Ω + bΩ and Vm = V +
bV . Let Assumption 1 hold. Define U ⊆ SE (3) × R6 by
U :=

{
(T̃ (0) , b̃ (0))

∣∣∣Tr{R̃ (0)} = −1, P̃ (0) = 03, b̃ (0) = 06

}
.

If R̃ (0) /∈ U and E (0) ∈ L∞, then, all error signals are
bounded, E (t) asymptotically approaches 0, and T̃ asymptot-
ically approaches I4.

Theorem 2 guarantees the observer dynamics in (73), (74),
(75), (76), (77), and (78) to be stable. In consistence with
Remark 2 boundedness of E (t) indicates that e follows the
dynamic decreasing boundaries in (31).

Proof. Consider the error in the homogeneous transforma-
tion matrix and bias defined as in (27), (49) and (50), respec-
tively. From (20) and (73), the error dynamics of R̃ can be
found to be analogous to (51). The ith inertial measurements
v
I(R)
i and v

I(L)
i are constant, thus, ṀR = 03×3. Conse-

quently, from (51), the derivative of ||R̃MR||I is equivalent

to

d

dt
||R̃MR||I =− 1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
R̃MR

}
=− 1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
Pa(R̃MR)

}
=

1

2
vex(Pa(R̃MR))>(R̂b̃Ω −WΩ) (79)

where Tr
{

[WΩ]× R̃MR

}
= −2vex(Pa(R̃MR))>WΩ as

given in (11). One could find that the derivative of P̃ is
equivalent to (53). From (79) and (53), and in view of (25),
the derivative of e given in (72), becomes

ė =

[
1
2vex(Pa(R̃MR))> 01×3[

P̂ − P̃
]
×

R̂

] [
R̂b̃Ω −WΩ

b̃V −WV

]
(80)

The derivative of the transformed error in (41) be acquired by
direct substitution of e as in (72), in addition to the result in
(80). Consider the candidate Lyapunov function

V (E , b̃Ω, b̃V ) =
1

2
||E||2 +

1

2γ
||b̃Ω||2 +

1

2γ
||b̃V ||2 (81)

The derivative of V := V (E , b̃Ω, b̃V ) is as follows

V̇ =E>Ė − 1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV

=
1

2
ERΨRvex(Pa(R̃MR))>(R̂b̃Ω −WΩ)

+ E>P ΨP

(
R̂(b̃V −WV ) +

[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ)

)
− ERΨRΛR||R̃MR||I − E>P ΨPΛP P̃

− 1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV (82)

Directly substituting for ˙̂
bΩ, ˙̂

bV , WΩ and WV in (75), (76),
(77), and (78), respectively, results in

V̇ ≤ΛR

(
2

λ

||vex(Pa(R̃MR))||2

1 + Υ(MR, R̃)
− ||R̃MR||I

)
ERΨR

− 2

λ

kwE2
RΨ2

R

1 + Υ(MR, R̃)

∥∥∥vex(Pa(R̃MR))
∥∥∥2

− kwE>P Ψ2
PEP (83)

It can be easily found that

ΛR

 2

λ

∥∥∥vex(Pa(R̃MR))
∥∥∥2

1 + Υ(MR, R̃)
− ||R̃MR||I

 ERΨR ≤ 0 (84)

where ER > 0∀||R̃MR||I 6= 0 and ER = 0 at ||R̃MR||I = 0
as presented in (ii) Proposition 1, and ΨR > 0∀t ≥ 0 as given
in (39). Also, ξ̇i is negative and strictly increasing that satisfies
ξ̇i → 0 as t → ∞, and ξi : R+ → R+ such that ξi → ξ∞i
as t → ∞. Thus, ξ̇i/ξi ≤ 0 which means that ΛR ≤ 0.
Considering (29) in Lemma 1, thus, the expression in (84) is
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negative semi-definite. As such, the inequality in (83) can be
expressed as

V̇ ≤− kwE2
RΨ2

R||R̃MR||I − kwE>P Ψ2
PEP (85)

This signifies that V (t) ≤ V (0) ,∀t ≥ 0. From almost any
initial conditions such that Tr

{
R̃ (0)

}
6= −1 and E (0) ∈ R4,

E and b̃ are bounded for all t ≥ 0. Thereby, E is bounded and
well-defined for all t ≥ 0. P̃ , ||R̃MR||I , and vex(Pa(R̃MR))

are also bounded which indicates that ˙̃P , || ˙̃RMR||I , ĖR
and ĖP are bounded as well. In order to prove asymptotic
convergence of E to the origin and T̃ to the identity, it is
necessary to show that the second derivative of (81) is

V̈ ≤− 2kwERΨR(ĖRΨR + ERΨ̇R)||R̃MR||I
− kwE2

RΨ2
R||

˙̃RMR||I
− 2kwE>P ΨP (ΨP ĖP + Ψ̇PEP ) (86)

Recall that ΨR = µ1 and ΨP = diag(µ2, µ3, µ4), where µ̇i
was defined in (59) for all i = 1, 2, . . . , 4. Since ėi is bounded,
µ̇i is bounded as well and V̈ in (86) is bounded for all t ≥ 0.
From property (ii) of Proposition 1, ||E1|| → 0 indicates that
||R̃MR||I → 0, while E1 6= 0∀||R̃MR||I 6= 0 and according
to property (iii) of Proposition 1, Ei 6= 0∀ei 6= 0 and Ei = 0
if and only if ei = 0 for all i = 1, . . . , 4. Therefore, V̇ is
uniformly continuous, and on the basis of Barbalat Lemma,
V̇ → 0 implies that ||E|| → 0 and ‖e‖ → 0 as t → ∞. This
means that T̃ approaches I4 asymptotically in accordance with
(iv) of Proposition 1, which completes the proof.

The estimates ˙̂
bΩ and ˙̂

bV and the correction factors WΩ and
WV are functions of the transformed error E and the auxiliary
component µ. E and µ rely on the error e such that their
values become increasingly aggressive as ||R̃||I approaches
the unstable equilibria ||R̃||I → +1 and P̃ → ∞. Their
dynamic behavior is essential for forcing the proposed filters
to obey the prescribed performance constraints. On the other
side E → 0 as e → 0. This significant advantage was not
offered in literature, such as [12–14,16–18].

Remark 3. (Design parameters) The dynamic boundaries of
e are described by δ̄, δ, ξ∞, and ξ0 where ξ0 and ξ∞ define the
large and small sets, respectively. The rate of convergence from
the given large set to the small set is controlled by `. The initial
value of e (0) in (30) or (72) can be easily obtained. When
applying semi-direct pose filter, Ry (0) can be reconstructed,
for example, using [1,2], Py (0) can be evaluated by Py (0) =
GIc −Ry (0)GBc as in (42), and finally ||R̃ (0) ||I = 1

4Tr{I3−
R̂ (0)R>y (0)} and P̃ (0) = P̂ (0)−R̃ (0)Py (0). In case when
the direct pose filter is used, ||R̃ (0) MR||I can be defined from
(67) and P̃ (0) can be easily obtained in the form of a vectorial
measurement based on (71). Next, the user can select δ̄, δ, and
ξ0 to be greater than e (0).

C. Simplified steps of the proposed pose filters

The implementation of the proposed nonlinear pose filters
on SE (3) with prescribed performance given in Subsections

IV-A and IV-B can be summarized in the following 7 simplified
steps:

Step 1: Select γ, kw > 0, δ̄ = δ > e (0), the desired speed
of the convergence rate `, and the upper bound of the small
set ξ∞.

Step 2: For the case of the semi-direct pose filter, define e =[
||R̃||I , P̃>

]>
with R̃ = R̂R>y and P̃ = P̂−R̃Py where Py is

given in (42) and Ry is reconstructed (for example [1,2]). For

the case of the direct pose filter, define e =
[
||R̃MR||I , P̃>

]>
with ||R̃MR||I and P̃ being specified as in (67) and (71),
respectively.

Step 3: For the case of the semi-direct pose filter, evaluate
vex(Pa(R̃)), whereas, for the case of the direct pose filter,
define vex(Pa(MBR̃)) and Υ(MR, R̃) from (65), and (68),
respectively.

Step 4: Find the PPF ξ from (31).
Step 5: Evaluate the transformed error E , ΛR, ΨR, ΛP ,

and ΨP from (38) and (39), respectively.
Step 6: Obtain the filter kinematics ˙̂

R, ˙̂
P , ˙̂

bΩ, ˙̂
bV , WΩ, and

WV from (43), (44), (45), (46), (47), and (48), respectively,
for the semi-direct pose filter, or from (73), (74), (75), (76),
(77), and (78), respectively, for the direct pose filter.

Step 7: Go to Step 2.

V. SIMULATIONS

This section illustrates the robustness of the proposed pose
filters on SE (3) with prescribed performance against large
error in initialization of T̃ (0) and high levels of bias and noise
inherent to the measurement process. Let the dynamics of the
homogeneous transformation matrix T follow (21). Define the
true angular velocity (rad/sec) by

Ω =
[
sin (0.5t) , 0.7sin (0.4t+ π) , 0.5sin

(
0.35t+

π

3

)]>
with R (0) = I3. Consider the following true translational
velocity (m/sec)

V =
[
0.3sin (0.6t) , 0.18sin

(
0.4t+

π

2

)
, 0.3sin

(
0.1t+

π

4

)]>
and the initial position P (0) = 03. Let the measurements of
angular and translational velocities be Ωm = Ω+bΩ +ωΩ and
Vm = V + bV + ωV , respectively, with bΩ = 0.1 [1,−1, 1]

>

and bV = 0.1 [2, 5, 1]
>. ωΩ and ωV represent random noise

process at each time instant with zero mean and standard
deviation (STD) equal to 0.15 (rad/sec) and 0.3 (m/sec),
respectively. Assume that one landmark is available for mea-
surement (NL = 1)

v
I(L)
1 =

[
1

2
,
√

2, 1

]>
where the body-frame measurements are defined as (16) such
that v

B(L)
1 = R>

(
v
I(L)
1 − P

)
+b
B(L)
1 +ω

B(L)
1 . The bias vector

is b
B(L)
1 = 0.1 [0.3, 0.2,−0.2]

> while ω
B(L)
1 is a Gaussian

noise vector with zero mean and STD = 0.1. Assume that two
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non-collinear inertial-frame vectors (NR = 2) are available
with

v
I(R)
1 =

1√
3

[1,−1, 1]
>
, v

I(R)
2 = [0, 0, 1]

>

while the two body-frame vectors are defined as in (13)
v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i for i = 1, 2 such that

b
B(R)
1 = 0.1 [−1, 1, 0.5]

> and b
B(R)
2 = 0.1 [0, 0, 1]

>. In
addition, ωB(R)

1 and ω
B(R)
2 are Gaussian noise vectors with

zero mean and STD = 0.1. The third vector is obtained using
v
I(R)
3 = v

I(R)
1 × v

I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 . This

step is followed by the normalization of v
B(R)
i and v

I(R)
i to

υ
B(R)
i and υI(R)

i , respectively, for i = 1, 2, 3 as given in (14).
Thus, Assumption 1 holds. For the semi-direct pose filter with
prescribed performance, Ry is obtained by SVD [2], or for
simplicity visit the Appendix in [3] with R̃ = R̂R>y . The total
simulation time is 30 seconds.

Initial attitude error is set to be considerably large. Initial at-
titude estimate is given by R̂ (0) = Rα (α, u/||u||) according
to angle-axis parameterization as in (5) with α = 175 (deg)
and u= [3, 10, 8]

>. It is worth noting that the value of
||R̃||I ≈ 0.999 is fairly close to the unstable equilibria (+1)
and the initial position is P̂ (0) = [4,−3, 5]

>. In brief, we
have

T (0) = I4, T̂ (0) =

 −0.8923 0.2932 0.3432 4
0.3992 0.1577 0.9032 −3
0.2107 0.9430 −0.2577 5

0 0 0 1


The design parameters of the proposed filters are chosen as
γ = 1, kw = 5, δ̄ = δ = [1.3, 5, 4, 6]

>, ξ0 = [1.3, 5,−4, 6]
>,

ξ∞ = [0.07, 0.3, 0.3, 0.3]
>, and ` = [4, 4, 4, 4]

>. The initial
bias estimates are b̂Ω (0) = [0, 0, 0]

> and b̂V (0) = [0, 0, 0]
>.

Color notation used in the plots is: black center-lines and
green solid-lines refer to the true values, red illustrates the
performance of the nonlinear semi-direct pose filter (S-DIR)
on SE (3) proposed in Subsection IV-A, and blue demonstrates
the performance of the direct filter (DIR) on SE (3) presented
in Subsection IV-B. Also, magenta depicts a measured value
while orange and black dashed lines refer to the prescribed
performance response.

Fig. 3, 4 and 5 depict high values of noise and bias
components attached to velocity and body-frame vector mea-
surements plotted against the true values. Fig. 6 and 7 show
the output performance of the proposed filters described in
terms of Euler angles (φ, θ, ψ) and the true position in 3D
space, respectively. Fig. 6 and 7 present remarkable tracking
performance with fast convergence to the true Euler angles
and xyz-positions 3D space. The systematic and smooth
convergence of the error vector e is depicted in Fig. 8. It can
be clearly observed how ||R̃||I in Fig. 8 started very near to the
unstable equilibria while P̃1, P̃2, and P̃3 started remarkably
far from the origin within the predefined large set and decayed
smoothly and systematically to the predefined small set guided
by the dynamic boundaries of the PPF such that R̃ = R̂R>

and P̃ = P̂ − R̃P . Finally, the estimated bias b̂ is bounded as
depicted in Fig. 9.
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Fig. 3. Measured and true values of angular velocities.
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Fig. 4. Measured and true values of translational velocities.

Fig. 5. True and measured body-frame vectorial measurements.
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Fig. 6. True and estimated Euler angles of the rigid-body.

The simulation results establish the strong filtering capa-



12

0 5 10 15 20 25 30

0

2

4

0 5 10 15 20 25 30

-2

0

2

0 5 10 15 20 25 30

0

5

Fig. 7. True and estimated rigid-body positions in 3D space.

bility of the two proposed pose filters and their robustness
against uncertain measurements and large initialized errors
making them perfectly fit for the measurements obtained from
low quality sensors such as IMU. The two filters conform
to the dynamic constraints imposed by the user referring
guaranteed prescribed performance measures in transient as
well as steady-state performance. The pose filters previously
proposed in the literature [12,13,16–18] lack this remarkable
quality. Semi-direct pose filter with prescribed performance
demands pose reconstruction, in this case attitude has been
extracted using SVD [2,3]. This adds complexity, and therefore
the semi-direct pose filter requires more computational power
in comparison with the direct pose filter with prescribed
performance. Nevertheless, the two proposed pose filters are
robust and demonstrate impressive convergence capabilities.

VI. CONCLUSION

Two nonlinear pose filters evolved directly on SE (3) with
prescribed performance characteristics have been considered.
Pose error has been defined in terms of position error and
normalized Euclidean distance error, and the innovation term
has been selected to guarantee predefined measures of tran-
sient and steady-state performance. As a result, the proposed
filters exhibit superior convergence properties with transient
error being bounded by a predefined dynamically decreasing
constrained function and steady-state error being less than
a predefined lower bound. The proposed pose filters are
deterministic and the stability analysis ensure boundedness of
all closed loop signals with asymptotic convergence of the
homogeneous transformation matrix to the origin. Simulation
results established the strong ability of the proposed filters to
impose the predefined constraints on the pose error considering
large initial pose error and high level of uncertainties in the
measurements.
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APPENDIX A

Proof of Lemma 1

Let R ∈ SO (3) be the attitude of a rigid-body in 3D
space. The attitude could be extracted for a given Rodriguez
parameters vector ρ ∈ R3. The mapping from Rodriguez
vector to SO (3) is defined by Rρ : R3 → SO (3) [33]

Rρ (ρ) =
1

1 + ||ρ||2
((

1− ||ρ||2
)
I3 + 2ρρ> + 2 [ρ]×

)
(87)

With direct substitution of (87) in (4) one easily obtains [3]

||R||I =
||ρ||2

1 + ||ρ||2
(88)

Additionally, for Rρ = Rρ (ρ) the anti-symmetric projection
operator of the attitude in (87) is equivalent to

Pa (R) =
1

2

(
Rρ −R>ρ

)
=2

1

1 + ||ρ||2
[ρ]× (89)

Thus, the vex operator of (89) becomes

vex (Pa (R)) = 2
ρ

1 + ||ρ||2
(90)

From the result in (88) one can obtain

(1− ||R||I) ||R||I =
||ρ||2

(1 + ||ρ||2)
2 (91)

and from (90) it is easily shown that

||vex (Pa (R)) ||2 = 4
||ρ||2

(1 + ||ρ||2)
2 (92)

Therefore, (91) and (92) prove (28) in Lemma 1. From Section
IV-B

∑NR

i=1 k
R
i = 3 which indicates that Tr {MR} = 3.

Recall that the normalized Euclidean distance of RMR is
‖RMR‖I = 1

4Tr {(I3 −R) MR}. From the angle-axis pa-
rameterization in (5), one finds

‖RMR‖I =
1

4
Tr
{
−
(

sin(θ) [u]× + (1− cos(θ)) [u]
2
×

)
MR

}
= −1

4
Tr
{

(1− cos(θ)) [u]
2
×MR

}
(93)

where Tr
{

[u]×MR

}
= 0 as in identity (10). One has [34]

‖R‖I =
1

4
Tr {I3 −R} = sin2 (θ/2) (94)

The Rodriguez vector can be expressed in terms of angle-axis
parameterization as [33]

u = cot (θ/2) ρ (95)

From identity (8) and (95), the expression in (93) becomes

‖RMR‖I =
1

2
‖R‖I u

>M̄Ru =
1

2
‖R‖I cot2

(
θ

2

)
ρ>M̄Rρ

Also, from (94), cos2
(
θ
2

)
= 1− ‖R‖I which implies that

tan2

(
θ

2

)
=

‖R‖I
1− ‖R‖I

Accordingly, the normalized Euclidean distance of RMR

could be formulated in the sense of Rodriguez vector

‖RMR‖I =
1

2
(1− ‖R‖I) ρ

>M̄Rρ =
1

2

ρ>M̄Rρ

1 + ‖ρ‖2
(96)
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Fig. 8. Systematic convergence of the error trajectories within the prescribed performance boundaries.
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Fig. 9. The estimated bias of the proposed filters.

The anti-symmetric projection operator of RMR can be de-
fined in terms of Rodriquez vector using identity (6) and (9)
by

Pa (RMR) =
ρρ>MR −MRρρ

> + MR [ρ]× + [ρ]×MR

1 + ‖ρ‖2

=

[(
Tr {MR} I3 −MR − [ρ]×MR

)
ρ
]
×

1 + ‖ρ‖2

Thereby, the vex operator of the above expression is

vex (Pa (RMR)) =

(
I3 + [ρ]×

)
1 + ‖ρ‖2

M̄Rρ (97)

Hence, the 2-norm of (97) is equivalent to

‖vex (Pa (RMR))‖2 =
ρ>M̄R

(
I3 − [ρ]

2
×

)
M̄Rρ(

1 + ‖ρ‖2
)2

From the identity in (8), [ρ]
2
× = −||ρ||2I3 + ρρ> such that

‖vex (Pa (RMR))‖2 =
ρ>M̄R

(
I3 − [ρ]

2
×

)
M̄Rρ(

1 + ‖ρ‖2
)2

=
ρ>
(
M̄R

)2
ρ

1 + ‖ρ‖2
−
(
ρ>M̄Rρ

)2(
1 + ‖ρ‖2

)2

≥ λ

(
1− ‖ρ‖2

1 + ‖ρ‖2

)
ρ>M̄Rρ

1 + ||ρ||2

≥ 2λ (1− ‖R‖I) ‖RMR‖I (98)

where λ = λ
(
M̄R

)
is the minimum singular value of M̄R

and ‖R‖I = ‖ρ‖2 /
(

1 + ‖ρ‖2
)

as in (88). One can find

1− ‖R‖I =
1

4

(
1 + Tr

{
RMRM−1

R

})
(99)

Hence, from (98) and (99) the following inequality holds

‖vex (Pa (RMR))‖2 ≥ λ

2

(
1 + Tr

{
RMRM−1

R

})
‖RMR‖I

This validates (29) and completes the proof of Lemma 1.

APPENDIX B
Quaternion Representation

Define Q = [q0, q
>]> ∈ S3 as a unit-quaternion with q0 ∈ R

and q ∈ R3 such that S3 = {Q ∈ R4
∣∣ ||Q|| =

√
q2
0 + q>q =

1}. Q−1 = [ q0 −q> ]> ∈ S3 denotes the inverse of
Q. Define � as a quaternion product where the quaternion
multiplication of Q1 = [ q01 q>1 ]> ∈ S3 and Q2 =
[ q02 q>2 ]> ∈ S3 is Q1 � Q2 = [q01q02 − q>1 q2, q01q2 +
q02q1 + [q1]×q2]. The mapping from unit-quaternion (S3) to
SO (3) is described by RQ : S3 → SO (3)

RQ = (q2
0 − ||q||2)I3 + 2qq> + 2q0 [q]× ∈ SO (3) (100)
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The quaternion identity is described by QI = [1, 0, 0, 0]> with
RQI = I3. Define the estimate of Q = [q0, q

>]> ∈ S3 as Q̂ =
[q̂0, q̂

>]> ∈ S3 with RQ̂ = (q̂2
0 − ||q̂||2)I3 + 2q̂q̂> + 2q̂0 [q̂]×,

see the map in (100). For any x ∈ R3 and Q ∈ S3, define the
map

x = [0, x>]> ∈ R4

Y(Q−1, x) =

[
0

Y(Q−1, x)

]
= Q−1 �

[
0
x

]
�Q

Y(Q, x) =

[
0

Y(Q, x)

]
= Q�

[
0
x

]
�Q−1

The equivalent quaternion representation and complete imple-
mentation steps of the filter in (43), (44), (45), (46), (47), and
(48) is:



υBi = Y(Q−1, υIi )

Qy : Reconstructed by QUEST algorithm
Q̃ = [q̃0, q̃

>]> = Q̂�Q−1
y

||R̃||I = 1− q̃2
0

Py = 1∑NL
i=1 k

L
i

∑NL

i=1 s
L
i

(
v
I(L)
i −Y

(
Qy, v

B(L)
i

))
P̃ = P̂ −Y

(
Q̃, Py

)
Γ = Ωm − b̂−W
˙̂
Q = 1

2

[
0 −Γ>

Γ − [Γ]×

]
Q̂

˙̂
P = Y

(
Q̂, Vm − b̂V −WV

)
˙̂
bΩ = γΨRERq̃0Y

(
Q̂−1, q̃

)
+γ
[
Y
(
Q̂−1, P̃ − P̂

)]
×

Y
(
Q̂−1,ΨPEP

)
˙̂
bV = γY

(
Q̂−1,ΨPEP

)
WΩ = 4kwΨRER−ΛR/4

q̃0
q̃

WV = Y

(
Q̂−1, kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)

The equivalent quaternion representation and complete imple-
mentation steps of the filter in (73), (74), (75), (76), (77), and

(78) is:

[
0

υBi

]
=

[
0

Y(Q−1, υIi )

]
= Q−1 �

[
0

υIi

]
�Q[

0

υ̂Bi

]
=

[
0

Y(Q̂−1, υIi )

]
= Q̂−1 �

[
0

υIi

]
� Q̂

Υ = Y
(
Q̂,
∑NR

i=1

(
sRi
2 υ̂
B(R)
i × υB(R)

i

))
||R̃MR||I = 1

4

∑NR

i=1

(
1−

(
υ̂
B(R)
i

)>
υ
B(R)
i

)
M1 =

∑NR

i=1 s
R
i υ
B(R)
i

(
υ
I(R)
i

)>
M2 =

(∑NR

i=1 s
R
i υ̂
B(R)
i

(
υ
I(R)
i

)>)−1

P̃ = P̂ + 1
mc

(
Y
(
Q̂,kv

)
−M1M2mv

)
Γ = Ωm − b̂−W
˙̂
Q = 1

2

[
0 −Γ>

Γ − [Γ]×

]
Q̂

˙̂
P = Y

(
Q̂, Vm − b̂V −WV

)
˙̂
bΩ = γ

2 ΨRERY
(
Q̂−1,Υ

)
+γ
[
Y
(
Q̂−1, P̃ − P̂

)]
×

Y
(
Q̂−1,ΨPEP

)
˙̂
bV = γY

(
Q̂−1,ΨPEP

)
WΩ = 4

λ
kwΨRER−ΛR

1+Tr{M1M2}Υ

WV = Y

(
Q̂−1, kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)
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