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Force Sensorless Admittance Control for
Teleoperation of Uncertain Robot Manipulator
Using Neural Networks

Chenguang Yang
Jing Na

Abstract—In this paper, a force sensorless control scheme based
on neural networks (NNs) is developed for interaction between
robot manipulators and human arms in physical collision. In
this scheme, the trajectory is generated by using geometry vec-
tor method with Kinect sensor. To comply with the external
torque from the environment, this paper presents a sensorless
admittance control approach in joint space based on an observer
approach, which is used to estimate external torques applied by
the operator. To deal with the tracking problem of the uncertain
manipulator, an adaptive controller combined with the radial
basis function NN (RBFNN) is designed. The RBFNN is used to
compensate for uncertainties in the system. In order to achieve
the prescribed tracking precision, an error transformation algo-
rithm is integrated into the controller. The Lyapunov functions
are used to analyze the stability of the control system. The exper-
iments on the Baxter robot are carried out to demonstrate the
effectiveness and correctness of the proposed control scheme.

Index Terms—Admittance control, error transformation, force
observer, Kinect, neural adaptive control, neural networks (NNs),
robot.

I. INTRODUCTION

IN THE last few decades, robots have become widely
used in various fields, such as industry, service, and med-
ical [1]-[5]. The robot can not only improve the quality of
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life but also can improve work efficiency and complete work
that operators cannot finish under certain condition. However,
traditional operating methods of robot usually need to use the
external devices and softwares, and will bring inconvenience
to the operator and reduce the production rates. An alternative
method to make the robot interact with the human directly is
letting robot learn human skills.

Traditional motion capture methods require operators to fix
sensors on each joint of human body, but this will bring a
lot of inconvenience [6]. In recent years, the vision-based
motion capture scheme for motion recognition provides us
another idea to achieve this goal [7], [8]. Because of its conve-
nience and accuracy, this vision-based scheme has been widely
adopted in robotics [9]. This control scheme uses a camera
to capture human motion, which can avoid operators wear-
ing a large number of wearable accessories. In this paper,
the camera used for motion capture is Kinect (version 2.0)
developed by Microsoft Company [10], [11]. Due to an RGB
camera and depth sensor embedded in Kinect sensor, we can
get three-dimensional (3-D) coordinates of each joint of human
body. Based on this, we used a geometry vector-based method
proposed in [12] to calculate each joint angle of human arm
and generate a desired trajectory.

In practical teleoperation control system, robots may
encounter external force from the environment. One approach
to achieve compliant behavior is impedance control. The con-
cept of impedance control in physical human robot interactions
was introduced by Hogan [13]. Nowadays, this approach has
become a classical control approach in robotics. The core idea
of the impedance control methodology is to map generalized
positions and velocities to generalized force. When controlling
the impedance of a mechanism, we are controlling the force
of resistance to external motions that are imposed by the envi-
ronment. From a practical point of view, we usually view the
behavior of the robot as the pose of the end-effector, which is
defined in the Cartesian coordinates. Typically, the Cartesian
position and velocity are the input of the controller and the
motor torque is the output. Another approach is an admittance
control, which is widely used in industrial robots. As shown
in Fig. 1, admittance control is the inverse of impedance: it
defines motions that result from a force input. An admittance
control architecture is able to receive external force in each
joint as inputs and generate the new motion. Therefore, force
sensors which are applied to receive external force have been

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-5255-5559
https://orcid.org/0000-0003-3950-0451
https://orcid.org/0000-0001-7565-8788
https://orcid.org/0000-0002-3067-1580
https://orcid.org/0000-0002-3909-488X

YANG et al.: FORCE SENSORLESS ADMITTANCE CONTROL FOR TELEOPERATION OF UNCERTAIN ROBOT MANIPULATOR USING NNs

d
9 —>| Admittance L

N control

4.9

Robot 9.9
dynamics

Robot
dynamics

Position T
control

control

Fig. 1. Diagram of impedance and admittance control.

widely used in admittance control systems. The general idea of
measuring the external force is to fix force sensors on manipu-
lators. However, these sensors added to the system are fragile
and costly. For these reasons, the related techniques of esti-
mating external force have received great attention and various
schemes have been proposed. In [14], early estimation methods
for robot application have been presented. In [15], disturbance
observer approaches based on motor torques, joint angles, and
velocities have been analyzed. In [16], a sensorless robot col-
lision detection approach based on generalized momentum has
been introduced.

Under an admittance control, with the measurement of
external force, a desired trajectory will be modified. Then,
a modified desired trajectory is obtained and tracked. In
teleoperation control systems, tracking precision is of great
importance for robotic manipulation. Model-free control and
model-based control are the two main categories of controlling
a robot manipulator. Compared with the model-free control
methods, the model-based control methods usually have bet-
ter control performance [17]. However, due to existence of
uncertainties, it is hard for us to obtain an accurate dynamic
model of a robot [18], [19]. How to deal with uncertainties
has become a core issue in control design [20]. Generally,
one of the most commonly used methods is adaptive control
without prior information of system parameters. In [21], adap-
tation laws are designed to handle parametric uncertainties of
the system.

In recent years, with the development of the neural networks
(NNs) technology, adaptive control schemes with NNs have
been widely employed in many systems [22]-[25]. In [26],
NNs are integrated into control design to solve control problem
in discrete-time systems with dead zone. In [27], an adaptive
neural control is used to achieve a good result with unknown
prior knowledge of system dynamics. In [28], a novel adaptive
control scheme is presented for an autonomous helicopter and
an NNs mechanism is employed into system to identify the
unknown inertial matrix. NNs have a variety of models, one of
the widely used network models is radial basis function NN
(RBFNN), which has a good generalization ability and fast
learning convergence speed. In [29], RBFNN is used to esti-
mate unknown functions in WMR system. In [30] and [31],
NN has been applied to handle the system uncertainties to get
a desired result. In [32], RBFNN is to approximate unknown
dynamics in the robot system. In [33], RBFNN is employed
to approximate unknown functions in nonlinear systems. NNs
are also used in other areas, such as image processing [34],
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Fig. 2. Diagram of the control system.

function approximation [35], [36], and optimization [37]. The
system uncertainties can also be estimated by other intelligent
tools, such as fuzzy logic system, etc. [38], [39]. In prac-
tice, the rigorous precision requires that both the transient and
steady performance should be taken into account. However,
most general adaptive control methods can only guarantee
the steady performance, while difficult to solve the transient
problem [40]. For this purpose, we use error transformation
technique proposed in [41] and [42] to govern the tracking
errors into a desired level.

The contributions of this paper are presented as follows.

1) Combination of the admittance control and the force
observer shows an effective way to make the robot have
a compliant behavior subject to the external force.

2) Kinect sensor is used to generate trajectory to teleoperate
the robot. The error transformation technique and NN
are used in teleoperation system so that both transient
and stable tracking performance are guaranteed.

3) Analysis of signals in the admittance control system are
given to prove that all signals are bounded.

The rest of this paper is structured as follows. After giving the
preliminaries of the system in Section II. Section III gives the
design and analysis of the control design. The experimental
results are given in Section IV, before a conclusion is drawn
in Section V.

II. PRELIMINARIES
A. System Configuration

The teleoperation control system is shown in Fig. 2. Using
the Kinect sensor, a desired trajectory will be generated.

Kinect V2 is a human—-machine interaction device launched
by Microsoft. It contains an RGB camera and depth sensor,
which are based on IR emitters. The RGB camera is used
to shoot color images within the scope of view and the depth
sensor can obtain and analyze spectra and create depth images
of the human body.

Without external torque from the environment, the robot
will follow the trajectory of the operator. If external torque
exists, the desired trajectory will be modified. The robot will
track the modified trajectory affected by the external torque
from the environment.

B. Human Arm Geometry Vector Approach

Most geometry approaches are based on locations of the
movements. With Kinect sensor, each joint of human body
is represented by 3-D point in the Kinect coordinate frame,
which follows the right-hand rule, as shown in Fig. 4. The
Kinect sensor is regarded as the origin of the coordinate
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Fig. 3. Geometry model of human left arm.
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from [50].

Points representation in the Kinect coordinate frame modified

frame and the z-axis is consistent with the direction of Kinect
induction. The geometry model of human left arm is built in
Fig. 3.

Since the vector method is not applicable to the Kinect coor-
dinate frame, we should map the coordinate frame of Kinect
to the mathematical coordinate frame.

From the skeleton data, we can transform two different
points into a vector, which is in the mathematical coordinate
frame. The transformation can be provided as

ih T
AB = (x2 — X1, y2 — Y1, 22 —21) (D

where A(x1, y1, z1) and B(x2, y»2, z2) are the two different
points in the coordinate frame of Kinect.

After the vector of the mathematical coordinate frame is
obtained, based on the geometry vector approach [12], we can
calculate desired angle values using the vector angle formula

ViV,

- — .

cos<V1, V2> = % )
Vil - V2]

1) Calculation of Shoulder Angle: As shown in Fig. 3, the
shoulder yaw (£/DEA) can be obtained by calculating angle
between plane OEA and OED. The shoulder roll is the angle
of plane OEA and EAB.

The shoulder pitch angle (ZOEA) is the angle between vec-
tor EO and EA which can be calculated by passing EO and
EA into (2).

2) Calculation of Elbow Angle: There are two angles
related with the elbow joint. Elbow pitch (ZEAB) and elbow
roll is the angle between plane EAB and ABI.

3) Calculation of Wrist Angle: Now, we are coming to
solve angle of wrist. The wrist yaw angle is the angle between
lower arm and hand plane. The angle of wrist pitch can
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%
be viewed as the angle between vector )?; and Y7, we can
calculate it by employing following equations:

— — =

- > = = BK — BK x BI

Z1=Y1xX7, X1 =—.41= = (3a)
BK| \BK| x | BI|

Xs =k - Bl + k- BK (3b)

(Iq Bl 4k ~ﬁ(~)A_§ —0 (o)

’k1~§7+k2~3—1)<‘ — 1. 3d)

Until now, we get all seven joint angles. They are shoul-
der yaw, shoulder pitch, shoulder roll, elbow pitch, elbow
roll, wrist yaw, and wrist pitch, which can be defined as

qd1, a2, 943, 9d4, 945, 9d6, and qq7.

C. External Torque Estimation: Observer Approach

In this section, the way to estimate an external torque in
joint space is using a force observer based on the gener-
alized momentum approach. Compared with the traditional
methods requiring computation of joint accelerations or the
inversion of the inertia matrix [43], this observer avoid reduce
the computing burden and noise with the acceleration of joint
angle.

The system dynamics can be described by

M(@)g+C(q, Pg+G(@) +Text =T 4)

where g € R" and g € R" denote the joint angle and velocity
vector, C € R™", M € R™", and G € R" are the system-
atic dynamics, representing Coriolis matrix, inertia matrix, and
gravity load, respectively. 7ex € R" is the external torque on
joints, and 7 is the joint torque on robotic arms. In [43], the
generalized momentum is expressed as

p=M(q)q. S)
Its time derivative form
p = Mg+ Mj. (6)
Substituting (6) into (4), we have
p=Maq.Pi+7-C3qj—G@—Tx. (D
Then, the inertia matrix M and can be written as [44]
M=cC+cC. ®)
Substituting (8) into (7) results in
p=C"4.Pg+7~G@ — Text. )

The advantage of this method is that (9) based on the general-
ized momentum does not involve joint angle accelerations g.
In the end, the external torque can be modeled as

Text = ArText + W (10)

where w is the uncertainty, w, ~ N(0, Q). Usually, A; is
defined as A; = 0,x,. However, a negative diagonal matrix
can reduce the offset of the estimation of disturbances. Then,
(9) can be reformulated as

P =1U— Text (11)
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approach.
where

u=1+C"(q qg—Gg). (12)

The above equations can be combined and reformulated in the
state-space form

p _ 0, —Iy pP I 0
[fext]_[on A,:||:rem:|+|:()ni|u+|:w1:|
—_—— —_—— ——— —_———

X A X B w
_ p
y—[ln On]|:_’: :|+V (13)
~— —— | ‘ext
Ce

where v is the measurement noise v ~ N(0, R;). It can be
easily proved that this system is observable. Since g and g are
able to be measured, the generalized momentum defined in (5)
can be regarded as a measurement. Then, a state observer is
designed

(14)

X =Ak+ Bou+ L(y-3)
y = Ccx.

Solving the L is to design a gain matrix for the system, and
L can be calculated as
L=PCTR! (15)

where the matrix P can be calculated by the algebraic Riccati
equation (ARE) [45]

AP +PAT —PCTRI'CP+0.=0 (16)
where Q. is the uncertainty of the state, written as
Q. = diag([0, O-1). a7

A schematic overview of the force observer is shown in
Fig. 5. As shown in Fig. 5, the output y = C.x(f) is com-
pared with C.x(z). Their difference, passing through the gain
matrix L, is used as a correcting term. If the gain matrix L is
properly designed, the difference will drive the estimated state
to actual state. From the above analysis, we can see that the
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estimation of states can be obtained from observer, which can
be written as
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o
D. Admittance Control

In this section, an admittance control method using the
estimated external torque is presented. We assume that the
manipulator will modify its desired trajectory when the exter-
nal torque is imposed on the robot. In this case, we use an
admittance control to receive the external torque. Based on the
measurements of the external torque Zex and the initial desired
trajectory g4 obtained from the Kinect, a modified trajectory
qr is generated. Therefore, the controller has the causality of
mapping Text to ¢,. Generally, an admittance model can be
described as

Text = f(qr, qa) (19)

where g; € R’ is the vector of joint angles obtained from
Kinect and g, € R’ is the vector of joint angles affected by
external torque; and f(-) is the mapping function. A simple
admittance model is K;(gr — qq) = Text, Where K is a positive
constant.

E. RBFNN

RBFNN is an artificial NN and has been widely used as
function approximators in control engineering. It is proved
that any smooth function can be approximated by the RBFNN
within a compact set Q2 [46]. It can be expressed as follows:

P(Znn) = WIS(Zan) + &(Znn) (20)

where Zyn € Q2 C R™ is the input vector, W is the
weight matrix, and [/ represents the number of neurons.
S(ZnN) = [51(ZNN), $2(ZNN), - - -, ST (ZNN)]T is the basis func-
tion of RBFNN, and s;(ZnN) is commonly chosen as the
Gaussian function with

—(Znn — u) T (Zan — us
Si(ZNN)ZeXP|: (e u')2(NN u’)}, i=1,...,1

0j

21

where u; is a center of the node and o; denotes the variance.
If the number of neurons [ is sufficiently large, there is a
weight matrix W* and an approximation error £*(ZnN)

(Zan) = WTS(Zan) + £ (Zan).

If the center of the node is chosen appropriately, the approxi-
mation error £*(ZnN) is bounded and could be minimized

W* = arg &igm{ sup|p(Zan) — WTS(Zn) | }- (23)

(22)

The ideal weight matrix W is unknown. In the practical
system, the weight matrix W is replaced by the estimation W.
Thus, (20) can be described

() = WTS(Znn) + £(Znn).

The weight estimation errors are W = W* — w.

(24)
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III. CONTROLLER DESIGN

The controller is designed to make the robot can follow the
desired trajectory in the joint space generated by the Kinect,
as shown in Fig. 2. The NN is used to estimate uncertainties
of the model and ensure the steady state of the system.

A. Error Transformation

We define tracking errors of the manipulator

€q =4 —dqd
ev=q—v (25)

where ¢ will be defined later. The objective is to make
the actual joint trajectory ¢ track the desired joint trajec-
tory g4 effectively. At first, we define a smooth and bounded
performance function

p(1) = (po — poc)e ' + poo (26)

where the parameters of pp, poo, and p are the positive con-
stants. To guarantee that the tracking error can meet the tran-
sient performance, we introduce the following transformation

functions:
eqi(t)
(1) = p(OR;| Pi[ =L 27
eql() p(0) 1< l<p(l) )) (272)
ﬁﬁ’gx)p‘(g, if e, (0) >0
Ri() =\ gexp(n-1 - (27b)
1+e—>(p(t)’ if eq,-(O) < 0.
R;(-) is the inverse function of P;(-)
In=< if ¢,;(0) > 0
(P — - qi
it = {mgit, if e4i(0) < 0 (28)

where o is a positive constant. According to the function
R;(-), if the n;(¢) is bounded, the bounds of the tracking error
e4(1) can be defined: —op(?) < e4() < p(¢) with e4() > 0
and —p(?) < e4(t) < op(t) with e¢4(t) < 0. Therefore, the
overshoot A in transient phase is bounded by

—0p(0) < A < p(0) if ¢,(0) >0

—p(0) < A <op(0) if ¢,(0) <0 29)

and the amplitude of tracking errors in stable state will
be within in max [ps0, 0po] and the maximum overshoot
and undershoot of transient performance are bounded in
[opoi, —opoi]- Usually, the settling time is the shortest time
that the system achieve and maintain the steady state error
within the 100% =+ 5% range, then the settling time is less
than (max(1, o)/p)In(po — Poo/1.05p). Therefore, we can
control the transient and stable state of the system by setting
proper parameters. From (27a), we define

eqi(1)
i(0) = P,-< : ) (30)
! p (1)
Then, the desired joint velocity vld(t) is designed as
. (1)
v () = —kip(ni0) + G @) + %eqi(n (31)

where ki is a positive constant.
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We define a Lyapunov function Vi = (1/2)n7 (t)n(). Its
differential form is

A TOPO0)e, .
iy = TOPOWIW o bmenme  (32)
(D)
where
P(n(1) = diag(P1(Ri(n1 (1)), ..., PaRu(1a(1))))  (33a)
v = [vf,vg, ...,vg]. (33b)

B. Neural Network and Joint Velocity Control

The goal of joint velocity control is to make the velocity
error e, (¢) as small as possible. Substituting the differentiation
of n;(t) into (4), we can obtain that

M(g)é, + C(g, ey + G'(q) = T+ M(@)V* + Clg, " (34)

where G'(¢) = G(g) + ([P((®)n(®]/p 1))
Design the control torque

v = —ke, — M@ - Cq, ' = (@) + Texr: (35)
Applying the NN approximation technique, we have
M(q) = Wi Su(q) + e
Clg. §) = W'Sc(q. §) +ec
Glg) = W§'Sa(@) + e (36)

where WIT,IT, WéT, and W(*;T are the ideal weight matrix. The
estimation of M(q), C(q, q), and G(q) are based on RBFNN
can be written as

M(q) = W} Su(q)
C(g, §) = WESc(q. )

G(g) = WiSc(q). 37)
Then, the dynamics can be rewritten as
M@, + Cq. ey + kae, + LMD
o)
= (M(g) - #@)¥ + (Ca.9) - C(q. )"
+ (6@ = G@) + (foxt = 7ex) (38)

where M (@, é‘(q, q), and G(q) are the estimation matrix.
The right-hand side of the equation can be expressed as
W(.)S(.), where W(.) = W(.) — W(.).

Considering the  Lyapunov  function V; =
(1/2)(e)T (M (q)e,, its differential form with respect
to time is

Vo = (1/2)(en) " M(g)ey + () M(g)é,
P (@)n (1)
p(0)
+ () WigSud? + () WS + (e) WESe (39)

= —kallevlls — (en)Ter + (ev)

where ef = (Text — Text)-
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The updating law of the weight matrix W is
V'AVM = Oy (SM\'/d(ev)T - VMWM>
V'AVC = ®C<chd(€v)T - VCWC)
We = ®G<SG(eV)T - J/GWG)

where ® and y are the positive constant specified by the
designer.

(40)

C. Stability Analysis
Let us construct the overall Lyapunov function
_ [ 1 (o1
V=Vi+V,+ ztr Wy Oy Wi ) + Etr We®L We
+ ltr(WT®_1W ) 41
5 ¢9c W6)- 41
The derivative of V is calculated by
V= —kin" PO )n() — kalles]l3 — (en)Ter
Tvi/T Ty T T T
+ (ey)" Wy Sy + (ey)” WeSc + (ev)” WiSe
— tr(W;I@;,l WM) — tr(Wg@El"i/C> — tr(Wg@c_;lWG>

< kT (OPmO)IN() — kalleylls — (ev) er
— )/Mtr(WATlWM) — ydr(WEWC) — yGtr<V~V(T;VV(;).

(42)

According to the definition of function P(n(t)), we can
obtain nT(t)P(n(t))n(t) >2/(1+ o)||n(t)||2. Considering the
Young’s inequality [47]

- - 1 . 1
Wl (w* — W) < —Euwn2 + 5||W*||2

1 1
— (en)Tep < Enevn2 + §||ef||2o (43)

Then, (42) can be derived
. 1
V< =2ki/(1+0)n@)* - (kz - —)Ilevll + —IIefII
1
~ 5ytr(W Wil + WEwEh + wirwgh)
1 o . .
~ 5ytr(WAZWM + WEWe + WEWG). (44)
For k» > (1/2), if the inequality satisfies the following
requirements:

1
Kk < =2kt /(14 o) In®]* — (kz —~ E)nevn2

1 g U o~
+ Eytr(WAT,IWM + WEWe + WEWG) (45)
where « =
have V <0.
_We define the state variable & composed of 7n(¢), e,, and
W, and it can be expressed as

V() <0 Y[E] >0

A/2)llefl® = (1/2)ytr(WTWE)). Then, we

(46)
VE) >

where o is a positive constant.
0 VIEl > o.
Let us choose 0 < V(§) < B < ¢, where B8 and c are

the positive constants. Define that 2, = {V(§) < B} and

Conversely,
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Q. ={V(§) < ¢}, and we have
E={B=V(E®) =c}=Q — Q. (47)

We see that V(&) with respect to time is negative over &,
that is

V(E) <0 VEe€ B (48)

In other words, the state variable &(¢) that outside the set 2,
will enter into €2, within a period of time, and cannot escape
Qp because V is negative on/outside its boundary V(&) = g,
as shown in Fig. 6.

Theorem 1: Using the uniformly ultimately bounded (UUB),
errors 71(t), e, and W(.) will fall into the set €2, which is
defined as

Q=1 ( ).
yu W |I? n yellWell? n YvellWell*
2K 2K 2K
(f2-3)
t 49
+ - llevll* +(1+ v In(|? (49)

As shown in Fig. 6, points on each axis of the coordinate
are defined as

( ||n<z)||2 =K, n(1) =

2
(kz - —>|I€v|| =K =0

y|[Wol* =2« W = u. (50)

From the above analysis, we can conclude that the || (?)]],
Wl F, and e, are bounded. According to (25) and (26a), we
can obtain the tracking errors e, can be bounded, which can
guarantee the transient performance. Then, the g = ¢; + g4 is
bounded.

IV. EXPERIMENT STUDIES

In this section, experiments studies are given to demon-
strate the effectiveness and correctness of the proposed control
scheme. The experiment is based on the Baxter Research
robot by Rethink Robotics, as shown in Fig. 7. The Baxter
robot is a two-armed robot with 7 degrees of freedom
(so, 81, €0, €1, wo, w1, wp). Each joint is driven by a series elas-
tic actuator (SEA), which enable the robot have human-like
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Fig. 8. Operator is in a static position and keep his right arm in the horizontal
state. The right figure presents the variation of joint angle in successive frames.

behaviors. The robot is controlled and linked to a computer
and runs on the robot operating system (ROS).

In the experiment, the robot is interacting with the environ-
ment and the external torque is applied at the end-effector. For
the right arm of the robot, we initialized it in horizontal pos-
ture. Considering simplicity and generality, we use two joints
(e1, wo) and positions of other joints are locked in the exper-
iment. The desired trajectory generated by using the Kinect
sensor is the input signal of the control system and will be
modified by the external torque.

A. Test of Geometry Vector Performance

Two kinds of experiments are primarily implemented to
test the performance of kinematics geometry vector-based
approach. In the course of the experiments, only the operator
stands in front of the Kinect about 3 m. The first experi-
ment needs the operator to keep in a static position in front
of the Kinect sensor and his left arm in the horizontal state.
The experimental result is shown in Fig. 8, it is clear that the
variation of the seven joint angles are smooth and accurate.
Although there are some small fluctuations, the fluctuations
are so small that can be ignored. The reason for fluctuations
is that the points of the joints detected by the Kinect are not
absolutely stable and the operator cannot ensure that the arm
is completely stationary in the course of the experiment.

In the second experiment, the operator is in a dynamic action
and reciprocate rotation of his elbow from the origin position
to final position with a low speed. Using the same method,
the data is sent to MATLAB for processing.
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Fig. 9. Operator rotate his arm circularly with a low speed from origin
position to final position.

As shown in Fig. 9, it is obvious to find that the varia-
tion of elbow pitch angle is periodic and regular in line with
the movement of the arm. Due to the jitter in the process
of elbow movement, there will be some tiny fluctuations in
the curve. The overall trend of angle is correct and satis-
factory. According to the above two kinds of experimental
results, the overall performance is consistent with our expec-
tation and satisfactory, which verify the correctness of our
proposed method.

B. Test of Neural-Learning Tracking Performance

This set of experiments are mainly to demonstrate the
effectiveness of the neural adaptive controller. The desired
trajectory is obtained from the Kinect sensor. The desired tra-
jectories are elbow pitch joint and wrist roll joint, respectively,
where t € [0, ] and #; = 20 s, as shown in Fig. 10. The
initial values of joint angle are set to be: g; = O rad and
q> = 0.1 rad, and the initial values of joint velocity are set to
be: g1 = 0 rad/s and ¢» = 0 rad/s. To guarantee the transient
performance, the parameters of the performance functions are
set to be: pg = 0.2 and pso = 0.03; and o = 5. Therefore, the
error is bounded in [—op(f), op(¥)]. The control gains are
selected as k; = [12, 1] and k; = [15, 1]. The initial weight
matrices are: VAV,E(O) =0 e R, VAVE(O) =0 e R¥>" and
Wl =0eRixn,

Comparative experiments are carried to test the tracking
performance with three different methods. The experimental
results are shown in Figs. 10 and 11. As shown in Figs. 10(a)
and (b) and 11(a) and (b), the actual trajectory can follow the
desired trajectory well and the tracking errors can converge to
the prescribed bounded defined in (26) in both transient and
stable phase. From Fig. 11(a) and (b), we can see that there
is no overshot of each joint under the proposed controller.
Fig. 12 shows the convergence of NN weight norm of each
joint and the control inputs presented in Fig. 13 are bounded.
For the purpose of comparison, we carry out two different con-
troller proposed in [48] and [49], respectively. Fig. 10(c)—(f)
presents the tracking performance and the tracking errors are
in Fig. 11(c)—(f). From Fig. 11(c) and (d), under the controller
in [48], the tracking errors violate the prescribed bounds and
errors in stable phase are relatively larger than the proposed
controller. From Fig. 11(e) and (f), under the controller in [49],
we can observe that without transient constraint control, the
values of overshot are about 8.7% and 10.9% and the values
of settling time are 2.2 and 1.47 s for each joint, respectively.



YANG et al.: FORCE SENSORLESS ADMITTANCE CONTROL FOR TELEOPERATION OF UNCERTAIN ROBOT MANIPULATOR USING NNs

—desired
- - -actual

o
=) 5

magnitude(rad)

I
&

t[s]
(a)

—desired
---actual

magnitude(rad)

t[s]
(b)

—desired
-~ -actual

magnitude(rad)

t[s]
(©)

—desired
- - -actual

magnitude(rad)

o
o

0 5 10 15 20
t[s]

(d)

—desired
---actual

magnitude(rad)

t[s]
(e)

—desired
-~ -actual

magnitude(rad)

05 . . . ,
0 5 10 15 20

t[s]
()

Fig. 10. Results of tracking performance of joints with three different meth-
ods. (a) Tracking performance of joint 1 with proposed controller. (b) Tracking
performance of joint 2 with proposed controller. (c¢) Tracking performance of
joint 1 with under controller in [48]. (d) Tracking performance of joint 2
with under controller in [48]. (e) Tracking performance of joint 1 with under
controller in [49]. (f) Tracking performance of joint 2 with under controller
in [49].

The experimental results show that our proposed controller
can guarantee the tracking errors never violate the prescribed
bounds in both transient and stable stage.
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Fig. 11. Results of tracking errors of joints with three different methods.
(a) Tracking error of joint 1 with proposed controller. (b) Tracking error of
joint 2 with proposed controller. (c¢) Tracking error of joint 1 with under
controller in [48]. (d) Tracking error of joint 2 with under controller in [48].
(e) Tracking error of joint 1 with under controller in [49]. (f) Tracking error
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C. Test of Admittance Control Performance

The last experiment is mainly about the test of performance
of an admittance control. In the experiment, the external torque
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is set by the designer and applied at the manipulator from 6 s to
16 s. An admittance control is designed to track the modified
trajectory affected by the external torque, which is estimated
by the observer based on the generalized momentum approach.
The experimental results are presented in Figs. 14-17. As
depicted in Fig. 14, the desired trajectory g4 of joint wy will
be modified by the external torque to enable the robot have a
compliant behavior. The desired trajectory of joint e; will not
be modified for the reason that the external torque is applied
in the vertical direction and the trajectory of joint e is in the
horizontal direction. The tracking error under an admittance
control is shown in Fig. 16 and the estimation of the external
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torque is presented in Fig. 17. From the figures, the experi-
mental results demonstrate the effectiveness of the proposed
admittance control method.

V. CONCLUSION

In this paper, we proposed a sensorless control scheme
for uncertain robot manipulator using NNs. We used a kine-
matics geometry vector-based method to calculate each joint
angle of a human arm with Kinect sensor. The observer is
used to estimate the external torque, which in turn is the
input to admittance control. The error transformation method
is used to ensure steady state performance and transient
performance. The settling time, overshoot, and the final error
can be achieved by changing the parameters of the error trans-
formation functions. The RBFNN is employed to approximate
the uncertainties of the manipulator dynamics in the system.
The experimental results are provided to demonstrate the effec-
tiveness of our developed methods. In the future, more effort
will be taken to validate the proposed methods.
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