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Solving Many-Objective Optimization Problems
via Multistage Evolutionary Search

Huangke Chen , Ran Cheng , Member, IEEE, Witold Pedrycz , Fellow, IEEE, and Yaochu Jin , Fellow, IEEE

Abstract—With the increase in the number of optimization1

objectives, balancing the convergence and diversity in evolution-2

ary multiobjective optimization becomes more intractable. So3

far, a variety of evolutionary algorithms have been proposed to4

solve many-objective optimization problems (MaOPs) with more5

than three objectives. Most of the existing algorithms, however,6

find difficulties in simultaneously counterpoising convergence and7

diversity during the whole evolutionary process. To address the8

issue, this paper proposes to solve MaOPs via multistage evolu-9

tionary search. To be specific, a two-stage evolutionary algorithm10

is developed, where the convergence and diversity are highlighted11

during different search stages to avoid the interferences between12

them. The first stage pushes multiple subpopulations with differ-13

ent weight vectors to converge to different areas of the Pareto14

front. After that the nondominated solutions coming from each15

subpopulation are selected for generating a new population for16

the second stage. Moreover, a new environmental selection strat-17

egy is designed for the second stage to balance the convergence18

and diversity close to the Pareto front. This selection strat-19

egy evenly divides each objective dimension into a number of20

intervals, and then one solution having the best convergence in21

each interval will be retained. To assess the performance of the22

proposed algorithm, 48 benchmark functions with 7, 10, and 1523
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objectives are used to make comparisons with five representative 24

many-objective optimization algorithms. 25

Index Terms—Evolutionary algorithm, many-objective 26

optimization, multistage optimization. 27

I. INTRODUCTION 28

REAL-WORLD optimization problems, such as paral- 29

lel machine scheduling [1], hybrid electric vehicle 30

optimization [2], and workflow scheduling in clouds [3], 31

often need to simultaneously optimize multiple conflicting 32

objectives, known as the multiobjective optimization problems 33

(MOPs) [4], [5] 34

Minimize F(x) = [f1(x), f2(x), . . . , fm(x)] 35

s.t. x ∈ � (1) 36

where x = (x1, x2, . . . , xn) represents the decision vector, and 37

� ⊆ R
n stands for the set of all the feasible decision vec- 38

tors. The symbols n and m denote the number of decision 39

variables and optimization objectives, respectively. The func- 40

tion fi(x) ∀i ∈ {1, 2, . . . , m} is used to map � to R, i.e., 41

fi : � → R. Specifically, an MOP with four or more objec- 42

tives (i.e., m ≥ 4) often refers to a many-objective optimization 43

problem (MaOP) [6]. 44

Due to the conflicts among the objectives of MOPs, improv- 45

ing one objective typically leads to the deterioration of the 46

others [7]–[9]. Thus, there exists no single solution that can 47

minimize all the objectives [10], [11], but a set of compromise 48

solutions making tradeoffs among different objectives can be 49

obtained. Regarding two solutions x1, x2 ∈ � of an MOP, x1 50

is considered to dominate x2 (expressed as x1 ≺ x2) if x1 51

is better than or equal to x2 in all the objectives and x1 is 52

strictly superior to x2 in at least one objective. One solution 53

x∗ ∈ � is Pareto optimal if and only if there is no solution 54

dominating it. In general, all the Pareto-optimal solutions com- 55

prise the Pareto optimal set, where the Pareto set (PS) and the 56

Pareto-front (PF) are the images in the decision space and the 57

objective space, respectively. 58

To obtain the Pareto optimal solutions for MOPs, a variety 59

of multiobjective evolutionary algorithms (MOEAs) have been 60

proposed over the past three decades [12], [13]. These existing 61

algorithms are broadly divided into three categories: 1) Pareto 62

dominance-based; 2) indicator-based; and 3) decomposition- 63

based [12]. Pareto dominance-based MOEAs are often first 64

sort the candidate solutions into many nondominated fronts, 65

and then employ a secondary criterion to sort the solutions in 66

the last accepted front. The classical works of this category 67
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are NSGA-II [14], MOPSO [15], etc. Regarding indicator-68

based MOEAs (e.g., HypE [16], AR-MOEA [17], BiGE [18],69

and others), a smaller number of indicators (e.g., one or70

two) related to the objective number are often used to sort71

the candidate solutions. For decomposition-based algorithms72

(e.g., MOEA/D and its variants [13], [19]–[21]), they parti-73

tion the original MOP into many subproblems to be solved in74

a collaborative manner.75

Although the existing MOEAs exhibit excellent76

performance in solving MOPs, their performance suffers77

from the curse of dimensionality with respect to the number78

of objectives in MaOPs, which can be attributed to three79

main reasons. First, the objective space of an MaOP expands80

exponentially with increasing number of objectives [22], [23],81

thus, resulting in a sparse distribution of the candidate solu-82

tions in the objective space, which poses a challenge to the83

diversity assessment [10]. Second, the increasing number of84

objectives leads to the dominance resistance [17], [24], [25],85

i.e., the percentage of nondominated candidate solutions in a86

population will sharply increase as the number of objectives,87

causing the failure of the dominance-based environmental88

selection strategies in MOEAs (e.g., NSGA-II, MOPSO, etc.)89

in distinguishing the candidate solutions. In addition, the PFs90

of MaOPs have various shapes, which will further challenge91

the tradeoffs between the convergence and the diversity. For92

example, some recent works have been demonstrated that the93

performance of the decomposition-based algorithms is greatly94

influenced by the PF shapes of MaOPs [17], [26].95

To remedy the deficiency of MOEAs in solving the MaOPs,96

so far, a number of many-objective optimization algorithms97

(MaOEAs) have been reported [10], [12], [22], [27]. These98

MaOEAs typically follow the framework of MOEAs, mostly99

aiming to simultaneously strike a balance between conver-100

gence and diversity during the whole evolutionary process.101

However, as pointed in [10], despite that the convergence102

and diversity are two key factors to the performance of an103

MaOEA, they play different roles during different stages of104

the evolutionary process. Specifically, since the population of105

an MaOEA at the early search stage is still far from con-106

vergence, a higher convergence pressure is more desirable to107

push the population toward the PF. By contrast, at the later108

search stage, since the solutions are already near the PF, a109

wider spreading of the candidate solutions (i.e., diversity) is110

more preferable. Therefore, this motivates us to partition the111

whole evolutionary process into two stages, and the conver-112

gence is emphasized at the first stage, then the balance of113

convergence and diversity close to PF is emphasized at the114

second stage. This can avoid the negative effect of potential115

conflicts between the convergence and diversity. In summary,116

the key contributions of this paper are as follows.117

1) A novel two-stage evolutionary algorithm, named TSEA,118

is proposed to partition the whole evolutionary search119

process into two stages. The first stage leverages120

multiple populations to accelerate the convergence121

toward the PF, followed by the balance of convergence122

and diversity at the second stage.123

2) We design a novel environmental selection scheme for124

the second stage in TSEA to balance the convergence125

and diversity. This selection scheme evenly divides each 126

objective dimension into a number of intervals and 127

retains one candidate solution having the best conver- 128

gence from each interval. 129

3) We conduct extensive experiments to compare the 130

proposed TSEA with five representative algorithms on 131

48 test instances with various PF shapes, where the 132

objective number ranges from 7 to 15. The experimen- 133

tal results demonstrate the superiorities of the proposed 134

TSEA. 135

This paper is organized as follows. The recent works on 136

MOEAs and MaOEAs are summarized in Section II. Then, 137

the proposed TSEA is described in Section III, followed by 138

extensive studies to verify and quantify the superiority of the 139

TSEA. At last, Section V concludes this paper and provides a 140

challenging direction. 141

II. RELATED WORK 142

Over the past three decades, intensive attention has been 143

given to the area of multiobjective evolutionary optimization, 144

and a number of MOEAs have been developed and improved. 145

Most existing MOEAs have focused on environmental selec- 146

tion strategies for balancing convergence and diversity. On 147

the basis of the environmental selection strategies, the exist- 148

ing MOEAs are roughly grouped into the following three 149

classes [12], [28]: 1) Pareto dominance-based; 2) indicator- 150

based; and 3) decomposition-based. 151

For the Pareto dominance-based MOEAs, they first sort 152

solutions into a series of nondominated levels are based on 153

their dominance relationships, and then employ a secondary 154

criterion to sort solutions in the last accepted level. The rep- 155

resentative MOEAs of this category are the NSGA-II [14], 156

PESA-II [29], MOPSO [15], and SPEA2 [30]. Besides, the 157

Pareto dominance-based MOEAs have been widely used to 158

solve various practical problems. For instance, Chen and 159

Chou [31] modeled the crew roster recovery problems as 160

multiobjective constrained combinational optimization prob- 161

lems and proposed a new version of the NSGA-II to search 162

the Pareto solutions. To optimize the crude oil operations, 163

Hou et al. [32] improved the NSGA-II using a new chro- 164

mosome to model the feasible space. These algorithms show 165

promising performance in solving problems having two or 166

three objectives. Nevertheless, when increasing the number 167

of objectives in MaOPs, the candidate solutions in a pop- 168

ulation often become incomparable with respect to their 169

dominance relationships, which severely deteriorates their 170

performances [25], [33]. To address the drawback of the 171

Pareto dominance in distinguishing candidate solutions with 172

many objectives, some new versions of Pareto dominance 173

relation are designed, such as corner-sort-dominance [34], 174

θ -dominance [33], grid-based dominance [35], fuzzy Pareto 175

dominance [36], and alike. In addition, Chen et al. [37] 176

proposed a hyperplane-assisted strategy to distinguish the 177

nondominated solutions for many-objective optimization. 178

The indicator-based MOEAs often compare solutions using 179

low-dimensional indicators (e.g., a single indicator [17] or 180

two indicators [18]) instead of using their objective vectors 181
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directly. For instance, Zitzler and Künzli [38] defined a binary182

performance indicator to measure the solutions, and then183

designed a framework for indicator-based evolutionary algo-184

rithms. Beume et al. [39] combined the hypervolume indicator185

and the concept of nondominated sorting to form a selec-186

tion strategy. However, the computation of the hypervolume187

indicator is time consuming when the number of objectives188

is large. To reduce the computational time of hypervolume,189

Bader and Zitzler [16] employed the Monte Carlo simulation190

for the hypervolume calculation. Bringmann et al. [40] empir-191

ically analyzed the performance impact of hypervolume-based192

Monte Carlo approximations on MOEAs, and concluded that193

the performance of MOEAs does not suffer from the inex-194

act hypervolume. However, with the increasing number of195

objectives, the hypervolume calculation is still considerably196

expensive. Recently, Tian et al. [17] developed a new MOEA197

on the basis of an improved inverted generational distance198

indicator, and then designed a strategy to adaptively alter the199

reference vectors according to the indicator contributions of200

candidate solutions in the external archive. Zhou et al. [41]201

designed a co-guided MaOEA and used an indicator ε+I and202

reference points to improve the convergence and diversity.203

Li et al. [18] designed two indicators to, respectively, measure204

the convergence and diversity of the candidate solutions, and205

then employed the nondominated sorting method to balance206

the convergence and diversity based on these two indicators.207

The decomposition-based MOEAs employ a set of weight208

vectors to decompose the MOP into a number of sub-209

problems, which are solved in a collaborative way [13].210

For instance, Zhang and Li [19] suggested the MOEA/D,211

which is among the most representative algorithms of this212

type. Wang et al. [42] suggested a preference-inspired algo-213

rithm to search interesting solutions for decision makers.214

Li et al. [43] combined the dominance-based strategy into215

the decomposition-based MOEAs to achieve good trade-216

offs between the convergence and diversity. To adapt the217

MOEA/D to deal with the MOPs having complex PF shapes,218

Qi et al. [44] designed a strategy to adaptively adjust219

the weight vectors according to the geometric relation-220

ship between the weight vectors and the optimal solutions.221

Wang et al. [9] also proposed an adaptive adjustment strat-222

egy to adjust weight vectors for MOEA/D on the basis of223

the distribution of population located in the objective space.224

Wang et al. [45] demonstrated the importance of p-value in225

the Lp methods and designed a Pareto adaptive scalarizing226

strategy to find the near-optimal p-value. Cai et al. [46] sug-227

gested to use the angles between the objective vectors to228

improve the performance of MOEA/D in maintaining diver-229

sity. Cai et al. [47] proposed a constrained decomposition230

with grids to avoid the decomposition-based MOEAs being231

sensitive to the shapes of PFs. Elarbi et al. [48] designed a232

decomposition-based dominance relation and a diversity mea-233

surement for many-objective optimization. Wang et al. [49]234

used a localized weighted sum strategy to improve the235

performance decomposition-based MOEA in solving noncon-236

vex problems.237

A new direction of the decomposition-based approach238

is to divide the objective space of an MOP into many239

subspaces using a set of reference vectors, and then evolve 240

the subpopulation belonging to each subspace coopera- 241

tively. The classical algorithms in this branch are the 242

MOEA/D-M2M [20], MOEA/D-AM2M [50], and RVEA [10]. 243

Chen et al. [51] proposed an indicator to measure the con- 244

tribution of each subspace, and then designed an adaptive 245

strategy to allocate computational resources for each sub- 246

space. To deal with the complicated PF shapes, Liu et al. [50] 247

designed a new strategy to dynamically adjust the subregions 248

of each subproblem on the basis of the obtained solutions. 249

Kang et al. [52] improved the MOEA/D-M2M by designing a 250

strategy to dynamically distribute computational resources to 251

each subproblem according to their frequency of updating the 252

external archive. 253

In summary, the aforementioned MOEAs strive to improve 254

the population convergence and diversity simultaneously dur- 255

ing the whole evolutionary process. However, emphasizing 256

diversity during the early search stage will naturally weaken 257

population convergence toward the PF, which is particularly 258

serious when the PF has a complex shape. To address this 259

issue, there also exist several works dedicated to solve MaOPs 260

by multistage strategies. For instance, Cai et al. [53] improved 261

the MOEA/D using a new strategy that first optimizes the 262

boundary subproblems to obtain the corner solutions, then con- 263

ducts the explorative search to extend the PF approximation. 264

Hu et al. [54] designed a two-stage strategy to first obtain 265

several extreme Pareto-optimal solutions, and then extend 266

these obtained solutions to approximate the PF. In addition, 267

Sun et al. [55] developed a two-stage strategy that strengthens 268

the convergence at the first stage using an aggregation method, 269

and then improves diversity using the decomposition-based 270

approach. Similar to the above works, the proposed TSEA in 271

this paper also partitions the whole evolutionary process into 272

two stages. Different from these existing works, the first stage 273

is proposed to push multiple subpopulations to different areas 274

of the PF, and then at the second stage, a new environmen- 275

tal selection strategy is designed to balance convergence and 276

diversity close to the PF. 277

So far, the angle-based methods have been widely used to 278

measure the diversity of the candidate solutions. For example, 279

the acute angles between solutions and reference vectors were 280

used to associate solutions to different subspaces to maintain 281

the population diversity [10], [20], [50]. Besides, the angles 282

among solutions in objective space were utilized to measure 283

the diversity of solutions [25], [56]. In the proposed TSEA, 284

the angles between the solutions are also used as the diversity 285

measurement. In addition, a new selection strategy is designed 286

for TSEA to select solutions from each objective dimension, 287

such that it can strike a good balance between convergence 288

and diversity. 289

III. TWO-STAGE EVOLUTIONARY ALGORITHM 290

The proposed algorithm TSEA is detailed in this section. 291

First, the main procedure of algorithm TSEA is given. Then, 292

we describe the proposed two-stage evolutionary strategy. In 293

the sequential, the novel environmental selection strategy is 294

elaborated. 295
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Fig. 1. Illustration of the proposed two-stage strategy. (a) At stage one,
the subpopulations P1, P2, . . . , PM are pushed close to the PF with respect
to a set of weight vectors and (b) at stage two, the candidate solutions are
diversified near the PF.

A. Main Procedure of TSEA296

Before describing the proposed TSEA in detail, we provide297

a visual example in Fig. 1 to illustrate the main idea. The stage298

one of TSEA will randomly initialize a series of subpopula-299

tions, denoted by P1, P2, . . . , PM in Fig. 1(a), and then pushes300

these subpopulations to different area of PF with respect to a301

set of weight vectors. After that the TSEA enters stage two to302

diversify the candidate solutions near the PF, which is shown303

in Fig. 1(b).304

The framework of the algorithm TSEA is given in305

Algorithm 1. The main inputs of TSEA are: the optimization306

problem; the maximum number of function evaluations; the307

size of the output population; the number of subpopulations308

and the size of each subpopulation; and the convergence309

threshold � for subpopulations. Similar to other evolution-310

ary algorithms [10], [22], the output of algorithm TSEA is the311

final population with N individuals.312

As shown in Algorithm 1, the proposed TSEA first finds313

the diversity-related decision variables, and the set Id is used314

to record all the diversity-related variables (line 1). Similar315

to [57] and [58], a decision variable is defined as diversity316

related if perturbing it only generates nondominated solu-317

tions. Then, M subpopulations with a size of N′ are generated318

randomly (lines 3 and 4). To accelerate the convergence of319

each subpopulation toward the PF at the first stage, each sub-320

population merely emphasizes the convergence, and we use321

different weight vectors to guide them toward different areas322

of the PF. Thus, an m-dimensional weight vector between 0323

and 1 is randomly generated for each subpopulation (line 5).324

The arrays bestF and conT are used to record the best fit-325

ness and convergence status of each subpopulation (line 7).326

For each subpopulation, the well-known simulated binary327

crossover (SBX) and the polynomial mutation (PM) operators328

are applied to generate a new subpopulation (line 12). With329

respect to the subpopulation Pk, if the new solution in the new330

subpopulation Qk has better fitness, it will replace the original331

solution in Pk (lines 13–15). The fitness of a solution p coming332

from subpopulation Pk is defined as Fit(p) = ∑m
i=1 Wk,i · fi,333

where Wk,i represents the ith element of weight vector Wk,334

and fi denotes the ith objective value of solution p. Note that335

pj
k and qj

k represent the jth solution in Pk and Qk, respectively336

(line 14). In addition, the best fitness of a subpopulation Pk337

Algorithm 1: Main Procedure of the Proposed TSEA
Input: MaOP; maximal number of function evaluations

(MFEs); population size N; number of
subpopulations M; subpopulation size N′;
threshold �;

Output: The final population A;
1 Id ← Find the diversity-related variables;
2 Initialize the used function evaluations as FEs←0;
3 for k = 1→ M do
4 Initialize a subpopulation Pk with size N′ randomly;
5 Randomly generate a m-dimensional vector Wk

between 0 and 1;

6 A← ∅;
7 bestF1×M ←+∞; conT1×M ← FALSE;
8 while FEs < MFEs do
9 for k = 1→ M do

10 if conT(k) ==TRUE then
11 CONTINUE;

12 Qk ← SBX+PM(Pk);
13 for j = 1→ N′ do
14 if Fit(pj

k) ≥ Fit(qj
k) then

15 pj
k ← qj

k;

16 if |bestFit(Pk)− bestF(k)| < � then
17 conT(k)← TRUE;
18 A← A

⋃
Pk;

19 Update A by removing dominated solutions;
20 else
21 bestF(k)← bestFit(Pk);

22 if all the elements in conT are TRUE then
23 R← Apply SBX and PM operator on Id of A;
24 A← EnvironmentalSelection(A

⋃
R, N);

is denoted as bestFit(Pk), i.e., bestFit(Pk) = minp∈Pk Fit(p). 338

For a subpopulation, it is deemed to be converged in case the 339

improvement of the best fitness among all the individuals is 340

lower than the predetermined threshold � (line 16). 341

After all the subpopulations at the first stage have con- 342

verged, all the nondominated solutions coming from the M 343

subpopulations are selected to form a new population R (lines 344

18 and 19). Then, the algorithm enters the second stage 345

(lines 22–24). During each iteration at this stage, a new pop- 346

ulation R is generated by applying SBX and PM operators on 347

diversity-related variables Id (line 23). Afterward, an environ- 348

mental selection strategy is triggered to improve the population 349

diversity (line 24), which is detailed in Algorithm 2. 350

B. Environmental Selection Approach 351

As shown in Algorithm 2, the proposed environmental selec- 352

tion strategy employs a three-step policy: 1) the first step is 353

to remove dominated solutions from the combined population 354

(line 1); 2) the second step evenly selects candidate solutions 355

from each objective dimension (lines 2–16); and 3) the third 356

step retains candidate solutions according to the cosine values 357
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Algorithm 2: EnvironmentalSelection(Q, N)
Input: Combined population Q; size of population N;
Output: A selected population A;

1 Discard all the dominated solutions from Q;
2 A← ∅; S← ∅;
3 T ← �N

m�;
4 for j = 1→ m do
5 l← The minimal value in the j-th objective of

population Q;
6 u← The maximal value in the j-th objective of

population Q;
7 len← u−l

T−1 ;
8 for t = 1→ T do
9 I← ∅;

10 for i = 1→ |Q| do
11 if l+ (t − 1)× len � Fi,j < l+ t × len then
12 I← I

⋃{i};
13 if I! = ∅ & I

⋂
S == ∅ then

14 i← Select the solution having the minimal
sum of objective values among the set I;

15 S← S
⋃{i};

16 A← A
⋃

Q(i);

17 Q← Q \ A;
18 while |P| < N & Q! = ∅ do
19 minCos←1; s←1;
20 for i = 1→ |Q| do
21 maxCos←0;
22 for j = 1→ |P| do
23 cosθi,j ← Calculate the cosine between

solution Q(i) and P(i);
24 if maxCos < cosθi,j then
25 maxCos← cosθi,j;

26 if maxCos < minCos then
27 minCos← maxCos; s← i;

28 A← A
⋃

Q(s);
29 Q← Q \ Q(s);

30 Return the selected population A;

of the angles between the selected candidate solutions and the358

remaining ones (lines 17–29).359

The set A, which is used to record the selected candidate360

solutions, is initialized as empty (line 2). Then, the set S is also361

initialized as empty (line 2), and it is used to record the indices362

of the selected solutions in the second step. Next, the number363

of solutions that are selected from each objective dimension364

is computed and denoted as T (line 3). Then, the objective365

values in each dimension are evenly divided into T intervals.366

For each interval, if there is no candidate solution selected in it367

(line 13), the one having the best convergence will be selected368

then (line 14), where the convergence is defined as the sum369

of its objective values. In addition, the symbol Fi,j represents370

the value of the jth objective of the ith candidate solution in 371

the population Q. 372

Afterward, all the selected candidate solutions are removed 373

from Q (line 17), and the environmental selection strategy 374

enters the third step, which will be iterated until the number 375

of the selected candidate solutions |P| reaching the popula- 376

tion size N or the set Q becomes empty (line 18). During 377

each iteration, the environmental selection strategy associates 378

each remaining candidate solution with the maximal cosine 379

value between it and all the selected candidate solutions 380

(lines 21–25), and then selects the candidate solution hav- 381

ing the minimal associated cosine value (lines 26 and 27). 382

Next, the selected candidate solution will be added to the set 383

A (line 28) and discarded from the set Q (line 29). Once the 384

number of the selected candidate solutions reaches the pop- 385

ulation size or the set Q becomes empty, the third step will 386

stop iterating and the selected population A will be returned 387

(line 30). 388

IV. EXPERIMENTAL STUDIES 389

To quantitatively verify the effectiveness of the proposed 390

TSEA, it is compared with five representative algo- 391

rithms for many-objective optimization: 1) NSGA-III [22]; 392

2) RVEA [10]; 3) MaOEA-R&D [59]; 4) VaEA [25]; and 393

5) SPEA/R [27]. The five algorithms are briefly described as 394

follows. 395

NSGA-III is the tailored version of the NSGA-II [14]. In 396

NSGA-III, a new reference vector-based scheme is developed 397

to strengthen the convergence when selecting candidate solu- 398

tions in the last accepted front. 399

RVEA employs a set of reference vectors to divide the 400

objective space of an MOP into a number of subspaces and 401

associates each candidate solution with a reference vector hav- 402

ing the minimal angle. Also, a new indicator, namely, angle 403

penalized distance, is proposed to sort all the solutions in a 404

subspace. Besides, the RVEA includes a strategy to adaptively 405

adjust reference vectors according to the distribution of the 406

candidate solutions. 407

MaOEA-R&D first searches for several solutions along m 408

directions and construct the objective space boundary, and 409

then adopts a diversity improvement strategy to improve the 410

population diversity within the objective space boundary. 411

VaEA first employs the nondominated sorting approach to 412

divide the candidate solutions into a number of fronts. For 413

the solutions in the last accepted front, the solution having 414

the largest acute angle to the selected solutions is iteratively 415

selected until the number of selected solutions reaches the 416

population size. 417

SPEA/R proposes a reference-based density assessment 418

method and a fitness calculation method, then employs the 419

diversity-first-and-convergence-second strategy to balance the 420

convergence and diversity. 421

For these five algorithms in comparison, their source codes 422

have been embedded into the PlatEMO,1 which is an open- 423

source MATLAB-based platform for multiobjective evolution- 424

ary optimization. The experiments in this paper follow the 425

1https://github.com/BIMK/PlatEMO
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settings of these algorithms and problems in their published426

edition.427

A. Experimental Settings428

1) Benchmark Problems: To compare the performance of429

the six MOEAs, we utilize the following 16 benchmark func-430

tions: MaF1–MaF7 [60] and WFG1–WFG9 [57]. The bench-431

mark functions MaF1–MaF7, which are specially designed for432

evaluating many-objective optimization, cover diverse proper-433

ties, e.g., complicated Pareto front shapes, search landscapes,434

and alike. In addition, the nine benchmarks WFG1–WFG9 in435

the second test suite are widely used in the existing literature.436

In the experiments, a test instance refers to an MaOP with437

a specific number of objectives, e.g., benchmark WFG1 with438

seven objectives.439

2) Performance Indicators: The hypervolume (HV) [61]440

and inverted generational distance (IGD) [62] are two widely441

used indicators to measure the effectiveness of MOEAs. The442

experimental studies in this paper also utilize them to compare443

the effectiveness of the six algorithms.444

1) HV: It is defined as the volume of space, which con-445

sists of a reference point and all the output solutions446

in the objective space. The larger HV value means the447

better performance of the corresponding algorithm with448

respect to both the convergence and diversity. For each449

test instance, we set the reference point as 1.5 times of450

the upper bounds of its PF.451

2) IGD: For an output population P, this metric is generally452

defined as453

IGD(P) =
∑

v∈P∗ d(v, P)

|P∗| (2)454

where P∗ stands for a set of sample Pareto optimal solu-455

tions on the PF, and d(v, P) is the minimal distance456

between point v and all the points in P. Based on the457

definition in (2), a lower IGD value indicates the bet-458

ter performance of the corresponding algorithm. In our459

experiments, the P∗ is set to contain around 8000 points460

for each test instance.461

3) General Settings: For fair comparisons, the population462

sizes and termination conditions are set as follows.463

1) Population Size: Similar to the existing works [10], [22],464

[25], [27], [59], the population size of the six algorithms465

is set according to the number of objectives of the test466

instances, i.e., 168, 230, and 240 for problems with 7,467

10, and 15 objectives, respectively.468

2) Termination Condition: For all the six algorithms, their469

termination conditions are set as the maximum num-470

ber of function evaluations, i.e., 800 000 for MaF3 and471

MaF4; and 400 000 for the other benchmark functions.472

B. Experimental Results473

For statistical comparisons, the mean and standard devia-474

tion (in parentheses) of the HV and IGD values on all the test475

instances are summarized in Tables I and II, respectively. The476

Wilcoxon rank-sum test with α = 0.05 is employed to verify477

the significant differences. The symbols −, +, and ≈ indicate478

that the indicator value of the corresponding algorithm has 479

significantly worse, better, and similar performance in com- 480

parison with the proposed TSEA, respectively. For each test 481

instance, the best HV and IGD values are highlighted. 482

The HV values of the six algorithms on the 16 benchmark 483

functions with 7, 10, and 15 objectives are reported in Table I. 484

From these experimental results, in summary, we can observe 485

that the proposed TSEA shows generally the better performance 486

in comparison with the other five algorithms with respect to 487

the HV indicator. For the 48 test instances, TSEA significantly 488

performs the best on 33 of them. To be specific, the TSEA out- 489

performs NSGA-III, RVEA, MaOEA-R&D, VaEA, and SPEA/R 490

on 43, 42, 48, and 36 of 34 test instances, respectively. Such 491

better results illustrate the superiorities of the proposed TSEA 492

with respect to both the convergence and diversity. 493

For the MaF test instances, except three test instances, 494

namely, 7-objective MaF5, 10-objective MaF5, and 495

15-objective MaF7, the proposed TSEA generates sig- 496

nificantly higher HV than the other algorithms on all the 497

other test instances. For example, the HV value obtained by 498

TSEA on 7-objective MaF1 on average is higher than algo- 499

rithms NSGA-III, RVEA, MaOEA-R&D, VaEA, and SPEA/R 500

by 74.06%, 358.42%, 1096.38%, 3.81%, and 371.97%, 501

respectively. This is due to the fact that the stage one of 502

TSEA only focuses on the population convergence and thus 503

accelerates the convergence speed by avoiding the negative 504

influence of the complicated PF shapes. By contrast, for the 505

five algorithms in comparison, they employ the framework of 506

traditional MOEAs to form tradeoffs between the population 507

convergence and diversity simultaneously during the whole 508

search process, which fails to work properly on problems 509

with complicated PF shapes. 510

The WFG1–WFG9 benchmark functions are widely used to 511

assess the effectiveness of MOEAs in solving many-objective 512

problems. To further test the effectiveness of the algorithm 513

TSEA, these 9 test functions with 7, 10, and 15 objectives 514

are also used in the experimental comparisons. As shown in 515

Table I, algorithm TSEA still significantly performs better than 516

the five comparative algorithms on more than half of the test 517

instances. Compared with SPEA/R, the proposed TSEA gen- 518

erates significantly higher HV values on 16 out of the 27 519

test instances. Regarding the NSGA-III, RVEA, MaOEA-R&D, 520

and VaEA, the proposed TSEA performs better on even more 521

instances. 522

For IGD indicator, the results of the six algorithms are sum- 523

marized in Table II. Among the 48 test instances, the proposed 524

TSEA generates significantly lower IGD values than NSGA- 525

III, RVEA, MaOEA-R&D, VaEA and SPEA/R on 41, 39, 41, 27, 526

and 35 test instances, respectively. In summary, TSEA outper- 527

forms the five compared algorithms on 25 out of the 48 test 528

instances with respect to IGD indicator. These results again 529

illustrate the promising performance of the algorithm TSEA. 530

To visually illustrate the distribution of the solution sets 531

obtained by the six algorithms, we choose four test instances, AQ2532

i.e., MaF1, MaF6, and WFG3 with ten objectives, to depict the 533

objective vectors in parallel coordinates. For each algorithm, 534

the solution sets with the lowest IGD value among 30 runs 535

are shown in Figs. 2–4. 536
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TABLE I
HV VALUES OF THE SIX ALGORITHMS ON BENCHMARK FUNCTIONS MAF1–MAF7 AND WFG1–WFG8 WITH 7, 10, AND 15 OBJECTIVES

As shown in Fig. 2, the distribution of the output solu-537

tion sets of the six algorithms is quite different. Fig. 2(a)538

shows that NSGA-III has good convergence and diversity in539

the first, second, third, and fifth objectives. For RVEA, the size540

of the solution set is much smaller than the predefined pop-541

ulation size, referring to Fig. 2(b). The reason is that RVEA542

decomposes the objective space into a series of subspaces, 543

and each subspace will retain at most one candidate solution. 544

However, on the problems with complicated PF shapes, some 545

subspaces may contain more than one representative candidate 546

solutions, while some subspaces are completely empty. Except 547

the sixth and seventh objectives, the convergence and diversity 548
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TABLE II
IGD VALUES OF THE SIX ALGORITHMS ON BENCHMARK FUNCTIONS MAF1–MAF7 AND WFG1–WFG8 WITH 7, 10, AND 15 OBJECTIVES

of the output solution set obtained by RVEA are very poor.549

The complicated PF shape of MaF1 also weakens the conver-550

gence and diversity of MaOEA-R&D and SPEA/R, which is551

illustrated in Fig. 2(c) and (e). Fig. 2(d) shows that VaEA has552

better convergence and diversity than the other four compar-553

ison algorithms. By comparing Fig. 2(e) with Fig. 2(f), we554

can note that the distribution of the solution set obtained by 555

the proposed TSEA is much better than VaEA. This also can 556

explain why the HV and IGD values obtained by TSEA are 557

much better than that obtained by the other five algorithms 558

on the 10-objective MaF1, which are illustrated in the second 559

row of Tables I and II. 560
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Fig. 2. Solution set obtained by each algorithm on the 10-objective MaF1, shown by parallel coordinates.

Fig. 3. Solution set obtained by each algorithm on the 10-objective MaF6, shown by parallel coordinates.

Since benchmark function MaF6 is a representative of561

MOPs with degenerate PFs, we also show the distribution562

of populations obtained by the six algorithms. As illus-563

trated in Fig. 3, the convergence of NSGA-III, RVEA, VaEA,564

and SPEA/R is outperformed by the proposed TSEA. The565

algorithm MaOEA-R&D is similar to TSEA with respect566

to convergence, but the diversity of the proposed TSEA is567

better than that of MaOEA-R&D. This comparison results 568

demonstrate the superiority of TSEA in solving MaOPs with 569

disconnected PFs. In addition, the benchmark function WFG3 570

has also degenerate PF. For the test instance, i.e., 10-objective 571

WFG3, it can be clearly observed that the proposed TSEA also 572

outperforms the other five compared algorithms in terms of 573

both convergence and diversity, which are illustrated in Fig. 4. 574
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Fig. 4. Solution set obtained by each algorithm on the 10-objective WFG3, shown by parallel coordinates.

Fig. 5. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter M.

Fig. 6. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter N′.

C. Sensitivity Analysis for Parameters M, N′, and �575

In the proposed TSEA, there are three tunable param-576

eters: 1) the number of subpopulations M; 2) the size577

of a subpopulation N′; and 3) the convergence threshold578

�. To analyze the impact of these three parameters, in579

each experiment, we change the value of one parameter580

and fix the other two parameters. Besides, each experi- 581

ment is repeated 30 times, and the box plots of the three 582

parameters on 10-objective MaF1–MaF3 are illustrated in 583

Figs. 5–7. 584

To test the impact of parameter M, it is varied from 3 585

to 12 with an increment of 1, while N′ and � are fixed 586
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Fig. 7. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter �.

to 20 and 1e-10, respectively. Fig. 5 shows that the HV587

values obtained by TSEA on the three test instances basi-588

cally remain unchanged when varying parameter M. This589

result demonstrates that the parameter M has little impact on590

the performance of the proposed TSEA when it is between591

3 and 12. A similar observation can be found in Fig. 6. When592

the size of each subpopulation is changed from 10 to 55, the593

HV values of TSEA on 10-objective MaF1, MaF2, and MaF3594

are stable around 0.108, 0.336, and 57.656, respectively. This595

result illustrates that the parameter N′ also has little impact on596

the performance of TSEA.597

For parameter �, we change it from 1e-3 to 1e-12 to ana-598

lyze its impact on the performance of the proposed TSEA. As599

shown in Fig. 7, we can see that the mean HV values obtained600

by TSEA on 10-objective MaF1 and MaF2 increase slightly601

with the decrease of parameter �. This can be attributed to the602

fact that lower � enables TSEA to push the subpopulations at603

the first stage closer to the PF, which is more helpful for bal-604

ancing the convergence and diversity at the second stage. On605

the basis of the above analysis, we recommend the parameter606

� be lower than 1e–10 for the proposed TSEA.607

V. CONCLUSION608

This paper has proposed to solve MaOPs by partition-609

ing the whole evolutionary search process into two stages,610

where the first stage focuses on the population convergence,611

and the second stage strives to improve the population diver-612

sity. To avoid the negative influence of the complicated PF613

shapes and accelerating the convergence speed of the popu-614

lation, all subpopulations at first stage only focuses on the615

convergence, and different weight vectors were used to guide616

them converge to different areas of PF. Then, to improve the617

population diversity, an environmental selection strategy has618

also proposed for the second stage to select the candidate619

solutions with promising diversity. Using such a multistage620

evolutionary search strategy, the proposed TSEA demon-621

strated ascendant performance over the five representative622

algorithms.623

With the increase of the number of decision variables,624

the search spaces of optimization problems are exponentially625

exploded, which seriously challenge the performance of evo-626

lutionary algorithms. Thus, solving MaOPs having thousands627

of decision variables is an interesting direction.628
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Solving Many-Objective Optimization Problems
via Multistage Evolutionary Search

Huangke Chen , Ran Cheng , Member, IEEE, Witold Pedrycz , Fellow, IEEE, and Yaochu Jin , Fellow, IEEE

Abstract—With the increase in the number of optimization1

objectives, balancing the convergence and diversity in evolution-2

ary multiobjective optimization becomes more intractable. So3

far, a variety of evolutionary algorithms have been proposed to4

solve many-objective optimization problems (MaOPs) with more5

than three objectives. Most of the existing algorithms, however,6

find difficulties in simultaneously counterpoising convergence and7

diversity during the whole evolutionary process. To address the8

issue, this paper proposes to solve MaOPs via multistage evolu-9

tionary search. To be specific, a two-stage evolutionary algorithm10

is developed, where the convergence and diversity are highlighted11

during different search stages to avoid the interferences between12

them. The first stage pushes multiple subpopulations with differ-13

ent weight vectors to converge to different areas of the Pareto14

front. After that the nondominated solutions coming from each15

subpopulation are selected for generating a new population for16

the second stage. Moreover, a new environmental selection strat-17

egy is designed for the second stage to balance the convergence18

and diversity close to the Pareto front. This selection strat-19

egy evenly divides each objective dimension into a number of20

intervals, and then one solution having the best convergence in21

each interval will be retained. To assess the performance of the22

proposed algorithm, 48 benchmark functions with 7, 10, and 1523
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objectives are used to make comparisons with five representative 24

many-objective optimization algorithms. 25

Index Terms—Evolutionary algorithm, many-objective 26

optimization, multistage optimization. 27

I. INTRODUCTION 28

REAL-WORLD optimization problems, such as paral- 29

lel machine scheduling [1], hybrid electric vehicle 30

optimization [2], and workflow scheduling in clouds [3], 31

often need to simultaneously optimize multiple conflicting 32

objectives, known as the multiobjective optimization problems 33

(MOPs) [4], [5] 34

Minimize F(x) = [f1(x), f2(x), . . . , fm(x)] 35

s.t. x ∈ � (1) 36

where x = (x1, x2, . . . , xn) represents the decision vector, and 37

� ⊆ R
n stands for the set of all the feasible decision vec- 38

tors. The symbols n and m denote the number of decision 39

variables and optimization objectives, respectively. The func- 40

tion fi(x) ∀i ∈ {1, 2, . . . , m} is used to map � to R, i.e., 41

fi : � → R. Specifically, an MOP with four or more objec- 42

tives (i.e., m ≥ 4) often refers to a many-objective optimization 43

problem (MaOP) [6]. 44

Due to the conflicts among the objectives of MOPs, improv- 45

ing one objective typically leads to the deterioration of the 46

others [7]–[9]. Thus, there exists no single solution that can 47

minimize all the objectives [10], [11], but a set of compromise 48

solutions making tradeoffs among different objectives can be 49

obtained. Regarding two solutions x1, x2 ∈ � of an MOP, x1 50

is considered to dominate x2 (expressed as x1 ≺ x2) if x1 51

is better than or equal to x2 in all the objectives and x1 is 52

strictly superior to x2 in at least one objective. One solution 53

x∗ ∈ � is Pareto optimal if and only if there is no solution 54

dominating it. In general, all the Pareto-optimal solutions com- 55

prise the Pareto optimal set, where the Pareto set (PS) and the 56

Pareto-front (PF) are the images in the decision space and the 57

objective space, respectively. 58

To obtain the Pareto optimal solutions for MOPs, a variety 59

of multiobjective evolutionary algorithms (MOEAs) have been 60

proposed over the past three decades [12], [13]. These existing 61

algorithms are broadly divided into three categories: 1) Pareto 62

dominance-based; 2) indicator-based; and 3) decomposition- 63

based [12]. Pareto dominance-based MOEAs are often first 64

sort the candidate solutions into many nondominated fronts, 65

and then employ a secondary criterion to sort the solutions in 66

the last accepted front. The classical works of this category 67

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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are NSGA-II [14], MOPSO [15], etc. Regarding indicator-68

based MOEAs (e.g., HypE [16], AR-MOEA [17], BiGE [18],69

and others), a smaller number of indicators (e.g., one or70

two) related to the objective number are often used to sort71

the candidate solutions. For decomposition-based algorithms72

(e.g., MOEA/D and its variants [13], [19]–[21]), they parti-73

tion the original MOP into many subproblems to be solved in74

a collaborative manner.75

Although the existing MOEAs exhibit excellent76

performance in solving MOPs, their performance suffers77

from the curse of dimensionality with respect to the number78

of objectives in MaOPs, which can be attributed to three79

main reasons. First, the objective space of an MaOP expands80

exponentially with increasing number of objectives [22], [23],81

thus, resulting in a sparse distribution of the candidate solu-82

tions in the objective space, which poses a challenge to the83

diversity assessment [10]. Second, the increasing number of84

objectives leads to the dominance resistance [17], [24], [25],85

i.e., the percentage of nondominated candidate solutions in a86

population will sharply increase as the number of objectives,87

causing the failure of the dominance-based environmental88

selection strategies in MOEAs (e.g., NSGA-II, MOPSO, etc.)89

in distinguishing the candidate solutions. In addition, the PFs90

of MaOPs have various shapes, which will further challenge91

the tradeoffs between the convergence and the diversity. For92

example, some recent works have been demonstrated that the93

performance of the decomposition-based algorithms is greatly94

influenced by the PF shapes of MaOPs [17], [26].95

To remedy the deficiency of MOEAs in solving the MaOPs,96

so far, a number of many-objective optimization algorithms97

(MaOEAs) have been reported [10], [12], [22], [27]. These98

MaOEAs typically follow the framework of MOEAs, mostly99

aiming to simultaneously strike a balance between conver-100

gence and diversity during the whole evolutionary process.101

However, as pointed in [10], despite that the convergence102

and diversity are two key factors to the performance of an103

MaOEA, they play different roles during different stages of104

the evolutionary process. Specifically, since the population of105

an MaOEA at the early search stage is still far from con-106

vergence, a higher convergence pressure is more desirable to107

push the population toward the PF. By contrast, at the later108

search stage, since the solutions are already near the PF, a109

wider spreading of the candidate solutions (i.e., diversity) is110

more preferable. Therefore, this motivates us to partition the111

whole evolutionary process into two stages, and the conver-112

gence is emphasized at the first stage, then the balance of113

convergence and diversity close to PF is emphasized at the114

second stage. This can avoid the negative effect of potential115

conflicts between the convergence and diversity. In summary,116

the key contributions of this paper are as follows.117

1) A novel two-stage evolutionary algorithm, named TSEA,118

is proposed to partition the whole evolutionary search119

process into two stages. The first stage leverages120

multiple populations to accelerate the convergence121

toward the PF, followed by the balance of convergence122

and diversity at the second stage.123

2) We design a novel environmental selection scheme for124

the second stage in TSEA to balance the convergence125

and diversity. This selection scheme evenly divides each 126

objective dimension into a number of intervals and 127

retains one candidate solution having the best conver- 128

gence from each interval. 129

3) We conduct extensive experiments to compare the 130

proposed TSEA with five representative algorithms on 131

48 test instances with various PF shapes, where the 132

objective number ranges from 7 to 15. The experimen- 133

tal results demonstrate the superiorities of the proposed 134

TSEA. 135

This paper is organized as follows. The recent works on 136

MOEAs and MaOEAs are summarized in Section II. Then, 137

the proposed TSEA is described in Section III, followed by 138

extensive studies to verify and quantify the superiority of the 139

TSEA. At last, Section V concludes this paper and provides a 140

challenging direction. 141

II. RELATED WORK 142

Over the past three decades, intensive attention has been 143

given to the area of multiobjective evolutionary optimization, 144

and a number of MOEAs have been developed and improved. 145

Most existing MOEAs have focused on environmental selec- 146

tion strategies for balancing convergence and diversity. On 147

the basis of the environmental selection strategies, the exist- 148

ing MOEAs are roughly grouped into the following three 149

classes [12], [28]: 1) Pareto dominance-based; 2) indicator- 150

based; and 3) decomposition-based. 151

For the Pareto dominance-based MOEAs, they first sort 152

solutions into a series of nondominated levels are based on 153

their dominance relationships, and then employ a secondary 154

criterion to sort solutions in the last accepted level. The rep- 155

resentative MOEAs of this category are the NSGA-II [14], 156

PESA-II [29], MOPSO [15], and SPEA2 [30]. Besides, the 157

Pareto dominance-based MOEAs have been widely used to 158

solve various practical problems. For instance, Chen and 159

Chou [31] modeled the crew roster recovery problems as 160

multiobjective constrained combinational optimization prob- 161

lems and proposed a new version of the NSGA-II to search 162

the Pareto solutions. To optimize the crude oil operations, 163

Hou et al. [32] improved the NSGA-II using a new chro- 164

mosome to model the feasible space. These algorithms show 165

promising performance in solving problems having two or 166

three objectives. Nevertheless, when increasing the number 167

of objectives in MaOPs, the candidate solutions in a pop- 168

ulation often become incomparable with respect to their 169

dominance relationships, which severely deteriorates their 170

performances [25], [33]. To address the drawback of the 171

Pareto dominance in distinguishing candidate solutions with 172

many objectives, some new versions of Pareto dominance 173

relation are designed, such as corner-sort-dominance [34], 174

θ -dominance [33], grid-based dominance [35], fuzzy Pareto 175

dominance [36], and alike. In addition, Chen et al. [37] 176

proposed a hyperplane-assisted strategy to distinguish the 177

nondominated solutions for many-objective optimization. 178

The indicator-based MOEAs often compare solutions using 179

low-dimensional indicators (e.g., a single indicator [17] or 180

two indicators [18]) instead of using their objective vectors 181
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directly. For instance, Zitzler and Künzli [38] defined a binary182

performance indicator to measure the solutions, and then183

designed a framework for indicator-based evolutionary algo-184

rithms. Beume et al. [39] combined the hypervolume indicator185

and the concept of nondominated sorting to form a selec-186

tion strategy. However, the computation of the hypervolume187

indicator is time consuming when the number of objectives188

is large. To reduce the computational time of hypervolume,189

Bader and Zitzler [16] employed the Monte Carlo simulation190

for the hypervolume calculation. Bringmann et al. [40] empir-191

ically analyzed the performance impact of hypervolume-based192

Monte Carlo approximations on MOEAs, and concluded that193

the performance of MOEAs does not suffer from the inex-194

act hypervolume. However, with the increasing number of195

objectives, the hypervolume calculation is still considerably196

expensive. Recently, Tian et al. [17] developed a new MOEA197

on the basis of an improved inverted generational distance198

indicator, and then designed a strategy to adaptively alter the199

reference vectors according to the indicator contributions of200

candidate solutions in the external archive. Zhou et al. [41]201

designed a co-guided MaOEA and used an indicator ε+I and202

reference points to improve the convergence and diversity.203

Li et al. [18] designed two indicators to, respectively, measure204

the convergence and diversity of the candidate solutions, and205

then employed the nondominated sorting method to balance206

the convergence and diversity based on these two indicators.207

The decomposition-based MOEAs employ a set of weight208

vectors to decompose the MOP into a number of sub-209

problems, which are solved in a collaborative way [13].210

For instance, Zhang and Li [19] suggested the MOEA/D,211

which is among the most representative algorithms of this212

type. Wang et al. [42] suggested a preference-inspired algo-213

rithm to search interesting solutions for decision makers.214

Li et al. [43] combined the dominance-based strategy into215

the decomposition-based MOEAs to achieve good trade-216

offs between the convergence and diversity. To adapt the217

MOEA/D to deal with the MOPs having complex PF shapes,218

Qi et al. [44] designed a strategy to adaptively adjust219

the weight vectors according to the geometric relation-220

ship between the weight vectors and the optimal solutions.221

Wang et al. [9] also proposed an adaptive adjustment strat-222

egy to adjust weight vectors for MOEA/D on the basis of223

the distribution of population located in the objective space.224

Wang et al. [45] demonstrated the importance of p-value in225

the Lp methods and designed a Pareto adaptive scalarizing226

strategy to find the near-optimal p-value. Cai et al. [46] sug-227

gested to use the angles between the objective vectors to228

improve the performance of MOEA/D in maintaining diver-229

sity. Cai et al. [47] proposed a constrained decomposition230

with grids to avoid the decomposition-based MOEAs being231

sensitive to the shapes of PFs. Elarbi et al. [48] designed a232

decomposition-based dominance relation and a diversity mea-233

surement for many-objective optimization. Wang et al. [49]234

used a localized weighted sum strategy to improve the235

performance decomposition-based MOEA in solving noncon-236

vex problems.237

A new direction of the decomposition-based approach238

is to divide the objective space of an MOP into many239

subspaces using a set of reference vectors, and then evolve 240

the subpopulation belonging to each subspace coopera- 241

tively. The classical algorithms in this branch are the 242

MOEA/D-M2M [20], MOEA/D-AM2M [50], and RVEA [10]. 243

Chen et al. [51] proposed an indicator to measure the con- 244

tribution of each subspace, and then designed an adaptive 245

strategy to allocate computational resources for each sub- 246

space. To deal with the complicated PF shapes, Liu et al. [50] 247

designed a new strategy to dynamically adjust the subregions 248

of each subproblem on the basis of the obtained solutions. 249

Kang et al. [52] improved the MOEA/D-M2M by designing a 250

strategy to dynamically distribute computational resources to 251

each subproblem according to their frequency of updating the 252

external archive. 253

In summary, the aforementioned MOEAs strive to improve 254

the population convergence and diversity simultaneously dur- 255

ing the whole evolutionary process. However, emphasizing 256

diversity during the early search stage will naturally weaken 257

population convergence toward the PF, which is particularly 258

serious when the PF has a complex shape. To address this 259

issue, there also exist several works dedicated to solve MaOPs 260

by multistage strategies. For instance, Cai et al. [53] improved 261

the MOEA/D using a new strategy that first optimizes the 262

boundary subproblems to obtain the corner solutions, then con- 263

ducts the explorative search to extend the PF approximation. 264

Hu et al. [54] designed a two-stage strategy to first obtain 265

several extreme Pareto-optimal solutions, and then extend 266

these obtained solutions to approximate the PF. In addition, 267

Sun et al. [55] developed a two-stage strategy that strengthens 268

the convergence at the first stage using an aggregation method, 269

and then improves diversity using the decomposition-based 270

approach. Similar to the above works, the proposed TSEA in 271

this paper also partitions the whole evolutionary process into 272

two stages. Different from these existing works, the first stage 273

is proposed to push multiple subpopulations to different areas 274

of the PF, and then at the second stage, a new environmen- 275

tal selection strategy is designed to balance convergence and 276

diversity close to the PF. 277

So far, the angle-based methods have been widely used to 278

measure the diversity of the candidate solutions. For example, 279

the acute angles between solutions and reference vectors were 280

used to associate solutions to different subspaces to maintain 281

the population diversity [10], [20], [50]. Besides, the angles 282

among solutions in objective space were utilized to measure 283

the diversity of solutions [25], [56]. In the proposed TSEA, 284

the angles between the solutions are also used as the diversity 285

measurement. In addition, a new selection strategy is designed 286

for TSEA to select solutions from each objective dimension, 287

such that it can strike a good balance between convergence 288

and diversity. 289

III. TWO-STAGE EVOLUTIONARY ALGORITHM 290

The proposed algorithm TSEA is detailed in this section. 291

First, the main procedure of algorithm TSEA is given. Then, 292

we describe the proposed two-stage evolutionary strategy. In 293

the sequential, the novel environmental selection strategy is 294

elaborated. 295
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Fig. 1. Illustration of the proposed two-stage strategy. (a) At stage one,
the subpopulations P1, P2, . . . , PM are pushed close to the PF with respect
to a set of weight vectors and (b) at stage two, the candidate solutions are
diversified near the PF.

A. Main Procedure of TSEA296

Before describing the proposed TSEA in detail, we provide297

a visual example in Fig. 1 to illustrate the main idea. The stage298

one of TSEA will randomly initialize a series of subpopula-299

tions, denoted by P1, P2, . . . , PM in Fig. 1(a), and then pushes300

these subpopulations to different area of PF with respect to a301

set of weight vectors. After that the TSEA enters stage two to302

diversify the candidate solutions near the PF, which is shown303

in Fig. 1(b).304

The framework of the algorithm TSEA is given in305

Algorithm 1. The main inputs of TSEA are: the optimization306

problem; the maximum number of function evaluations; the307

size of the output population; the number of subpopulations308

and the size of each subpopulation; and the convergence309

threshold � for subpopulations. Similar to other evolution-310

ary algorithms [10], [22], the output of algorithm TSEA is the311

final population with N individuals.312

As shown in Algorithm 1, the proposed TSEA first finds313

the diversity-related decision variables, and the set Id is used314

to record all the diversity-related variables (line 1). Similar315

to [57] and [58], a decision variable is defined as diversity316

related if perturbing it only generates nondominated solu-317

tions. Then, M subpopulations with a size of N′ are generated318

randomly (lines 3 and 4). To accelerate the convergence of319

each subpopulation toward the PF at the first stage, each sub-320

population merely emphasizes the convergence, and we use321

different weight vectors to guide them toward different areas322

of the PF. Thus, an m-dimensional weight vector between 0323

and 1 is randomly generated for each subpopulation (line 5).324

The arrays bestF and conT are used to record the best fit-325

ness and convergence status of each subpopulation (line 7).326

For each subpopulation, the well-known simulated binary327

crossover (SBX) and the polynomial mutation (PM) operators328

are applied to generate a new subpopulation (line 12). With329

respect to the subpopulation Pk, if the new solution in the new330

subpopulation Qk has better fitness, it will replace the original331

solution in Pk (lines 13–15). The fitness of a solution p coming332

from subpopulation Pk is defined as Fit(p) = ∑m
i=1 Wk,i · fi,333

where Wk,i represents the ith element of weight vector Wk,334

and fi denotes the ith objective value of solution p. Note that335

pj
k and qj

k represent the jth solution in Pk and Qk, respectively336

(line 14). In addition, the best fitness of a subpopulation Pk337

Algorithm 1: Main Procedure of the Proposed TSEA
Input: MaOP; maximal number of function evaluations

(MFEs); population size N; number of
subpopulations M; subpopulation size N′;
threshold �;

Output: The final population A;
1 Id ← Find the diversity-related variables;
2 Initialize the used function evaluations as FEs←0;
3 for k = 1→ M do
4 Initialize a subpopulation Pk with size N′ randomly;
5 Randomly generate a m-dimensional vector Wk

between 0 and 1;

6 A← ∅;
7 bestF1×M ←+∞; conT1×M ← FALSE;
8 while FEs < MFEs do
9 for k = 1→ M do

10 if conT(k) ==TRUE then
11 CONTINUE;

12 Qk ← SBX+PM(Pk);
13 for j = 1→ N′ do
14 if Fit(pj

k) ≥ Fit(qj
k) then

15 pj
k ← qj

k;

16 if |bestFit(Pk)− bestF(k)| < � then
17 conT(k)← TRUE;
18 A← A

⋃
Pk;

19 Update A by removing dominated solutions;
20 else
21 bestF(k)← bestFit(Pk);

22 if all the elements in conT are TRUE then
23 R← Apply SBX and PM operator on Id of A;
24 A← EnvironmentalSelection(A

⋃
R, N);

is denoted as bestFit(Pk), i.e., bestFit(Pk) = minp∈Pk Fit(p). 338

For a subpopulation, it is deemed to be converged in case the 339

improvement of the best fitness among all the individuals is 340

lower than the predetermined threshold � (line 16). 341

After all the subpopulations at the first stage have con- 342

verged, all the nondominated solutions coming from the M 343

subpopulations are selected to form a new population R (lines 344

18 and 19). Then, the algorithm enters the second stage 345

(lines 22–24). During each iteration at this stage, a new pop- 346

ulation R is generated by applying SBX and PM operators on 347

diversity-related variables Id (line 23). Afterward, an environ- 348

mental selection strategy is triggered to improve the population 349

diversity (line 24), which is detailed in Algorithm 2. 350

B. Environmental Selection Approach 351

As shown in Algorithm 2, the proposed environmental selec- 352

tion strategy employs a three-step policy: 1) the first step is 353

to remove dominated solutions from the combined population 354

(line 1); 2) the second step evenly selects candidate solutions 355

from each objective dimension (lines 2–16); and 3) the third 356

step retains candidate solutions according to the cosine values 357
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Algorithm 2: EnvironmentalSelection(Q, N)
Input: Combined population Q; size of population N;
Output: A selected population A;

1 Discard all the dominated solutions from Q;
2 A← ∅; S← ∅;
3 T ← �N

m�;
4 for j = 1→ m do
5 l← The minimal value in the j-th objective of

population Q;
6 u← The maximal value in the j-th objective of

population Q;
7 len← u−l

T−1 ;
8 for t = 1→ T do
9 I← ∅;

10 for i = 1→ |Q| do
11 if l+ (t − 1)× len � Fi,j < l+ t × len then
12 I← I

⋃{i};
13 if I! = ∅ & I

⋂
S == ∅ then

14 i← Select the solution having the minimal
sum of objective values among the set I;

15 S← S
⋃{i};

16 A← A
⋃

Q(i);

17 Q← Q \ A;
18 while |P| < N & Q! = ∅ do
19 minCos←1; s←1;
20 for i = 1→ |Q| do
21 maxCos←0;
22 for j = 1→ |P| do
23 cosθi,j ← Calculate the cosine between

solution Q(i) and P(i);
24 if maxCos < cosθi,j then
25 maxCos← cosθi,j;

26 if maxCos < minCos then
27 minCos← maxCos; s← i;

28 A← A
⋃

Q(s);
29 Q← Q \ Q(s);

30 Return the selected population A;

of the angles between the selected candidate solutions and the358

remaining ones (lines 17–29).359

The set A, which is used to record the selected candidate360

solutions, is initialized as empty (line 2). Then, the set S is also361

initialized as empty (line 2), and it is used to record the indices362

of the selected solutions in the second step. Next, the number363

of solutions that are selected from each objective dimension364

is computed and denoted as T (line 3). Then, the objective365

values in each dimension are evenly divided into T intervals.366

For each interval, if there is no candidate solution selected in it367

(line 13), the one having the best convergence will be selected368

then (line 14), where the convergence is defined as the sum369

of its objective values. In addition, the symbol Fi,j represents370

the value of the jth objective of the ith candidate solution in 371

the population Q. 372

Afterward, all the selected candidate solutions are removed 373

from Q (line 17), and the environmental selection strategy 374

enters the third step, which will be iterated until the number 375

of the selected candidate solutions |P| reaching the popula- 376

tion size N or the set Q becomes empty (line 18). During 377

each iteration, the environmental selection strategy associates 378

each remaining candidate solution with the maximal cosine 379

value between it and all the selected candidate solutions 380

(lines 21–25), and then selects the candidate solution hav- 381

ing the minimal associated cosine value (lines 26 and 27). 382

Next, the selected candidate solution will be added to the set 383

A (line 28) and discarded from the set Q (line 29). Once the 384

number of the selected candidate solutions reaches the pop- 385

ulation size or the set Q becomes empty, the third step will 386

stop iterating and the selected population A will be returned 387

(line 30). 388

IV. EXPERIMENTAL STUDIES 389

To quantitatively verify the effectiveness of the proposed 390

TSEA, it is compared with five representative algo- 391

rithms for many-objective optimization: 1) NSGA-III [22]; 392

2) RVEA [10]; 3) MaOEA-R&D [59]; 4) VaEA [25]; and 393

5) SPEA/R [27]. The five algorithms are briefly described as 394

follows. 395

NSGA-III is the tailored version of the NSGA-II [14]. In 396

NSGA-III, a new reference vector-based scheme is developed 397

to strengthen the convergence when selecting candidate solu- 398

tions in the last accepted front. 399

RVEA employs a set of reference vectors to divide the 400

objective space of an MOP into a number of subspaces and 401

associates each candidate solution with a reference vector hav- 402

ing the minimal angle. Also, a new indicator, namely, angle 403

penalized distance, is proposed to sort all the solutions in a 404

subspace. Besides, the RVEA includes a strategy to adaptively 405

adjust reference vectors according to the distribution of the 406

candidate solutions. 407

MaOEA-R&D first searches for several solutions along m 408

directions and construct the objective space boundary, and 409

then adopts a diversity improvement strategy to improve the 410

population diversity within the objective space boundary. 411

VaEA first employs the nondominated sorting approach to 412

divide the candidate solutions into a number of fronts. For 413

the solutions in the last accepted front, the solution having 414

the largest acute angle to the selected solutions is iteratively 415

selected until the number of selected solutions reaches the 416

population size. 417

SPEA/R proposes a reference-based density assessment 418

method and a fitness calculation method, then employs the 419

diversity-first-and-convergence-second strategy to balance the 420

convergence and diversity. 421

For these five algorithms in comparison, their source codes 422

have been embedded into the PlatEMO,1 which is an open- 423

source MATLAB-based platform for multiobjective evolution- 424

ary optimization. The experiments in this paper follow the 425

1https://github.com/BIMK/PlatEMO
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settings of these algorithms and problems in their published426

edition.427

A. Experimental Settings428

1) Benchmark Problems: To compare the performance of429

the six MOEAs, we utilize the following 16 benchmark func-430

tions: MaF1–MaF7 [60] and WFG1–WFG9 [57]. The bench-431

mark functions MaF1–MaF7, which are specially designed for432

evaluating many-objective optimization, cover diverse proper-433

ties, e.g., complicated Pareto front shapes, search landscapes,434

and alike. In addition, the nine benchmarks WFG1–WFG9 in435

the second test suite are widely used in the existing literature.436

In the experiments, a test instance refers to an MaOP with437

a specific number of objectives, e.g., benchmark WFG1 with438

seven objectives.439

2) Performance Indicators: The hypervolume (HV) [61]440

and inverted generational distance (IGD) [62] are two widely441

used indicators to measure the effectiveness of MOEAs. The442

experimental studies in this paper also utilize them to compare443

the effectiveness of the six algorithms.444

1) HV: It is defined as the volume of space, which con-445

sists of a reference point and all the output solutions446

in the objective space. The larger HV value means the447

better performance of the corresponding algorithm with448

respect to both the convergence and diversity. For each449

test instance, we set the reference point as 1.5 times of450

the upper bounds of its PF.451

2) IGD: For an output population P, this metric is generally452

defined as453

IGD(P) =
∑

v∈P∗ d(v, P)

|P∗| (2)454

where P∗ stands for a set of sample Pareto optimal solu-455

tions on the PF, and d(v, P) is the minimal distance456

between point v and all the points in P. Based on the457

definition in (2), a lower IGD value indicates the bet-458

ter performance of the corresponding algorithm. In our459

experiments, the P∗ is set to contain around 8000 points460

for each test instance.461

3) General Settings: For fair comparisons, the population462

sizes and termination conditions are set as follows.463

1) Population Size: Similar to the existing works [10], [22],464

[25], [27], [59], the population size of the six algorithms465

is set according to the number of objectives of the test466

instances, i.e., 168, 230, and 240 for problems with 7,467

10, and 15 objectives, respectively.468

2) Termination Condition: For all the six algorithms, their469

termination conditions are set as the maximum num-470

ber of function evaluations, i.e., 800 000 for MaF3 and471

MaF4; and 400 000 for the other benchmark functions.472

B. Experimental Results473

For statistical comparisons, the mean and standard devia-474

tion (in parentheses) of the HV and IGD values on all the test475

instances are summarized in Tables I and II, respectively. The476

Wilcoxon rank-sum test with α = 0.05 is employed to verify477

the significant differences. The symbols −, +, and ≈ indicate478

that the indicator value of the corresponding algorithm has 479

significantly worse, better, and similar performance in com- 480

parison with the proposed TSEA, respectively. For each test 481

instance, the best HV and IGD values are highlighted. 482

The HV values of the six algorithms on the 16 benchmark 483

functions with 7, 10, and 15 objectives are reported in Table I. 484

From these experimental results, in summary, we can observe 485

that the proposed TSEA shows generally the better performance 486

in comparison with the other five algorithms with respect to 487

the HV indicator. For the 48 test instances, TSEA significantly 488

performs the best on 33 of them. To be specific, the TSEA out- 489

performs NSGA-III, RVEA, MaOEA-R&D, VaEA, and SPEA/R 490

on 43, 42, 48, and 36 of 34 test instances, respectively. Such 491

better results illustrate the superiorities of the proposed TSEA 492

with respect to both the convergence and diversity. 493

For the MaF test instances, except three test instances, 494

namely, 7-objective MaF5, 10-objective MaF5, and 495

15-objective MaF7, the proposed TSEA generates sig- 496

nificantly higher HV than the other algorithms on all the 497

other test instances. For example, the HV value obtained by 498

TSEA on 7-objective MaF1 on average is higher than algo- 499

rithms NSGA-III, RVEA, MaOEA-R&D, VaEA, and SPEA/R 500

by 74.06%, 358.42%, 1096.38%, 3.81%, and 371.97%, 501

respectively. This is due to the fact that the stage one of 502

TSEA only focuses on the population convergence and thus 503

accelerates the convergence speed by avoiding the negative 504

influence of the complicated PF shapes. By contrast, for the 505

five algorithms in comparison, they employ the framework of 506

traditional MOEAs to form tradeoffs between the population 507

convergence and diversity simultaneously during the whole 508

search process, which fails to work properly on problems 509

with complicated PF shapes. 510

The WFG1–WFG9 benchmark functions are widely used to 511

assess the effectiveness of MOEAs in solving many-objective 512

problems. To further test the effectiveness of the algorithm 513

TSEA, these 9 test functions with 7, 10, and 15 objectives 514

are also used in the experimental comparisons. As shown in 515

Table I, algorithm TSEA still significantly performs better than 516

the five comparative algorithms on more than half of the test 517

instances. Compared with SPEA/R, the proposed TSEA gen- 518

erates significantly higher HV values on 16 out of the 27 519

test instances. Regarding the NSGA-III, RVEA, MaOEA-R&D, 520

and VaEA, the proposed TSEA performs better on even more 521

instances. 522

For IGD indicator, the results of the six algorithms are sum- 523

marized in Table II. Among the 48 test instances, the proposed 524

TSEA generates significantly lower IGD values than NSGA- 525

III, RVEA, MaOEA-R&D, VaEA and SPEA/R on 41, 39, 41, 27, 526

and 35 test instances, respectively. In summary, TSEA outper- 527

forms the five compared algorithms on 25 out of the 48 test 528

instances with respect to IGD indicator. These results again 529

illustrate the promising performance of the algorithm TSEA. 530

To visually illustrate the distribution of the solution sets 531

obtained by the six algorithms, we choose four test instances, AQ2532

i.e., MaF1, MaF6, and WFG3 with ten objectives, to depict the 533

objective vectors in parallel coordinates. For each algorithm, 534

the solution sets with the lowest IGD value among 30 runs 535

are shown in Figs. 2–4. 536
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TABLE I
HV VALUES OF THE SIX ALGORITHMS ON BENCHMARK FUNCTIONS MAF1–MAF7 AND WFG1–WFG8 WITH 7, 10, AND 15 OBJECTIVES

As shown in Fig. 2, the distribution of the output solu-537

tion sets of the six algorithms is quite different. Fig. 2(a)538

shows that NSGA-III has good convergence and diversity in539

the first, second, third, and fifth objectives. For RVEA, the size540

of the solution set is much smaller than the predefined pop-541

ulation size, referring to Fig. 2(b). The reason is that RVEA542

decomposes the objective space into a series of subspaces, 543

and each subspace will retain at most one candidate solution. 544

However, on the problems with complicated PF shapes, some 545

subspaces may contain more than one representative candidate 546

solutions, while some subspaces are completely empty. Except 547

the sixth and seventh objectives, the convergence and diversity 548
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TABLE II
IGD VALUES OF THE SIX ALGORITHMS ON BENCHMARK FUNCTIONS MAF1–MAF7 AND WFG1–WFG8 WITH 7, 10, AND 15 OBJECTIVES

of the output solution set obtained by RVEA are very poor.549

The complicated PF shape of MaF1 also weakens the conver-550

gence and diversity of MaOEA-R&D and SPEA/R, which is551

illustrated in Fig. 2(c) and (e). Fig. 2(d) shows that VaEA has552

better convergence and diversity than the other four compar-553

ison algorithms. By comparing Fig. 2(e) with Fig. 2(f), we554

can note that the distribution of the solution set obtained by 555

the proposed TSEA is much better than VaEA. This also can 556

explain why the HV and IGD values obtained by TSEA are 557

much better than that obtained by the other five algorithms 558

on the 10-objective MaF1, which are illustrated in the second 559

row of Tables I and II. 560
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Fig. 2. Solution set obtained by each algorithm on the 10-objective MaF1, shown by parallel coordinates.

Fig. 3. Solution set obtained by each algorithm on the 10-objective MaF6, shown by parallel coordinates.

Since benchmark function MaF6 is a representative of561

MOPs with degenerate PFs, we also show the distribution562

of populations obtained by the six algorithms. As illus-563

trated in Fig. 3, the convergence of NSGA-III, RVEA, VaEA,564

and SPEA/R is outperformed by the proposed TSEA. The565

algorithm MaOEA-R&D is similar to TSEA with respect566

to convergence, but the diversity of the proposed TSEA is567

better than that of MaOEA-R&D. This comparison results 568

demonstrate the superiority of TSEA in solving MaOPs with 569

disconnected PFs. In addition, the benchmark function WFG3 570

has also degenerate PF. For the test instance, i.e., 10-objective 571

WFG3, it can be clearly observed that the proposed TSEA also 572

outperforms the other five compared algorithms in terms of 573

both convergence and diversity, which are illustrated in Fig. 4. 574
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Fig. 4. Solution set obtained by each algorithm on the 10-objective WFG3, shown by parallel coordinates.

Fig. 5. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter M.

Fig. 6. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter N′.

C. Sensitivity Analysis for Parameters M, N′, and �575

In the proposed TSEA, there are three tunable param-576

eters: 1) the number of subpopulations M; 2) the size577

of a subpopulation N′; and 3) the convergence threshold578

�. To analyze the impact of these three parameters, in579

each experiment, we change the value of one parameter580

and fix the other two parameters. Besides, each experi- 581

ment is repeated 30 times, and the box plots of the three 582

parameters on 10-objective MaF1–MaF3 are illustrated in 583

Figs. 5–7. 584

To test the impact of parameter M, it is varied from 3 585

to 12 with an increment of 1, while N′ and � are fixed 586
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Fig. 7. Distributions of HV values obtained by TSEA over 30 runs by changing the parameter �.

to 20 and 1e-10, respectively. Fig. 5 shows that the HV587

values obtained by TSEA on the three test instances basi-588

cally remain unchanged when varying parameter M. This589

result demonstrates that the parameter M has little impact on590

the performance of the proposed TSEA when it is between591

3 and 12. A similar observation can be found in Fig. 6. When592

the size of each subpopulation is changed from 10 to 55, the593

HV values of TSEA on 10-objective MaF1, MaF2, and MaF3594

are stable around 0.108, 0.336, and 57.656, respectively. This595

result illustrates that the parameter N′ also has little impact on596

the performance of TSEA.597

For parameter �, we change it from 1e-3 to 1e-12 to ana-598

lyze its impact on the performance of the proposed TSEA. As599

shown in Fig. 7, we can see that the mean HV values obtained600

by TSEA on 10-objective MaF1 and MaF2 increase slightly601

with the decrease of parameter �. This can be attributed to the602

fact that lower � enables TSEA to push the subpopulations at603

the first stage closer to the PF, which is more helpful for bal-604

ancing the convergence and diversity at the second stage. On605

the basis of the above analysis, we recommend the parameter606

� be lower than 1e–10 for the proposed TSEA.607

V. CONCLUSION608

This paper has proposed to solve MaOPs by partition-609

ing the whole evolutionary search process into two stages,610

where the first stage focuses on the population convergence,611

and the second stage strives to improve the population diver-612

sity. To avoid the negative influence of the complicated PF613

shapes and accelerating the convergence speed of the popu-614

lation, all subpopulations at first stage only focuses on the615

convergence, and different weight vectors were used to guide616

them converge to different areas of PF. Then, to improve the617

population diversity, an environmental selection strategy has618

also proposed for the second stage to select the candidate619

solutions with promising diversity. Using such a multistage620

evolutionary search strategy, the proposed TSEA demon-621

strated ascendant performance over the five representative622

algorithms.623

With the increase of the number of decision variables,624

the search spaces of optimization problems are exponentially625

exploded, which seriously challenge the performance of evo-626

lutionary algorithms. Thus, solving MaOPs having thousands627

of decision variables is an interesting direction.628
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