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Optimization-based Control for Bearing-only Target
Search with a Mobile Vehicle

Zhuo Li, Keyou You, Shiji Song, Anke Xue

Abstract—This work aims to design an optimization-based
controller for a discrete-time Dubins vehicle to approach a
target with unknown position as fast as possible by only using
bearing measurements. To this end, we propose a bi-objective
optimization problem, which jointly considers the performance
of estimating the unknown target position and controlling the
mobile vehicle to a known position, and then adopt a weighted
sum method with normalization to solve it. The controller is
given based on the solution of the optimization problem in ties
with a least-square estimate of the target position. Moreover,
the controller does not need the vehicle’s global position infor-
mation. Finally, simulation results are included to validate the
effectiveness of the proposed controller.

Index Terms—target search, controller design, bi-objective
optimization, Dubins vehicle, estimation, local.

I. INTRODUCTION

TARGET search is a problem of steering single or multiple
mobile vehicles to a target with unknown position. It has

a broad range of applications, such as search and rescue in
disaster response settings [1], planetary and undersea explo-
ration [2], [3], search for lost targets [4], and environmental
monitoring [5]. In these scenarios, it is significant and chal-
lenging for mobile vehicles to reach target positions as fast as
possible, which is the motivation of this work.

If the target position is known, quite a few approaches have
been proposed to minimize the searching time, see [6]–[9]
and references therein. Clearly, these approaches cannot be
directly applied here. To estimate unknown target positions,
various sensor measurements have been utilized, such as
bearing angles [10], [11], ranges [12], and time difference
of arrivals [13], [14]. However, most of existing works only
consider either controlling a mobile vehicle to a known target
position as fast as possible [6]–[9] or maximizing the estima-
tion performance of sensor measurements [10]–[17]. In this
work, they are called the control objective and the estimation
objective, respectively, and are both essential for the target
search problem. Based on these observations, a naive idea is
to separately study these two objectives [18]–[20], i.e., directly
control the vehicle to the estimated target position.

Unfortunately, a reliable estimate cannot always be ob-
tained, particularly in the initial stage of the target search
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task where sensor measurements are limited. Clearly, it is not
necessary to control the vehicle to such an unreliable estimated
position. In fact, the controller should depend on the quality
of the target position estimate, which is again significantly
affected by the controlled trajectory of the mobile vehicle.
That is, the control and the estimation objectives should be
jointly considered. To achieve it, we propose a bi-objective
optimization problem subject to the dynamical constraint of
a discrete-time Dubins vehicle, where the first objective is to
control the target as fast as possible to the target (assuming it is
known) and the second objective is to optimize the estimation
performance of the unknown target position.

Usually, the vehicle cannot achieve the control and the esti-
mation objectives simultaneously. Note that the trajectory for
the control objective is a line segment from its initial position
pointing at the true target, which potentially leads to a poor
estimate of the target position [21]. However, the trajectory for
the estimation objective significantly deviates from the line
segment. Thus, it is essential to balance the two objectives.
This work adopts a weighted sum method [22] to transform
the bi-objective optimization problem into a composite opti-
mization problem with a weighting parameter representing the
relative importance between the two objectives. Although this
idea has been widely adopted in [23]–[26], it is still difficult
to select an appropriate weighting parameter due to different
physical meanings of the objective functions. For example, the
objective functions in [26] represent the angle difference and
the distance difference, which are also of different magnitudes.
To this end, we rewrite the composite objective problem by
normalizing the two objective functions and introducing a new
weighting parameter. It proves to be much easier to select an
appropriate value of the new weighting parameter, since both
objective functions are normalized to be dimensionless and
between zero and one.

However, the normalization always results in a complicated
form of the composite objective function. Furthermore, the
discrete-time Dubins vehicle [27] adopted in this work brings
a challenging constraint in the composite optimization prob-
lem, which is different from the single integrators in [13],
[14], [18], [19]. In the literature, evolutionary algorithms are
commonly-used, such as the genetic algorithm in [23], pigeon
inspired optimization method in [24], and value iteration-
like algorithm in [28]. Moreover, the graph-based searching
method is thoroughly investigated in [25], [26]. Different from
the aforementioned approaches, we attack the complicated
optimization problem by decomposing the forward velocity of
the vehicle and then transforming the optimization problem
into a solvable form. Particularly, an explicit solution can
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be directly obtained for some weighting parameters with this
approach.

Then, the controller for target search can be given in
terms of the solution to the optimization problem and the
vehicle’s global position information. Since the solution to the
optimization problem depends on the unknown target position,
the controller cannot be directly implemented. To solve this
problem, we design a recursive nonlinear least-square estimate
[29] of the target position for the optimization-based controller
by utilizing the certainty-equivalence principle. This substan-
tially distinguishes our controller from those in [18]–[20].

In addition, the vehicle’s global position is not always
available in GPS-denied environments, although it is used in
[13]–[20]. In this work, we further propose a controller without
the vehicle’s global position. Observe that the vehicle only
aims to reach the target position, for which the relative position
information between the vehicle and the target is sufficient.
Therefore, we utilize the bearing angles relative to the target
in the vehicle’s own coordinate, and derive an optimization-
based controller for the global position system (GPS) -denied
target search problem together with the vehicle’s orientation
angles from a compass. Similarly, the GPS information is
not required in [30], [31] to estimate the target position,
whereas they employ a group of vehicles to measure the
bearing angles relative to their neighbors and to communicate
individual estimates with their neighbors. In particular, the
communication graphs have to be connected.

The rest of this paper is organized as follows. In Section
II, the target search problem is formulated as a bi-objective
optimization problem for a discrete-time Dubins vehicle. In
Section III, we adopt the weighted sum method to solve the bi-
objective optimization problem, which is rewritten by transfor-
mation and normalization. The optimization-based controller
design is given in Section IV, with a recursive estimator and
an optimization solver. Section V considers the target search
problem in GPS-denied environments, where the controller
is based on the bearing angles in the vehicle’s coordinate.
Simulations are conducted in Section VI to illustrate the effec-
tiveness of the proposed controllers. Finally, some conclusion
remarks are drawn in Section VII.

II. PROBLEM FORMULATION

A. The target search problem with a mobile vehicle

Consider the scenario in Fig. 1, where a target is located at
an unknown position pT = [xT , yT ]′ ∈ R2 and the vehicle’s
position is p(k) = [x(k), y(k)]′ ∈ R2 at the k-th time step
in the global coordinate Σ. We first assume that the GPS
information p(k) is available and then remove it in Section V.
The vehicle measures a noisy bearing angle m(k) from itself
to the target, i.e.,

m(k) = φ(k) + e(k), (1)

where φ(k) = arctan
(
(x(k)− xT )/(y(k)− yT )

)
denotes the

true azimuth bearing angle, and e(k) denotes the measurement
noise.
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Fig. 1. The bearing-only target search problem with a mobile vehicle.

In this work, we adopt the following discrete-time Dubins
vehicle [27]

x(k + 1) = x(k) +
2vc
ω(k)

sin
(ω(k)h

2

)
cos
(
θ(k) +

ω(k)h

2

)
,

y(k + 1) = y(k) +
2vc
ω(k)

sin
(ω(k)h

2

)
sin
(
θ(k) +

ω(k)h

2

)
,

θ(k + 1) = θ(k) + ω(k)h
(2)

to search the target, where vc is the constant forward velocity,
ω(k) is the angular velocity to be tuned, θ(k) is the orientation,
and h is the sampling period. Since the forward velocity vc is
finite, the vehicle can only move within a certain region in a
sampling period, which is called the feasible region, see Fig.
1. The bearing-only target search problem is to sequentially
design the angular velocity ω(k) only by the noisy bearing
angles, such that the vehicle approaches the unknown target
position as fast as possible.

Obviously, if pT were known to the vehicle, the optimal
angular velocity is the one that drives the vehicle to the
closest waypoint to the target within the feasible region, i.e.,
pc(k+ 1), which is called the control objective. Whereas this
waypoint is not achievable for pT is unknown and needs to
be estimated. In light of [10], the optimal next waypoint to
optimize the estimation performance for the unknown position
pT is illustrated as pe(k+ 1) in the feasible region, which is
called the estimation objective. However, this waypoint even
cannot ensure the vehicle to approach the target.

Based on these observations, the optimal angular velocity
ω∗(k) should simultaneously consider both the estimation and
the control objectives. To this end, we formulate the following
bi-objective optimization problem

maximize
ω(k)

[
fe(p(k + 1))
fc(p(k + 1))

]
subject to (2), (3)

where the objective functions fe(p(k + 1)) and fc(p(k + 1))
represent the estimation and the control objectives, respec-
tively. Notice that both objectives depend on the unknown
position pT and are essential to the target search problem.
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Fig. 2. The controller architecture for bearing-only target search.

B. The controller architecture

To solve the bearing-only target search problem, we design
a controller for the mobile vehicle including a recursive least-
square estimator and an optimization solver. Fig. 2 shows the
proposed controller architecture. Firstly, the online measure-
ment m(k) is utilized to estimate the unknown target position
by the recursive least-square approach. Then, we solve the bi-
objective optimization problem (3) in ties with the estimate and
obtain the angular velocity ω∗(k). The details of the controller
design are elaborated in later sections.

III. SOLVING THE BI-OBJECTIVE OPTIMIZATION PROBLEM

To solve the bi-objective optimization problem (3), we adopt
the weighted sum method [22] and combine the two objective
functions of (3) into the following composite form

fe(p(k + 1)) + αfc(p(k + 1)), (4)

where the weighting parameter α > 0 plays an important role
in balancing the two objectives, but lacks physical meaning.

In this section, we first describe the concrete expressions of
the two objective functions fe(p(k + 1)) and fc(p(k + 1)),
and then solve the optimization problem.

A. The estimation and the control objective functions

Assume the measurement noise e(k) in (1) is white Gaus-
sian noise with zero mean and σ2 variance, i.e., e(k) ∼
N (0, σ2). The estimation performance is commonly evaluated
by the Cramer-Rao lower bound (CRLB) C(pT ) [32]. We
utilize the most recent n measurements at the current time
step k > n, denoted as mn(k) = [m(k − n+ 1),m(k − n+
2), . . . ,m(k)]′, to measure the CRLB, and we adopt the D-
optimal design. In light of Theorem 1 in [10], the estimation
objective at the time step k is explicitly expressed as

fe(p(k + 1)) = det(C(pT )−1) =
1

σ4

∑
i<j

sin2(φ(j)− φ(i))

r2(i)r2(j)
,

(5)
where i, j ∈ {k−n+1, . . . , k+1} and r(·) = ‖p(·)−pT ‖ is
the Euclidean distance from p(·) to pT , i.e., the range between
the vehicle and the target.

For the control performance of the vehicle approaching
the target, we consider to use the range difference within a
sampling period, which evaluates the approaching speed of
the vehicle to the target. We express the control objective by
maximizing the sum of the difference of the squared range in
n sampling periods

fc(p(k + 1)) =

k+1∑
i=k−n+2

(
r2(i− 1)− r2(i)

)
(6)
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Fig. 3. The decomposition of the forward velocity and geometrical relation-
ship of two sequential waypoints.

under the constraint r(i) 6 r(i−1), since the vehicle is always
required to approach the target. Observe that we employ the
difference of the squared range in (6) instead of the absolute
range difference for the ease of solving the optimization
problem.

For brevity, we only utilize the vehicle’s current position
and measurements to design the angular velocity, i.e., n = 1
in (5) and (6). Then the composite optimization problem in
(3)-(6) is expressed as

maximize
ω(k)

sin2 (φ(k + 1)− φ(k))

σ4r2(k)r2(k + 1)
+ α

(
r2(k)− r2(k + 1)

)
subject to r(k + 1) 6 r(k) and (2),

(7)
where the first constraint ensures the vehicle to gradually
approach the target, and the second constraint results from
the dynamics of the Dubins vehicle.

Remark 1. Both objective functions (5) and (6) depend on
the measurements mn(k), which are utilized to estimate the
bearing angles and the ranges. In fact, a small number of the
measurements, i.e., mn(k) with a small n, are sufficient to
evaluate both estimation and control performance at the k-th
time step, since it has weak correlation with the measurement
at the i-th time step for i � k. In this work, we consider a
simple case of n = 1.

In the rest of this section, we show how to solve the
composite optimization problem (7).

B. Transformation and normalization of the composite opti-
mization problem (7)

1) Transformation: Observe that it is very difficult to
directly solve the composite optimization problem (7). We
transform it into a solvable form by decomposing the forward
velocity vc into vr(k) and vt(k), which denote the radial and
tangential velocities of the vehicle relative to the target at the
time step k, respectively, see Fig. 3.

Then, the following relation is clear from Fig. 3 that

vc

[
cos(θ(k))
sin(θ(k))

]
= vr(k)

[
sinφ(k)
cosφ(k)

]
+ vt(k)

[
cosφ(k)
−sinφ(k)

]
. (8)

Assuming that vr(k), vt(k) and φ(k) are constant within the
sampling period from kh to (k + 1)h, we take Euler integral
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with respect to the continuous dynamics on the right side of
(8) and obtain that

x(k + 1)− x(k) = h
(
vr(k)sin(φ(k)) + vt(k)cos(φ(k))

)
,

y(k + 1)− y(k) = h
(
vr(k)cos(φ(k))− vt(k)sin(φ(k))

)
.

Together with the Dubins vehicle dynamics (2), it holds that

2vc
ω(k)

sin
(ω(k)h

2

)
cos
(
θ(k) +

ω(k)h

2

)
=h
(
vr(k)sin(φ(k)) + vt(k)cos(φ(k))

)
,

2vc
ω(k)

sin
(ω(k)h

2

)
sin
(
θ(k) +

ω(k)h

2

)
=h
(
vr(k)cos(φ(k))− vt(k)sin(φ(k))

)
.

(9)

Furthermore, dividing the two equalities in (9) leads to that

tan
(
θ(k) +

ω(k)h

2

)
=
vr(k)cos(φ(k))− vt(k)sin(φ(k))

vr(k)sin(φ(k)) + vt(k)cos(φ(k))
,

which implies the relation between ω(k) and vr(k), vt(k), i.e.

ω(k) =
2

h
arctan

(vr(k)cos(φ(k))− vt(k)sin(φ(k))

vr(k)sin(φ(k)) + vt(k)cos(φ(k))

)
− 2

h
θ(k).

(10)

Moreover, the decomposition of vc shows that vr(k)h is
exactly the projected distance of p(k + 1) − p(k) onto the
direction of pT − p(k), i.e.,

vr(k)h =
∥∥∥ (pT − p(k))(pT − p(k))′

‖pT − p(k)‖2
(p(k + 1)− p(k))

∥∥∥,
(11)

which is denoted as the bold dashed segment on the direction
of pT − p(k) in Fig. 3. Similarly, vt(k)h can be represented
as

vt(k)h =
∥∥∥(I2−

(pT − p(k))(pT − p(k))′

‖pT − p(k)‖2
)

(p(k+1)−p(k))
∥∥∥,

(12)
which is denoted as the bold dashed segment on the direction
perpendicular to pT − p(k) in Fig. 3. Jointly with (11), (12)
and the triangular geometric relationship in Fig. 3, it follows
that

sin2(φ(k + 1)− φ(k)) =
v2t (k)

(r(k)/h− vr(k))2 + v2t (k)
,

r2(k)− r2(k + 1) = 2r(k)vr(k)h− (v2r(k) + v2t (k))h2.

(13)

Besides, it follows from (8) that

v2r(k) + v2t (k) = v2c . (14)

Substituting (13) and (14) into the composite optimization
problem (7) yields that

maximize
vr

fe(vr) + αfc(vr)

subject to
v2ch

2r
6 vr 6 vc,

(15)

where the dependence of vr(k) and r(k) on k is dropped for
simplifying notations and

fe(vr) =
(v2c − v2r)h2

σ4r2(r2 − 2rvrh+ v2ch
2)2

,

fc(vr) = 2rvrh− v2ch2.
(16)

2) Normalization: Observe that fe(vr) and fc(vr) are used
to quantify the objectives with different physical meanings,
which results in the lack of physical understanding of the
weighting parameter α. Consequently, it is unclear how to
provide an appropriate α to balance the estimation and the
control objectives. To overcome this difficulty, we normalize
the two objective functions in (16) to be dimensionless and
with values in [0, 1]. Then, the composite optimization prob-
lem (15) is rewritten in the following normalized form

minimize
vr

f(vr) subject to
v2ch

2r
6 vr 6 vc, (17)

where the normalized objective function

f(vr) =
(

1− (v2c − v2r)(r2 − v2ch2)2

v2c (r2 − 2rvrh+ v2ch
2)2

)
+β

(vc − vr)(v2ch
2 + r2)

vc(vch− r)2
(18)

introduces a new weighting parameter β ∈ [0,+∞). See
Appendix A for the detailed normalization process.

In contrast with the weighting parameter α in (15), the new
weighting parameter β in (18) can directly quantify the relative
importance of the control objective to the estimation objective,
which is also an advantage of the normalized optimization
problem (17) over those in [23]–[26] with simple weighted
sums as the objective functions. To be more specific, β = 1 in
(18) means the control objective has the same importance as
the estimation objective, while the physical meaning of α = 1
is unclear. Therefore, the new weighting parameter β facilitates
designers to emphasize the importance between the estimation
and the control objectives.

Furthermore, solutions to the normalized optimization prob-
lems with different values of β lead the vehicle to move in
different trajectories. It is interesting to note that if β > 4,
the solution of (17) results in the heading direction of the
vehicle directly toward the estimate of the target position. In
this case, the controller design ignores the estimation objective
as in [18]–[20].

Remark 2. We set a constant β in this work. In fact, it can
be seen as an optimization variable to be adjusted during the
target search task, which, however, is beyond of the scope of
this work. A heuristic idea is to design β(k) ∝ 1/r(k), since
the target position may have already been well estimated when
the vehicle is close to the target. Another idea is to measure
estimation progress by using the following ratio

fe(vr(k)))

fe(vr(k − 1))

and increase β(k) if this ratio is close to unity, and decrease
it otherwise.

C. Solution to the normalized optimization problem (17)
Before providing the solution, we introduce an auxiliary

variable
ρ = vch/r

to denote the level of completing the target search task.
Specifically, ρ > 1, i.e., vch > r, means that the vehicle’s
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traveling distance in a sampling period is strictly larger than
its distance to the target. This implies that the vehicle is
sufficiently close to the target. Hence, we only focus on the
nontrivial case that 0 < ρ 6 1.

Lemma 1. The equation d
dvr
f(vr) = 0 has at least one root

in the interval [vs, vc], where vs = 2rv2ch/(r
2 + v2ch

2).

Proof. See Appendix B. �

Let ρc = (2−
√

4β − β2)/(β − 2) and vz denote the
largest root of the equation d

dvr
f(vr) = 0, vr ∈ [vs, vc]

by Lemma 1. Then, we provide the solution of (17) in the
following theorem.

Theorem 1. The optimal solution v∗r of the normalized opti-
mization problem (17) is given as follows.

(a) If β ∈ [4,∞), then v∗r = vc.
(b) If β ∈ [2, 4), then

v∗r =

{
vc, when ρ ∈ (0, ρc],
vz, when ρ ∈ (ρc, 1].

(c) If β ∈ [1, 2), then v∗r = vz .
(d) If β ∈ [0, 1), then

v∗r =

{
vz, when f(vz) < β,
vs, otherwise.

Proof. See Appendix C. �

Note that vs 6 vz 6 vc. Theorem 1 shows that a larger
β results in a larger v∗r . As we discussed in Section III-B
that a larger β emphasizes more the importance of the control
objective, a larger radial velocity vr is derived to approach
the target faster. This is also consistent with our intuition.
Specifically, if β ∈ [4,∞), then v∗r directly takes its maximum
value vc, which implies that the vehicle almost ignores the
estimation objective.

In addition, observe that finding vz is not needed in all
cases in Theorem 1. This potentially saves computational cost,
compared to the works in [23]–[26], [28].

IV. THE OPTIMIZATION-BASED CONTROLLER

It should be noted from Theorem 1 and (10) that the
vehicle’s optimal angular velocity depends on the range r(k)
and the bearing angle φ(k), both of which are unknown and
need to be estimated. Accordingly, we design a recursive
least-square estimator, and utilize the certainty-equivalence
principle for the controller design.

A. The recursive least-square estimator

Observing that the unknown r(k) and φ(k) are both origi-
nated from the unknown position pT , we only need to obtain
an optimal estimate of pT , which is the solution of the
following nonlinear least-square minimization problem

minimize
pT

1

2

k∑
i=1

∥∥∥∥m(i)− arctan
(x(i)− xT
y(i)− yT

)∥∥∥∥2 . (19)

Similar to Stansfield estimator in [29], we also assume the
measurement noise e(k) is sufficiently small to justify the

replacement of m(i)−arctan((x(i)− xT )/(y(i)− yT )) with
sin
(
m(i) − arctan((x(i) − xT )/(y(i) − yT ))

)
. Using the

relation that

sin
(
m(i)− arctan

(x(i)− xT
y(i)− yT

))
=

1

r(i)

(
sin(m(i))(y(i)− yT )− cos(m(i))(x(i)− xT )

)
,

(20)

we approximate the optimization problem (19) as

minimize
pT

1

2

k∑
i=1

‖x(i)cos(m(i))− y(i)(sin(m(i))

− [cos(m(i)),−sin(m(i))][xT , yT ]′‖2,

(21)

where we ignore the rather weak effect of 1/r(i) in (20).
Since the optimization problem (21) is a standard least-

square problem, we design a recursive algorithm to solve it,
see Algorithm 1. In practice, the initial estimate of the target
position p̂T (1) in Algorithm 1 is given as a solution of the
following equations

tan(m(i)) =
x(i)− xT
y(i)− yT

, i = 0, 1. (22)

Algorithm 1 Least-square estimate
1: At time k = 1, set p̂T (1) as the solution of (22), and

Q(1) = I2.
2: At time k > 2, the vehicle takes a bearing angle m(k)

and computes

H = [−cos(m(k)), sin(m(k))]′,

K = Q(k − 1)H(H′Q(k − 1)H + 1)−1,

eT = H′p(k),

Q(k) = (I2 −KH′)Q(k − 1),

p̂T (k) = p̂T (k − 1) + K(eT −H′p̂T (k − 1)).

Note that Algorithm 1 is developed under the assumption
of small e(k) and ignorance of 1/r(k), and might be biased.
Nonetheless, it is verified by the simulation results in [33]
to perform well with a small estimation error and to be of
practical significance.

B. The controller for bearing-only target search

Now, the detailed controller providing the angular velocity
is shown in Algorithm 2.

V. CONTROL FOR TARGET SEARCH WITHOUT GPS
INFORMATION

Observe that the controller in Algorithm 2 requires the
vehicle’s position p(k) in the global coordinate, which is
unavailable in GPS-denied environments. In this section, we
consider the target search problem without the vehicle’s global
position, and utilize the local bearing angles defined in the
vehicle’s coordinate to solve it.
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Algorithm 2 The angular velocity for the vehicle
1: At time k = 0, the vehicle takes a bearing angle m(k),

and randomly selects ω(k).
2: At time k > 1, the vehicle takes a bearing angle m(k)

and completes the following steps:
(a) runs Algorithm 1 to obtain

p̂T (k) = [x̂T (k), ŷT (k)]′,

(b) computes both the bearing and range estimates
φ̂(k) = arctan

(
(x(k)− x̂T (k))/(y(k)− ŷT (k))

)
,

r̂(k) = ‖p(k)− p̂T (k)‖,
(c) uses Theorem 1 to compute v∗r (k) where r(k) is

replaced by its estimate r̂(k),
(d) computes the angular velocity in (10) by replacing

φ(k) and vr(k) by φ̂(k) and v∗r (k), respectively.

North

( )k Target

cv

l

Tp( )r k

( )k

( )l k

l
Σ

Σ

Fig. 4. The bearing-only target search problem in the vehicle’s coordinate.

A. The target search problem without GPS information

Without the vehicle’s global position p(k), we consider
the target search problem in the vehicle’s coordinate Σl.
As Fig. 4 shows, this coordinate is attached to the vehicle
with its positive x-axis coincident with the heading of the
vehicle. The target’s position in this coordinate is denoted
as pl

T (k) = [xlT (k), ylT (k)]′ at the time step k, which is
time-varying due to the moving vehicle’s coordinate. The
orientation θ(k) is still accessible by a compass. Moreover, the
vehicle measures a local bearing angle ml(k) in the vehicle’s
coordinate relative to the target, i.e.,

ml(k) = φl(k) + el(k), (23)

where φl(k) = arctan(ylT (k)/xlT (k)) denotes the true local
bearing angle, and el(k) ∼ N (0, σ2) denotes the local mea-
surement noise.

Then, the bearing-only target search problem becomes to
sequentially design the angular velocity ω(k) for the vehicle
(2) to approach the unknwon target position as fast as possible
only by local noisy bearing angles. To solve this problem, we
still design the controller depending on the solution to the
bi-objective optimization problem (3).

B. The optimization-based controller without GPS information

Similar to Section IV, a recursive least-square algorithm
is designed in the proposed controller to estimate the target
position pl

T (k). We approximately solve the nonlinear least-
square optimization problem

minimize
pl

T (k)

1

2

k∑
i=1

‖ml(i)− arctan
(xlT (i)

ylT (i)

)
‖2

by a linear least-square form, i.e.,

minimize
pl

T (k)

1

2

k∑
i=1

‖[cos(ml(i)),−sin(ml(i))][xlT (i), ylT (i)]′‖2.

(24)
The difference from Section IV lies in the time-varying

target position in the vehicle’s coordinate due to the moving
vehicle. Thus, the state equation of the target position pl

T (k)
is to be derived. According to the relation between global
coordinate and the vehicle’s coordinate, it holds that

pl
T (k) =

[
cos(θ(k)) sin(θ(k))

−sin(θ(k)) cos(θ(k))

]
(pT − p(k)). (25)

Combining with the vehicle dynamics, we further obtain that

pl
T (k) = A(k − 1)pl

T (k − 1) + b, (26)

where

A(k − 1) =

[
1 ω(k − 1)

−ω(k − 1) 1

]
,b = [−vch, 0]′.

Jointly with (24) and (26), the recursive least-square esti-
mator with only local bearing angles is given in Algorithm 3,
where the initial estimate of the target position in the vehicle’s
coordinate p̂l

T (1) is selected as a solution of the following
equations

tan(ml(i)) =
xlT (i)

ylT (i)
, i = 0, 1. (27)

Algorithm 3 Least-square estimation algorithm with local
bearing angles

1: At time k = 1, set p̂l
T (1) as the solution of (27), and

Q(1) = I2.
2: At time k > 2, the vehicle takes a local bearing angle
ml(k) and computes

H = [−cos(ml(k)), sin(ml(k))]′,

K = Q(k − 1)H(H′Q(k − 1)H + 1)−1,

Q(k) = (I2 −KH′)Q(k − 1),

p̂l
T (k) = (A(k − 1)−KH′)p̂l

T (k − 1) + b.

The angular velocity for the vehicle is also given in Algo-
rithm 2 where we use Algorithm 3 to replace Algorithm 1 and
the bearing angle and the range estimates are computed as

φ̂(k) =
π

2
− θ(k)− arctan

(
x̂lT (k)

ŷlT (k)

)
,

r̂(k) = ‖p̂l
T (k)‖,
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Fig. 5. The trajectory of the vehicle and the estimated positions of the target.
The error between the vehicle and the target is around 0.41m.

and the rest of Algorithm 2 remain unchanged. Thus, we
obtain the controller for the target search problem without GPS
information.

VI. SIMULATIONS

In this section, we illustrate the effectiveness of the pro-
posed optimization-based controllers for the bearing-only tar-
get search problem. The initial state of the vehicle is set
as p(0) = [0, 0]′, θ(0) = 0, the constant forward velocity
vc = 4m/s, the target position pT = [100, 100]′m, and its
initial estimate p̂T (0) = [40, 80]′m. We take the weighting
parameter β = 1 unless particular specification, which means
the control objective has the same importance as the estimation
objective. Moreover, the sampling period is set as h = 0.25s.

A. Simulation results with GPS information

With GPS information, the controller in Algorithm 1 is
implemented in a target search task to approach an unknown
target position. Fig. 5 shows the vehicle’s trajectory and the
estimated target positions, where the small square in the upper
left corner is the magnification of the results in the target’s
neighbor. Clearly, the vehicle moves in a spiral curve and
approaches the true target gradually, while the estimated target
positions converges to its true position. It reveals that the
vehicle achieves the estimation and the control objectives
simultaneously with the weighting parameter β = 1.

The cases of β = 0 and β = 2 are depicted in Fig. 6,
which shows that the vehicle tends to circle the target for
the estimation objective and to directly approach the target
for the control objective, respectively. This also explains the
rationality of the spiral trajectory in Fig. 5, as β = 1 is between
these two cases. The videos of the vehicle’s motions under the
proposed controller in the cases of β = 0, β = 1, and β = 2
are uploaded to https://www.dropbox.com/s/9dtpijap65gup50/
video motion.mp4?dl=0.

B. Simulation results without GPS information

For the target search problem without the vehicle’s global
position p(k), we apply the controller in Algorithm 3 with lo-
cal bearing angles. The results are shown in Fig. 7, where both
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Fig. 6. The trajectories of the vehicle and the estimated positions of the target
with β = 0 and β = 2.
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Fig. 7. The trajectory of the vehicle and the estimated positions of the target
with local bearing angles. The final error between the vehicle and the target
is around 0.43m.

of the vehicle’s trajectory and the estimated target positions
gradually converge to the true target position. It is consistent
with our results in Section V. Since the true target position is
time-varying in the vehicle’s coordinate, the estimated target
positions have larger fluctuation than those in Section VI-A.

In addition, we compare the two recursive least-square esti-
mators of Algorithm 1 and 3 by denoting the estimation error
as eest(k) = ‖pT (k)− p̂T (k)‖. We observe that the eest(k) of
Algorithm 3 converges to zero as that of Algorithm 1, although
its value is larger in the initial stage and the convergence rate is
slower due to lack of the vehicle’s GPS information. It implies
that the GPS information is not necessary, but might improve
the search performance, which is not studied in previous works
[10]–[14].

C. The role of the weighting parameter β

In this subsection, we investigate the role of the weighting
parameter β in balancing the estimation and the control objec-
tives, and provide some guidelines for choosing an appropriate
β.

In Fig. 9, the time for the estimation error less than 1m
are t = 51s, t = 64s, and t = 145s for the cases of β =
1, β = 2, and β = 3. From Fig. 10, the time of estimated

https://www.dropbox.com/s/9dtpijap65gup50/video_motion.mp4?dl=0.
https://www.dropbox.com/s/9dtpijap65gup50/video_motion.mp4?dl=0.
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Fig. 9. The estimation errors of the target position with different values of
β.
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Fig. 10. The ranges between the vehicle and the estimated target with different
values of β.
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Fig. 11. The trajectory of the vehicle and the estimated positions of the target
with β = 3.
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Fig. 12. The time for target search with different values of β.

range in Algorithm 2 less than 1m are t = 90s, t = 71s, and
t = 28s. That is, the larger the value of β, the slower the
estimation convergence and the faster the vehicle approaching
the estimated target position. In particular, we can observe
from Fig. 10 that the estimated range easily tends to zero for a
large β, i.e., the vehicle tends to approach the estimated target
position. This is consistent with Section III-B that a larger
β emphasizes more the importance of the control objective.
However, the estimate of the target position may be far from
the true target position in the case of a larger β. Figure 11
further shows that the vehicle approaches a “wrong” target due
to the large estimation error. Thus, the weighting parameter β
must be chosen carefully to balance the estimation and the
control objectives.

To further explore the search performance with different
values of β, we set a terminal condition of Algorithm 2 as
r(k) < vch, indicating the completeness of the target search
task. The times for completing the target search task with
different values of β are given in Fig. 12, where the search
time initially decreases with a larger β, and then increases as β
become much larger. Finally, it keeps constant when β > 4.5.
This implies that neither too small or too large value of β is
preferable in the target search problem.
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VII. CONCLUSION

We have derived an optimization-based controller for the
discrete-time Dubins vehicle to address the bearing-only target
search problem, where the vehicle was to be steered to the
unknown target position as fast as possible and the estimation
performance for the unknown target position was considered.
In the proposed scheme, we estimated the unknown target
position via the recursive estimator with bearing angles in
global and the vehicle’s coordinate. Using the estimated target
position, we formulated and solved a bi-objective optimization
problem with the estimation and the control objectives. In par-
ticular, the solution was in terms of the predefined importance
of the control objective relative to the estimation objective.
Then, an optimization-based controller was obtained and drove
the vehicle to approach the target as fast as possible while op-
timizing the estimation performance. Finally, simulations were
given to verify the effectiveness of the proposed controller.

APPENDIX A
NORMALIZATION OF THE OPTIMIZATION PROBLEM (15)

In the appendix, we denote ḟ(·), f̈(·) as the derivative and
second derivative of the function f(·) with respect to the
variable in the bracket.

To normalize the objective function in (15), we take the
derivative of fe(vr) and fc(vr) in (16) as

ḟe(vr) =
−2vrh

2(r2 − 2rvrh+ v2ch
2) + 4rh3(v2c − v2r)

σ4r2(r2 − 2rvrh+ v2ch
2)3

,

ḟc(vr) = 2rh.

Let ḟe(vr) = 0, and we obtain a stationary point of fe(vr)
denoted as vs = 2rv2ch/(r

2 + v2ch
2). Thus, the increasing

interval and decreasing interval of fe(vr) are [v2ch/2r, vs) and
[vs, vc], respectively, and fc(vr) is always increasing in the
feasible set [v2ch/2r, vc]. It follows that the Pareto-optimal set
of the composite optimization problem (15) is [vs, vc] .

Instituting vr = vs into fe(vr) and fc(vr), we obtain the
ideal value of fe(vr) and the nadir value of fc(vr) below

f∗e =
v2ch

2

r2(r2 − v2ch2)2
, f nad

c =
3r2v2ch

2 − v4ch4

r2 + v2ch
2

. (28)

Similarly, taking vr = vc, we obtain the nadir value of fe(vr)
and the ideal value of fc(vr) below

f nad
e = 0, f∗c = 2rvch− v2ch2. (29)

Jointly with (16), (28) and (29), we can normalize the objective
functions as

f norm
e (vr) =

fe(vr)− f nad
e

f∗e − f nad
e

= 1− (v2c − v2r)(r2 − v2ch2)2

v2c (r2 − 2rvrh+ v2ch
2)2

,

f norm
c (vr) =

fc(vr)− f nad
c

f∗c − f nad
c

=
(vc − vr)(v2ch

2 + r2)

vc(vch− r)2
.

Then the normalized objective function is given as

f(vr) = f norm
e (vr) + βf norm

c (vr)

with a new weighting parameter β ∈ [0,+∞).

APPENDIX B
PROOF OF LEMMA 1

The derivative of f(vr) in (17) is computed as

ḟ(vr) =
(2vr(r2 + v2ch

2)− 4rv2ch)(r2 − v2ch2)2

v2c (r2 − 2rvrh+ v2ch
2)3

− β v2ch
2 + r2

vc(vch− r)2
.

(30)

Let ḟ(vr) = 0, and we have three solutions denoted as z1, z2,
and z3. Since we only focus on the interval vr ∈ [vs, vc], the
first derivatives of f(vr) at vs and vc are computed as follows

ḟ(vs) = 0, ḟ(vc) =
(2− β)(v2ch

2 + r2) + 4rvch

vc(r + vch)2
. (31)

Thus, vs is one of the roots of ḟ(vr) = 0, which implies that
ḟ(vr) = 0 has at least one root in the interval vr ∈ [vs, vc].

APPENDIX C
PROOF OF THEOREM 1

Obviously, solutions of the normalized optimization prob-
lem (17) exist in the Pareto-optimal set, thus we only need to
focus on f(vr) for vr ∈ [vs, vc]. Based on the proof of Lemma
1, the first derivative of ḟ(vc) is indefinite, the sign of which
is to be analyzed in the following.

To this end, we firstly consider the continuity of ḟ(vr) and
observe that there exists and only exists a discontinuity point,
i.e., vr = (r2 + v2ch

2)/2rh, which makes the denominator of
ḟ(vr) equal to zero. Furthermore, this discontinuity point is
larger than vc, implying that the function ḟ(vr) is continuous
in the Pareto set [vs, vc].

Then, we take the second derivative of f(vr) in vr ∈ [vs, vc]
and obtain that

f̈(vr) =
2Θ2

v2cΞ2
+

24r2h2Θ2(v2r − v2c )

v2cΞ4
+

16rvrhΘ2

v2cΞ3
, (32)

where Θ = r2 − v2ch2 and Ξ = r2 − 2vrhr + v2ch
2. Inserting

the bounds of the Pareto-optimal set vs, vc into the second
derivative yields that

f̈(vs) > 0, f̈(vc) > 0, (33)

implying that the function ḟ(vr) is increasing at vs and vc.
Now, we focus on the sign of ḟ(vc). Since the denominator

is positive in [vs, vc], we only needs to analyze the sign of the
numerator (2− β)(v2ch

2 + r2) + 4rvch.
In light of the fundamental inequality a2 + b2 > 2ab,∀a, b,

we obtain that β > 4 is a sufficient condition of ḟ(vc) 6 0.
The upper subfigure in Fig.13 approximately depicts ḟ(vr) in
this case, where ḟ(vr) is continuous in [vs, vc], ḟ(vs) = 0,
ḟ(vc) 6 0, and (33) holds. Then the function curve of f(vr)
can be approximated corresponding to that of ḟ(vr), where
f(vs) − f(vc) = β − 1 > 0 and f(vc) = 1. Therefore, the
minimum of f(vr) is f(vc).

Similarly, we have that β 6 2 is a sufficient condition
of ḟ(vc) > 0. There are two cases depicted in the upper
subfigures in Fig. 14 and Fig. 15. In the first case, the other
two zero points besides vs exist in (vs, vc), and we denote
the largest zero point as vz . Since f(vs) − f(vc) = β − 1,
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Fig. 13. A possible case of ḟ(vr) and f(vr) curves.

it holds that f(vz) is the minimum if β > 1. For β < 1,
the minimum is the smaller one of f(vs) and f(vz). Fig.
14 depicts the function curves of ḟ(vr) and f(vr), where
ḟ(vs) = 0, the other two zero points of ḟ(vr) are in [vs, vc],
and the corresponding f(vr) are marked with β > 1 and
β < 1, respectively. In the second case, the function ḟ(vr)
remains positive in (vs, vc), since there is no zero points. It
implies that f(vr) always increases and β < 1, as Fig. 15
shows. Therefore, the minimum of f(vr) is f(vs).

For the case of β ∈ (2, 4), it clearly holds that f(vs) −
f(vc) = β− 1 > 0. Let (2− β)(v2ch

2 + r2) + 4rvch = 0, and
we obtain the following relation that

ρ =
vch

r
=

2−
√

4β − β2

β − 2
.

It follows that if ρ ∈
(
0, (2 −

√
4β − β2)/(β − 2)

]
, then

ḟ(vc) 6 0. The function curves are shown in Fig.13. Oth-
erwise, the function ḟ(vc) > 0, and the function curves are
similar to that in Fig. 14 marked by β ≥ 1.

To summarize, we have following conclusions with different
values of β.

(a) If β ∈ [4,∞), then ḟ(vc) 6 0. It follows from f(vs)−
f(vc) = β− 1 > 0 that the minimum of f(vr) is f(vc).
The function curves are shown in Fig. 13.

(b) If β ∈ [2, 4), together with f(vs)− f(vc) = β − 1 > 0,
there are two conditions that
i) If ρ ∈

(
0, (2 −

√
4β − β2)/(β − 2)

]
, then ḟ(vc) 6

0. Thus, the minimum of f(vr) is f(vc). The function
curves are shown in Fig. 13.
ii) If ρ ∈

(
(2−

√
4β − β2)/(β−2), 1

)
, then ḟ(vc) > 0.

Thus, the minimum of f(vr) is f(vz), where vz is the
largest root of ḟ(vr) = 0, vr ∈ [vs, vc]. The function
curves are shown in Fig. 14.

(c) If β ∈ [1, 2), then ḟ(vc) > 0. It follows from f(vs) −
f(vc) = β−1 > 0 that the minimum of f(vr) is f(vz).
The function curves are shown in Fig. 14.

(d) If β ∈ [0, 1), then ḟ(vc) > 0. Together with f(vs) −
f(vc) = β − 1 < 0, there are two conditions that
i) If there is any root of ḟ(vr) = 0 in the interval (vs, vc],

1( )sv z cv

( )rf v

rv2z zv

1( )sv z cv

( )rf v

rv2z zv

1


1 


1 

3( )z

3( )z

Fig. 14. A possible case of ḟ(vr) and f(vr) curves.

sv cv

( )rf v

rv

sv cv

( )rf v

rv
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Fig. 15. A possible case of ḟ(vr) and f(vr) curves.

then the minimum of f(vr) is the smaller one of f(vz)
and f(vs). The function curves are shown in Fig. 14.
ii) If there is no root of ḟ(vr) = 0 in the interval (vs, vc],
then the minimum of f(vr) is f(vs). The function curves
are shown in Fig. 15.

The optimal solution v∗r of the normalized optimization
problem (17) can be selected as in Theorem 1.
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[33] K. Doğançay, “On the bias of linear least squares algorithms for passive
target localization,” Signal Processing, vol. 84, no. 3, pp. 475–486, 2004.

Zhuo Li received the B.S. degree from the Depart-
ment of Automation, Harbin Institute of Technology,
Harbin, China, in 2016. She is currently pursuing
the Ph.D. degree at the Department of Automation,
Tsinghua University, Beijing, China. Her research
interests include nonlinear control, distributed opti-
mization, source seeking and learning.

Keyou You (SM’17) received the B.S. degree in
Statistical Science from Sun Yat-sen University,
Guangzhou, China, in 2007 and the Ph.D. de-
gree in Electrical and Electronic Engineering from
Nanyang Technological University (NTU), Singa-
pore, in 2012. After briefly working as a Research
Fellow at NTU, he joined Tsinghua University in
Beijing, China where he is now a tenured Associate
Professor in the Department of Automation. He held
visiting positions at Politecnico di Torino, The Hong
Kong University of Science and Technology, The

University of Melbourne and etc. His current research interests include
networked control systems, distributed optimization and learning, and their
applications.

Dr. You received the Guan Zhaozhi award at the 29th Chinese Control
Conference in 2010, the CSC-IBM China Faculty Award in 2014 and the
ACA (Asian Control Association) Temasek Young Educator Award in 2019.
He was selected to the National 1000-Youth Talent Program of China in 2014
and received the National Science Fund for Excellent Young Scholars in 2017.

Shiji Song received the Ph.D. degree in the Depart-
ment of Mathematics from Harbin Institute of Tech-
nology in 1996. He is a professor in the Department
of Automation, Tsinghua University. His research
interests include system modeling, control and op-
timization, computational intelligence and pattern
recognition.



12

Anke Xue received the Ph.D. degree from Zhejiang
University, in 1997. He is a professor in Hangzhou
Dianzi University. His current research interests in-
clude robust control theory and applications.


	I Introduction
	II Problem formulation
	II-A The target search problem with a mobile vehicle
	II-B The controller architecture

	III Solving the bi-objective optimization problem
	III-A The estimation and the control objective functions
	III-B Transformation and normalization of the composite optimization problem (??)
	III-B1 Transformation
	III-B2 Normalization

	III-C Solution to the normalized optimization problem (??)

	IV The optimization-based controller 
	IV-A The recursive least-square estimator
	IV-B The controller for bearing-only target search

	V Control for target search without GPS information
	V-A  The target search problem without GPS information
	V-B The optimization-based controller without GPS information

	VI Simulations
	VI-A Simulation results with GPS information
	VI-B Simulation results without GPS information
	VI-C The role of the weighting parameter 

	VII Conclusion
	Appendix A: Normalization of the optimization problem (??)
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Theorem ??
	References
	Biographies
	Zhuo Li
	Keyou You
	Shiji Song
	Anke Xue


