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Evolutionary Multi-Agent Transfer Learning with
Model-based Opponent Behavior Prediction

Yaqing Hou, Yew-Soon Ong, Fellow, IEEE, Jing Tang and Yifeng Zeng

Abstract—This paper embarks a study on multi-agent transfer
learning for addressing the specific challenges that arise in
complex multi-agent systems where agents have different or even
competing objectives. Specifically, beyond the essential backbone
of a state-of-the-art evolutionary Transfer Learning framework
(eTL), this paper presents the novel Transfer Learning frame-
work with Prediction (eTL-P) as an upgrade over existing eTL
to endow agents with abilities to interact with their opponents
effectively by building candidate models and accordingly pre-
dicting their behavioral strategies. To reduce the complexity of
candidate models, eTL-P constructs a monotone submodular
function, which facilitates to select Top-K models from all
available candidate models based on their representativeness in
terms of behavioral coverage as well as reward diversity. eTL-P
also integrates social selection mechanisms for agents to identify
their better performing partners, thus improving their learning
performance and reducing the complexity of behavior prediction
by reusing useful knowledge with respect to their partners’ mind
universes. Experiments based on a partner-opponent minefield
navigation task (PO-MNT) have shown that eTL-P exhibits the
superiority in achieving higher learning capability and efficiency
of multiple agents when compared to the state-of-the-art multi-
agent transfer learning approaches.

Keywords—Multi-agent System, evolutionary transfer learning,
behavior prediction, monotone submodular model selection.

I. INTRODUCTION

Transfer learning (TL) has surfaced as an attractive learning
approach for enhancing the learning efficacy of a new task
by reusing the valuable data from a related task [1]. Due to
its flexibility and ease of use, TL has been well-known as
a popular problem solver that enjoyed its significant success
across a wide realm of real-world applications including com-
puter vision [2], natural language processing [3], etc. Recent
study on TL has also started to investigate multi-agent systems
(MASs) wherein agents tend to benefit from the knowledge
transferred from their partners of high payoffs, hence improv-
ing agents’ performance in more efficient problem-solving [4]
[5] [6]. Emerging multi-agent TL approaches include Advice
Exchange (AE) mechanisms [7], a Parallel Transfer Learning

Yaqing Hou is with the Data Science and Artificial Intelligence Re-
search Centre (DSAIR), School of Computer Science and Engineer-
ing, Nanyang Technological University (NTU), Singapore 639798 (e-mail:
yaqinghou@ntu.edu.sg).

Yew-Soon Ong is with the School of Computer Science and Engineer-
ing, Nanyang Technological University (NTU), Singapore 639798 (e-mail:
asysong @ntu.edu.sg).

Jing Tang is with the School of Computing, Teesside University, UK (e-
mail: J.Tang @tees.ac.uk)

Yifeng Zeng is with the School of Computing, Teesside University, UK
(e-mail: y.zeng@tees.ac.uk).

(PTL) approach [8] and an evolutionary Transfer Learning
(eTL) framework [9].

Existing study on multi-agent TL approaches has to date
focused on simple multi-agent scenarios where all agents have
the same or share similar action spaces, and pursue a common
objective. In multi-agent cases where different agents have
competing objectives, the learning process of multiple agents
becomes more complex and current TL approaches do not cope
well, since agents are expected to be aware of the thoughts of
their opponents so that efficient strategies can be developed to
complete the mission successfully [10]. However, searching for
an efficient interactive strategy is a challenging task since its
effectiveness greatly depends on the behavior of the opponents
involved. Therefore, it is necessary to endow agents with
capacities to identify the strategies, capabilities or models of
their opponents that are present in the competitive multi-agent
environment [11].

The ability to accurately predict the actions of an intelligent
agent is useful for a wide variety of problems, such as
commercial video games [12] and automated driver assistance
[13]. In competitive multi-agent scenarios, subject agents need
to predict the action that the opponent agent will take in a
given environmental state, or more specifically, to sample from
the distribution over actions that is as close as possible to its
actual action distribution. To achieve this, we can reasonably
assume that opponent agent reasons about the actions it takes
and hence tries to model that reasoning process as explicit as
possible. Notably, the true model of opponent agents is usually
unknown especially in a competitive multi-agent scenario [14].
Nevertheless, we do not need know exactly how the agent
reasons about their actions, as many different processes may
lead to the similar observed behavior. However, while different
models might ultimately lead to the same optimal behavior,
if those models are given certain computational bounds nor
allowed to learn with sufficient data, they may yield potentially
very different approximate solutions. Therefore, numerous
models are often constructed to reason about the behavior
distribution of opponent agents, based on previously recorded
data on those agents’ behavior [11]. The challenge here is
hence to identify the one model which enables a more accurate
prediction of opponent agents’ actual behavior.

Taking this cue, the interest of the current work lies in
the development of TL in more complex and realistic MASs
where multiple agents have different or even competing ob-
jectives. Specifically, we present an enhanced multi-agent TL
framework where subject agents could improve their learning
performance by building numerous candidate models of their
opponents and accordingly predicting their behaviors. In par-
ticular, considering that the search space of numerous models



could be large [15], the identification of an appropriate model
from the full model set becomes time-consuming and even
infeasible due to the computational and memory limits. In
the light of this consideration, we propose a Top-/K model
selection method to select a proper subset of candidate models
from the full model space by measuring the representativeness
of the selected models to the full model space. As the size
of selected models is much smaller than the full model set,
the search space and complexity of candidate models will be
reduced significantly, hence improving the computational effi-
ciency. The essential backbone of our proposed approach is the
state-of-the-art eTL framework [9] which is driven by a series
of memetic mechanisms [16] that are inspired from Universal
Darwinism and Darkins’ notion of meme(s) [17]. Further, we
employ a well-established temporal difference (TD) - Fusion
Architecture for Learning and Cognition (FALCON) [18] as
the connectionist reinforcement learning agents in the present
study. In particular, the core contributions of this paper can be
summarized as follows:

1) A novel evolutionary multi-agent TL framework (eTL-
P) is proposed for modeling subject agents in competi-
tive multi-agent settings wherein subject agents are able
to predict the behavior/actions of their opponents by
solving the attributed candidate models.

2) eTL-P endows agents with the capacities to build can-
didate models automatically given the available data
instances recorded from the historical interactive activ-
ities. In addition, eTL-P focuses on model complex-
ity reduction and proposes a Top-K model selection
method to select a proper subset of models by mea-
suring their representativeness to the full model space.
Taking the coverage and diversity aspects of selected
models into consideration, the selected Top-K models
are proven to be representative to the full model set,
hence guarantee promising prediction accuracy.

3) eTL-P integrates social selection mechanisms for sub-
ject agents to identify their better performing partners
in the environment while online. This leads to enhance-
ment in learning performance and a reduction in the
complexity of behavior prediction since subject agents
benefit from the useful knowledge which they leverage
from their partners’ mind universes (i.e., both from the
internal connectionist learners and predictive candidate
models of opponent agents).

4) To validate the efficacy of the proposed eTL-P, we
conduct comprehensive empirical studies on a Partner-
Opponent Minefield Navigation Task (PO-MNT) in-
volving both subject agent partners and their competing
opponents. Empirical results show that eTL-P improves
the learning effectiveness and efficiency of subject
agents in the complex PO-MNT scenarios.

The rest of the paper is organized as follows. Section II
presents an overview of multi-agent TL and agent modeling
in competitive MASs which is followed by an introduction of
the eTL framework. Section III discusses the comprehensive
deta ils of the proposed eTL-P, which is composed of behavior
prediction, Top-K model selection and multi-agent TL scheme.

Subsequently, empirical study of the proposed eTL-P is inves-
tigated on an adapted MNT in Section IV. Last but not least,
Section V presents the brief concluding remarks of this paper.

II. PRELIMINARIES

This section begins with some background or overview of
the multi-agent transfer reinforcement learning study, which is
followed by an introduction of the eTL using (TD)-FALCON
as the basic infrastructure of a reinforcement learning agent.

A. Background

1) Multi-agent Transfer Learning: Reinforcement learning
(RL) is a paradigm for learning sequential decision making
tasks that enable individual agents to learn and adapt to the
environment [19] [20]. Typically, a decision making task is
formulated as a Markov Decision Process (MDP) which is
composed of a set of states S, a set of actions A, a reward
function R(s,a), and a transition function P(s’|s,a). Given
each state s € 5, the agent takes an action a from action
set A. Upon receiving a reward R(s,a) after performing this
action, the agent arrives at a new state s’ which is determined
by the probability distribution P(s'|s,a). A policy m = P(als)
specifies a distribution for each state on deciding which action
an agent takes. The value Q*(s,a) of a state-action pair is
an estimate of the future reward obtained from (s,a) when
following policy , and is determined by solving the Bellman
equation:

Q*(s,a) = R(s,a) + ’}/ZP(S/|S, a)ymazxq, Q* (s, a’)

where 0 < 7 < 1 is the discount factor. The goal of a
RL agent is hence to find the policy m mapping states to
appropriate actions that maximizes the expected long-term
rewards obtained from environment.

RL has attracted extensive attentions in the past decades
[21] [22] [20]. A plethora of RL methods, such as Monte
Carlo [23], temporal difference [24] and direct policy search
[25], have been proposed for building independent autonomous
agents. Nevertheless, while existing RL methods have achieved
significant success, they usually require a lot of experiential
data and high exploration time to learn, hence are deemed
to be slow and sometimes fall short in meeting with today’s
competitive need for high-efficiency problem-solvers in many
complex problem domains.

On the other hand, TL has been gaining increasing attentions
for enhancing the classical RL paradigm, which leverages the
useful strategies from a well studied domain as supplementary
knowledge to instruct learning process on newly encountered
tasks [1]. Recently, a variety of TL methodologies, such as
instance transfer [26], action value transfer [27] [28], model
transfer [29] and advice exchanging [7] have been proposed,
and benefited a wide range of RL tasks. However, it is
worth noting that these approaches focus almost exclusively
on speeding up learning across single agent systems [8]. The
transfer among multiple agents while the learning progresses
on-line in the same environment has less been considered.



One fundamental challenge which TL faces is that of
gathering useful knowledge from necessary number of learning
trials to learn correctly. In multi-agent settings, TL could
be rather problematic because of the potentially much larger
search space arising from the number of agents or their
behavioral sophistication. Current research on TL is beginning
to take steps towards addressing this specific challenge. Several
studies have been investigated including the interactive AE
mechanisms [7] in which agents with poor performance request
behavioral advice from the elitist agent, a PTL approach [8]
where agents broadcast valuable data instances to all other
partners and an e€TL framework [9] wherein the knowledge
defined as meme(s) are transmitted to others via a human-like
imitation process. Nevertheless, all of these research on multi-
agent TL has focused on a simple multi-agent scenario where
all agents share the same objectives and remained yet to fully
exploit the common traits that exist in the different objectives.

When compared to state-of-the-art multi-agent TL learning
approaches, eTL exhibits significant superiority to achieve
greater level of adaptivity in addressing the increasing com-
plexity of problem-solving. Previously, eTL has been success-
fully used for modeling autonomous agents in a commonly
used MNT and a well-known first person shooter game “Unreal
Tournament 2004 [9]. Besides, an interactive game, namely
“Home Defence” has also been investigated where non-player
characters driven by eTL interact naturally with human players
[30]. Taking this cue, beyond the formalism of eTL, this
paper contributes to the study of multi-agent TL and further
embarks a novel study on the proposed eTL-P in addressing
the challenges arising in complex MASs where agents have
non-aligned, or even competing objectives.

2) Agent Modeling in Competitive Multi-agent Systems: For
autonomous agents in MAS, the ability to reason about or
predict the behavior of other agents is crucial to one’s own
performance [31]. Specifically, knowing the likely actions of
other agents influences an agent’s expected distribution over
future environmental states, and thus informs its planning of
future behaviors. In a competitive environment, the predicted
behavior of other agents with differing objectives is referred
to as an opponent model [32] [33]. Opponent models are par-
ticularly useful if they enable some identification of potential
patterns or weakness on the part of the opponent. For example,
a chess player can determine how best to play away from an
opponent’s strengths via studying past games of that opponent.

Generally, an opponent model is a function which takes
as input some portion of the observed interaction history,
and returns a prediction of the future actions regarding the
opponent agent [11]. The interaction history may contain
information such as the past actions that the opponent took
in various circumstances. In the literature, an autonomous
agent can construct such a model in different ways. Most of
research work has endeavored to learn opponent models from
scratch via policy reconstruction [12], which makes explicit
predictions about an agent’s actions by reconstructing the
agent’s decision making. These methods often begin with some
arbitrary or idealized model and “fit” the internals of the model
to reflect the agent’s observed behavior [34]. Nevertheless,
policy reconstruction can be a slow process, since numerous

observations may be required before the modelling process
yields a useful model. This tends to be problematic in scenarios
in which an agent has neither time nor opportunity to collect
sufficient observations about the opponent. In such cases, it is
useful if an agent is able to reuse models learned in previous
interactions with other agents, such that it only needs to find
the model which most closely resembles the observed behavior
of the opponent agent in the current interaction.

Based on the above motivation, type-based (or model-
based) methods reason about a space of possible types that
the opponent agent may have [35] [36]. Each type is a
complete specification (or a model) of the agent’s behavior,
taking as input the observed interaction history and assigning
probabilities to the actions available to the opponent agent. The
representation of types can be formalized by decision trees and
artificial neural networks, etc. Moreover, in historical studies,
types may be obtained in different ways: they may be specified
manually by a domain expert [14]; they may have been learned
in previous interactions or generated from a corpus of historical
data [37]; or they may be hypothesized from the domain
and task to be completed [38]. Nevertheless, most of these
studies on type-based opponent modelling methods assume
that the specifications of types (e.g., artificial neural networks
of specific hyper-parameter configurations) are available in
advance. In case we have no prior knowledge on the specific
representations of types, it is difficult or time-consuming to
predict opponent behaviors with all possible candidate types.

The challenge here is hence to identify a small set of types
(or models) from all candidates by solving which enables an
accurate prediction of opponent agents’ behavior. To this end,
a Top-K model selection approach is proposed in this paper
to reduce the search space or complexity of candidate types
by selecting a proper subset of candidate types from the full
model set.

B. eTL Framework

eTL takes inspiration from Universal Darwinism and
Dawkins’s definition of a meme. In meme inspired memetic
computing, many of the existing work has been established as
an extension of the classical evolutionary algorithms where a
meme is perceived as a form of individual learning procedure
or local search operator in population based search algorithms.
Differing from these studies, the eTL framework, which is
depicted in Fig. 1, introduces a more meme-centric learning
framework which comprises a series of meme-inspired evo-
Iutionary knowledge representation and transfer mechanisms
including meme representation, meme expression, meme assim-
ilation, meme internal evolution and meme external evolution.
In particular, meme(s) form the underlying building blocks
(idea, knowledge, emotion, etc.) of the mind universe of
an agent. In meme representation, meme(s) are knowledge
stored internally in agents’ mind universe (memotype) and
transpired externally as the behavioral actions that can be
transmitted to other agents via social interactions (sociotype).
Meme expression performs a readout of the internal knowledge
as observable actions while meme assimilation endows agent
with capabilities to capture observable actions by other agents
and updates them into the mind universe.
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Fig. 1. TIllustration of eTL wherein the mind universe of an agent takes the
form of FALCON.

In our present study, we consider a manifestation of neuronal
meme(s) as recurring patterns captured within neural networks
that define the behaviors or guiding criteria of agents. Specifi-
cally, the mind universe of an agent takes the form of FALCON
(depicted in Fig. 1). In particular, a FALCON employs a three-
channel neural network architecture and comprises a category
field F5 for storing acquired memotypes and three input fields,
namely, a sensory field F! for representing current states, a
motor field Ff? for representing actions, and a field Fi3 for
representing reward values. All of the memotypes in F5 form
the knowledge of the agent which models the association from
current states and action to the reward values. In particular, the
baseline vigilance parameter p* € [0,1] for k = 1,2,3 is ex-
tremely important since it controls the level of match criterion
on the state and action spaces so as to encourage knowledge
generalization. Typically, increasing the vigilance values gener-
ally improves the predictive performance of FALCON agents
with the cost of generating more category knowledge inside
their mind universe.

Meme internal evolution and meme external evolution are
central to the behavioral learning aspects of eTL. Meme
internal evolution serves to update agents’ mind universe by
self learning. Meme external evolution, on the other hand,
facilitates to model the social interaction among agents. In
particular, the evolutionary knowledge transfer process is pri-
marily driven by the imitation in a cultural evolution process.
The overall framework of eTL is outlined in Algorithm 1.
First, the crowd of agents in the environment is generated
(line 1). Then, each agent undergoes meme internal evolution
independently while operating in the environment (line 4).
Meanwhile, meme external evolution proceeds whenever an
agent identifies a teacher agent of high payoff via meme
selection (line 6). Once the teacher agent is selected, meme
transmission occurs to instruct how the agent imitates from
others (line 9). During this process, meme variation facilitates
the intrinsic innovation tendency of the transferred actions

from the teacher agent. Notably, an agent makes use of gained
knowledge from other agents via meme assimilation after
meme external evolution. The current agent assimilates the
transferred knowledge by undergoing the advised action from
teacher agents under given environment states. In this way, the
leaning machine of the agent could learn the association from
current states and the imitated action to the reward values, thus
providing instruction for future action prediction.

Algorithm 1: eTL Framework

1 Initialize: Generate all agents
2 while the stopping criteria is not satisfied do

3 for each current agent do

4 Perform meme internal evolution process

5 [*Meme external evolution*®/

6 if identifies a teacher agent via meme selection

then

7 Perform meme expression with teacher
agent given the state of current agent

8 Perform meme variation on the transmitted
knowledge with probability v

9 Perform meme transmission to transfer
teacher’s action to current agent

10 /*v is the frequency probability of variation

process*/

11 /*Perform and learn the action from meme
external evolution if identified teacher agent,
else the action from meme internal evolution*/

12 End

III. PROPOSED ETL-P FRAMEWORK

In this section, we present the proposed eTL-P which
endows subject agents with capability to interact with their
opponents effectively by predicting their strategies, in addition
to the usual ability of competency of learning from friendly
teachers agents. The proposed eTL-P framework (as shown in
Fig. 2) is composed of model-based behavior prediction, Top-K
model selection and multi-agent transfer learning, respectively.
In particular, model-based behavior prediction approach pro-
ceeds to predict the behaviors of opponent agents based on
the predictive candidate models trained using historical data
instances, Top-K model selection aims to choose a proper
subset of candidate models from the full model set and multi-
agent TL enhances the learning capability of subject agents by
leveraging beneficial knowledge transferred from their partner
subject agents. In what follows, we first describe the objectives
of multiple agents in a competitive multi-agent environment
and then provide the detailed realization of each component
in the proposed eTL-P.

A. Objectives of Multiple Agents in Competitive MAS

The reinforcement learning process of a single subject agent
in eTL-P is formulated as a sequence of markov decision
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processes (denoted as MDPs in Section II-A) which continue
until the stopping criteria, such as mission numbers or fitness
levels, are satisfied. All agents are equipped with a set of
sensors so they have access to the environment states. Depend-
ing on the obtained states and the individual’s knowledge, a
subject agent learns to select and perform the most appropriate
action, and updates its mind universe under the motivation of
receiving positive rewards in the future. During the learning
process, each subject agent encounters and interacts with
other agents who may be potential partners (agents share a
common objective), or hostile opponent agents (agents have
competing objectives). All agents possess mind universes that
are unknown to none other in the environment. In each time
step, all subject and opponent agents operate in parallel within
a common environment.

B. Model-based Behavior Prediction

In a competitive multi-agent environment, a subject agent
requires an efficient strategy to counter opponent agents in
order to complete the missions successfully. However, since a
subject agent has no prior knowledge about the opponents, the
design of suitable strategies to complete the missions can be
non-trivial. The task of interests here is thus to endow subject
agents with capabilities to predict the expected behaviors of
the opponents.

Due to the scarcity of data availability in the environment
under study, we consider the model-based (or type-based)
[35] approach for predicting the behaviors of opponent agents.
Specifically, in this work, the models (or types) are represented
as neural network structures since both subject agents and
their opponents employ neural networks as their RL machines.
Further, since the true model of opponents (e.g., an artificial
neural network of specific hype-parameter configuration) is
not always approximated with high certainty, a number of
potential candidate prediction models M = {m,ma,...,m;}
of differing hype-parameters is constructed and thereafter
assigned to subject agents.

Algorithm 2 summarizes the details of model-based behav-
ior prediction process of subject agents. To begin, all of the
candidate models M are expected to be trained using the
historical data instances of opponent agents (lines 2-5). In
our design, data instances of opponent agents are collected
in advance and of a limited data size [. We employ instance-
based model training method since it has been widely used
for training RL models in the literature [39], [40]. Typically,
data instances are formulated as a sequence of < S, A R >
tuples. Given each tuple, a candidate model learns to associate
the state, action and reward and assimilates them into their
internal learning structures. Once the candidate model training
process completes, each subject agent will start to undergo self
learning independently.

The behavior prediction of opponent agents occurs whenever
a subject agent identifies an opponent agent agt(o) nearby
during the self learning process of subject agents (line 12).
Once an opponent agent is detected, an e-greedy model selec-
tion scheme proceeds to instruct how subject agent chooses
an appropriate one from all attributed candidate models. This
scheme aims to balance the fundamental trade-off between
exploitation, i.e., sticking to the most believed model, and
exploration, i.e., trying out other seemingly complementary
models. Specifically, subject agent with e-greedy scheme se-
lects a candidate model m, of the highest confidence level
conf(ms) with probability 1 - € (0 < e < 1), or otherwise
chooses a random model with a probability of € (lines 13-16).
The value of e decays gradually with behavior prediction time
frames of subject agents.

Upon selecting a candidate model successfully, subject
agent agt(c) then predicts its virtual state state(agt(c))’ by
attempting each available action a; from the action set A
(line 18). Furthermore, the state state(agt(c))’ is used to infer
the corresponding virtual state state(agt(o))’ of opponent
agent agt(o). By activating the selected model mg, subject
agent agt(c) is able to predict the action a, of agt(o) given
state(agt(o))’ (line 19). Based on the results after virtual
performing a, by agt(o), subject agent then decides whether to
discard an action from the available action set A (lines 21 and
22). Subsequently, agent agt(c) proceeds to select an action a,
from the updated A with the highest reward yield (line 23) and
continues the self learning process. Notably, each candidate
model is attributed with some level of confidence on its pre-
diction accuracy. The model confidence level is updated along
with the learning process, according to how well candidate
models performed on predicting the behaviors of opponent
agents. This ensures that subject agents can adapt accordingly
whenever opponent agents change their strategies on-line. The
ms leading to the successful behavior prediction is updated
with a higher confidence conf(ms) of being chosen for the
subsequent behavior prediction process. On the contrary, when
leading to the failure behavior prediction, the model will be
updated with a lower confidence level. (line 25):

conf(ms) = conf(ms) + Reward, if succeeds
conf(ms) = conf(ms) — Penalty, if fails

where reward and penalty are defined as positive integers and
conf(ms) € [—100,100].



Algorithm 2: Learning with Behavior Prediction

Input: Candidate models M = {mq,mq,...,m;},
Collected data D = {D;, D5, ...D, }, where
D, =<S,,A,, R, >, Action set A
Output: Subject agents {agt(c)}
1 Begin:
2 for all M; € M do
3 for all D, € D do
4 Set input vector < S, A,, R, > in M,
5 Training with vector < S,, A,, R, >

¢ Generate initial subject agents {agt(c)} and their
opponents {agt(o)}
Assign each subject agent with candidate models M

2

8 while the stopping criteria are not satisfied do
9 for each current subject agent agt(c) do
10 Perform meme internal evolution process
11 /*Behavior Prediction*/
12 if detect an opponent agent agt(o) then
13 if Rand > scheme(e) then
14 | ms = Random{my : for all model M}
15 else
16 mgs = Max{conf(ms) :
| for all modelM }
17 for each available action a; € A do
18 state(agt(c)) =Virtual_Perform(agt(c), a;)
19 a, = Predict(ms, state(agt(c))’)
20 state(agt(0))’ =Virtual_Perform(agt(0), a,)
21 if fail interaction after virtual move
then
22 L Discard a; from action set A
23 Get a, from A with highest reward of self
learning in agt(c)
24 Continue meme internal evolution process
25 | Update conf(ms)

26 End

C. Top-K Model Selection

Ideally, subject agents with candidate models derived from
RL data instances could approximately predict the true behav-
ior of opponent agents if the true model of their opponents is
available in the candidate model space. However, to achieve
such result becomes computational intractable due to the high
complexity of candidate models ascribed to opponent agents
and thus ways of mitigating the computational intractability
are critically expected. Since the complexity is predominantly
due to the space of or cost on solving candidate models, we
therefore endeavor to provide reasonably effective polices by
selecting a proper subset of candidate models given the limited
model space while avoiding a significant loss in optimality.

In the past few years, researchers have concentrated on com-
pressing the candidate model space of other agents. Among

them, some works focus on selecting a subset of models that
are expected to have the largest joint coverage of solutions
of all candidate models [41]. By taking this coverage into
consideration, the behavioral information loss is reduced ef-
fectively. The second category, on the other hand, aims to
select models that are concise and contain as few redundant
models as possible [42]. Accordingly, models that provide
similar information of opponent agents are not expected to
be selected concurrently. In practice, the redundancy can
be effectively reduced by enforcing the diversity among the
selected models. Taking these inspirations, we initiate a novel
Top-K model selection scheme which considers a fusion of
coverage and diversity principles to select the representative
candidate models.

Formally, our task of model selection is to select a subset
M¥ C M for representing the full model set M. Obviously,
the size of M ¥ shall be much smaller than M and is expected
to be restricted within the given model size budget K. Such
constraints on M¥ can be modeled as knapsack constraints:
Y m,cax €m; < K where c is the non-negative cost of
collecting m;. If we employ a set function F : 2 — R
for measuring the quality of M, we can summarize the
model selection task as a combinatorial optimization problem
in Eq. (1).

MEX" € argmax F(MX) subject to : Z em; <K (1)
MKCM iy

As this is a generalization of the cardinality constraint where
Vm;,cm; = 1, the combinatorial optimization problem con-
stitutes a well known NP-hard maximum coverage problem
[43]. Particularly, taking both of the abovementioned coverage
and diversity into consideration, the specific definition of our
F(MX) is further formulated as the following.

Given: M, K
Objective :
K (2)
mawMKQJW,U\lK\:Ka}-(MK) = Z o(P; N ME)
i=1

where P; is a partition of the full model set M into separate
clusters and o(P; N MX) is the estimated coverage probability
of the selected models P; N M to the full model space M.
Applying the square root o (P;N M) further rewards diversity
in that there is higher payoff of selecting a model from a cluster
not yet having one of its units already chosen. Notably, the
comprehensive discussion on coverage and diversity objectives
shall be found in what follows.

In the literature, the optimization of maximum coverage
problem is deemed to be approximately solved when F is
monotone submodular using generic greedy forward selection
algorithms [44]. Especially, submodularity and monotonicity
are two necessary ingredients to guarantee that such greedy
algorithms give near-optimal solutions.

Here, we provide the detail of F (M) and prove it to be
monotone and submodular.



1) Coverage: Firstly, suppose M' = P; N M~X, o(M')
is integrated for representing the coverage of M’ by M.
Existing study on the possible o(M’) has reported several
ways for representing the coverage of M’. For instance,
o(M') could be facility location function [45], o(M') =

s €M MAZm, e M0 (m;, m;) or the graph cut function [44],
o(M') = ijeM\M’ > msen 0(mi;my), where o(mi, m;)
represents the similarity between m; and m;. In our approach,
o(M') is defined in a rather simple and common-used manner
as the following:

o(M)= > o(M' m;) 3)

m;EM

where o(M’,m;) is computed as the proportional degree that
m; is covered by the model set M’ in Eq. (4).

o(M'ymj)=1— T[] [1—o(mi,m;)] 4)
m;EM’

where o(m;, m;) indicates the degree to which m; is repre-
sented by m; from M’, or in detail is calculated by how similar
the behavior predicted by m; is to that of m; in Eq. (5).

a(mi,mj):% Z

tmi ETmi 7tm_7» eij

Mbmgstmy)  (5)

where t,,, is the state-action tuple from a set of predicted

instances T5,,, N is the size of T}, and A(t,,,tm;) counts

the number of identical action predictions given same states

for T, and T),,. In what follows, we prove the monotone
: !

submodularity of o(M’).

Proof. 1. The coverage function o(M’) is monotone
and submodular.

Let S be a finite set. A submodular function 7 : S — R
typically satisfies the property of diminishing returns: for
any AC BC Sands e S\A, F(AUs) — F(A) >
F(B Us) — F(B). In this case, the incremental value
of s decreases as the context in which s is considered to
grow from a smaller set A to a larger set B. In addition, a
submodular function F is called monotone nondecreasing
if VAC B, F(A) < F(B).

In what follows, we first prove the monotonicity of
function o(M'). Let M{ C M5 C M’ and m} € M'\ M,
o(M') satisfies:

o (M Umg) — o (M)
= Y o(Mjumj,m;)— > o(M],my)

’n’LJ‘GM’ m]EJVI’

= II n=otmim)— J[ [ —o(m,m)
m; €M m;€M{Um/)

= o(mj,my) [ [1—o(msmy)]

m;EMY]
(6)
As both o(mj, m;) and o(m;, m;) are within the range
of [0,1], we have o(M; Um!) — o(M;) > 0. Therefore,

o(M') is monotone. Further, the proof on the submodu-
larity of o(M’') is given by Eq. (7).

a(M;Um}) — o(M7) — (a(M5Um}) — o(M3))

= atmlym)( [ [t -otmm)l— [ - otmem))
mE\II mE\{z’ (7)
= o(mj,m;) H 1—o(mi,m;)|(1— H [1—o(mi, my)])

m;EM] m}eMy\M]

Since o(mj, m;), o(m;,m;), o(m;, m;) € [0,1],

a(mj,mj) H 1= o(mi,m;))(1 — H
m;EM] mjeML\M]
Therefore, o (M, Um})—o (M) > o(M5Um!)—o(MJ).
o(M’) is submodular.

Intuitively, o(M’) is monotone since the model cov-
erage always increases with a larger model set. On the
other hand, o(M") is submodular: with two model sets A
and B where |A| < |B|, the increment when adding a new
model to A shall be larger since the information exhibited
by the new model might have already been covered by
those models that are in the larger model set B yet not
in A. This is known as the exact property of diminishing
returns.

[1 = o(m;,m;)]) > 0. (8)

2) Diversity: As separate model clusters P; could represent
distinct behaviors expected from candidate models, F (M)
rewards diversity of M/ % by encouraging to select models from
different disjoint P; of the full model set M (U;P; = M).
In order to generate P, we employ a k-medoids algorithm
to cluster M. Particularly, k-medoids is a clustering algo-
rithm similar to k-means, but chooses a candidate model
m; € P; with highest similarity value »_, ., p o(m;,m})
as the center of each cluster P;. As soon ‘as an element
is selected from a cluster, other elements from the same
cluster start having diminishing gain because of the square
root function. For example, suppose we have mi,mo € Pi,
ms € Py and o(my) = 3, o(my Umg) —o(my) = 2.5
and o(m; Um3) — o(my) = 2. If my is already in M%,
greedily selecting the next shall be mg rather than ms since

V3+25 < V34 V2.

Proof. 2. The function F (M) is monotone and sub-
modular.

As the submodular functions possess properties in
common with concave and convex functions, including
the applicability and generality under a series of common
operators such as mixtures, truncation, complementation,
or certain convolutions [46]. We therefore conclude that
if f is non-decreasing concave and F is nondecreasing
submodular, the composition function F'(A) = f(F(A))
is nondecreasing submodular. In our case, the square root
is a monotone concave function. Inside each square root
exists a monotone submodular function o (M"). Therefore,
applying the summing square root to non-negative o (M)
again yields a submodular function.




Summing up, the model selection function F (M) is both
monotone and submodular. In particular, F(MX) considers
a fusion of coverage and diversity principles; hence it facil-
itates the selection of models that are fine representatives of
each cluster while also being positively diversified across the
multiple clusters. In addition, since F(MX) is a complex opti-
mization problem, we can also prove its NP-hard characteristic
by simply converting o(M’) in F(MX) into the budgeted
maximum coverage problem (BMCP) [43] by setting a budget
of L = K, a collection of sets S = M and associated unit
cost of ¢ = 1. The goal of BMCP hence is to find a collection
S’ C S such that the total weight covered by S’ is maximized
given a budget L and a collection of sets S defined over a
domain of weighted elements X. Since BMCP is NP-hard,
F(MX) is NP-hard as well.

To recap, if F is monotone submodular and NP-hard, it has
been established that greedy algorithms can solve the combi-
natorial optimization problem in Eq. (1) at near-optimally with
a (1 — 1/e)-approximation of the optimal solution. Therefore,
we further propose Algorithm 3, which occurs prior to Al-
gorithm 2 and employs a direct greedy method to optimize
the model selection process. Particularly, the algorithm starts
with M% = () and computes the F(MX) for the selected
models (line 2-5). Then, it iteratively adds the model that
yields the greatest increment of F (M) until the model size of
|MX| = K (line 6) is reached. After Top-K model selection,
a proper subset of models M¥ is selected out with the high
behavioral representativeness of the full model space M. The
complexity for learning the candidate models hence reduces
from |M| to |ME| ((ME| < |M]).

Algorithm 3: Top-K Model Selection
1 function: ModelSelection(M, K)

2 ME =0

3 for Ite =1 to K do

4 for all m; € M do

5 m; 4 argmaz.y,, [F(ME (Jm;) — F(MK))
ME MKUml

7 return M¥

D. Multi-agent Transfer Learning

To date, most of the existing works have focused on reducing
the candidate model complexity for decision making problems,
where a single agent predicts the behavior of another single
one, but have yet to study the behavior prediction in a
multi-agent setting [41]. Differing to existing approaches, we
further propose a multi-agent TL approach for reducing subject
agents’ candidate model complexity with respect to the model
space while also enhancing their learning capability.

The TL process between agents with unique learning ca-
pabilities is mainly driven by a human-like imitation process.
In our multi-agent learning problems, all of the subject agents
learn in the same environment and share a common behav-
ioral action space. Therefore, the imitation-driven knowledge

transfer process offers the advantage where imitating agents
behave at approximately the same level of performance as
their target of imitation. Further, when multiple candidate
models are available, subject agents with the proposed TL
approach are not required to train all the models and they
can acquire increasing level of predictive capability from their
partners by sharing predicting information with respect to their
unique candidate models. TL approach thus reduces candidate
model complexity of subject agents by attributing them with
a comparatively smaller subset of candidate models.

Algorithm 4 summarizes the multi-agent TL approach in
eTL-P. To begin, each subject agent is attributed with a set
of candidate models M9t = {Mfgt,...,Mggt}, where agt
indicates the index of subject agent and ¢ is the number of
models in M9 (line 2). Further, the current agent agt(c)
is expected to check whether there exists a better-performing
teacher agent agt(s) that has a higher fitness value F'it(agt(s))
(line 4). Once a teacher agent is identified, the current agent
agt(c) first passes its state state(agt(c)) to the teacher agent
agt(s) (line 6). Meanwhile, if agent agt(c) detects an opponent
agent agt(o) nearby, it further transfers the inferred state
state(agt(o)) of opponent agent to the teacher agt(s) (lines 7-
8). By simulating the states state(agt(c)) and state(agt(o)),
the teacher agent agt(s) undergoes behavior prediction of
agent agt(o) based on its own attributed model M * and further
expresses a predicted action as, which is observable and can
be transmitted to agent agt(c) (referred to Algorithm. 2).
Then, if the transmitted action a is available, agent agt(c)
is expected to imitate and assimilate the action ag into its
own mind universe (line 13). In addition, a variation process
with a probability v is defined to keep the innovative diversity
of selected actions therefore preventing agent agt(c) from
learning from teacher agents blindly during the multi-agent
TL process (line 12).

Given the selected candidate model set M¥ after Top-K
model selection, multi-agent TL approach further partitions
M¥ into different partial sets and each set is labeled with
the unique agent index: M% = {m%,m%,...,mé,...,m%]t}
where M9t aggregates the candidate model set with the same
subject agent superscript. In this way, subject agents merely
need to train candidate models from their corresponding partial
sets. According to the aforementioned TL approach, the non-
familial peer subject agents with unique candidate models
M9t construct social interaction with one another so as to
benefit from the knowledge transferred from the others (see
Algorithm 4). In this manner, the proposed eTL-P offers
significantly reduction in the candidate model space of each
subject agent in the competitive multi-agent setting.

IV. EMPIRICAL STUDY AND ANALYSES

In the literature, Minefield Navigation Task (MNT) has been
regarded as a popular platform to testify the capacities of
autonomous agents [9] [18]. Taking this cue, we investigate
the effectiveness and efficiency of the proposed eTL-P under
more complex scenarios of the MNT (as depicted in Fig. 3)
where multiple agents have shared or competing objectives.



Algorithm 4: Multi-Agent Transfer Learning
Input: Candidate models M = {M*, M? ..M},

where Mt = {m{9", ey mE9tY
1 Begin:
2 Allocate each subject agent with candidate model
Magt

3 for each subject agent agt(c) do

4 Perform Algorithm 2, line 10-22

5 if identify {agt(s)|Fit(agt(c) < Fit(agt(s))}
then

6 Get state(agt(c)) of current agt(c)

7 Pass state(agt(c)) to teacher agent agt(s)

8 if detect an opponent agent agt(o) nearby then

9 Pass state(agt(o)) to agent agt(s)

10 Perform Behavior Prediction with M*

11 Discard failure actions from action set A

12 Get a; from A with highest reward of self

learning in agt(s)

13 | Perform variation on a, with probability v

14 Get a from agt(s), otherwise get as from A with
highest reward of self learning by agt(c)

15 Continue left steps that are the same as learning

| process in Algorithm 2
16 End

A. Experimental Platform and Configuration

In the classical MNT, subject agents (denoted by green
tanks in Fig. 3, namely navigarors hereafter) share a common
objective, which is to navigate across the minefield so as to
arrive at the target position (denoted by a red flag and is
randomly generated per mission) within a specified time frame,
while avoiding collision with any mines nor other agents.
In contrast to the classical MNT where only subject agents
with a common objective are involved, here our interest is
on minefield navigation problems (namely PO-MNT in short)
comprising both navigator partners and competing opponents
(denoted by red tanks, namely referred to predator hereafter)
in the environment. Particularly, the predators are introduced
with the objective of capturing navigators before navigators
flee to the target place. Further, in our design, predators are
equipped with a thick armor that always cannot be destroyed
by mines.

All mobile agents (including navigators and predators) share
a common action space, including turning left or right, moving
forward and proceeding diagonally left or right. They are
equipped with sonar sensors and hence have access to a set of
observations about the minefield environment, including mine
detection, navigator detection, predator detection and target
bearing detection. Further, a navigator is rewarded with a
positive reward of ‘1’ if it arrives at the target successfully.
Otherwise, it is assigned with a ‘0’ reward. In the experiment,
we consider a crowd of 6 autonomous agents with 6 mines
and 1 target position that are randomly generated across
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llustration of the adapted MNT (PO-MNT).

Fig. 3.

missions within a 12x12 minefield navigation environment.
For each experiment, 30 independent simulation runs have
been conducted and with each run involving a total of 5,000
randomly generated missions. One mission completes only
if all navigators arrive at the target, hit the mines, exceed
the maximum time steps of 30 step times or when they are
apprehended by the predators.

Notably, predators are trained beforehand with the knowl-
edge of apprehending their nearby navigators. On the other
hand, navigators begin with zero knowledge but learn along
with the missions undertaken. When navigators detect the
nearby opponents via sonar sensors during the learning pro-
cess, they can predict the behavior of predators using the
proposed model-based behavior prediction method. Since
both navigators and predators employ FALCON with p* =
(0.2,0.2,0.5) as the connectionist reinforcement learning mod-
els that form their mind universe, the predictive predator
models are formulated as a set of FALCON dynamics with
different baseline vigilance values p* € [0,1] and further
generated with data instances of predators that are collected
from the online activities of the missions encountered. This
configuration is attributed to the great importance of baseline
vigilance parameter as it controls the knowledge generalization
level of FALCON dynamics which affects their performance
significantly.

The parameter configurations of (TD)-FALCON and the
proposed eTL-P used in the present experimental study are
summarized in Table I. For the purpose of a fair compari-
son, the configurations are maintained to be consistent with
previous studies in [9] [47] [48]. To study the efficacy of the
proposed eTL-P in solving the complex PO-MNT, comprehen-
sive empirical results with respect to the following metrics are
investigated:

e SR: the average success rate of agents on completing

the missions;

e MT: the training time of candidate models that are



TABLE 1. PARAMETER SETTING IN THE PROPOSED ETL-P.

Falcon Parameters
Choice Parameters (a1, a?, a®3) (0.1,0.1,0.1)
Learning Rates (3¢, 3%, 5°3) (1.0,1.0,1.0)
Contribution Parameters (v°!, <2, v°3) (0.5,0.5,0)
Baseline Vigilance Parameters (p°!, p°2, p°®) | (0.2,0.2,0.5)
Temporal Difference Learning Paramters
TD learning rate « 0.5
Discount Factor y 0.1
Initial Q-value 0.5
e-greedy Model Selection Parameters
Initial € value 1
€ decay rate 0.0005
Demonstration Variation Parameter
Frequency of Variation v 0.1

assigned to navigators;

e PN: the number of prediction during the learning pro-
cess;

e PT: the computational time cost for behavior prediction
during the learning process.

B. Effectiveness of eTL

We begin with an investigation on the performance of
eTL with 6 FALCON navigators on completing the classical
MNT. This serves as a baseline for comparison. Then, two
current state-of-the-art multi-agent TL approaches, namely, the
Advice Exchange (AE) mechanisms [7] and Parallel Transfer
Learning (PTL) [8] are considered in the experiment for the
purpose of comparison. Specifically, AE mechanisms facilitate
poor-performing agents to learn from their elite partners by
seeking its advice on given circumstances. On the other hand,
agents in PTL learn from others by leveraging the knowledge
broadcasted by all others.

The resultant success rates (SRs) of the navigators for the
different above-mentioned TL approaches on completing the
classical MNT are denoted in Fig. 4. In particular, the average
SRs of all 6 FALCON navigators on completing the classical
MNT across the increasing number of missions are depicted
in the figure. It can be observed that the SRs of the navigators
for all TL approaches are noted to increase steadily right from
the beginning of the navigation mission. Both eTL and AE
outperformed the conventional MAS (Conv-MAS) as expected,
since the latter has no mechanism for knowledge transfer.
Further, eTL obtained superior SR over the other counterparts
considered as the navigators are noted to learn better with
increasing missions as compared to the existing state-of-the-art
multi-agent TL approaches.

C. Results of eTL-P with True Predator Model

In what follows, we embark an investigation on the proposed
eTL-P in addressing more complex PO-MNT wherein naviga-
tors and predators have competing objectives. In our study, a
mixture of 3 navigators and 3 predators is considered in the
PO-MNT. In the present set of experiments, we assume all
navigators have access to the true model of the predators. In
this manner, the navigator agents are able to predict the actions
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Fig. 4. SRs of navigators under eTL, PTL, AE and Conv-MAS on completing
the missions in classical MNTs.

of the predators accurately during their navigation. Such an
assumption and experimental study is carried out here to assess
and validate the motivation for endowing agents with capacities
to infer predators’ actions as a means to improve their problem
solving capabilities under situations where agents possess
differing goals or competing objectives.

To begin, the performance efficacy of eTL-P is bench-
marked against the conventional MAS (Conv-MAS) in which
navigators have neither behavior prediction nor any transfer
learning capability. Further, to study the effectiveness of each
mechanism available in eTL-P, the performances of the agent
navigators with only model-based behavior prediction capabil-
ity (Mod-P), i.e., no TL capability, and agent navigators with
only TL capability (eTL, referred to [9]), i.e., no behavior
prediction capability, are also investigated, respectively.
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Fig. 5. SRs of eTL, Mod-P, eTL-P and Conv-MAS on completing the
missions in PO-MNTs.

Fig. 5 summarizes the performance of eTL, Mod-P, eTL-P
and Conv-MAS in terms of their respective SRs averaged
at 100-mission intervals, across a total of 5,000 missions.
Particularly, to identify the effect and significance of each
mechanism in eTL-P, we first study the performance of eTL
(which assumes navigators with only TL capability) and Mod-
P (which assumes navigator with only opponent behavior



prediction capability) against Conv-MAS (i.e., no form of TL
nor behavior prediction of opponents) from 1,000 missions.
Subsequently eTL-P is pitted against eTL from mission 2,000
onwards, where both the capabilities of transfer learning and
true model of opponent behavior are involved.

The SR results obtained showed that the performance of the
navigators in Conv-MAS deteriorates significantly in the PO-
MNT, i.e., Minefield Navigation Task with friendly partners
and offensive opponents as compared to that in the classical
MNT where there are no opponents in the latter task (see
Section IV-B). This is understandable since navigators in PO-
MNT now suffer from bad encounters with predators, i.e.,
they can be apprehended by their opponents, as compared to
the classical MNT. Mod-P, which has the behavior prediction
capability of opponents on the other hand, exhibits significantly
higher SR over Conv-MAS. This indicates that, with the
availability of behavior model of predators, navigators are
shown to survive better in the PO-MNT. Notably, the results
showed that navigators in the proposed eTL-P are observed to
achieve superior performance in terms of SR at the end of the
learning process, i.e., attaining a superior SR of around 63% at
the end of 5,000 missions. This result highlights the efficacy of
the proposed eTL-P in improving the learning performance of
navigators on completing the PO-MNT successfully. Moreover,
navigators in both eTL and eTL-P reported superiority in terms
of SRs than ones without the multi-agent TL scheme. This can
clearly be attributed to the transfer learning scheme of eTL
and eTL-P which endows navigators with capacities to benefit
from the knowledge transferred from their better performing
partners, thus accelerating the learning speed and improving
the SR of completing the missions.

D. Results of eTL-P with Predictive Predator Models of FAL-
CON Dynamics

In previous subsections, a study on eTL-P wherein each
navigator is assumed to have access to the true model of
the opponent behavior is considered. In this subsection, we
consider a more realistic scenario where navigators only have
access to predictive candidate models of opponents as opposed
to the true model of predators which is typically unknown in
practice.

Given a set of predictive models, we assign each navigator
with a differing subset of all candidates. The performance
of navigators with attributed candidates is then reported by
Mod-P in which navigators only have opponent behavior
prediction capability, i.e., no multi-agent TL scheme. Since
navigators with unique predictive models are likely to perform
differently, the efficacy of eTL-P is therefore validated in
enhancing Mod-P by facilitating the knowledge transfer across
multiple navigators. In addition, we have also constructed
experiments where each navigator is assigned with all the
possible predictive models (denoted by Mod-All). The aim
in designing such experiments were to assess the efficacy of
opponent behavior prediction in choosing an appropriate model
from multiple predictive candidates during the navigators’
learning process. Based on these experimental settings, we
study the performance of all mechanisms in eTL-P including

model-based behavior prediction, multi-agent TL as well as
Top-K model selection in what follows.

1) Performance of model-based behavior prediction and
multi-agent TL: In this set of experiments, we employ three
FALCON models as the predictive candidates, where each
is configured with a differing vigilance level p*, known as
1) a low parameter p¥ = [0.1,0.1,0.1], 2) a medium pa-
rameter p¥ = [0.4,0.4,0.4] and 3) a high parameter p*¥ =
[0.9,0.9,0.9], respectively. Hence, each navigator in Mod-P
and eTL-P is attributed with a unique FALCON candidate for
opponent behavior prediction. The complete results pertaining
to the SR of the navigators on the PO-MNT are summarized
in Table II and Fig. 6. The analyses of the obtained results
shall be discussed comprehensively next.

TABLE II. PERFORMANCE COMPARISON AMONG MOD-P, ETL-P AND
MoOD-ALL IN TERMS OF SR.
FALCON SR
# (0%, p%, %) Mod-P eTL-P Mod-All
1 (0.1,0.1,0.1) 47.25 55.85
2 (0.4,0.4,0.4) 50.93 56.15 56.54
3 (0.9,0.9,0.9) 57.56 58.63

Fig. 6(a) depicts the performance of each navigator in
Mod-P in terms of success rate. As can be observed, nav-
igators with FALCON candidates of differing p* parame-
ters exhibited distinct SRs throughout the learning process.
Among all three candidate models, Mod-P with FALCON
of p¥ = (0.9,0.9,0.9) obtained the highest SR (57.56%,
see Table II, column 3), significantly higher than the other
two navigators (known as 47.25% and 50.93%, see Table II,
column 3). This difference among navigators hence highlights
the significance of choosing a proper candidate model for
navigators to predict the behavior of their opponents. On the
other hand, Mod-All (where each navigator is attributed with
all predictive FALCON candidates) reported a competitive SR
of 56.54% (see Table II, column 5) against the best performing
Mod-P with a high vigilance value (57.76%, see Table II, row
3, column 3). This notable performance of Mod-All hence
validates the efficacy of the proposed model-based behavior
prediction method in selecting the appropriate model from all
attributed candidates for opponent behavior prediction.
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Further, Fig. 6(b) depicts SRs of Mod-P, eTL-P and Mod-
All. As a result, both eTL-P and Mod-All obtained higher
SRs when compared to Mod-P. In particular, without being
attributed with all predictive FALCON candidates, navigators
with the knowledge transfer scheme of eTL-P is noted to obtain
SR that is slightly higher than Mod-All. It is worth noting
that, under the eTL-P framework, navigators with FALCON
candidate of p¥ = (0.1,0.1,0.1) achieved a significant SR
increase of 8.6% as compared to that under Mod-P at the
end of the missions (see Table II, row 1). As we discussed,
this can be attributed to the navigators with multi-agent TL
scheme benefiting from the knowledge by their better perform-
ing partners, such as navigators with FALCON candidate of
p* =(0.9,0.9,0.9) in this case.

Moreover, in order to evaluate the performance of eTL-P
on reducing the complexity of candidate models, the compu-
tational cost taken by eTL-P and Mod-All are summarized in
Table III. Particularly, MT is referred to the training time of
candidate models, PN is the number of predictions and PT is

the computational time for behavior prediction.
TABLE III. COMPUTATIONAL COST TAKEN BY ETL-P AND MOD-ALL
(MT: CANDIDATE MODELS TRAINING TIME; PN: BEHAVIOR PREDICTION
NUMBERS; PT: BEHAVIOR PREDICTING TIME).

Per Exp. eTL-P Mod-All
# Metrics Navigator] Navigator2 Navigator3  Avg Avg
1 MT (ms) 46 53 325 141 419
2 PN 11688 14037 18787 14837 17558
3 PT(s) 2.55 343 51.10 19.02 41.90

When referring to MT, Mod-All tends to be more com-
putationally expensive than eTL-P. According to the result
in Table III, eTL-P reported an average MT of 141(ms),
which is approximately one third that of Mod-All at 419(ms).
That is expected since each navigator in Mod-All employs
all candidate models while navigators in eTL-P work only
with partial candidates via the multi-agent TL scheme. Further,
when we consider a rather complex learning system with a
larger agent size, multi-agent TL exhibits significantly better
scalability. For example, when 10 agents are involved in the
system, eTL-P reduces the training cost to a tenth of the
required amount for Mod-All.

In addition, eTL-P has been observed to outperform
Mod-All by reporting lower computational cost in terms of PT.
According to the result attained by eTL-P, a significant cost
reduction of 54.61% in average PT as compared to Mod-All
is observed per experiment (see Table III, row 3). This is due
to the reason that, navigators with multi-agent TL in eTL-P
take advantage form their partners that are attributed with
more reliable and effective predictive models. For example,
with respect to PN, navigators with candidate model of high
p¥ tend to share the predicted information on predators to
other navigators and hence obtains the most prediction number
(18787, see Table III, row 2), much more than those obtained
by navigators with low p* and medium p”* (11688 and 14037,
see Table III, row 2).

In summary, the proposed eTL-P with behavior prediction
and multi-agent TL scheme has demonstrated its superiority in

improving the success rate of navigators while also reducing
the computational cost efficiency.

2) Performance of Top-K model selection scheme: Further,
we proceed to validate the scalability of eTL-P in a complex
scenario wherein navigators are confronted with greater num-
ber of predictive candidate choices. Since the search space
of candidate models could be large, we endeavor to mitigate
the model complexity of navigators’ behavior prediction pro-
cess based on the proposed Top-K model selection scheme
described in Section III-C.

In this set of experiments, we consider 99 FALCON models
as the predictive candidates which have differing vigilance
values p* at 0.01 intervals from p* = (0.01,0.01,0.01) to
PP = (0.99,0.99,0.99). For comparison consideration, we
firstly classify all 99 candidate models into categories of /) a
low parameter set p* € [0.01,0.33], 2) a medium parameter set
p* €10.34,0.66] and 3) a high parameter set p* € [0.67,0.99],
respectively. In this case, each navigator in eTL-P is attributed
with a differing category of 33 predictive models. Further, to
reduce the model complexity, we facilitate to select K models
out of all 99 candidates using the proposed Top-K model
selection method wherein the monotone submodular func-
tion considers a fusion of coverage and diversity principles.
Particularly, a direct K-medoids clustering algorithm, where
K =|0.1N] and N is the size of all candidates, is employed
to enforce diversity principle as discussed in Section III-C.
Hence, Top-K model selection method chooses 9 models with
the largest representativeness from the full model space. Each
navigator in eTL-P with Top-K models is merely assigned
with 3 out of 99 candidate models.

Table IV summarizes the complete results obtained per-
taining to the success rates of Mod-P, eTL-P and Mod-All
with all 99 candidate models or the selected Top-K models,
at the end of 5,000 missions. Their corresponding learning
performance is depicted in Fig. 7. It can be observed that
overall, eTL-P with Top-K models outperformed most of its
counterparts throughout the learning process. At the end of the
5,000 missions, the highest average SR of around 60% (see
Table IV, column 8) has been attained, which is significantly
higher than that of Mod-P and Mod-All.

Notably, navigators with Top-K models achieved compet-
itive performance in terms of SR to navigators that consider
all 99 candidate models. In particular, when attributed with
a differing subset of Top-K candidate models, all navigators
in Mod-P exhibit a consistently and high SR throughout the
missions (see Fig. 7(a) and Fig. 7(c)). As discussed, this can
be attributed to the proposed monotone submodular function
in Top-K model selection wherein both coverage and diversity
principles are taken into consideration.

Moreover, to validate and assess the efficacy of coverage and
diversity principles, here we investigated differing monotone
submodular functions, namely MS-C which only considers
coverage principle (F(M%) = o(MX)) and MS-CD which
further enforces diversit%f( principle beyond the selections of
MS-C (F(ME) = 3.0, \/o(P; N MK)), respectively. In

order to evaluate MS-C and MS-CD quantitatively, we defined
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PERFORMANCE COMPARISON AMONG MOD-P, ETL-P AND MOD-ALL WITH TOP- K MODEL SELECTION SCHEME IN TERMS OF SR (SR:
SUCCESS RATE).

TABLE IV.

FALCON SR (99 candidate models) SR (Top-K models)
# Model Set ok Mod-P eTL-P Mod-All Mod-P eTL-P Mod-All
1 Low [0.01,0.33] 53.81 58.56 55.18 59.90
2 Medium [0.34,0.66] 54.06 59.33 55.23 54.25 59.68 55.58
3 High [0.67,0.99] 56.13 60.28 55.02 60.55
60 50 a significantly higher computational cost (i.e., PT and MT)
5 eI IITEINERE = o T e during the learning process (see Table V, column 4 and 5).
g Gt 2 v This is because MS-C is expected to select models that have a
g‘“’ g"o // larger joint-coverage of all solutions. It prefers the candidate
i - models with higher vigilance values which tend to contain an
3 a / unnecessarily large number of redundant rules since knowledge
% " Navgator) 2 / T Modp generated becomes over-specific (see Section II-B).
1 - Navigators w Mod-Al On the other hand, MS-CD reduces the redundancy of the
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Fig. 7. SRs of navigators with 99 predictive candidate models on completing
the missions in PO-MNTs.

an efficiency ratio as follows:

SR(Mod-P) — SR(Conv-MAS)
MT + PT

where [SR(Mod-P) — SR(Conv-MAS)] indicates the SR im-
provement of navigators exhibited by behavior prediction over
Conv-MAS, and [MT + PT] is the corresponding computing
cost. Typically, a higher Ratio value is preferred since it de-
notes that the behavior prediction is more efficient by attaining
higher SR improvement at a lower computational cost.

Ratio(Mod-P) = ©)]

TABLE V. PERFORMANCE COMPARISON AMONG MOD-P WITH MS-C
AND MS-CD (MT: CANDIDATE MODELS TRAINING TIME; PN: BEHAVIOR
PREDICTION NUMBERS; PT: BEHAVIOR PREDICTING TIME).

similar or overlapping information by enforcing the diversity
principle in model selection. According to Table V, MS-
CD reported a Ratio(Mod-P) of 0.51, which is significantly
higher than 0.37 of MS-C (see Table V, column 6). Moreover,
Fig. 8 denotes the learning performance of MS-C and MS-
CD in terms of averaged success rate over computational cost
([IMT+PT]). As observed, MS-CD tends to achieve higher SR
against MS-C under the same computing cost. This result thus
highlights the efficacy of the proposed monotone submodular
function, which considers a fusion of coverage and diversity
objectives, so as to provide navigators the option of selecting
more representative Top-K candidates.

60

w N a
=] o =]
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Fig. 8. SRs of MS-C and MS-CD over computational cost ((MT+PT]) on
completing the missions in PO-MNTs.

E. Results of eTL-P with Predictive Candidates of Heteroge-
neous RL Structures

Mod-P Metrics (per experiment)
In previous subsections, we investigated the performance
# MK SR(% MT PT(s Ratio(Mod-P . i L . .
. Fl\EIS C) 55(72) 729“;;) 5 (655) aloo( 370 ) of eTL-P with homogeneous predictive candidates, i.e., we
_ : : : : assume all candidate models taking the form of FALCON
2 MS-CD 55.36 489.55 25.31 0.51

The complete results of MS-C and MS-CD are summarized
in Table V. As we can see, although MS-C achieved a
competitive SR of 55.76% to MS-CD of 55.36%, it incurred

learning structures. In this section, we further showcase a
common scenario involving predictive predator candidates
of heterogeneous reinforcement learning structures. Specifi-
cally, both FALCON and a classical multi-layer perceptron
(MLP) with gradient descent based back propagation [49]



are employed as the predictive candidates. For a fairness
consideration, the configurations of FALCON and MLP are
maintained to be consistent with the study in [18]. Similarly,
both FALCON and MLP are trained using the data instances
of predators recorded from historical activities of missions
encountered.

Firstly, to investigate the performance of heterogeneous RL
machines as candidate models in predicting the behavior of
predators, we assign three navigators with FALCON (Mod-
FALCON), MLP (Mod-MLP) and without candidate models
(Mod-No), respectively. Also, their average results have been
reported by Mod-Avg. Then, the learning performance of
navigators in terms of SR is depicted in Fig. 9(a).
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Fig. 9. SRs of Mod-FALCON, Mod-MLP, Mod-No and Mod-Avg on
completing the missions in PO-MNTs.

As can be observed, Mod-FALCON shows its superiority
in attaining much higher SR than Mod-MLP and Mod-No.
This is not surprising as FALCON is the exact learning model
of predators in PO-MNT. After training with the collected
data instances, it could predict the behaviors of predators in a
comparatively accurate manner.

Subsequently, to access the effectiveness of our proposed
approach, SRs of Mod-FALCON, Mod-MLP and Mod-No
with eTL-P are depicted in Fig. 9(b). We can see the proposed
eTL significantly improved the overall learning performance
of three navigators in terms of SR. In particular, Mod-MLP
and Mod-No achieved approximately 6.0% and 7.3% im-
provements in SR, respectively. The result hence demonstrates
the efficacy of proposed e€TL-P in improving the learning
performance of navigators using heterogeneous RL techniques
as the candidate models in PO-MNT.

V. CONCLUSION

This paper has presented an enhanced evolutionary Trans-
fer Learning framework, eTL-P, for addressing the specific
challenges that arise in complex multi-agent systems where
agents have competing objectives. Particularly, by providing
a behavior prediction approach, eTL-P endows agents with
abilities to predict the behaviors of opponent agents effectively
by building the candidate models. In order to reduce the
complexity or computational cost of behavior prediction, eTL-
P proposes a monotone submodular function considering both
coverage and diversity functional objectives, and further intro-
duces a multi-agent TL scheme to select a representative and

much smaller subset of candidate models from the full model
space. The performance efficacy of eTL-P is investigated via
comprehensive empirical studies in a PO-MNT. Accordingly,
eTL-P can significantly reduce the complexity of candidate
models while improve the learning capability of multiple
agents in an effective manner.

Generally, model-based behavior prediction, Top-/K model
selection and multi-agent TL comprise the core learning com-
ponents of eTL-P. In the immediate future, we would like to
explore the generality and adaptivity of the proposed eTL-P
in solving the increasing complexity and diversity of problem
solving, by focusing on the novel on-line model predicting ap-
proaches, model-based or model-free behavior approximating
methods, representative model selection functions as well as
other knowledge transfer approaches.
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