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Multi-Label Image Classification via Feature /
Label Co-Projection
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Abstract—This paper presents a simple and intuitive solution for multi-label image classification, which achieves the competitive
performance on the popular COCO and PASCAL VOC benchmarks. The main idea is to capture how humans perform this task: we
recognize both labels (i.e., objects and attributes) and the correlation of labels at the same time. Here, label recognition is performed by
a standard ConvNet pipeline, whereas label correlation modeling is done by projecting both labels and image features extracted by the
ConvNet to a common latent vector space. Specifically, we carefully design the loss function to ensure that (i) labels and features that
co-appear frequently are close to each other in the latent space and (ii) conversely, labels / features that do not appear together are far
apart. This information is then combined with the original ConvNet outputs to form the final prediction. The whole model is trained
end-to-end, with no additional supervised information other than the image-level supervised information. Experiments show that the
proposed method consistently outperforms previous approaches on COCO and PASCAL VOC in terms of mAP, macro/micro precision,
recall, and F-measure. Further, our model is highly efficient at test time, with only a small number of additional weights compared to the

base model for direct label recognition.

Index Terms—Multi-label Classification, Label Embedding, Neural Network, Deep Learning.

1 INTRODUCTION

ULTI-LABEL image classification is a fundamental task
Min computer vision with numerous applications [1],
[2], [3], [4], [5], [6]. In this task, each input image is associat-
ed with a set of labels, where the universe of all possible
labels are given, but the number of labels matching an
image is often not known beforehand, and can vary from
image to image. For example, in Figure 1a, the image clearly
matches labels such as “person”, “tennis racket” and “tennis
ball”. The output of multi-label classification is usually
represented as a binary vector, in which each bit indicates
the presence or absence of a label in the given image.

There has been a plethora of methods for multi-label
image classification. Yet, few of them reflect how humans
approach this problem. To illustrate, consider Figure 1b,
which covers up the left half of the image in Figure 1la.
To a human, the image here presents a context (e.g., from
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Fig. 1. (a) an input image associated with labels person, tennis racket
and tennis ball; (b) right half of the same image, from which the presence
of tennis ball can be inferred; (c) proposed neural network pipeline that
combines both direct predictions from a ConvNet and contextual infor-
mation extracted by projecting image features and labels to a common
vector space.

the pose of the man and the position of his racket) that
strongly suggests the existence of a tennis ball. The photo
would be rather unsatisfying if it does not show a ball, and
downright bizarre if instead of a ball, there is a sheep or the
face of a celebrity at the left side of the image. Meanwhile,
the context alone may be insulfficient to identify all matching
labels. Figure 1a, for instance, also matches the label “chair”,
which is not obvious from the context, and needs to be
recognized from its own visual features. However, The style
of the machine algorithm is quite different from that of
human beings to understand data. It is much harder for



algorithm to recognize negligible objects like ball than to
identify large objects like person. In order to relate image
data to corresponding label, we propose to map image and
its label to the same latent space. In latent space, we can
explicitly model the label correlation information.

In this paper we propose a novel solution that captures
the above intuitions, and combines both direct label recog-
nition with image feature extraction, as illustrated in Figure
lc. Specifically, a ConvINet pipeline extracts features from
the input image, which are fed to a fully connected layer for
direct label recognition. Meanwhile, these image features,
as well as the labels associated with the image, are projected
to a common vector space through embedding. There is a
certain correlation among labels that often appear in the
same image. Therefore, in this latent space, we require that
(i) the projection of image features should be close to those
of the associated labels, as well as features from images
associated with the correlated labels and (ii) conversely, the
projected image features should be far apart from labels
that are not associated with image. These requirements are
enforced through our well designed loss function, which
also includes classification loss of the final predictions. In
our implementation, the final prediction is simply the sum
of the direct predictions and the feature learned from latent
space.

A naive approach for multi-label classification is to con-
struct a binary classifier for each label [7], which disregards
the correlation among labels completely. Similarly, methods
based on region proposals, e.g., HCP [8] improves the
accuracy of direct label recognition by focusing on relevant
image patches; yet, this method fails to capture label seman-
tics information. A refined solution by Wang et al [2] applies
visual attention to model spatial and semantic correlations
between labels. None of these methods, however, ignore
that exploit label correlation. In our implementation, we
use the plain-old ConvNet [9] for direct label recognition;
the above techniques could potentially further enhance the
accuracy of our model.

Among methods that aim to model the label depen-
dencies, earlier attempts mainly focus on utilizing label
correlations (e.g., [10], [11], [12], [13], [14], [15], [16], [17],
(18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29])
as auxiliary information. One problem with this idea is that
it fails to capture visual correlation: for instance, the label
“person” by itself is not strongly correlated with “tennis
ball”, but the specific visual features of the person (e.g.,
his pose and attire) in Figure 1b do suggest the presence
of a tennis ball. Recent work by Yeh et al. [30] performs
label embedding through an autoencoder, and additionally
projects ConvNet features to the embedding space through
Canonical Correlation Analysis. This approach, however,
does not contain a direct label recognition module. Lastly,
another line of work applies recurrent networks, e.g., [4],
[31], which recognizes labels sequentially, e.g., first a person,
then a tennis racket, and thirdly a tennis ball. Earlier labels
then provide context for later ones. Intuitively, humans
normally do not identify objects or attributes sequentially,
except for solving puzzles. Instead, we construct a holistic
mental picture of the image context, as in the proposed
solution.

We have experimentally evaluated the proposed solution
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on the popular COCO [32] and PASCAL VOC [33] bench-
mark datasets. The result demonstrate that our solution con-
sistently and significantly outperforms existing methods on
various metrics, including mean average precision (mAP),
micro / macro precision, recall, and F-measure. Finally,
our solution is highly efficient at test time, since it only
introduces 2048 x C' additional weights to the base ConvNet
model, where C' is the number of possible labels.

2 RELATED WORK

Multi-label classification is a fundamental problem in ma-
chine learning, with a wide range of applications in comput-
er vision, text topic categorization, music retrieval, and gene
analysis. One strategy to approach multi-label classification
is to transform the problem to multiple single-label classifi-
cation tasks (e.g., [34], [35], [36]), which can be either binary
of multi-class. Those methods can be categorized as first-
order strategy and ignore correlation among labels. There
are second-order strategy [36], [37], [38], [39] and high-
order strategy methods [40], [41], [42], [43]. Other methods
adapt single-label classifiers such as decision trees [44],
boosting [45], K-nearest neighbors [46] and neural networks
[47]. These methods, however, are not designed for large-
scale image classification problems and fail to exploit label
correlation.

In addition, other researchers proposed to relate image
features and label domain data in a latent space and learn
label correlation in latent space. To achieve this, C2AE
[30] introduces DNN architecture to canonical correlation
analysis and autoencoder model. C2AE [30] builds the em-
bedding space through an autoencoder on the labels, and
then projects the image features extracted by a ConvNet to
the same latent space, via Canonical Correlation Analysis
(CCA). C2AE also lacks a direct label recognition module
with the assumption that the number of labels associated
with an image is known in advance. Further, methods based
on embedding also used in image retrieval [48], visual-
semantic embedding [49] and neural language task [50].
However, what different with this embedding method is
that relation learning is considered in our solution by our
designed ranking loss. The idea of modeling context by
constructing a latent vector space for labels and image
features has also been explored in previous methods, e.g.,
using SVD [51], compressed sensing [52] and SLEEC [1].
A common problem with these earlier approaches is that
they lack a modern, ConvNet-based direct label recognition
module. As explained in Section 1, not all labels can be
inferred from the context (such as “chair” in Figure 1), and
direct recognition is necessary for such labels.

Deep learning provides a new feasibility solution for
large-scale image multi-label classification. Most deep learn-
ing methods designed CNN-RNN architecture to solve
multi-label classification by learning semantic information
or capturing global dependencies among learned features
[3], [4], [31], [53]. HCP [8] follows an object detection
pipeline that generates region proposals, and applies a
classifier to each region proposal for multi-label classifica-
tion. WSD [54] proposed to improve multi-label classifi-
cation performance by distilling knowledge from weakly-
supervised detection task without bounding box. SRN [2]



used spatial regularization learning attention maps for
multi-label recognition. To further exploit label correlation
information, DDPP [55] proposed DPP module to cap-
ture label-correlations while incorporate external knowl-
edge about label co-occurrence. CorrLog [56] explicitly mod-
eled the pairwise correlation between labels and improved
the performance of multi-label recognition. Further, CGL
[57] modeled formulate multi-label problem as conditional
graphical lasso inference problem and focused on image
feature when exploiting label correlation. Therefore, label
correlation becomes hot topic for multi-label problem.

To summarize, previous methods, to our knowledge,
miss either explicit context construction, or a ConvNet-
based direct label recognition module; meanwhile, many of
them require the knowledge of number of labels associated
with the image. The proposed solution, presented next, com-
bines both context and direct recognition, and can identify
an arbitrary number of labels from an image.

3 PROPOSED SOLUTION

The proposed solution contains three main components: a
feature extractor, a feature / label co-projector that map both
image features and labels to the same latent vector space,
and a classifier that combines direct label recognition results
using the feature extractor with contextual information ex-
tracted from latent vector space. Figure 2 shows the overall
architecture of the proposed framework.

The feature extractor extracts visual features from the
input image, which can be performed with a standard
ConvNet pipeline commonly used for single-label image
recognition tasks. These features can be viewed as abstract
representations of visual contents in the image. From these
features, we can build a direct label recognizer for each
label, e.g., with a fully-connected layer on top of the visual
features. In addition, features from deeper neural network
layer have richer semantic information and are more ab-
stract.

The feature / label co-projector is responsible for embed-
ding image convolutional features and corresponding label,
respectively, as explained in Section 1. Both projector can
be viewed as encoder. The feature / label co-projector takes
feature extractor’s features and labels as inputs, respectively.
Specifically, the projector component maps both visual fea-
tures and one-hot-encoded labels to the same latent space.
In the latent space, we can explicitly model label correlation.
Then, metric learning method is used to force the distance
between correlated embedding vectors from image feature
and label are small than non-correlated ones. Meanwhile,
our well designed constrained ranking loss ensures that
the mapping correctly reflects the semantic relationships
between images and labels. Finally, we extract feature of
image feature embedding network as part of feature for
label prediction.

Lastly, the classifier combines direct label recognition
results (one confidence value per class) with the image
context from this latent mapping. In our implementation,
the combination is an element-wise sum for simplicity. The
whole model can be trained end-to-end with no additional
data other than the images and ground truth labels in the
training set.

3.1 Feature Extractor

As explained earlier, the feature extractor can be done with
any standard ConvNet pipeline for single-label classifica-
tion. Our implementation employs ResNet-101 [9], which
achieves competitive performance (7.1 top-5 error) on the
ImageNet dataset. We remove the last pooling layer and the
last classification layer and use the features map from last
convolution layer, as the inputs for our classification and
embedding branches.

Formally, let D = {z1,72,...,%i, ..., 2, }¥*" denotes
the set of images with corresponding label Y =
{Y1, Y25 s Yir - Un b, ¥ € {0,1}9*", where y; is a C' dimen-
sion label vector for image z;. Meanwhile, let d, C' and n
denote the image data dimension, total label number and
image dataset size respectively; y;; is +1 when z; has the
[—th label, and 0 otherwise. We feed the image x to the
feature extractor f.,, to get the image features F:

Fx = fcnn (.’I}; ecnn) ;Fa: S R14*14*204S (1)

3.2 Feature / Label Embedding

The embedding components of our solution captures the
correlations between the image and its labels, as well as
between different labels and features from different images.
For this purpose, we design two mapping networks that em-
bed visual features and labels to the common latent space,
respectively. The projections of features and labels in this
space are then adjusted through back-propagation, using the
proposed constrained ranking loss function, detailed later in
Section 4.

Following common embedding network designs, we
design a convolution network for projecting visual features
from the feature extractor, and another pipeline consisting
of fully-connected layers for projecting one-hot-encoded
labels. In general, our framework can work with any such
projection pipelines, and our specific implementation is
detailed later in Section 5.1. In particular, for image feature
projection, we firstly use a convolution layer f.on, to map
the image feature Fj. The role of the convolutional layer
is to turn image features F, € R*14%2048 into a form
F, € R¥X14XC that is easier to optimize and understand.
Each channel of F, represents the corresponding object class
feature. If the label is included in the image, the correspond-
ing channel has a larger activation.

Formally, let f;,, and f; denote the convolution network
(for image feature projection)) and the fully connect net-
works (for label projection), respectively. We can get the
embedding representation F, and L. as follows:

Fe — fzm (fconv (Fw;econv);eim)aFe S RC (2)

ch’w = fconv (Fm, econv) N Fconu c R14*14*C (3)
Le= fi(y,00), Le e R¢ @)

During training, the projected vectors are adjusted
through the proposed constrained ranking loss function,
elaborated in Section 4. Intuitively, in the latent space, we
aim to move the projections of image closer to the projec-
tions of its associated labels (which we call positive labels),



and away from the projections of labels not associated
with the image (negative labels). Meanwhile, labels that are
semantically correlated are moved close together through
the training process, so are semantically correlated image
features.

Lastly, we fuse the features from the image and the map-
ping network to calculate the final prediction. Specifically, in
the main classification module, we use the fusion of global
max pooling and global average pooling operation to reduce
the dimension of image feature, and a fully connect layer is
followed to compute the initial prediction. We add them
together to get the final predicted confidence P € RN*C.
Max pooling can find the activation of small objects in
image, but average pooling can find the activation of bigger
objects. The fusion of both pooling is helpful to find all
labeled object. For our channel-wise pooling, global max
pooling is employed.

P= fpool (fconv (Fw Hconv)) + fc (f;vool (Fx) ;9c) ®)

4 Loss FUNCTION
4.1 Multi-Label Soft Margin

In order to optimize our proposed framework, we use the
Multi Label Soft Margin classification loss and constrained
ranking loss as our loss function. Firstly, multi-label can
be viewed as a one-to-many classification problem between
image and its labels. Note that we assume the general setting
where the number of labels corresponding to each image is
unknown. Previous works such as [58] incorporate a label
decision module into the model, which estimate the optimal
confidence thresholds for each visual concept. The Multi
Label Soft Margin chooses 0 as the label thresholds instead
of estimating the label thresholds. This makes it easier to
optimize and more stable.

Specifically, our Multi Label Soft Margin creates a criteri-
on that optimizes a multi-label one-vs-all loss based on cross
entropy between inputs X and the ground truth Y

Loss(x,y)= — i +log((1 + e~ F@)) ™)

—F(x;)
+ (1 =) *log(15=rzy)

(6)

where F’ denotes the mapping for image x to label y. Ideally,
F should have F(x;) = y; for i in range N. Since the Multi
Label Soft Margin loss is based on cross entropy, it cannot
capture the label dependency in multi-label mission.

4.2 The Constrained Ranking Loss

To exploit feature / label correlations, we design a con-
strained ranking loss to capture the label dependency. The
ranking loss has been studied in the the pre-deep-learning
multi-label classification setting, such as SVM [37]. The
ranking loss mining multi-label data is computed in [7],
where the ranking loss averages over the samples, and
the number of label pairs are incorrectly ordered, such as
true labels have a lower score than false labels. And the
lowest achievable ranking loss is 0. The ranking loss used
in this method indicates the number of irrelevant labels
that are higher than the relevant labels. However, not all
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the labels are considered simultaneously; instead, only the
incorrectly ranked labels are considered. In fact, the label
correlation is naturally local where the subsets of images
share the correlation rather than all image instances. Huang,
et al. measure the similarity between image instances in the
label space rather than the feature space because the image
instances with the same label share the same correlation [59].

Meanwhile, researchers map the label into a low di-
mension or high dimension latent space [60], [61] to solve
multi-label classification. All these methods can be viewed
as label embedding. In the latent space, the correlation
between labels can be implicitly exploited. In our proposed
solution, we use a deep convolution network U : RFW — R®
to map the image feature maps to a latent space and a
fully connected network V : R® — RC to map the cor-
responding labels to the same latent space. H and W
point at the height and width of corresponding image. Let
U(f) denote the embedded image features and V(y) for
embedded labels. Furthermore, we design a constrained
ranking loss to measure the similarity between embedded
images and labels. We consider all positive label and the
negative label simultaneously. In the embedding space, let
d(fi", y;r) denote the distance between embedded positive
features and embedded positive labels. And let d(f;", y;,)
denote the distance between embedded positive features
and the embedded negative labels. The y;" and gy, denotes
the embedded positive labels and negative labels. We ex-
pect the distance d(f;", y;) to be smaller than the distance
d(f;¥,y, ), with a large margin of § which is set as 0.5 here.
This leads to the following formulation:

A(f o yr)+o<d(fu)

7
Vyj eYt vy, €Y~ @)

In our solution ,F, and L. which introduced in section
3.23.2is point at f; and y; respectively. Here, d( f, y) denotes
the Euclidean distance between image features and label
features. Intuitively, in the same latent space, the positive
features and corresponding labels have the similar embed-
ding and have large margin with negative labels.

We also define the constraints for the label side.

Ay ) +0<d(y v

8
Vyj+ eYT Vy, €Y~ )

These constraints ensure that the embedded positive la-
bels are as close as possible with each other, and as far away
as possible from the embedded negative labels. We then add
the constraints terms corresponding to our baseline ranking
loss function:

Loss, = \; *”Zk [5+d(fi+ , y;') fd(f;' , y,;)L_

+ .t + -
+A2*Z_JZJ€ [5+d(yi 'Y ) —d(y; ,yk)L
©)
where A\; and Ay are the hyperparameters to balance the
ranking loss. We set both to 0.5.

Our constrained ranking loss can measure the similarity
between the embedded labels and features. We simultane-
ously consider all the ranked labels, because minimizing
the above loss function is equivalent to maximizing the
predicted value of all positive label attribute pairs while



TABLE 1
Comparison results of average precision and mAP of other methods and our method on the MSCOCO dataset. The red front is used to mark the
best results.

ALL TOP-3
Methods MAP F1-C PC RC FI-O P-O R-O | FI-C P-C R-C F1-O P-O R-O
WARP - - - - - - 557 593 525 60.7 59.8 614
CNN-RNN - - - - - - 604  66.0 556 67.8 69.2 664
RDAR - - - - - - 67.4 791 587 72.0 84.0 63.0
RARL - - - - - - - 66.2 788 572 71.1 84.0 616
VGG 67.8 63.3 720 564 689 76.8 624 | 604 751 505 66.4 81.5 66.0
Ours(VGG) 72.9 68.8 755 631 733 795 679 | 6568 80.0 559 70.6 85.8 60.0
ResNet101 752 69.5 80.8 634 744 822 68.0 | 659 843 574 71.7 86.5 613
ResNet-SRN | 77.1 71.2 81.6 654 758 827 699 | 674 852 588 72.9 874 625
Ours(Resnet) | 81.1 75.8 812 70.8 781 836 733 | 727 864 629 75.1 88.7  65.1

TABLE 2

Comparison of average precision and mAP of other methods and our method on VOC dataset.

The best evaluation value is highlighted in red front.

[ Methods | Aero bike bird boat bottle bus car cat chair cow table dog horse mbikepersonplant sheep sofa train tv [ MAP |
CNNSVM | 885 810 835 820 420 725 853 816 599 585 665 778 818 788 902 548 711 626 872 718| 739
CNN-RNN | 967 831 942 928 612 821 89.1 942 642 836 700 924 917 842 937 59.8 932 753 99.7 786| 84.0
VeryDeep | 989 950 968 954 69.7 904 935 960 742 866 878 960 963 931 972 700 921 803 981 87.0| 897

RLSD 964 927 938 941 712 925 942 957 743 900 742 954 962 921 979 669 93.5 737 975 87.6| 885
HCP 986 97.1 980 956 753 947 958 973 731 902 800 973 961 949 963 783 947 762 979 915| 909
FeV+LV | 979 970 966 946 73.6 939 965 955 737 903 828 954 977 959 986 77.6 887 780 983 89.0| 90.6
RDAR 986 974 963 962 752 924 965 971 765 920 877 968 975 938 985 816 937 828 986 893| 919
RARL 986 971 971 955 756 928 968 973 783 922 876 969 965 936 985 816 93.1 832 985 89.3| 92.0
Ours 999 084 978 088 812 937 971 0984 827 946 871 031 976 962 O88 832 962 847 991 935| 938
minimizing the predicted value of all negative label attribute TABLE 3
pair, which implicitly forces the label co-occurrence infor- Architecture of the image feature projection network in our
. . .. . implementation
mation to be retained. Moreover, the positive and negative
labels will her her r ively in the latent s- -
abels be gathered together respectively in t e latent s Output Size Tayer
pace. Therefore, the local label dependency can be implicitly TUx1dxC | o, (Ax1LC LD
exploited. If other losses such as common ranking loss, cross Tx7TxC conv, (3 x 3,C,2,1)
entropy loss or the mean square error loss are considered, TXTxC/4 | conv, (3 x3,C/4,21)
. . TXT7TxC conv, (3 x3,C,1,1)
the local label correlation cannot be modeled and exploited. .
1xC maxpooling

The loss function is the sum of classification loss and the
constrained ranking loss. It is shown as follows:

Loss = ax Lossgs + B x Loss, (10)

where « and 3 are the hyperparameters, we simply set both
of them as 1.

5 EXPERIMENTS

We have implemented the proposed solution and evaluat-
ed it on two popular benchmark datasets: PASCAL VOC
2007 [33], which contains 20 different object labels, and MS
COCO 2014 [32], which contains 80 different object labels.
We also compare our results with the those reported in
previous research papers. In the following, we present the
implementation of the proposed solution and the model
training process, evaluation metrics, evaluation results, and
result visualizations.

5.1

The proposed solution is implemented using PyTorch (avail-
able at pytorch.org). As shown in Figure 2, the feature
extractor of our model is implemented using ResNet-101 [9],
pre-trained using the ImageNet dataset [62]. Specifically, we
removed the last two layers (i.e., global average pooling and
1000-way classification full-connected, respectively), and
added instead (i) a new global max pooling layer and (ii)

Model Implementation and Training

C-way fully-connected layers, where C' denotes the number
of object categories, which is 20 and 80 in PASCAL VOC and
MS COCO datasets, respectively.

We set the size of each input image to 448 x 448. Then,
after the ResNet-101 pipeline, the extracted feature maps
(i.e., before the pooling layer) has size 14 x 14 x 2048. These
features are fed to the feature/label co-projector branch,
which uses a small ConvNet to embed these features to a
latent vector space. Table 3 lists the detailed layers of this
neural net for image feature projection.

Regarding label projection, we use two fully-connected
layers to to embed one-hot-encoded label vectors to the
same latent vector space as the image features, as shown
in Table 4. Then, the proposed ranking loss is used to model
the correlation between embedded labels and image fea-
tures. Finally, we obtain the final prediction results by aggre-
gating the outputs the direct label recognition (i.e., ResNet-
101) and feature/label co-projector branches as shown in
Figure 2. The specific aggregation in our implementation is
a simple element-wise sum.

At test time, the feature/label co-projection module no
longer applies, since the label for a test image is unknown.
Hence, we simply remove the network layers that project
image features and labels to a common latent space. Note
that at test time, compared with our base model, ie.,



TABLE 4
Architecture of the label projection network in our implementation

Output Size Layer
c/2 fc, (C, C/2)
c/4 fc, (C/2, C/4)
c/2 fc, (C/4, C/2)

C fe, (C/2, C)

ResNet-101, the proposed solution only introduces 2048 x C
additional weights. Hence, the proposed model is highly
efficient; yet it achieves state of the art performance as
shown in later subsections.

Model training. The proposed deep neural network is
trained end-to-end with the training set of the data and
no additional information. To demonstrate the robustness of
the proposed solution, we used simple training techniques
without much hyperparameter tuning. Specifically, during
training, we simply re-size each raw input images from
the dataset to 448 x 448, with no other data augmentation.
The training steps are performed by a SGD optimizer, with
momentum 0.9 and weight decay le-4, respectively. We
used different learning rates for different network layers.
In particular, we set the learning rate of features extraction
layers (i.e., ResNet-101) to 0.001, and the learning rate of the
other layers as 0.01. The reason is that the ResNet-101 layers
have already been pre-trained on ImageNet data, and using
a small learning rate is necessary for transfer learning.

5.2 Evaluation Metrics

Following a recent paper [2], we evaluate the proposed
solution using 7 metrics for multi-label classification per-
formance: mean average precision (mAP), macro/micro
precision (P-C'/P-0), macro/micro recall (R-C'/R-O) and
macro/micro F measure (F'1—C'/F1—0). Specifically, mAP
is the mean value of average precision [63] for each class,
where average precision is calculated by the average frac-
tion of relevant labels ranked higher than one other relevant
label. Macro precision (denoted as P-C') is evaluated by av-
eraging per-class precision measurements. Micro precision
(P-0) is an overall measure that counts true predictions
for all images over all classes. Formally, they are defined
as follows:

C
ZTPZ c C
, 1 TP,
PO=—*"———PC=—=) ———'— (11
& ’ C’ZTPZ-C—kFPiC ()
S (TP, + FP) i

K3

where TP is the number of true positives and F'P the
number of false positives for each class, respectively. The
recall and F1-score metrics are defined as:

c
Y. TP c c
: 1 TP
RO= T ge=iy TR
c ’ c c
£rr+ Ny C 2« TPC + FN,
_ 2% (PO x RO) 2% (PCxRC)
F10= PO + RO F10= PC + RC (13)

where F'N denotes the number of false negatives for each
class. The F' score can be viewed as a weighted average
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of the precision and recall. For F'1, the precision and recall
have the same weight. All 7 evaluation metrics used in the
experiments have range between 0 and 1, with higher values
indicating better performance.

5.3 Evaluation Results

We compare the proposed solution against previous multi-
label image classification methods on MS COCO 2014 [32]
and PASCAL VOC 2007 benchmark datasets [33]. The re-
sults are shown in Tables 1 (for COCO) and 2 (for VOCQ),
respectively.

Specifically, on the MS COCO dataset, we compare our
solution against reported results (directly from their respec-
tive papers) for WARP [64], CNN-RNN [4], RDAR [31],
RARL [3], and SRN [2]. Our results in Table 1 also includes
the performance of the base model of our solution, ie.,
ResNet-101. Note that some methods require the knowledge
of the number of labels associated with an image; conse-
quently, they cannot predict the set of all labels for a given
image. Therefore, we also include the results for top-3 labels.

Clearly, the proposed solution outperforms its base mod-
el ResNet-101 on all evaluation metrics. We observe that the
base model is in fact a strong baseline, which, by itself, out-
performs several earlier approaches. More importantly, with
two exceptions (P-C for all labels and R-O for top-3 labels),
the proposed solution achieves the best performance on
all evaluation metrics, usually with significant performance
gaps. Notably, our mAP is 81.1%, compared to the previous
best 77.1% obtained by a recent work SRN [2]; similarly, our
F1 scores are also several percentage points higher than the
best previous results. Hence, these evaluation results firmly
establish the proposed model as the new state of the art for
multi-label classification on MS COCO.

Another evaluation dataset used in the experiments, i.e.,
PASCAL VOC 2007, contains 9963 images of 20 different
object categories, split into a training set of 5011 images and
a validation set of 4952 images. On this dataset, we compare
the result of our solution against the reported results (again
directly from their respective papers) of the following meth-
ods: CNN-SVM [65], CNN-RNN [4], VeryDeep [66], RLSD
[67], HCP [68], RDAR [31] and RARL [3]. The ressults, as
shown in Table 2, list the average precision for each of the
20 classes, as well as the mAP score. In terms of overall
mAP, our method significantly outperforms the previous
best result obtained by RARL [31]. Note that RARL involves
a complicated network architecture involving ConvNet, RN-
N, and attention, whereas the proposed method has a much
simpler architecture, and much fewer weights at test time.
Finally, for specific classes, our method achieves the highest
average precision for the majority of the classes; for the
remaining classes, the performance of our model is also
highly competitive. Therefore, we achieve a new state of
the art on PASCAL VOC 2007.

5.4 Ablation Experiments

To evaluate our model, we decompose our deep neural
network and valid the effect of image/label co-projector in
COCO dataset. Ablation for backbone: In our experiments,
we use Resnet101 as backbone of our model following SRN.
We can easily know from Tables 1 and 2 that we achieve



TABLE 5
Experiment results about the effect of extra branch for our model. TBA
and TBC denote results of additional branch are directly added to the
classification results of the main classification branch, and features of
two branches are cascaded to each other, respectively. Resnet
baseline comes from SRN.

MAP | F1-C | P-C | F1-O | F1-O | P-O | R-O

ResNet101 752 69.5 | 80.8 | 63.4 744 | 822 | 68.0

TBA 73.0 682 | 769 | 613 733 | 814 | 66.6

TBC 75.5 70.7 | 77.6 | 65.0 751 | 81.3 | 69.8

Ours 81.1 758 | 81.2 | 70.8 781 | 83.6 | 73.3
TABLE 6

Experiment results about the effect of constrained ranking loss. MSE
denotes mean square error loss. CRL is our proposed constrained

ranking loss.
MAP | F1-C | P-C | F1-O | F1-O | P-O | R-O
Ours(MSE) 79.2 74.0 | 814 67.8 77.7 853 | 71.2
Ours(CRL) 81.1 75.8 | 81.2 70.8 78.1 83.6 | 73.3

competitive performance compared with other great meth-
ods. Further, in order to rule out the impact of additional
extra branch on our model, we discard the feature map part
of the model and leave the rest to complete the experiment.
We consider the case where the results of additional branch
are directly added to the classification results of the main
classification branch, or the features of two branches are
cascaded to each other. Corresponding results are shown
in Table 5. Ablation experiments were done on the COCO
dataset.

In addition, we also compared proposed constrained
ranking loss with mean square error loss. Experiments
results are shown in Table 6. We can easily know that
constrained ranking loss is working well in our method.

5.5 Visualizations

CAM Visualizations. To provide further insights into the
proposed solution, we visualize the features extracted by
the feature extractor of our method using CAM [69], which
shows the attention map of of these features. Meanwhile,
to demonstrate that our feature/label co-projection module
correctly learns the correlations between image features and
different labels, we also visualize the features from the
feonw(Fy) layer in the feature/label co-projector. Figure 3
shows the visualization results on the MS COCO dataset.
From these results, we observe that the label correlation
is well represented in the features feon,(Fy) with the help
of label embedding and our constrained ranking loss. The
results on PASCAL VOC lead to similar conclusions, and are
omitted for brevity.

6 CONCLUSION

We present a simple and intuitive solution to the funda-
mental problem of multi-label image recognition, which
combines direct label recognition using a base model
(ResNet-101 in our implementation) and a feature/label
co-projection module that explicitly models the context of
the image. Our implementation of the proposed method
achieves state of the art performance on two popular bench-
mark dataset: MS COCO and PASCAL VOC, while being
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highly efficient at test time, with only 2048 x C additional
weights compared to the base model, where C'is the number
of possible classes.

As future work, we plan to further improve the proposed
solution using effective techniques such as visual attention.
Meanwhile, we intend to investigate multi-label classifica-
tion in other contexts, e.g., with abstract attribute labels, and
for other types of challenging data such as video.
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Fig. 2. Overview of the proposed solution for multi-label image classification. Orange squares represent neural network layers, and blue cubes
denote the feature maps output by a network pipeline. The proposed network consists of three modules: feature extractor, feature/label co-projector,
and classifier. The feature extractor outputs a feature map as a 14 x 14 x 2048 tensor. A subsequent convolution layer then generates the new
image features as inputs to the feature/label co-projector, which embed these features and the labels associated with the image to the same latent
space, shown as a gray circle. Dots with different colors represent different embedded data: red and blue ones are embedded positive and negative
labels, respectively, whereas orange/gray dots are embedded positive/negative image features, respectively. Green (resp., blue) arrows indicate
that data should be away from (resp., close to) each other, which are embodied in the proposed loss function.
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Fig. 3. CAM visualization results. Images and their activation attention maps from F,, with classification layer and f.on. are shown in the first and
second rows, respectively. A label in blue font indicates that it is not associated with the the corresponding image. The features of f.onv are learned
using the proposed constrained ranking loss, which captures correlations between image features and labels. From the results, clearly the attention
map from f.on» has a greater response to people and skis than skateboard in the skiing scene. Meanwhile, in the baseball ball scene, features
that are not affected by our constrained ranking loss have a greater response in the human area. On the other hand, the features affected by the
constrained ranking loss have clear responses to the bat, glove and the ball in this scene, even though the response to the human is smaller.



