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Optimal Tracking Control for Uncertain Nonlinear
Systems with Prescribed Performance via

Critic-Only ADP
Hongyang Dong, Xiaowei Zhao, and Biao Luo

Abstract—This paper addresses the tracking control problem
for a class of nonlinear systems described by Euler-Lagrange
equations with uncertain system parameters. The proposed
control scheme is capable of guaranteeing prescribed perfor-
mance from two aspects: 1) A special parameter estimator
with prescribed performance properties is embedded in the
control scheme. The estimator not only ensures the exponential
convergence of the estimation errors under relaxed excitation
conditions but also can restrict all estimates to pre-determined
bounds during the whole estimation process; 2) The proposed
controller can strictly guarantee the user-defined performance
specifications on tracking errors, including convergence rate,
maximum overshoot, and residual set. More importantly, it has
the optimizing ability for the trade-off between performance
and control cost. A state transformation method is employed to
transform the constrained optimal tracking control problem to
an unconstrained stationary optimal problem. Then a critic-only
adaptive dynamic programming algorithm is designed to approx-
imate the solution of the Hamilton-Jacobi-Bellman equation and
the corresponding optimal control policy. Uniformly ultimately
bounded stability is guaranteed via Lyapunov-based stability
analysis. Finally, numerical simulation results demonstrate the
effectiveness of the proposed control scheme.

Index Terms—Prescribed Performance; Adaptive Dynamic
Programming; Optimal Tracking Control; Parameter Estima-
tion; Reinforcement Learning.

I. INTRODUCTION

Tracking control problems of nonlinear systems with un-
certainties have aroused extensive attention and been widely
investigated by the adaptive control community. Traditional
certainty-equivalence (CE) adaptive control methods [1] can
guarantee the convergence of tracking errors in the presence of
uncertainties. However their closed-loop transient performance
(e.g., convergence rate and overshoot) is difficult to analyze.
Besides, due to the inherent limitations arising from the
CE design structure, CE adaptive controllers may result in
significant performance degradation [2], [3] when compared
with the corresponding deterministic-case controllers. Some
non-CE adaptive control schemes, such as the immersion-
and-invariance method [4], [5] and its extensions [6], [7],
can partially address these limitations and achieve improved
closed-loop performance. But it is still a challenging problem
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to quantitatively analyze or characterize the performance of
these non-CE adaptive controllers. We note that specifying the
closed-loop performance is very important for many practical
control systems, for example a large overshoot may cause
severe damage to the structure of many mechanical systems.
Nevertheless, it is quite challenging to achieve user-defined
performance specifications for nonlinear systems, particularly
in the presence of uncertain parameters. To address this issue,
a novel prescribed-performance control (PPC) method was
recently proposed by Bechlioulis and Rovithakis [8], [9], [10].
State in a nutshell, PPC ensures that the specific require-
ments on transient performance (mainly including convergence
rate and overshoot) and residual set can be quantitatively
characterized by employing judiciously designed prescribed
performance functions (PPF). Given the merits of PPC, it has
been applied to various classes of nonlinear systems [11],
[12], [13], [14], [15], [16], [17]. A fault-tolerant adaptive
attitude controller with prescribed performance was proposed
in [14] for spacecraft under parameter uncertainties and actu-
ator faults. A neural network (NN)-based PPC method for the
tracking control problem of robot manipulators was designed
in [15]. An adaptive controller for a switched nonlinear system
with multiple prescribed performance bounds was proposed in
[16].

All these aforementioned results lack optimizing abilities
to make the trade-off between performance and control cost,
while this issue is of great importance for many systems (for
example, motion control costs of spacecraft, usually in terms
of fuel and electricity, are the most essential resources of
on-orbit missions). To the best knowledge of the authors, it
still remains an open problem to design an optimal controller
with prescribed performance for uncertain nonlinear systems,
especially for tracking control cases. On the one hand, optimal
control problems usually require to solve the Hamilton-Jacobi-
Bellman (HJB) equations, which is intractable for nonlinear
systems. Although iterative learning algorithms [18], [19],
[20], [21] can approximate the solutions of HJB equations,
how to guarantee the prescribed performance specifications
during the whole control process needs to be investigated. On
the other hand, the existence of parameter uncertainties also
increases the complexity of this problem. How to accurately
analyze the performance of parameter estimator/identifier is
also a challenging task.

To solve the optimal control problems of nonlinear systems,
recently the reinforcement learning (RL)-based control tech-
nique, which is commonly referred to as adaptive dynamic
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programming (ADP) [22], [23], [24], [25], [26], [27], [28], has
attracted extensive research interest. The fundamental principle
of ADP is to improve actions by properly evaluating feedback
from the environment, forming the actor-critic architectures
[20], [29], [30], [31], [32]. This innovative method has been
utilized to approximate the solutions of HJB equations and
subsequently achieve near-optimal control. In the presence of
uncertainties, estimators (or identifiers, when neural networks
are employed to approximate system dynamics) can be further
designed to estimate unknown parameters and then embedded
into the actor-critic architectures. It should be emphasized that
the performance and accuracy of the parameter estimator are
essential for the whole control scheme design. A real-time
estimator with poor performance and accuracy can lead to the
instability of the closed-loop system. Besides, for many prac-
tical systems, some prior information of uncertain parameters
are often available. For example, it is common to know the
lower/upper bounds of the mass of a rigid body. These kinds
of information, to some extent, can be regarded as estimation
constraints. Violation of such constraints may cause that the
parameter update process happens outside the feasible region,
which makes no sense and leads to poor transient performance.
However, the constraint handling abilities of ADP methods are
still immature [33], and relevant studies are still very limited
as mentioned in [13], [34]. Most of existing ADP controllers
neither consider the estimation bounds of unknown parameters
nor can meet the prescribed performance specifications (which
can also be regarded as constraints) of system states.

Motivated by these facts, in the present paper, a novel
tracking controller with both prescribed-performance and op-
timizing abilities is proposed for nonlinear systems described
by the Euler-Lagrange (EL) equation under parameter uncer-
tainties. We mention that the EL equation can represent a large
class of nonlinear systems, such as robot manipulators [15],
[35], [36] and rigid-body attitude dynamics [37]. A contin-
uous PPF is employed to specify the transient performance
and residual set of the coordinate tracking error. Based on
the PPF, an augmented state with a transformation law is
designed to transform the constrained control problem into
an unconstrained one. Then by employing a virtual reference
control signal, we further turn the optimal tracking control
problem of the augmented system into a stationary optimal
control problem. A novel real-time estimator is designed to
identify unknown parameters, and then a critic-only structure
is designed to approximate the optimal cost function and
control policy. Uniformly ultimately bounded (UUB) stability
of the proposed control scheme is guaranteed via Lyapunov-
based stability analysis. The main contribution of this paper
includes:

1) We enable PPC to has essential optimizing abilities.
By utilizing the ADP technique, the proposed controller can
make a trade-off between performance and cost while strictly
guaranteeing performance specifications. From another point
of view, we also show how to handle performance constraints
of states in the ADP-based control architecture.

2) A novel constrained estimator is proposed to deal with
system uncertainties. By employing a special projection law,
the estimator can restrict all real-time estimates to a feasible re-

gion. Moreover, it also guarantees the exponential convergence
of estimation errors with a user-defined convergence rate,
subject to the satisfaction of finite excitation (FE) conditions
[38], [39], [40], [41]. Thus the performance of the estimator
is also prescribed, to some extent.

3) Motivated by the concurrent learning (CL) technique
[38], [39], [40] and its extensions [30], [31], [32], real-time
data and past measurements are concurrently introduced into
the update laws of both the estimator and the critic NN.
This guarantees the UUB of the closed-loop system under FE
conditions, which is a significant relaxation when compared
with conventional persistent excitation (PE) conditions. This
design also allows us to employ a critic-only control struc-
ture, simplifying the commonly-used actor-critic ADP scheme.
Moreover, in the parameter estimator, we circumvent the
requirement of immeasurable derivatives in the CL technique
[38], [39], [40].

The remainder of this paper is organized as follows. In
Sec. II, mathematical preliminaries are introduced, and the
optimal tracking control problem with prescribed performance
specifications is formalized. Then an estimator-based critic-
only control scheme is designed in Sec. III with Lyapunov-
based stability analysis. Simulation results are demonstrated in
Sec. IV to show the features and effectiveness of the proposed
method. Finally, we conclude the paper in Sec. V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Throughout the paper, the time domain of all functions
is R≥0. The notation ‖ · ‖ denotes the Euclidean norm
of vectors and the induced norm of matrices. We denote
∇x(·) = (∂(·)/∂x)T, where (·)T is the transpose of the
corresponding vector/matrix, and we set ∇T

x (·) = (∇x(·))T.
Besides, λmin(·) and λmax(·) are employed to represent the
minimum and maximum eigenvalues of the corresponding
matrix, respectively.

The definitions of finite excitation and persistent excitation
conditions are presenting as follows.

Definition 1 (Finite Excitation, FE) [40]: A bounded signal
s(·) : R→ Rn×m is said to be finite exciting over an interval
[t, t + T ], where t ≥ 0 is a fixed time index, if there exist
finite constants T > 0 and c > 0 such that∫ t+T

t

sT(τ)s(τ)dτ ≥ cIm×m (1)

where Im×m is the m dimensional identity matrix.
Definition 2 (Persistent Excitation, PE) [42]: A bounded

signal s(·) : R → Rn×m is said to be persistently exciting
if there exist finite positive constants c and T such that for
arbitrary t ≥ 0, one has∫ t+T

t

sT(τ)s(τ)dτ ≥ cIm×m (2)

The contrast between FE and PE conditions is clearly
indicated by their definitions. The former requires the sig-
nal to be excited just over a specific finite time interval,
whereas, qualitatively speaking, PE implies the satisfaction of
FE throughout the whole timeline.
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B. System Model

In this paper, a class of nonlinear system described by the
following Euler-Lagrange equation is considered:

ẋ1 = x2 (3)

M(x1)ẋ2 + C(x1, x2)x2 + g(x1, x2) = u (4)

where x1, x2 ∈ Rn respectively denote the generalized co-
ordinates and velocities, M(x1) ∈ Rn×n is the generalized
mass matrix, C(x1, x2) ∈ Rn×n denotes the Coriolis ma-
trix, u ∈ Rn represents the control input to be designed,
and g(x1, x2) ∈ Rn denotes the gravity or friction-related
vector. Note that M(x1), C(x1, x2) and g(x1, x2) all con-
tain uncertain parameters, and they satisfy a parameter-affine
representation as follows

M(x1)ẋ2 + C(x1, x2)x2 + g(x1, x2) = H(x1, x2, ẋ2)θ (5)

where H is a regressor matrix, and θ ∈ Rm is called the
parameter vector which contains all the unknown parameters
of the system. Please note that though θ is unknown, the
regressor matrix H is available for controller design. A simple
way to get the expression of H is to take Jacobian of the
left-hand side of (5) with respect to θ. Other commonly-used
properties of the system in (3) and (4) include: 1) M(x1)
is positive definite for all x1 ∈ Rn, and there exist positive
constants mm and mM such that mm ≤ ‖M(x1)‖ ≤ mM . 2)
M(x1)−2C(x1, x2) is an anti-symmetric matrix. Hereinafter,
for ease of notation, the arguments of M , C and g are omitted
when there is no ambiguity.

The system state x , [xT
1 , x

T
2 ]T is required to track a

reference signal xr , [xT
r1, x

T
r2]T with ẋr1 = xr2 and

xr1, xr2, ẋr2 ∈ L∞. Since xr1 and xr2 are user-defined, we
assume that ẋr2 = fr(xr) as [21], [32], where fr : R2n → Rn.
Defining error states to be: z1 , x1−xr1 and z2 , x2−xr2,
one can get the following error model:

ż1 = z2 (6)

ż2 =− fr(xr) +M−1(x1)[−C(x1, x2)x2 − g(x1, x2) + u]

=M−1(x1)[−H(x1, x2, fr(xr))θ + u]
(7)

A technical challenge of designing ADP-based tracking
controllers for continuous nonlinear systems is the non-
autonomous nature associated with the trajectory tracking
problems. And directly employing the original control input
u into the cost index will render the cost index ill-defined
(since u can be persistently exciting in tracking control cases).
Following the strategy given in [42] and [43], a reference
control signal is designed in our paper to solve this problem.
A fundamental requirement for the design of ur is that u−ur
should converge to zero when all tracking errors converge to
zero. So that µ , u−ur can be employed into the cost index.
The reference control signal employed here is

ur(xr) ,M(xr1)fr(xr) + C(xr1, xr2)xr2 + g(xr1, xr2)

=H(xr1, xr2, fr(xr))θ
(8)

This renders
ż1 = z2 (9)

ż2 = M−1(x1)[Y (z1, z2, xr1, xr2)θ + µ] (10)

where Y (z1, z2, xr1, xr2) , H(xr1, xr2, fr(xr)) −
H(x1, x2, fr(xr)) is employed for ease of notation. One can
see that µ → 0n when x1 → xr1, x2 → xr2, and ẋ2 → ẋr2,
satisfying the requirement as discussed before.

Based on the error model in (9) and (10), the control
objective is to guarantee the convergence of tracking errors
(z1 and z2) by designing the augmented control input µ under
the uncertain parameter vector θ. Besides, the generalized co-
ordinate tracking error z1 is required to satisfy the performance
specifications as discussed in the following subsection.

C. Prescribed Performance Specifications and Error Transfor-
mation

Following the design philosophy of PPC in [8], [9], [10], a
continuous PPF is employed in this paper to restrict z1:

ρi(t) , (ρi0 − ρi∞)e−lit + ρi∞, i = 1, 2, ...n (11)

where ρi0, ρi∞ and li are positive constants, with ρi0 > ρi∞
and ρi0 > z1i(0), and here z1i denotes the ith entry of z1,
i = 1, 2, ...n.
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Figure 1: Prescribed performance illustration.

The coordinate tracking error z1 is required to satisfy:

−[cρ+ lei(1−cρ)]ρi(t) < z1i(t) < [1− lei(1−cρ)]ρi(t) (12)

for all t ≥ 0 and i = 1, 2, ..., n, where 0 < cρ ≤ 1 is a
positive constant which is employed to restrict the maximum
overshoot, and

lei =

{
0, if z1i(0) ≥ 0

1, if z1i(0) < 0
(13)

is employed to adjust the performance requirements based
on the initial condition of z1i. Eq. (12) actually defines an
admissible domain for z1, we denote it by Dz . For the case
z1i(0) ≥ 0 and z1i(0) ∈ Dz , the performance specifications
and the admissible domain Dz are illustrated in Fig. 1.

As a brief summary, ρi(t) quantifies the overshoot, steady-
state error, and convergence rate of the coordinate tracking
error. For each entry z1i of z1, i = 1, 2, ..., n, the maximum
overshoot of z1i is less than |cρρi(0)|, and the steady-state er-
ror is bounded by [−ρi∞, ρi∞]. Moreover, before the tracking
error convergence to the residual set, the convergence rate (in
the sense of exponential convergence) is always larger than li.
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Based on the PPF, we define qi(t) , z1i(t)/ρi(t) and
consider the following transformation law:

ei(t) , ln
cρ + lei(1− cρ) + qi(t)

1− lei(1− cρ)− qi(t)
(14)

It can be readily checked that ei, i = 1, 2, ..., n, is well-defined
when z1i(t) ∈ Dz .

Eq. (14), in turn, leads to z1i = ~i(ei, ρi) with

~i(ei, ρi) , [(1 + cρ)sig(ei)− cρ − lei(1− cρ)]ρi (15)

and here sig(ei) , 1/(1 + e−ei) denotes the sigmoid func-
tion. Thus, by employing (14), the tracking error z1 in the
domain Dz is transformed to an auxiliary tracking error
e = [e1, e2, ..., en] defined on Rn. This is the most essential
property of PPF.

Taking the time derivative of (14), one has

ėi =
2(z2i − z1iρ̇i/ρi)

[1− lei(1− cρ)− qi][cρ + lei(1− cρ) + qi]ρi

= ri[z2i −
ρ̇i
ρi
~i(ei, ρi)]

(16)

where ri , 2/[(1− lei(1− cρ)− qi)(cρ + lei(1− cρ) + qi)ρi].
Then one has the following transformed error model:

ė = Υ[z2 − Pz1]

ż2 = M−1 · [Y (z1, z2, xr1, xr2)θ + µ]
(17)

where z1 = [~1, ~2, .., ~n]T can be represented by e and
ρ with ρ = [ρ1, ρ2, ..., ρn]T. Besides, we denote Υ ,
diag{r1, r2, ..., rn}, and P , diag{ρ̇1/ρ1, ρ̇2/ρ2, ..., ρ̇n/ρn}.
Accordingly, an augmented model can be organized as follows.

X = F (X) +G(X)µ (18)

where X , [eT, zT
2 , x

T
r1, x

T
r2, ρ

T, ρ̇T]T is the augmented state
vector, and

F (X) ,


Υ(z2 − Pz1)

M−1 · [Y (z1, z2, xr1, xr2)θ]
xr2

fr(xr)
ρ̇
−Lρ̇

 ,

G(X) ,
[
0n×n,M

−1, 0n×n, 0n×n, 0n×n, 0n×n
]T
.

and here L , diag{l1, l2, ..., ln}.

D. Optimal Control Formulation

By employing the state transformation law in (14), the
prescribed-performance tracking control can be achieved
through guaranteeing the boundedness and convergence of e
and z2. Moreover, to reduce the control cost, we aim to find
a control policy µ that minimizes the following cost index:

J ,
∫ ∞

0

[r(e(τ), z2(τ)) + µT(τ)Rµ(τ)]dτ (19)

where r(e, z2) , eTQee + zT
2 Qzz2, and Qe, Qz and R are

positive-definite matrices. One can see that, by employing
the error states and also the virtual control signal µ, J is

well-defined and the optimal tracking control problem of the
original system is transformed to a stationary optimal problem.

Based on (19), one can construct the following cost func-
tional:

V (X) ,
∫ ∞
t

[r(e(τ), z2(τ)) + µT(τ)Rµ(τ)]dτ (20)

Moreover, substituting (18) into the time derivative of (20)
yields the following Hamiltonian:

∇T
XV · (F +Gµ) + r + µTRµ = 0 (21)

We use µ∗ to denote the optimal control policy and V ∗ to
denote the corresponding optimal cost functional. Then, by
taking partial differential for both sides of Eq. (21) with respect
to µ, one can obtain a closed-form expression of µ∗ as follows

µ∗ = −1

2
R−1GT∇XV ∗ (22)

Then substituting µ∗ back into Eq. (21) results in the well-
known HJB equation in terms of ∇XV ∗:

r +∇T
XV
∗F − 1

4
∇T
XV
∗GR−1GT∇XV ∗ = 0 (23)

However, it is very hard to analytically solve (23), and the
existence of parameter uncertainties also increases the tech-
nical difficulties of this optimal control problem. To address
these issues, a parameter estimator and a critic-only ADP
controller are designed in the following section to compensate
the uncertainties and approximate the optimal control policy.

III. DESIGN OF AN ESTIMATOR-BASED CRITIC-ONLY
ADP CONTROLLER WITH PRESCRIBED PERFORMANCE

A. Design of a Constrained Parameter Estimator

As the essential part of the whole control strategy, a novel
constrained parameter estimator is proposed in this subsection
to estimate θ, which can guarantee the exponential conver-
gence of the error θ̃ , θ̂ − θ subject to the satisfaction of
FE conditions, and here θ̂ denotes the estimate of θ. First, we
construct the following filtered states for the original system
in (3) and (4):

ẋf2(t) = −αxf2(t) + x2(t), xf2(0) = (1/α)x2(0) (24)
u̇f (t) = −αuf (t) + u(t), uf (0) ∈ Rn (25)

Ẇf (t) = −αWf (t) +Wr(t), Wf (0) ∈ Rn×m (26)

where α > 0 is a user-defined filtering gain. The new regressor
matrix Wr satisfies Wrθ = Ṁẋf2−C(x1, x2)x2− g(x1, x2).
We emphasize again that, based on the parameter-affine prop-
erty of the EL system, the regressor matrix Wr is available
for the estimator design, and its specific expression can be
obtained by taking Jacobian with respect to θ.

Then substituting Eqs. (24)-(26) into (4) yields

d

dt
(Mẋf2 −Wfθ − uf ) = −α(Mẋf2 −Wfθ − uf ) (27)

which renders Mẋf2 = Wfθ+uf+γ, where γ(t) = γ(0)e−αt.
By the initial conditions given in (24)-(26), we have γ(0) =
0n. Therefore,

Mẋf2 = Wfθ + uf (28)
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An important feature of the filtered dynamics in (28) is
that ẋf2 is an available signal (note that ẋ2 usually cannot
be measured). From (28), one can see that uf = WIθ,
where WI is another auxiliary regression matrix satisfying
WIθ = Mẋf2−Wfθ. This indicates the filtered control input
uf actually contains the information of the uncertain parameter
vector θ.

As mentioned in the introduction, the parameter estimator
needs to obey some specific constraints. In this paper, we
consider the situation that the uncertain parameters lie within
certain bounds: θk ∈ (θk,min, θk,max), k = 1, 2, ...,m, where
θk denotes the entry of θ, and θk,min and θk,max are respec-
tively the lower and upper bounds of θk. Then, consider the
following projection law:

θk = (θk,max − θk,min)sig(ψk) + θk,min (29)

where sig(ψk) , 1/(1 + e−ψk). One can see that, under
this projection, the constrained parameter estimation problem
of θk on the interval (θk,min, θk,max) is transformed to the
unconstrained one of ψk on R, for k = 1, 2, ...,m. Then,
a novel parameter estimator is proposed in the following
theorem.

Theorem 1: Considering the EL system described by (3)
and (4), the filtered states defined in (24)-(26), and the
projection law in Eq. (29), design the following estimator

˙̂
ψ(t) = −k1[WT

I (t)WI(t)θ̂(t)−WT
I (t)uf (t)]

− k2YW

q∑
i=1

[WT
I (ti)WI(ti)θ̂(t)−WT

I (ti)uf (ti)]
(30)

where ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂m]T is the estimate of ψ =
[ψ1, ψ2, ..., ψm]T; ti denotes a set of past time indexes with
0 ≤ ti ≤ t, i = 1, 2, ...q, and q is a constant which denotes
the total number of historical data points; YW is defined by

YW =

{
Y −1
θ , if Yθ is full-rank
kλIm×m, otherwise

(31)

and here Yθ ,
∑q
i=1W

T
I (ti)WI(ti) is employed for ease of

notation; kI , k1, k2, and kλ are user-defined positive constants.
Set the estimate of every θk to be:

θ̂k = (θk,max − θk,min)sig(ψ̂k) + θk,min (32)

Then one has
1) ψ̃, θ̃ ∈ L∞, where ψ̃ , ψ̂ − ψ;
2) ∀t ≥ 0, θ̂k(t) ∈ (θk,min, θk,max);
3) If Yθ is full-rank, θ̃(t) exponentially converges to zero.
Proof: Consider the following storage function,

VI ,
m∑
k=1

{(θk,max − θk,min)[ψ̃k + ln(1 + e−ψ̃k−ψk)

− ψ̃ksig(ψk)− ln(1 + e−ψk)]}
(33)

where ψ̃k , ψ̂k − ψk denotes the entry of ψ̃. Then it can be
readily verified that VI → +∞ when ψ̃ → ±∞, and ψ̃ = 0m
is the unique and global minimizer of VI . Thus VI is a valid

Lyapunov function candidate of ψ̃. Taking the time derivative
for both side of (33) yields

V̇I =
∂VI

∂ψ̃

˙̃
ψ =

m∑
k=1

(θk,max − θk,min)(sig(ψ̂k)− sig(ψk))
˙̂
ψk

(34)
By (29) and (32) , one has θ̃k = θ̂k − θk = (θk,max −
θk,min)(sig(ψ̂k)− sig(ψk)). Thus

V̇I = θ̃T ˙̂
ψ (35)

Recall the fact that uf = WIθ, ˙̂
ψ in (30) is equivalent to

˙̂
ψ(t) = −k1W

T
I (t)WI(t)θ̃(t)− k2YWYθ θ̃(t) (36)

Thus

V̇I = −k1‖WI(t)θ̃(t)‖2 − k2θ̃
T(t)YWYθ θ̃(t) (37)

Eq. (37) shows VI ∈ L∞, and this ensures ψ̃ ∈ L∞. Then,
based on the projection law in (32), we have θ̃ ∈ L∞ and
θ̂k(t) ∈ (θk,min, θk,max) for all t ≥ 0, k = 1, 2, ...,m. Thus
the first and second statements in the theorem are proved.

Then assume that adequate data is collected in Yθ after t ≥
t∗, i.e. Yθ is full-rank. To show the exponential convergence
of θ̃ under this condition, first we state that VI satisfies the
following property:

cmin‖θ̃(t)‖2 ≤ VI(t) ≤ cmax‖θ̃(t)‖2 (38)

where

cmin , inf
t≥0,k=1,2,...,m

[
(1 + e−ψ̃k(t)−ψk)2

(θk,max − θk,min)e−ψ̃k(t)−ψk
],

cmax , sup
t≥0,k=1,2,...,m

[
(1 + e−ψ̃k(t)−ψk)2

(θk,max − θk,min)e−ψ̃k(t)−ψk
].

Based on the result that ψ̃ ∈ L∞, one has cmin and cmax are
bounded and positive constants. Then, defining an auxiliary
variable as K(ψ̃k) , cmaxθ̃

2
k− (θk,max− θk,max)[ψ̃k + ln(1 +

e−(ψ̃k+ψk))− ψ̃ksig(ψk)− ln(1 + e−ψk)], one has

∂K

∂ψ̃k
= θ̃k[

2cmax(θk,max − θk,min)e−ψ̃−ψk

(1 + e−ψ̃−ψk)2
− 1] (39)

Eq. (39) shows that when ψ̃k ≤ 0, ∂K/∂ψ̃k ≤ 0 and vice
versa. Thus ψ̃ = 0 is the global minimizer of K(ψ̃k), with the
minimal value K(0) = 0. This result verifies the right-hand
side of (38) (through summing up K(ψ̃k) for all k), and the
left-hand side of (38) can also be proved by similar analysis.

Thus, when Yθ is full-rank, Eqs. (31), (37) and (38) lead to

V̇I = −k1‖WI(t)θ̃(t)‖2 − k2kλ‖θ̃(t)‖2 ≤ −
k2kλ
cmax

VI (40)

Therefore,
VI ≤ VI(0)e−k2kλ(t−t∗)/cmax (41)

Recall (38), one has

‖θ̃‖2 ≤ VI(0)

cmin
e−k2kλ(t−t∗)/cmax (42)

So θ̃ exponential converges to zero. The proof is complete.
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Remark 1: Without employing the past measurements
(which are introduced by the matrix Yθ), one can only guar-
antee limt→∞WI(t)θ̃(t) = 0n by analyzing V̇I . Then, to
show the convergence of θ̃, WI is required to satisfy the PE
condition as in the definition 1. In contrast, in our design, we
ensures the exponential convergence of θ̃ once Yθ is full-rank.
This only requires WI to satisfy the FE condition, which is a
significant relaxation when compared with PE conditions that
are usually required in the conventional estimator/identifier
design.

Remark 2: It should be emphasized that the idea to employ
both real-time data and past measurements in the estimator
(30) is inspired by the CL technique [38], [39], [40]. To ensure
Yθ is full-rank if WI satisfies the FE condition, a simplest way
is to add all incoming data of WI into Yθ until rank(Yθ) = m.
A more sophisticated method is to design a selection algorithm
for Yθ, some examples are shown in [38], [39], [40].

Remark 3: Compared with the CL technique, the estimator
proposed in the present paper has two main distinctions. First,
by introducing a special projection law, the estimates are
restricted to pre-determined bounds during the whole identi-
fication process. Second, by employing the filtered states and
a two-layer regression structure, the proposed estimator does
not require the information of any immeasurable derivatives.

Remark 4: As discussed in the introduction, the proposed
estimator, to some extent, ensures the prescribed performance
of θ̃. This is from two aspects, as illustrated in Fig. 2. First, the
estimator ensures θ̂k(t) ∈ (θk,min, θk,max), k = 1, 2, ...,m, for
all t ≥ 0. Second, from Eq. (42), we have ‖θ̃(t)‖ ≤ κ2e−κ1t,
where κ1 = k2kλ/(2cmax) and κ2 =

√
VI(0)/cmine−κ1t

∗/2.
One can see that the convergence rate κ1 can be increased by
k2 and kλ, while a limitation is that κ2 cannot be pre-specified
since VI(0) is unknown.

,max ,mink k
q q-

(0)
k
q (0)
k
q

t

2

1e
tk

k
-

Figure 2: Prescribed performance illustration of the estimator.

B. Design of a Critic-Only ADP with Prescribed Performance

To approximate the optimal cost function V ∗ and the
corresponding optimal control policy, a critic-only ADP con-
troller is designed in this subsection. Based on the Weierstrass
approximation theorem [43], [44], V ∗ can be reconstructed by

V ∗(X) = wTσ(X) + ε(X) (43)

for X ∈ X , where X is a compact set. Here σ(X) =
[σ1(X), σ2(X), ..., σp(X)]T ∈ Rp, and σi denotes a set of

basis functions with σi(0) = 0 and σ̇i(0) = 0, i = 1, 2, ..., p,
w ∈ Rp is a unknown weigh vector, and ε(X) is the
reconstruction error. This kind of reconstruction method has
been commonly employed in relevant results [20], [29], [45].

Then the optimal policy follows

µ∗ = −1

2
R−1GT(∇Xσ · w +∇Xε) (44)

Since w is unknown, an auxiliary weight vector ŵ is
employed to denote the estimate of w, and the corresponding
approximation of V ∗ and µ∗ are

V = ŵTσ (45)

µ = −1

2
R−1ĜT∇Xσ · ŵ (46)

where Ĝ denotes the estimate of G (in which uncertain
parameters are replaced by their estimates). Then we consider
the following Bellman error:

δb , ∇T
XV [F̂ + Ĝµ] + r + µTRµ (47)

where F̂ is the estimate of F (uncertain parameters are
replaced by their estimates). Then recall (21), one has

δb =∇T
XV [F̂ + Ĝµ] + µTRµ

−∇T
XV
∗[F +Gµ∗]− µ∗TRµ∗

=$Tw̃ + ε1 + εH

(48)

where w̃ , ŵ − w is the weight estimation error, ε1 =
w∇T

XσF̃ − 0.25wTD̃w is the error induced by the parameter
estimation process, εH is a residual error defined same with
[31], [46], [47]. Besides, $ = ∇T

Xσ(F̂ − 0.5P̂∇Xσ · ŵ),
P̂ , ĜR−1ĜT and D̂ , ∇T

η σP̂∇ησ are employed for
ease of notation, and F̃ , F̂ − F and D̃ , D̂ − D with
D , ∇T

ηGR
−1GT∇ησ. Since δb contains the information of

w̃, it has been commonly-used in the update law of ˙̂w. Before
proposing the specific design of ˙̂w, the following assumptions
are made for X ∈ X .

Assumption 1: The reconstruction error, its gradient, and the
residual error are bounded, such that

‖ε‖ ≤ bε, ‖∇Xε‖ ≤ bεx , ‖εH‖ ≤ bεH (49)

Assumption 2: The basis functions and their gradient are
bounded and satisfy

‖σ‖ ≤ bσ, ‖∇Xσ‖ ≤ bσx (50)

Assumption 3: Under the condition θ̃ ∈ L∞, the error
induced by the parameter estimator satisfies

‖$ε1/(1 +$T$)2‖ ≤ bε1 (51)

Here bε, bεx , bεH , bσ , bσx , bε1 are all positive constants.
Although the Bellman error is usually employed to update

ŵ, the precise estimation requires that $ satisfies the PE con-
dition in conventional ADP methods [22], [24], [25], [26]. This
condition is quite strong and almost infeasible in real engineer-
ing applications, especially for online cases. Motivated by the
results given in [30], [31], [32], past measurements (which
are collected online) are introduced into the critic update law
in this paper to relax the excitation condition. For ease of
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notations, We denote ς = $T$ + 1, ζ = $/($T$ + 1),
ϕ1 = ζζT and ϕ2 = ζ(r + µTRµ)/ς , and also consider two
time indexes tw1 and tw2 with 0 ≤ tw1 ≤ tw2 ≤ t. Then we
design the following auxiliary variables:

ξ̇1(t, tw1) = −κξ1(t, tw1) + ϕ1(t), ξ1(tw1) = 0p×p (52)

ξ̇2(t, tw1) = −κξ2(t, tw1) + ϕ2(t), ξ2(tw1) = 0p×1 (53)

where κ > 0 is a user-defined constant. We also define
Ξ(t, tw2, tw1) , ξ1(tw2, tw1)ŵ(t) + ξ2(tw2, tw1). Then, fol-
lowing (52) and (53), one has

Ξ(t, tw2, tw1) = e−κtw2

∫ tw2

tw1

eκτ (ϕ1(τ)ŵ(t) + ϕ2(τ))dτ

(54)
By the definition of ϕ1 and ϕ2, one has

Ξ(t, tw2, tw1) =e−κtw2

∫ tw2

tw1

eκτζ(τ)

ς(τ)
·(

$T(τ)ŵ(t) + r(τ) + µT(τ)Rµ(τ)
)

dτ

=

(∫ tw2

tw1

e−κ(tw2−τ)ζζTdτ

)
w̃(t) + ε̄1

=ξ1(tw2, tw1)w̃(t) + ε̄1
(55)

where

ε̄1 ,
∫ tw2

tw1

e−κ(tw2−τ)$(τ)[ε1(τ) + εH(τ)]

[$T(τ)$(τ) + 1]2
dτ

is an integral residual error, and ε̄1 ∈ Rp.
Based on these designs, an approximate optimal control

strategy with prescribed performance is summarized in the
following theorem.

Theorem 2: Consider the augmented model in (18), the
parameter estimator in (30) subject to the satisfaction of a FE
condition of WI , and the critic-only ADP control structure in
Eqs. (45) and (46). Assume ζ satisfies a FE condition, i.e.,
there exist tw1, tw2, cw with 0 ≤ tw1 ≤ tw2 ≤ t and cw > 0
such that ∫ tw2

tw1

ζ(τ)ζT(τ)dτ ≥ cwIp×p (56)

Design the update law for the critic NN to be

˙̂w(t) = −c1
$(t)δb(t)

($T(t)$(t) + 1)2
− c2Ξ(t, tw2, tw1) (57)

where c1 and c2 are positive constants. Then, if the initial state
is in the admissible domain Dz , the weight estimation error
w̃ and the transformed tracking error e and z2 are UUB, and
all prescribed specifications on z1 are guaranteed.

Proof : Consider the following storage function

L , V ∗ +
ρ1

2
w̃Tw̃ (58)

where ρ1 is a positive constant employed just for stability
analysis. The time derivative of L is analyzed in (59), in which
the arithmetic-geometric mean inequality is employed. Then
by setting the auxiliary parameters ρ1 to satisfy:

ρ1 >
2etw2−tw1 ·maxt≥0{‖D‖}

c2cw
(60)

one has

L̇ ≤− eTQee− zT
2 Qzz2 −

ρ2

2
‖w̃‖2 − ρ1c1‖ζTw̃‖+ ρ3

(61)
where ρ2 = ‖ρ1c2cwe−(tw2−tw1)Ip×p − D‖, and
ρ3 = ‖(wT∇T

Xσ + ∇T
Xε)GH(xr1, xr2, fr(xr))θ̃‖ +

0.5∇T
XεGR

−1GT∇Xε + ρ1c1‖ε1 + εH‖2/[2($T$ + 1)2] +
ρ1c2‖ε̄1‖2e(tw2−tw1)/(2cw). By the assumptions 1-3 and
the condition given in (60), one has ρ2(t) > 0 for t ≥ 0,
and ρ3 ∈ L∞ . This directly guarantees the UUB of e, z2,
and w̃. Finally, the fact e ∈ L∞ ensures that all prescribed
performance specifications are guaranteed. This completes
the proof.

Remark 5: By utilizing past measurements and introducing
the vector Ξ into ˙̂w, the stability of the closed-loop system
is guaranteed under the satisfaction of the FE condition of ζ,
which is much weaker than the conventional PE conditions.
It should be emphasized that, also for PE relaxation purpose,
CL-based ADP methods as in [30], [31], [32] employ discrete
historical data stack in the update laws of NN weights:∑l
i=1(ζ(i)/ς(i))δ̂b(i), where δ̂b(i) denotes the Bellman error

at a past (discrete) time point i while replacing ŵ(i) with
its real-time counterpart ŵ(t). This kind of method, however,
requires complicated online selection algorithms to update the
data stack. A commonly-used example of such algorithms
maximizes the minimum singular value of

∑l
i=1 ζ(i)ζT(i), by

swapping the most recent incoming data with every recorded
data and then comparing the corresponding minimum eigen-
values (with a complexity of O(l · p3) at every discrete
time point, where l is the length of the history stack, and
p denotes the dimension of

∑l
i=1 ζ(i)ζT(i)). In contrast, the

method proposed in this paper takes advantage of all incoming
data by designing a special integral-form information matrix
(Ξ(t, tw2, tw1)), this new approach is arguably easier to im-
plement and is computationally cheaper.

Remark 6: Note that the time interval [tw1, tw2] can be
changed during the control process. A straightforward and
easily implementable strategy is that: 1) First set tw1 = 0,
and once ζ is FE on [0, t], fix tw2 to this time point and
accordingly construct Ξ(t, tw2, 0). 2) As time goes on, if ζ
satisfies a FE condition on a new time interval [t̄w1, t̄w2],
one can replace Ξ(t, tw2, 0) with Ξ(t, t̄w2, t̄w1) to potentially
reduce the residual set caused by ε̄1.

Remark 7: It is noteworthy that an adaptive tracking con-
troller was proposed in [15] for Euler-Lagrange systems,
which also guarantees the prescribed performance of the co-
ordinate tracking error, and a NN is employed to approximate
the drift dynamics. A limitation of this elegant result is that
its controller requires the accurate information of the inertia
matrix M . In contrast, by fully employing the parameter affine
property of Euler-Lagrange systems, all system parameters can
be uncertain for the constrained estimator and the estimator-
based ADP controller proposed in the present paper. More
importantly, our control scheme has the ability to make a trade-
off between performance and control cost, reducing the control
cost while strictly guaranteeing the performance specifications.
These advantages are also illustrated by numerical simulations.
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L̇ =∇T
XV
∗[F +Gµ− 1

2
GR−1GT(∇Xσ · w +∇Xε) +

1

2
GR−1GT(∇Xσ · w +∇Xε) +GH(xr1, xr2, fr(xr))θ̃] + ρ1w̃

T ˙̂w

=∇T
XV
∗(F +Gµ∗) + (wT∇T

Xσ +∇T
Xε)[−

1

2
GR−1GT∇Xσw̃ +

1

2
GR−1GT∇Xε+GH(xr1, xr2, fr(xr))θ̃] + ρ1w̃

T ˙̂w

=− r − 1

4
wTDw − 1

2
wTDw̃ − 1

2
∇T
XεGR

−1GT∇Xσw̃ +
1

4
∇T
XεGR

−1GT∇Xε

− (wT∇T
Xσ +∇T

Xε)GH(xr1, xr2, fr(xr))θ̃ + ρ1w̃
T ˙̂w

≤− r +
1

2
w̃TDw̃ +

1

2
∇T
XεGR

−1GT∇Xε+ ‖(wT∇T
Xσ +∇T

Xσ)GH(xr1, xr2, fr(xr))θ̃‖+ ρ1w̃
T ˙̂w

≤− r − w̃T[ρ1c2ξ1(tw1, tw2) + ρ1c1ζζ
T −D]w̃ +

1

2
∇T
XεGR

−1GT∇Xε+ ‖(wT∇T
Xσ +∇T

Xε)GH(xr1, xr2, fr(xr))θ̃‖

+
ρ1c1w̃

T$(ε1 + εH)

($T$ + 1)2
+ ρ1c2w̃

Tε̄1

≤− eTQee− zT
2 Qzz2 −

1

2
w̃T[ρ1c2cwe−(tw2−tw1)Ip×p + ρ1c1ζζ

T − 2D]w̃ + ‖(wT∇T
Xσ +∇T

Xε)GH(xr1, xr2, fr(xr))θ̃‖

+
1

2
∇T
XεGR

−1GT∇Xε+
ρ1c1‖ε1 + εH‖2

2($T$ + 1)2
+
ρ1c2‖ε̄1‖2e(tw2−tw1)

2cw
(59)

IV. NUMERICAL SIMULATIONS

To verify the effectiveness of the proposed controller, the
model of a typical two-link robot manipulator as in [48] is
employed to carry out numerical simulation tests, which is
defined by

Mq̈ + (Vm + Fd)q̇ + Fs = u (62)

where q = [q1, q2]T ∈ R2 and q̇ = [q̇1, q̇2]T ∈ R2 are
respectively the angular positions and velocities,

M =

[
p1 + 2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
,

Vm =

[
−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)
p3 sin(q2)q̇1 0

]
,

Fd =

[
p4 0
0 p5

]
, Fs =

[
p6 tanh(q̇1)
p7 tanh(q̇2)

]
,

and p1 = 3.473kg·m2, p2 = 0.196kg·m2, p3 = 0.242kg·m2,
p4 = 5.3Nm·s, p5 = 1.1Nm·s, p6 = 8.45Nm,
and p7 = 2.35Nm are system parameters. Unlike
[15], [48], we assume that all these parameters are
unknown, thus θ = [p1, p2, ..., p7]T. The estimation
bounds of θ̂ are θmax = [4.5, 0.25, 0.3, 7, 1.5, 10, 2.8]T

and θmin = [3, 0, 0, 4.5, 0.5, 8, 1.8]T. The
reference trajectory is designed as ẋr(t) =
[sin(0.5t),−0.25 cos(t), 0.5 cos(0.5t), 0.25 sin(t)]T with
xr(0) = [0,−0.25, 0.5,−0.5]T. The parameters of the
proposed approximate optimal controller (denote as “AOC”)
are set to be Qe = 2I2×2, Qz = I2×2, R = I2×2, α = 0.1,
k1 = 0.5, k2 = 10, kλ = 1, c1 = 2, c2 = 1, κ = 0.02,
tw1 = 0, tw2 = 2. Following [31], [32], [48], [44], [49],
polynomial basis functions are chosen to construct the critic
NN:

σ(X) = [e1z21, e2z22, 0.5z
2
21, 0.5z

2
22, e1z22

z21z22, 0.5e
2
1z

2
21, 0.5e

2
2z

2
22, 0.5z

2
21z

2
22

0.5z2
21x

2
r21, 0.5z

2
22x

2
r22]T

and the initial weight is set to be ŵ(0) = [2, 2, 10, 10, 01×7]T.
This design renders

µ(0) = −M̂−1(0)e(0)− 5M̂−1(0)z2(0) (63)

where M̂ is the estimate of M . Please refer to Appendix A
for the motivation of why such an initial controller is selected
in this case study. Other initial conditions are set to be q(0) =
[3,−3]T, q̇(0) = [0.1, 0.1]T, θ̂(0) = [4, 0.1, 0.1, 6, 0.8, 9, 2]T.
Performance specifications are designed as: ρ1,0 = ρ2,0 = 4,
ρ1∞ = ρ2∞ = 0.1, and cρ = 1.

Besides, it should be emphasized that the control method
proposed in this paper is an online ADP method, which does
not require any offline or other pre-gathered data sets. While
most online data is employed to calculate the control signal
directly, a small part of it is fed into the information matrices
in both the parameter estimator and the ADP controller, i.e. Yθ
and Ξ. The simulation runs under the fixed-step solver mode
with sample time as 0.01s, and the solver is ode4 (Runge-
Kutta). Under these settings, on the one hand, the data in the
first 2s is employed to build Ξ (tw1 = 0s and tw2 = 2s), and
it is released (set Ξ to be a zero matrix) after 10s to reduce
the residual error; on the other hand, the data in the first 5s is
employed by Yθ and kept until the end of simulation.

Moreover, to show the advantages of the approximate op-
timal controller (denote as “AOC”) proposed in the present
paper, two other controllers are also employed in simulations.

1) The immersion and invariance-based controller in [3]
(denoted as I&I). As a typical non-CE adaptive control
method, I&I-based controllers have shown superior closed-
loop performance than conventional adaptive controllers. The
I&I-based controller proposed in [3] can also achieve tracking
control objectives for Euler-Lagrange systems under system
uncertainties. The specific design of this controller can be
found in [3], and the control gains are chosen to be γ = 2,
kp = 0.5, kv = 2 and α = 0.5.
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2) The adaptive neural control with prescribed performance
in [15] (denoted as PPC). As mentioned in the Remark 7, the
controller in [15] is also capable of guaranteeing prescribed
performance of the coordinate tracking error. The control
parameters of PPC are set to be Γ = 2 and k = 10.

Note that the control gains for all the three controllers
have been carefully adjusted to achieve satisfactory transient
performance under similar control input levels.

The time responses of θ̃(t) under AOC is shown in Fig.
3. The switch law in (31) is triggered after t = 5s to reduce
truncation errors. Fig. 3 shows that the estimation error ‖θ̃‖
rapidly converge to zero under the proposed estimator. To show
the constraint handling ability of the estimator, the simulation
results of θ̂2 and θ̂3 with and without employing the projection
law are illustrated in Fig. 4. One can see that, the estimator
with projection renders a superior estimation performance and
can restrict all estimates to the required bounds. Otherwise,
the estimates go out the feasible region.

Then, the time responses of e1 and e2 under different
controllers are demonstrated in Figs. 5 and 6, respectively. And
the simulation results of z2 are given in Fig. 7. Although all the
three control approaches achieve the tracking control objective,
the I&I controller cannot meet the performance specifications.
Compared with the other two controllers, the PPC method in
[15] leads to a rapid convergence of all tracking errors (this
may benefit from its inner sliding-mode structure), while the
AOC proposed in the present paper has smoother trajectories
and renders fewer fluctuations. Under AOC, there is almost
no overshoot and the transient trajectories are strictly within
the admissible region specified by PPFs. Then the control
cost (µTRµ) of these controllers is given in Fig. 8. One
can see that, PPC has a higher control cost than the other
two methods. In contrast, AOC can make a trade-off and
significantly reduces the control cost.

0 5 10 15 20
-0.5

0

0.5

0 5 10 15 20

Time (s)

0

0.5

1

Figure 3: Time responses of θ̃ under AOC.

Under the AOC, the weight vector of the critic NN con-
verges to

ŵf = [4.4314, 2.6588, 9.9185, 9.8388, 0.3171, 0.5705,

− 0.3684,−1.1564,−0.2285,−0.0282,−0.0005]T

Since the HJB equation in the simulation case cannot be
precisely solved, we cannot compare ŵ with its unknown
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Figure 4: Time responses of θ̂2 and θ̂3 with and without
projection.
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Figure 5: Time responses of e1 under different controllers.
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Figure 6: Time responses of e2 under different controllers.
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Figure 7: Time responses of z2 under different controllers.
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Figure 8: Control cost under different controllers.

0 5 10 15 20
-5

0

5

0 5 10 15 20
-1

0

1

0 5 10 15 20

Time (s)

-10

0

10

Figure 9: Simulation results under the fixed NN weights.

Total 0s-2s 2s-4s 4s-20s

Time interval 

0

50

100

150

200

Figure 10: Simulation results of the cost index J .

true values. Instead, we carry out the simulation again while
fixing the NN weights to be the estimated value ŵf . The
corresponding results of e, z2 and u are given in Fig. 9, and its
overall cost (J) compared to the original online-tuning AOC
and the PPC are shown in Fig. 10. One can see that, the
finalized AOC controller with fixed weights estimated by the
proposed method clearly has a superior performance than the
PPC and the original online-tuning AOC, and renders a much
less cost. These facts prove the approximate optimal property
of the proposed control scheme in the present paper.

The computational cost of the proposed controller has
also been analyzed. Theoretically, this mainly comes from
two aspects. The first aspect is related to the reconstruction
of the cost function V ∗. Recall (43), one can see that a
linear combination of basis/activation functions is employed
to reconstruct the cost function. This indicates that the most
intensive algebraic operation involved in the design is calculat-
ing the gradient of σ(X) with respect to X (as shown in (44)).
The second aspect is related to the information matrices in the
parameter estimator and the controller, which requires integral
operations but just for fixed time intervals. All the other
operations involved in the proposed controller are basic ad-
dition/subtraction and multiplication/division operations, and
different specifications of the prescribed performance function
(which decides the transient and steady-state performance of
the coordinate tracking error) have negligible influence on the
computational complexity. For the simulation case considered
in the paper, the proposed controller needs 5.104499 seconds
to complete a simulation of 100 seconds (under a computer
with Intel Core i7-9700K CPU @ 3.60GHz, 32GB RAM),
while the I&I can finish the simulation in 3.603280 seconds.
These analyses and results show that though the computational
complexity of the proposed controller is higher than the non-
linear adaptive controller, the additional computational cost is
limited and acceptable. Especially considering the fact that the
proposed controller can achieve approximate optimal control
(significantly reduced the control cost than advanced adaptive
controllers, such as I&I) with prescribed performance. For
cases when the computational resources are extremely limited,
one can reduce the computational complexity of the proposed
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controller by reducing the number of basis functions and the
data collecting time in information matrices. At the same time,
a trade-off is required since these approaches may result in
potential performance depredation.

To sum up, simulation results verify the effectiveness of
the approximate optimal tracking controller proposed in the
present paper, and the prescribed performance specifications
are strictly guaranteed during the whole control process.

V. CONCLUSION

A novel RL-based approximate optimal tracking control
scheme for uncertain Euler-Lagrange systems was proposed in
this paper. Specifically, an estimator-based critic-only approx-
imate optimal tracking controller was designed to precisely
estimate unknown parameters and approximate the solution
of the HJB equation. Moreover, the proposed control scheme
is capable of guaranteeing prescribe performance. Uniformly
ultimately bounded stability was rigorously guaranteed via
Lyapunov-based analysis under relaxed excitation conditions
(FE conditions). Future work would consider more general
constraints on system states.

APPENDIX

A. An Example of the Initial Control Design

This appendix provides details regarding the selection of the
initial controller in the simulation.

We aim to ensure that this initial controller can guarantee
the UUB of z1, z2 and e. The following Lemma shows that a
PD-like controller could satisfy this requirement.

Lemma 1: Consider the tracking error model of the Euler-
Lagrange system in (10) and (16), design the following PD-
like controller:

u = −kpM̂−1e− kvM̂−1z2 +H(xr1, xr2, fr(xr))θ̂ (64)

and here θ̂ and M̂ are updated by the parameter estimator
proposed in Theorem 1. Then for all z1(0) ∈ Dz and z2(0) ∈
Rn, one has e, z1, z2 ∈ L∞ and z1(t) ∈ Dz for all t ≥ 0,
subject to the satisfaction of the conditions as given in the
proof.

Proof: To show the boundedness of the closed-loop system,
consider the following storage function:

Vpd = eTe+ czT
2 Mz2 + eTz2 (65)

where c is a positive constant. Then one has

Vpd =
[
eT zT

2

]
A

[
e
z2

]
(66)

where
A =

[
In×n 0.5In×n

0.5In×n cMIn×n

]
Thus by setting c > 0.25/mm, one has A > 0 and Vpd is
a valid storage function. Then the time derivative of Vpd is
analyzed in (67). Rearranging the last inequality in (67), one
has:

V̇pd ≤ −
[
eT zT

2

]
B1

[
e
z2

]
+B2

[
e
z2

]
(68)

where

B1 =[
− kp
mMm̄M

In×n
by2m̄m‖θ‖+kv

2mmm̄m
+

ckp
m̄m

+ rM
by2m̄m‖θ‖+kv

2mmm̄m
+

ckp
m̄m

+ rM −2c( kv
m̄M
− bq2‖θ‖)− rM

]
and

B2 =

[
2bpρM + (by1ρM‖θ‖+ by3‖θ‖+ bHbθ̃)/mm

bpρM + 2c(bq1ρM‖θ‖+ bq3‖θ‖+ bHbθ̃)

]T

,

and here bp = maxt≥0{‖P(t)‖}, ρM = maxi=1,2,...,n{ρi0},
bH = maxt≥0{H[xr1(t), xr2(t), fr(xr(t))]}, rM =
maxt≥0{Υ(t)}, and bθ̃ = maxt≥0{‖θ̃(t)‖}. Besides, m̄m and
m̄M respectively denote the minimum and maximum eigenval-
ues of M̂ . Moreover, the regressor matrix Q(z1, z2, xr1, xr2)
is employed for ease of notation. The definition of it is
very similar to Y (z1, z2, xr1, xr2), in which only the term
C(x1, x2)x2 is replaced by C(x1, x2)xr2. We assume that
both Y and Q are local Lipschitz (the example system in
the simulation satisfies this assumption). This indicates that
there exists positive constants by1, by2, by3, bq1, bq2, and bq3,
such that ‖Y (z1, z2, xr1, xr2)‖ ≤ by1‖z1‖ + by2‖z2‖ + by3

and ‖Q(z1, z2, xr1, xr2)‖ ≤ bq1‖z1‖ + bq2‖z2‖ + bq3. It
is noteworthy that the results given in (67) and (68) rely
on the following facts: 1) All the properties of the Euler-
Lagrange system considered in the paper, as discussed in
Sec.II.B, particularly the fact that (M − 2C) is an anti-
symmetric matrix. 2) H(xr1, xr2, fr(xr)) is bounded, since
xr1, xr2, fr(xr) ∈ L∞. 3) The parameter estimation error θ̃ is
bounded, as shown in Theorem 1. 4) It can be readily proved
that ρ, ρ̇,P ∈ L∞. 5) Υ(t) is always positive-definite and
bounded if z1(t) ∈ D and X ∈ X . 6) When z1 ∈ Dz , one
has ‖z1(t)‖ ≤ ρM . 7) We assume M̂ is positive-definite since
θ̃ exponentially converges to zero.

Eq. (68) shows that, by setting c, kp, and kv to ensure B1 >
0, one has e, z1 and z2 are UUB. Based on the definition of
e, one has z1(t) ∈ Dz for all t ≥ 0. The proof is complete.

We emphasize that the requirement B1 > 0 is a sufficient
condition which is deduced by considering extreme situations.
In practice, the margins of the initial control parameters are
actually much larger and can be set empirically.

A remaining issue is representing the initial controller by
a set of basis functions. Since the term introduced by the
parameter estimation error (H(xr1, xr2, fr(xr))θ̃) has been
considered in Theorem 2, one can see that designing an initial
controller following (64) is equivalent to design µ as:

µ = −kpM̂−1e− kvM̂−1z2 (69)

For the specific simulation scenario in this paper, the basis
functions are set to be

σ(X) = [e1z21, e2z22, 0.5z
2
21, 0.5z

2
22, e1z22

z21z22, 0.5e
2
1z

2
21, 0.5e

2
2z

2
22, 0.5z

2
21z

2
22

0.5z2
21x

2
r21, 0.5z

2
22x

2
r22]T

with initial guess of w to be ŵ(0) = [2, 2, 10, 10, 01×7]T. This
leads to

µ(0) = −M̂−1(0)e(0)− 5M̂−1(0)z2(0) (70)
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V̇pd =2eTė+ 2czT
2 Mż2 + czT

2 Ṁz2 + ėTz2 + eTM−1Mż2

=2eT(Υz2 − Pz1) + 2czT
2 [Q(z1, z2, xr1, xr2)θ +H(xr1, xr2, fr(xr))θ̃ − kpM̂−1e− kvM̂−1z2]

+ (Υz2 − Pz1)Tz2 + eTM−1[Y (z1, z2, xr1, xr2)θ +H(xr1, xr2, fr(xr))θ̃ − kpM̂−1e− kvM̂−1z2]

≤2rM‖e‖‖z2‖+ 2bpρM‖e‖+ 2c‖z2‖(bq1ρM‖θ‖+ bq2‖z2‖‖θ‖+ bq3‖θ‖+ bHbθ̃ + kp‖e‖/m̄m − kv‖z2‖/m̄M )

+ rM‖z2‖2 + bpρM‖z2‖+ ‖e‖(by1ρM‖θ‖+ by2‖z2‖‖θ‖+ by3‖θ‖+ bHbθ̃ + kv‖z2‖/m̄m)/mm − kp‖e‖2/(mMm̄M )
(67)

which is consistent with the one in Eq. (69) (under the
condition kp = 1 and kv = 5).

Finally, it should be emphasized that any controllers that can
ensure the UUB of e z1, and z2 is eligible to be employed as
the initial control policy for the proposed method, as long as
they can be reconstructed by proper basis functions. The one
here can be regarded as a simple but effective example for the
specific simulation scenario considered in this paper.
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