
Abstract 
This work addresses the problem of finite-time convergence of, and the 
determination of the factors that impact on, the final opinion in a social 
network for a political party or an association, modeled as a distributed 
iterative system with graph dynamics chosen to mimic how people 
interact. It is firstly shown that, in this setting, finite-time convergence is 
achieved only when nodes form a complete network, and that 
contacting with agents with distinct opinions reduces to a half the 
required interconnections. Two novel strategies are presented that 
enable finite-time convergence, even for the case where each node 
only contacts the two closest neighbors. It is shown that, in a 
deterministic setting, the final opinion depends on a so-called 
connectivity parameter, which influences the relative contribution of 
each agent's initial belief. In the stochastic case, analogous conclusions 
are drawn, but in terms of expected values. The proposed strategies 
and results are relevant also in the context of mobile robot networks 
where the same assumption of having nodes communicating to their 
closest neighbors is satisfied. In addition, the results obtained are 
relevant in terms of saving resources while ensuring finite-time 
consensus. The performance of the proposed strategies is evaluated 
through simulation, illustrating, in particular, the key nodes that drive the 
network, as well as the associated rate of convergence. 
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Contributions: 

• Model social interactions as iterative distributed algorithms; 

•  Show conditions for finite-time and asymptotic convergence; 
•  Proposed network dynamics influence both the convergence 

time and the final value. Exact expressions for the 

dependence are provided. 

Network Model 

Opinion update based on neighbors opinion 

Local interactions produce the analyzed topologies. 

    

(detail of a single node η = 2) 

Results 

Theorems [Convergence]: 

•  Standard Network has finite-time convergence for   

• Distinct Value converges in  steps for 

• Distinct Neighbor converges in                      steps for 

• Circular Value converges in                  steps for 

Comparison of the speed of convergence 

xi(k + 1) = αk min
j∈Ni(k)

xj(k) + (1− αk) max
j∈Ni(k)

xj(k)
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Finally, if κi = |N+
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In this definition, nodes correct their lower degrees by

contacting with other nearest neighbors (see Fig. 1c). The
next definition is somehow counterintuitive as nodes contact
with others with opposite opinions to correct their lower
degree. Even though the behavior of this strategy is completely
different from the previous one, it establishes that convergence
rate is governed by the ability to form clusters, i.e., a group
of nodes sharing a common opinion.

Definition 4 (circular value): For each node i ∈ V , there is
a link entering i from each node in the set Ni(k) := N−

i (k)∪
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i (k) ∪ {i}, where
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The nearest circular value enforces all nodes to establish 2η

links, as shown in Fig. 1d. In a social context, this definition
amounts to a node with a strong opinion complementing it
with some nodes with the opposite opinion, as an attempt to
increase the convergence rate. Notice that this is unlikely to
happen naturally in a social network, but could be enforced
by policies or in scenarios where agents are given incentives
to cooperate. This type of rule is often used in public debates
where people with a wide range of opinions are asked to share
their views on a topic of interest.

In Fig. 1, each policy is depicted to highlight the differences
in the network topology of each definition. After introducing
the stochastic version of these networks in the next section,

we will be focusing on providing convergence rate results
and on the final opinion of the agents of the network. Both
topics are of interest for example, in a company environment
where one might need to arrange teams to discuss a topic or in
manipulating the final opinion in an advertisement campaign.
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Fig. 1: Network generated for each definition using η = 1 and
x1 = 1, x2 = 2, x3 = 3, x4 = 3 and x5 = 4.
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Fig. 2: Detail of the links from node x3 when using η = 2
and x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 3 and x6 = 4 for
the Standard and distinct value networks.

IV. STOCHASTIC STATE-DEPENDENT SOCIAL NETWORK

In this section, we introduce a randomized version of the
social network presented in Section III. Intuitively, at each
discrete time instant, one agent is selected randomly according
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Main conclusion: 
Given the convergence properties of social networks, the 
same algorithm can be used for finite-time consensus in 
robot networks while saving resources as it is only requires 
2 neighbors per node. 


