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Abstract—Although great progress has been made in generic
object detection by advanced deep learning techniques, detect-
ing small objects from images is still a difficult and challenging
problem in the field of computer vision due to the limited size,
less appearance, and geometry cues, and the lack of large-scale
datasets of small targets. Improving the performance of small
object detection has a wider significance in many real-world
applications, such as self-driving cars, unmanned aerial vehicles,
and robotics. In this article, the first-ever survey of recent studies
in deep learning-based small object detection is presented. Our
review begins with a brief introduction of the four pillars for
small object detection, including multiscale representation, con-
textual information, super-resolution, and region-proposal. Then,
the collection of state-of-the-art datasets for small object detec-
tion is listed. The performance of different methods on these
datasets is reported later. Moreover, the state-of-the-art small
object detection networks are investigated along with a spe-
cial focus on the differences and modifications to improve the
detection performance comparing to generic object detection
architectures. Finally, several promising directions and tasks for
future work in small object detection are provided. Researchers
can track up-to-date studies on this webpage available at:
https://github.com/tjtum-chenlab/SmallObjectDetectionList.
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I. INTRODUCTION

BJECT detection consists of two subtasks, that is,

localization and classification, indicating that not only
all object instances need to be accurately located in an
image but also their categories should be correctly recog-
nized. As a promising technology related to computer vision,
object detection has been applied to many application scenes,
such as pedestrian detection [1], [2], face detection [3]-[5],
autonomous driving [6]—[8], and robotic vision [9]-[12]. More
and more object detection tasks are successfully implemented,
because of the continuous development of deep learning tech-
niques [13]. Current state-of-the-art detection models, such
as mask R-CNN [14], cascade R-CNN [15], and hybrid task
cascade [16], have achieved great performances on the large
image datasets, such as MS COCO [17], PASCAL VOC [18],
and ImageNet [19].

Before the advent of deep learning techniques, object detec-
tion task has been studied for several decades [20], [21].
Different methods, such as SIFT [22], histograms of oriented
gradient (HOG) [23], SPM [24], DPM [25], and Selective
Search [26], have been proposed by researchers to extract
local handcrafted features. These methods have also achieved
excellent detection performance on specific applications with
a small-scale dataset. For example, HOG descriptor [23]
could extract line features quickly by counting local gradi-
ent information. However, handcrafted features cannot capture
multiple levels of representation for large-scale datasets, such
as MS COCO [17]; therefore, these traditional handcrafted
methods are less robust to intro-class variability due to the
failure of representing the semantics of the data.

The deep convolution neural network (DCNN) [27] was
proposed to autonomously learn features in order to over-
come these drawbacks of traditional handcrafted features; this
method exhibits powerful detection performance on generic
object detection [14], [16], [28]-[31]. However, as a subcat-
egory of object detection, small object detection has been
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Fig. 1.

(b)

937

Comparison between small object detection and generic object detection. (a) Common object image from the ImageNet dataset [19]. Target taxi

covers about 34.4% in this figure. (b) Small object image from the Lost and Found dataset [32]. The small target just occupies approximately 0.3% of the

whole image.

PRECISION COMPARISON OF SEVERAL LEADING GENERIC (r)rll;]]sa]cf ]I)ETECTION ALGORITHMS ON THE MS COCO DATASET [17]
Model Backbone Dataset Avg.Precision,loU: Avg.Precision,Area: DOR
0.5:095 0.5 075 | S M L
YOLOV2 [33] DarkNet-19 COCO 2015 test-dev | 21.6 44 192 | 5 224 355 | 305
RetinaNet [34] ResNet-101 COCO 2015 test-dev | 39.1 59.1 423 | 21.8 427 502 | 284
SSD513 [35] ResNet-101 COCO 2015 test-dev | 31.2 504 333 | 102 345 498 | 39.6
DSSD513 [36] Residual-101 COCO 2015 test-dev | 33.2 533 352 | 13 354 511 | 38.1
Faster R-CNN [30] VGG COCO 2015 test-dev | 26.9 443 278 | 83 282 411 | 32.8
FPN [37] ResNet-50 COCO 2014 minival | 33.9 569 - 17.8 377 458 | 28.0
Mask R-CNN [14] ResNet-101 COCO 2015 test-dev | 38.2 60.3 417 | 20.1 41.1 50.2 | 30.1
Double-Head R-CNN [38] | ResNet-101 COCO 2014 minival | 41.9 624 459 | 239 452 558 | 319
Cascade R-CNN [15] ResNet-101 COCO 2015 test-dev | 42.8 62.1 463 | 23.7 455 552 | 315
Hybrid Task Cascade [16] | ResNet-101-FPN | COCO 2015 test-dev | 47.1 639 447 | 22.8 439 546 | 318

grossly neglected. Different from the rapid progress of the
generic object detection, small object detection has not been
addressed very well. This motivates us to provide the first-ever
survey of recent studies in vision-based small object detection.

A. Motivation

A detailed definition of small objects could be illustrated
with different aspects. For example, [17] illustrates that the
length and width pixels of small objects bounding box should
be less than 32 and [39] states that the bounding box of
small object should cover less than 1% of the original image.
Small object detection suffers more difficulties than generic
object detection due to lower image cover rate, fewer appear-
ance cues, and large datasets. A clear description of small
object detection and generic object detection is displayed in
Fig. 1. Moreover, detection results of most good-performing
generic object detectors based on the MS COCO [17] datat-
set could be found in Table I. In order to facilitate the
readers to follow Table I, we explain the metric used by
MS COCO [17] again here. Traditionally, AP is an aver-
aged precision for each class while mAP is the averaged
precision of all AP. However, MS COCO [17] makes no dif-
ference between them. So Avg.Precision,JoU 0.5:0.95 means
the average AP for IoU from 0.5 to 0.95 with a step size
of 0.05. Avg.Precision, IoU 0.5 corresponds to the AP with

IoU = 0.5 and Avg.Precision,JoU 0.75 corresponds to the AP
with ToU = 0.75. Besides, the metric for object size is: small
objects (less than 322), medium objects (from 322 to 962),
and large objects (larger than 96°). In Table I, we also define
an item called degrade of reduction (DOR), to illustrate the
large gap of performance between large object detection and
small object detection. It can be seen that the average precision
(AP) of small objects is much lower comparing to medium
or large objects. Nearly all generic object detectors trained
in this dataset have a poor performance on the small objects
as the number of medium and large objects is far more than
that of small objects. Furthermore, current surveys of deep
learning-based object detection mainly focus on generic object
detectors, as shown in Table II. Therefore, we identify this
work as a timely complement to the object detection commu-
nity. It is noted that our work mainly focuses on nature scenes,
such as traffic road scene, indoor scene [40], etc. The small
objects detection from aerial perspective [41], [42] is not the
main content of our survey.

B. Challenges for Small Object Detection

Compared with a medium and large object, the small object
is more difficult to be detected and located. First, small object
covers fewer pixels, indicating that features used for detection
are insufficient and feature representation is weak. Otherwise,
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TABLE 11
SUMMARY OF RECENT OBJECT DETECTION SURVEYS WHICH ARE
BASED ON DEEP LEARNING AND RGB IMAGES

Survey Title Year | Published
Deep Learning for Generic Object Detection: 2018 | arxiv

A Survey [43]

Ob_]ectA Detection with Deep Learning: 2019 | TNNLS

A Review [44]

Recent progresses on object detection: a brief 2019 MULTIMED
review [45] TOOLS APPL
A Survey of l?eep Learning-Based 2019 | TEEE Access
Object Detection [46]

Object Detection in 20 Years: A Survey [47] 2019 | arxiv

A Survey of the Four Pillars for Small Object

Detection: Multl-scal'e Representatlon,. 2019 | Ours
Contextual Information, Super-resolution,

and Region Proposal

the larger anchor size in the region-proposal stage of generic
object detectors causes small objects to receive less attention or
even be ignored. Second, objects may appear in any position of
input image such as the corner or overlapping area with other
objects due to the smaller size. Besides, it is also difficult to
distinguish small objects from noisy clutter in the background
and accurately locate their boundaries. Third, AP and mean
AP (mAP) that adopt the IoU threshold to determine true pos-
itive (TP) or false positive (FP) value are commonly regarded
as the performance metrics of object detection. However, AP
and mAP may not be suitable for evaluating the performance
of small object detection because a large difference in IoU
value would be caused by even a small shift of bounding box
in the image. Therefore, a novel evaluation metric tailored for
small object detection is absolutely necessary. Fourth, there
are few authoritative datasets for small object detection. There
are several simple datasets for small object detection existing,
facilitating the comparison of different approaches and pro-
viding insight into the development of different approaches.
However, it is not evident how to extrapolate those results
obtained on simple datasets to more complex scenarios.

C. Four Pillars for Small Object Detection

With the development of object detection based on deep
learning, many novel detection networks tailored for small
objects are proposed. In this article, small object detection
methods are mainly classified into four pillars. The basis
for the division of the four pillars is based on the popular
object detection frameworks such as the definition in mmdetec-
tion [48], which divides the detector into several modules, e.g.,
Backbone, Neck, AnchorHead, RolExtractor, and RolHead.
The first two pillars about multiscale representation and con-
textual information belong to Neck component, which make
refinements or reconfigurations on the raw feature map pro-
duced by the Backbone. The region-proposal pillow is mainly
related to AnchorHead component. While the super-resolution
is not exactly a component of the above, which adds two
branch networks, e.g., generator network and discriminator
network on the basis of baseline detectors. Considering that it
has become an independent research direction of small object
detection, we also describe it as a kind of pillar.

Multiscales Representation: On the one hand, detailed
information in shallow conv layers is necessary for object loca-
tion. On the other hand, semantic information in deep conv
layers facilitates object classification a lot. Due to the tiny
size and low resolution of small objects, location details are
gradually lost in high-level feature maps. While most generic
detectors only adopt the output of final layer for detection
tasks, which contains rich segmentation information but lacks
detailed information. Multiscales representation is a strategy of
combining detailed location information from low-level feature
maps and rich semantic information from high-level feature
maps.

Contextual Information: Leveraging the relationship
between an object and its coexisting environment in the
real world, contextual information is another novel method
to improve small object detection accuracy. The medium
and large objects could provide sufficient ROI features in
generic detectors. However, it is much necessary to extract
more additional contextual information as the supplement of
original ROI features because the ROI features extracted from
the small objects are so few.

Super-Resolution: As mentioned above, fine details are
critical for object instance localization. Super-resolution tech-
niques attempt to recover or reconstruct raw low-resolution
images to a higher resolution, which means more details of
small objects could be obtained. For example, the core idea
of GAN is the generator network and discriminator network.
In this adversarial process, the ability of generator to generate
real-like images and the ability of discriminator to distinguish
between real and fake images is constantly improving at the
same time.

Region-Proposal: Region-proposal is a strategy aiming at
designing more suitable anchors for small objects. The anchors
of current leading detectors mainly focus on generic objects,
indicating that the anchor size, shape, and amount used in
the generic detectors could not match well with small objects.
Otherwise, extra noise information will cause a huge compu-
tational cost and reduce the detection accuracy if these anchor
parameters of generic detectors are directly applied to the
small objects.

According to these four pillars, related small object detec-
tion researches are described with more details in our paper,
which is organized as follows. A summary of related small
object detection datasets is provided in Section II. Then,
small object detection methods are expanded specifically in
Section III. Finally, a discussion of several promising direc-
tions is illustrated in Section IV and our conclusion is drawn
in Section V.

II. SMALL OBJECT DETECTION DATASETS

A less bias benchmark is fundamental for deep learning
research. Although some generic object detection datasets,
such as PASCAL VOC and ImageNet, are accessible, there
is no common accepted dataset for small objects. Most
researchers have to perform and evaluate their small object
detection networks on the datasets built by themselves or
extracted from large datasets such as MS COCO. Based on
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TABLE III
INFORMATION FOR SMALL OBJECT DATASETS. SOME EXAMPLE IMAGES ARE SHOWN IN FIG. 2

Dataset Name Total Images  Annotated images Categories Image Size Instances Instances Size(pixels)
Lost and Found [32] 2,104 2,104 37 2,048x1,024 - -

STS [49] 20,000 4000 7 1,280x960 3,488 3x5-263x248
Tsinghua-Tencent 100K [50] | 100,000 100,000 45 2,048x2,048 30,000 80% smaller than 70x70
GTSDB [51] 900 900 43 1,360x800 1,206 16-128(longer edge)
CURE-TSD [52] 1,719,900 1,719,900 14 1,628x1,236 2,206,106 3x7-206x277

Small Object Dataset [53] 4,925 4,925 10 640x480 & 500x300 8,393 16x16-42x42
CURE-OR [54] 1,000,000 1,000,000 6 480x640 - 726x1,292 -

WIDER FACE [55] 32,203 32,203 1 - 393,703 50% 10-50, 43% 50-300
DeepScores [56] 300,000 300,000 123 1,894x2,668 80 millions

different application scenarios and data sources, some high-
quality datasets about small objects are briefly introduced in
the following sections. Detailed information on small object
datasets is collected in Table III.

A. Datasets for Traffic Road Scene

Datasets for traffic road scene are mainly collected by cam-
era fixed in the front of vehicle. These datasets could be
divided into two major categories, including road obstacles
and traffic signs.

Lost and Found [32]: Lost and Found is the first lost-cargo
dataset for detecting small barriers on the road, which are
collected from 13 different street scenarios and 37 different
obstacle types. These selected objects vary in size, distance,
color, and material. Besides, 112 video stereo sequences are
included, corresponding with 2104 annotated frames.

Swedish Traffic Signs (STS) [49]: The STS dataset con-
tains 3488 traffic signs which are captured on highways and
cities from more than 350 km of Swedish roads in this
dataset. It contains more than 20000 images and 20% of
images are labeled for training. The labeled objects contain
sign types, such as pedestrian crossing, designated lane right,
no standing or parking, priority road, give way, 50 kph, and
30 kph. Moreover, explicit visibility status (occluded, blurred,
or visible) and road status are also included in the dataset.

Tsinghua-Tencent 100K [50]: Zhu et al. [50] built the
Tsinghua-Tencent 100K dataset, which may be the largest
and most challenging traffic sign dataset, including annotated
100 000 images in 45 classes and 30 000 traffic sign instances.
All images in this dataset have a high resolution (2048 x 2048),
and 80% of instances occupy less than 0.1% in the whole
images.

GTSDB [51]: German traffic sign detection benchmark
(GTSDB) is the successor of GTSRB [58], [59]. The record-
ing of GTSDB is finished by a Prosilica GC1380CH camera
with automatic exposure control. The images are selected from
sequences recorded near Bochum, Germany, in different sce-
narios, such as urban, rural, and highway during daytime and
dusk. Image samples are shown in Fig 2(e).

CURE-TSD [52]: CURE-TSD datasets consist of real-world
data and synthetic virtual data, in which 49 challenge-free
real-world video sequences are generated by combining 300
frames from BelgiumTs [60] and another 49 synthesized
video sequences are generated with a game development tool
Unreal Engine4. What is more, the Adobe After Effects are

used to emulate weather and vision system challenges at
post-production.

B. Datasets for Generic Small Objects

Small Object Dataset [53]: In [53], a small object
dataset and validated classic R-CNN detection model on this
dataset were first introduced. Some large image datasets such
as MSCOCO also contain categories about small objects.
However, the image number of small objects is fewer
than that of medium and big objects, significantly caus-
ing the nonuniformity of experimental samples. Thus, this
dataset extracted purely ten categories of small objects from
MSCOCO and Scene Understanding database [61], contain-
ing approximately 8393 object instances and 4925 images.
Moreover, different IoU thresholds were set according to
different categories in order to avoid the problem that the
commonly used 0.5 IoU value causes a low recall for small
objects.

CURE-OR [54]: In Challenging Unreal and Real
Environments for Object Recognition (CURE-OR), there are
1000000 images of 100 objects with varying size, color,
and texture. These objects are grouped into six categories as
toys, personal belongings, office supplies, household items,
sports/entertainment items, and health/personal care items.
The image resolution of the dataset includes: 648 x 968,
756 x 1008, 480 x 640, 460 x 816, and 726 x 1292.

C. Datasets for Single Category

WIDER FACE [55]: As shown in Fig. 2(d), WIDER FACE
contains 32203 images, which are extracted from the public
WIDER dataset [62]. Images in WIDER FACE are categorized
into 60 social event classes, which have much more diversities
and are closer to the real-world scenario. Besides, they are also
divided into three subsets, small, medium, and large, based on
the heights of the ground-truth faces. The small/medium/large
subsets contain faces with heights larger than 10/50/300 pixels,
respectively. The small subset accounts for 50% of WIDER
FACE while medium accounts for 43%.

DeepScores [56]: DeepScores [56] focuses on pages of
written music, containing 300 000 pages of digitally rendered
music scores and 123 different symbol classes. This dataset
could execute tasks, such as object classification, semantic
segmentation, and object detection.
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(d) (e)

Fig. 2. Some image samples and annotations from several datasets focusing on small objects. (a) Lost and Found sample [32]. (b) WIDER face sample [55].
(c) Small-vessel sample [57]. (d) Tsinghua-Tencent 100K sample [50]. (¢) GTSDB sample [51]. (f) CURE-OR sample [54].

III. SMALL OBJECT DETECTION NETWORKS

The frameworks of small object detection are mainly
divided into two paradigms, that is, one leverages handcrafted
features and shallow classifiers, detecting objects such as bar-
riers or traffic signs on the road, which usually has poor
performance because of the weak feature extraction method.
The other adopts DCNN to extract image features and then
modifies leading generic object detection networks to reach
a good tradeoff of accuracy and computational cost. A vary
of novel methods have been proposed to improve traditional
small object detection performance significantly. In Fig. 3,
an overview of small object detection research community is
illustrated. Based on the core theories utilized in each method,
the research works of small object detection are classified into
five categories in this work, namely, multiscale representation,
contextual information, super-resolution, region proposal, and
other methods. The top performing models among each cat-
egory are described in detail while other similar models are
going to be stated briefly in order to give a clear explanation
of each category.

A. Multiscale Representation

Weak feature representations of small object are the main
reason for the poor detection performance. After repeated
downsampling operations from CNN and pooling layers, fewer
small object features exist in the final feature map. Moreover,
with the increase of neural network layers, the inherent hierar-
chy generates feature maps with different spatial resolutions.
Specifically, although deeper layers represent larger receptive
field, stronger semantics, higher robustness to deformation,

overlap, and illumination variances, the resolution of feature
maps becomes lower and more detailed information is lost. In
contrast, shallow layers have a smaller receptive field, leading
to a higher resolution, while they lack semantic information.
1) Multiple Feature Maps Fusion: Some prevailing object
detectors, such as R-CNN, Fast R-CNN, Faster R-CNN, and
YOLO, only use the feature map of the last layer to localize
objects and predict confidence scores, as simply displayed in
Fig. 4(a). Due to lack of detailed information, these models
often fail to detect small objects. Then, single-shot multibox
detector (SSD) introduces the pyramidal hierarchy feature to
assemble each feature map from bottom to the top network
layer, as shown in Fig. 4(b), resulting in improving small
object detection. However, much unnecessary representation
noise and high computation complexity could be caused
by taking all-levels features into consideration. To simplify
network and improve detection, some researchers adopt the
deconvolution layer and only choose several important feature
maps that contain most detailed and semantic information.
MDSSD [63]: Deconvolution Fusion Block was proposed
in [63], which adopted skip connection to fuse more contex-
tual features. In this model, three high-level semantic feature
maps from different scales (conv8_2, conv9_2, and conv10_2
from SSD layers) were first introduced into the deconvolu-
tion layers and then sum with three shallow layers by element
(conv3_3, conv4_3, and conv7 from VGG16 layers). It should
be noted that deconvolution layers are applied to upsample the
high-level feature maps into the same resolution with corre-
sponding low layers. SSD is the backbone of the whole model;
the fusion process is finished in the Fusion Block. The basic
idea is depicted in Fig. 4(c). The detection results on MS
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e MDSSD [63]

e WIDER FACE [55]
e DeepScores [56]

e [ost and Found [32]

o Swedish TrafficSigns [49]

o Tsinghua-Tencent 100K [50]
¢ GTSDB [51]

¢ CURE-TSD [52]

e [108]-[110]

Others
Other methods

Traffic
road object
detection

e gNet and sqNet [99]
o CFPN [100]

Region-
¢ KB-RANN [101]

proposal
=

o Small Object
Dataset [53]
¢ CURE-OR [54]

o DR-CNN [64]
e MR-CNN [65]
o [66]-[71]

multiple
feature

maps fusion
connect

method of

different
feature
maps

e CADNet [72]

Multi-scale
representation

o Inside-Outside Net [73]
o VSSA-NET [74]

e ContextNet [53]

e MFFD [75]

e [76]-[86]

¢PGAN [87]

¢ GAN [88]

¢ SOD-MTGAN [89]
 JCS-Net [90]

Super-
resolution

o SlimNet [102]
e [103]-[107]

¢ SOAM [91]

o SRPN [92]

o SOS-CNN [93]

¢ SDD-MSN [94]

o SNMS [95]

e [57],[91],
[96]-(98]

Fig. 3.
Relative small object datasets are also collected in this survey.

COCO [17] and PASCAL VOC2007 [111] are collected in
Tables IX and X.

DR-CNN [64]: Different from the element-sum strategy
taken by MDSSD, concatenation strategy was adopted in
the deconvolution region-based convolutional neural network
(DR-CNN) to fuse multiscale feature maps for small traf-
fic sign detection. DR-CNN selects conv3, conv4, and conv5
from VGGI16 to form a fusion feature map for followed
RPN and detection. After each deconvolution module, the
L2 normalization layer is also used to ensure the concate-
nated features on the same scale. Another innovation of this
network is about loss function. Hard negative samples bene-
fit the training phase a lot. However, it is hard for common

Four main solutions for small object detection problem: multiscale representation, contextual information, super-resolution, and region-proposal.

cross entropy loss function to distinguish easy positive sam-
ples from hard negative samples. Therefore, the common
cross entropy loss function is replaced with a novel two-
stage classification adaptive loss function in the RPN and
fully connected network in order to fully leverage hard neg-
ative samples for better performance. The result shows that
DR-CNN achieves excellent performance on the MS COCO
and Tsinghua-Tencent 100 K datasets. Detailed information
are collected in Tables IX and XI.

MR-CNN [65]: The multiscale region-based convolutional
neural network (MR-CNN) was proposed for small traffic sign
recognition, where a multiscale deconvolution operation was
used to upsample the features of deeper convolution layers
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(a) Traditional detector uses one top feature map for the detection network. (b) Detectors take all-level feature maps for detection network via

pyramidal feature hierarchy. (c) Basic idea of multiscale feature maps fusion. Both original deep feature map and fusion maps are leveraged. Specifically, the

fusion module usually takes elementwise product or concatenating operation.

that were concatenated with those of the shallow layer directly
to construct fused feature map. Thus, the fused feature map
could generate fewer region proposals and achieve a higher
recall rate. Moreover, the test result indicates that this method
can effectively enhance feature representation and boost the
performance of small traffic sign detection.

Other Simply Introduced Methods: Sun [66] presented
a multiple receptive field and small-object-focusing weakly
supervised segmentation network to enhance the performance
of small objects detection. In [67], an image block architec-
ture was utilized to divide raw images into fixed size blocks;
then, these blocks were sent to the VGG-16 network as input.
Besides, feature map fusion and image pyramid were also
adopted in order to solve the issue that details of small objects
generally lost in deeper layers. Moreover, fused multiscale fea-
ture maps were applied to locate object position and used
information from deep layers to execute object classifica-
tion [68]. A backward feature enhancement network (BFEN)
was designed to transport more semantic information from
high layers to low layers [69]; then, fine-grained features were
concatenated into a spatial layout preserving network (SLPN),
preserving the spatial information of ROI pooling layer, and
achieving better location accuracy. In [70], the feature maps of
third, fourth, and fifth convolution layers were extracted and
combined into a one-dimensional vector for classification and
localization. Besides, an optimizing anchor size method and
fused multilevel feature maps for road garbage detection were
proposed [71]. Inspired by the Inception module, a novel fea-
ture fusion mechanism was putting forward [112]. They chose
YOLOV3 as the basic framework and used multiscale con-
volution kernels to form various size receptive fields, which
can make full use of low-level information. Furthermore,
multiscale feature maps-based ResNet-50 and merged these
feature maps by means of the feature pyramid network were
generated by means of [113].

2) Connection Method of Different Feature Maps:
Although many methods based on multiscale representation
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Fig. 5. Channel-aware deconvolution block [72].

mentioned above have been proposed to improve small object
detection, there is little relevant work focusing on how to fuse
high-level feature map and low-level feature map.

CADNet [72]: The channel-aware deconvolutional network
(CADNet) was proposed to study the relationship of feature
maps in different channels from deeper layers in order to
avoid the simple stacking of feature maps. The recall rate
of small objects could be improved at a low computational
cost through exploiting the correlation between different scale
characteristic. As shown in Fig. 5, the framework is divided
into three steps, including the scale transfer layer, convolution
layer, and elementwise-sum module. Particularly, the scale-
transfer layer reorganizes four pixels of each four channels
into the same position on a two-dimensional plane in order to
obtain the location details and increase the resolution of the
feature map. Then, more semantic information of the feature
map is exploited by a convolution layer with a 4 x 4 kernel
size; feature maps with the previous layer are connected by
the elementwise method. Thus, the fusion layer contains both
details in the low-level layer and semantic information in the
high-level layer.
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TABLE IV
SUMMARY OF MULTISCALES REPRESENTATION-BASED METHODS

Model | Fusion method

[63] deconvolution layer + skip connections + element-wise sum
[64] deconvolution layer + concatenating

[65] deconvolution layer + concatenating

[67] bilinear upsampling + element-wise max

[68] maxpooling on low-level features + element-wise sum

[69] deconvolution layer + element-wise sum

[70] L2 normalized on selected feature maps + concatenating
[71] bilinear upsampling + concatenating

[72] Channel-Aware deconvolution

[112] Inception [114] -like convolution kernel on low-level features
[113] upsample(2x) + element-wise sum (FPN)

In general, multifeature map fusion helps to capture
detailed information and rich semantic information, facilitating
object location and classification, respectively. However, many
multiscale representation methods increase the computational
burden while improving the detection performance. Moreover,
redundant information fusion design may lead to background
noise, resulting in performance degradation. In Table IV, the
fusion methods of primary models mentioned in this section
are described.

B. Contextual Information

Since small objects only occupy a small portion of the
image, the information that be directly obtained from fine-
grained local areas is greatly limited. Generic object detectors
usually ignore many contextual features outside those local
regions. It is well known that every object always exists in
particular environments or coexists with other objects. Then,
some detection methods based on contextual information were
proposed to leverage the relationship between small objects
and other objects or background. Oliva and Torralba [115]
illustrated that the around region of the small object could pro-
vide useful contextual information to help detect target object.
Besides, the experimental results in [116] also demonstrate that
detection accuracy could be significantly improved by adding
a special context module. Next, several important network
models using contextual information are described in detail.

ContextNet [53]: Augmented R-CNN [53] could be consid-
ered as the first detector focusing on small object detection. In
this work, a novel region proposal network (RPN) is proposed
to encode the context information around a small object pro-
posal. First, according to the size of small objects, the RPN
anchor size is scaled from the original 1282, 2562, 5122
pixel® to 162, 40%, 100 pixel?> and small object proposal is
extracted in conv4_3 feature map rather than the conv5_3 of
VGGI16. Second, a ContextNet module consisting of three
subnetworks is designed to obtain the context information
around the proposal object, as shown in Fig. 6. The same
two front-end subnetworks are composed of a few convo-
Iutional layers followed by one fully connected layers; the
back-end subnetworks consists of two fully connected lay-
ers. The proposal region extracted by a modified RPN and a
larger context region with the same center point with proposal
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region is passed into the two front-end networks, respectively.
Meanwhile, two 4096-D feature vectors obtained from front-
end networks are concatenated before they are inputted into
the back-end network. The experimental results show that
this augmented R-CNN improves the mAP of small object
detection by 29.8% over the original R-CNN model.

Inside—Outside Net [73]: Spatial recurrent neural networks
(RNNSs) are adopted in an Inside—Outside Net (ION) [73] to
search for contextual information outside the target region;
then, skip pooling is taken to obtain multilevel feature maps
inside. Two consecutive four-directional spatial RNN units are
employed to move through each column of the image. This
model concatenates multiple scales and context information
for detection. In the ION method, the context feature map
is generated by mentioned IRNN modules at the top of the
network. It is noted that IRNN is composed of rectified linear
units (RELUs), which is initialized by Le et al. [117]. Besides,
four copies of the conv5 layer of original VGG16 are taken as
input of first four-directional RNN (left-to-right, right-to-left,
top-to-bottom, and bottom-to-up) by a 1 x 1 convolution layer;
then, the output of each direction is concatenated as input to
next IRNN unit. Finally, context features are obtained.

VSSA-NET [74]: In [74], a multiresolution feature fusion
network exploiting deconvolution layers with skip connecting
and a vertical spatial sequence attention module was designed
for traffic signs detection. This network is mainly divided into
two stages. The first stage is a multiscale feature extracting
module, which forms multiresolution feature maps through
Mobile Net [118] and deconvolution layers. The second stage
is constructing a vertical spatial sequence attention module.
Particularly, each column of three feature maps is regarded as
spatial sequence in order to fully exploit context information.
The traditional encoder—decoder model based on the LSTM
network is modified by introducing the attention mechanism at
the decoding stage, which could encode the contextual feature
disregarding the noise.

MFFD [75]: With the improvement of detection accuracy,
the deeper detection network means high computation costs.
A kind of modular lightweight network model that is called
modular feature fusion detector (MFFD) was proposed in [75];
it not only has a great performance on small object detec-
tion but also could be embedded into the resource limited
equipment such as advanced assistance systems (ADASs). Two
novel modules are designed in this network. Among them,
the front module uses small size filters in convolution layers
to reduce information loss while the Tinier module changes
the number of input channels with pointwise convolution lay-
ers (1 x 1 convolution) before entering in the convolution
layer. The advantage is that the network fuses multiscale
context information from available modules, instead from an
individual layer directly, leading to efficient computation.

Other Simply Introduced Methods: The concatenation mod-
ule or element-sum module is employed in a multilevel feature
fusion module to introduce context information into SSD [76].
Meanwhile, a special layer called CSSD is designed to inte-
grate multiscale context information [77]. This context layer
adopts dilated convolution and deconvolution to extract context
information from multiscale feature maps. In [78], a spatial
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Fig. 6. Three kinds of contextual information-based small object detection network, ContextNet [53], Inside—Outside Net [73], and VSSA-net [74]. ContextNet
shows the basic idea about how to leverage the around contextual clue; Inside-Outside Net adopts a spatial recurrent neural network; and VSSA-Net uses an
LSTM-based spatial sequential attention module to obtain contextual information.

memory network was introduced to store semantic information
and preserve conditional distributions on previous detections.
Memory augmented scores are added to the Faster-RCNN
score and then optimized to finish region classification. P-
CNN [86] consists of three blocks, where global features are
obtained from squeeze-and-excitation (SE) block and part fea-
tures are extracted from the part localization network (PLN).
Then, the second stream of part classification network (PCN)
concatenates part local features and global image feature
together into a joint feature for the final classification.

Besides, the TL-SSD network, where inception modules
concatenate different size receptive fields, was presented [79].
The feature concatenation combines shallow and deep fea-
ture layers; the shallow one could provide accurate location
and state information while the deep one makes the decision
whether the object belongs to traffic light.

Multilevel context information through pyramid pooling was
used to construct context-aware features [80]. The context
fusion module focused on adding scales of context information
into feature maps. Context-aware Rol pooling avoiding to

harm the structure of small objects and keeping the con-
textual information is also designed, where a scale-intensive
convolutional neural network was applied to vehicle detection
scenes [81]. Leng et al. [82] integrated a U-V disparity algo-
rithm with faster R-CNN that combines internal and contextual
information.

Similar to multiscale representations, contextual information
is also intended to provide more information to the
final detection network. The difference is that the con-
textual information is mainly to obtain the information
around the ROI area and improve object classification by
learning the relationship between objects and surrounding
information. Therefore, redundant context information also
causes information noise. Most novel architectures about
capturing contextual information are shown in Table V.

C. Super-Resolution

Super-resolution methods aim at recovering high resolution
from corresponding low-resolution features. High-resolution
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Fig. 7. Generic process of the GAN-based object detection method. The baseline detector generates region proposals for target objects from the input image

and generator network.

TABLE V
SUMMARY OF CONTEXTUAL INFORMATION-BASED METHODS

Model | Method for obtaining contextual information

[73] spatial recurrent neural network and skip pooling
[74] vertical spatialsequence attention (VSSA) module
[75] post-context fusion

[76] Element_sum module / concatenating module

[77] multi-scale dilated convolution deconvolution

[78] spatial reasoning module (fully-convolution network)
[80] context fusion module

[81] context-aware Rol pooling

[82] context-aware module

image offers more refined details about the original scene,
which could be well applied to small object detection. GAN-
based algorithms have been proposed to reconstruct high-
resolution images. The generative adversarial network [119]
has obtained tremendous stride in image super-resolving [120],
which consists of two subnetworks, a generator network and a
discriminator network. The generator produces super-resolved
images to fool discriminator while discriminator tries to dis-
tinguish the real images from fake images generated by the
generator. The common overflow of GAN-based methods is
exhibited in Fig. 7.

Perceptual GAN [87]: In [87], the GAN method was first
used in the small object detection task. A novel conditional
generator was introduced; it took the low-level features as
the input to obtain more details for super-resolved repre-
sentation. The generator includes multiple residual blocks
to learn the residual representation between small objects
and similar large objects. The discriminator consists of two
branches, namely, adversarial branch and perception branch.
From one perspective, the adversarial branch distinguishes
the generated super-resolved region of small objects from
similar large objects. From another perspective, regular objec-
tion detection tasks are achieved in the perception branch
and detection accuracy is justified from the generated super-
resolved representation. Both branches try to obtain minimal
loss while the generator is trained to maximize the probability
of discriminator making a wrong judgement.

GAN [88]: However, the high-resolution images gener-
ated by GAN are still not clear enough. Thus, a refinement

module [88] is added to recover some details for small face
detection. First, MB-FCN [121] is selected as the baseline
detector to generate regions containing faces or not, which are
passed into the generator and discriminator separately. Second,
the low-resolution faces pass through an upsample module
and a refinement module, obtaining clear and super-resolution
regions. Third, the nonfaces regions are treated as negative data
for training discriminator that has two tasks simultaneously to
distinguish super-resolution regions from the high-resolution
ones; faces regions from nonface regions.

SOD-MTGAN [89]: A novel multitask generative adversar-
ial network (MTGAN) was presented in [89]. In MTGAN,
super-resolved images are produced by the generator network;
the multitask discriminator network is introduced to distin-
guish real high-resolution images from fake ones, predict
object categories, and refine bounding boxes, simultaneously.
More importantly, the classification and regression loss are
back-propagated to further guide the generator network to pro-
duce super-resolved images for easier classification and better
localization. The loss function of the generator in MTGAN
consists of adversarial loss (to the objective loss), pixelwise
MSE loss, classification loss (to the overall objective), and
bounding box regression loss, enforcing the reconstructed
images to be similar with real high-resolution images contain-
ing high-frequency details. Compared to the previous GANSs,
the classification and regression losses of generated super-
resolved images were added to the generator loss in order
to ensure the super-resolved images recovered from the gen-
erator networks; they are more realistic than those optimized
by only using the adversarial and MSE losses.

JCS-Net [90]: Focusing on small pedestrian detection,
JCS-Net consists of a classification subnetwork and a super-
resolution subnetwork [90]. The two subnetworks are inte-
grated as a unified network by combining classification loss
and super-resolution loss. Similar residual architecture such
as VDSR [122] is adopted in the super-resolution subnet-
work to explore the relationship between large-scale pedestrian
and small-scale pedestrian for recovering details of small-
scale pedestrians. Therefore, the reconstructed small-scale
pedestrian contains both the original information of small-
scale pedestrian and the output information of super-resolution
subnetwork. In the training phase, multilayer channel fea-
tures (MCFs) [123] are based on HOG + LUV [124]
and JCS-Net are applied to train the detector. Furthermore,
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TABLE VI
SUMMARY OF SUPER-RESOLUTION-BASED METHODS

Reference | Novel architecture
(39] modified RPN(smaller anchor size)
+ super-resolution network
(87] a generator (learns the additive residual representation
between large and small objects) + a discriminator
(88] Genenrator network(up-sample sub-network+refinement
sub-network) + Discrimianator network(VGG19)
(89] super-resolution network (generator)
+ multi-task network (discriminator)
[90] super-resolution sub-network
+ multi-layer channel features(MCF)

multiscale representation is combined with MCF to enhance
detection.

GAN-based method is effective to enhance the detail
information of image, especially for the super-resolution appli-
cation. There is no need to design specific architecture and it
can be applied to any kind of generator network. However,
it also faces two intractable problems. First, GAN is hard
to train, which means it is difficult to achieve a good bal-
ance between generators and discriminators. Second, when the
generator in the training process produces limited rewards of
samples and the learning process stops, the phenomenon of
model collapse is easily to emerge, resulting the increase of
final detection error. Relative researches in this section are
displayed in Table VI.

D. Region-Proposal

Before the appearance of deep learning techniques, the best-
performing method of region proposal is the Selective Search
algorithm [26]. However, computing efficiency in this method
is highly limited. Faster R-CNN first introduced RPN [30] to
identify region of interest; then, R-FCN was proposed to gen-
erate k x k x (C + 1) feature maps rather than single feature
map, where each map is responsible for each category detec-
tion. However, it is still difficult to accurately locate for the
small object detection due to larger anchor sizes.

Based on FastMask, AttentionMask [91] was proposed to
generate a tailored region proposal for small objects. An addi-
tional larger scale (S8) was added to the feature scale space
at the early stage of the base network. Particularly, a scale-
specific objectness attention mechanism (SOAM) was adopted
to select most promising windows at each feature map with
different scale in order to reduce the number of sampled win-
dows. Although all scales are jointly justified according to
their attention values to find the optimal locations for sampling
windows, this strategy only prioritizes the most promising win-
dows to sample and process, resulting in saving the memory
and GPU source for adding the scale (S8) of small object
detection. More precise locations of anchor boxes usually have
lower confidence scores while they are more likely rejected by
the post-process of NMS. Thus, a smooth NMS (SNMS) [95]
was designed to utilize those anchor boxes and IoU-prediction
was adopted to provide more classification evidences. Besides,
several pixels of input image are shifted circularly in four

directions in order to avoid missing small objects that located
in the gap of near anchor box.

The underfitting problem often exists in the training model
of RPN because part parameters in RPN are determined by
prior knowledge. Therefore, a strengthened RPN (SRPN) [92]
was designed by increasing the parameters. Besides, particle
swarm optimization and bacterial foraging optimization are
introduced to find the optimal parameter values; then, a high-
quality detection proposal could be acquired. Oversampling
images containing small objects and small object augmenta-
tion were also introduced to make the model focus more on
the small objects [97]. It should be noted that small object aug-
mentation is copy-pasting small object region several times in
one image; the pasted objects do not overlap with the exist-
ing objects. This increased the number of positively matched
anchors and region proposals containing small objects. The
result on the MS COCO dataset indicated that the most gain
was obtained by processing the image with 3x oversampling
and copy-pasting strategies, with an increase of a 9.7% relative
improvement for instance segmentation and 7.1% for small
object detection compared to the original mask R-CNN.

It took a huge amount of time and memory to process back-
ground regions in neural networks. A cascade mask generation
framework was proposed to reach a balance between com-
putational speed and accuracy [98]. The raw image was first
resized into multiscales. Then, each scale produced region pro-
posal and mask through the mask generation module (MGM)
inspired by Rol convolution [126]. Finally, the feature maps
from each scale were concatenated for the ROI pooling and
post-detection. A CNN-based cascaded architecture is also
designed to detect far objects in the outdoor surveillance [57].
After trained in the SSD model, the feature maps of input
images were divided into obscure object samples and promi-
nent object samples according to their confidence scores. The
details of the prominent object samples are enough to rec-
ognize, while the obscure object samples (mostly far small
objects) are confirmed through verification of SSD detection,
object-size confirmation, duplication-object removal, and off-
scope object removal. This method is also suitable for other
detection models without architecture modification. In [96],
both region-proposal stage and classifier stage were investi-
gated in detail for detecting company logo. Area proposal
network is applied when regions containing at least one object
in the raw image are cropped and then enlarged to the same
input size [94]. That makes the original small objects become
more similar to large objects and easier to be detected for
ordinary SSD detector.

A well-designed region proposal strategy could take advan-
tage of limited anchor size and anchor amount, reduce com-
putational cost in generating interested region, and efficiently
detect small targets. All novel architectures are classified in
Table VII.

E. Others

In addition to these four pillars for small object detection,
other related works are replenished according to their appli-
cation scenarios in this section. Besides, our work mainly
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TABLE VII
SUMMARY OF REGION-PROPOSAL-BASED METHODS

Reference | Novel architecture in region-proposal stage
[53] a small region proposal generator(AlexNet or VGG)
[91] class-agnostic object proposal generation and visual attention
[92] strengthened RPN (PBLS) which increases parameters
[93] cropping large images into small patches as input to SOS-CNN
[94] area proposal network(APN)
conducting circular shifts input image + Smooth NMS
[95] -
+ JoU-Prediction
[96] modifying anchor size of RPN for small objects
(97] oversampling those images containing small objects and
copy-pasting small objects many times
[98] mask generation module (MGM)+RPN
[571 additional steps processed the obtained candidate regions
[125] Atrous Region Proposal Network
TABLE VIII
SUMMARY OF OTHER METHODS
Reference | Novel architecture
(6] proposed a small- object-focusing weakly-supervised
segmentation module
lightweight and accurate network
[99] .
for fast detection
[100] Concatenated blok
[101] Attention mechanism and RNN (LSTM)
[102] SlimNet_freeze
[103] a novel IoU loss function
(105] investigate optimal combination of color space
and deep model for traffic light detection
[106] a Comprehensive Feature Enhancement(CFE) module
[127] somatic topological line localization and
temporal feature aggregation

discussing traffic road small object detection and a few works
in other scenarios. Related information is summarized in
Table VIII.

Traffic road object detection could help the driver or self-
driving car make decisions earlier and avoid danger. However,
many objects on the road, such as traffic signs, small obstacles,
and pedestrians, appear small in the detected images. There is
only a short time to capture and detect them due to fast speed
of vehicle. Hence, it is more difficult but critical to detect such
objects at a fast speed and high accuracy. Some methods have
been proposed to tackle this issue as follows.

Considering the limited device resource, convNet (qNet) and
small ConvNet (sqNet) with uniform macro-architecture and
depthwise separable convolution for fast traffic sign detection
are proposed [99]. The network has only one fully connected
layer after the average pooling layer leading a decrease in
the number of parameters. Otherwise, standard convolution
is replaced by the depthwise separable convolution to reduce
the computations. ConvNet is compacted through reducing the
number of channels in each convolutional layer by a fixed
ratio, which significantly makes networks smaller. In [100], a
shallow network called concatenated feature pyramid network
(CFPN) was introduced with a novel concatenated block for
real-time embedded traffic flow estimation system.
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Based on the faster R-CNN, a new IoU loss function [103]
to improve location accuracy and the bilinear interpolation was
applied to reduce location deviation. KB-RANN [101] focuses
on the detection of traffic signs, where a pretrained SqueezeNet
generates feature maps and an RNN architecture (LSTM) with
attention mechanism searches contextual information. Besides,
the pool4 layer of VGG-16 is reduced and dilation for ResNet
is adopted to extract the characteristics of small signs [104]
because original region proposal generator from faster R-CNN
is too large for traffic signs. Afterward, online Hart exam-
ples mining (OHEM) is combined to make the network more
robust.

A topological line annotation method was adopted to detect
pedestrians on the road, which obtained a better location
accuracy than the traditional bounding box through IoU crite-
ria [127]. Each line annotation was connected by two point,
top and bottom vertex locations; they were modeled as a
Gaussian peak and then can be solved by the Hungary algo-
rithm [129]. Moreover, a Markov random field (MRF)-based
post-processing method was proposed to solve the crowd
scenes.

Six kinds of color space and different network models are
exploited to build a traffic light recognition system [105]. It is
found that the combination of RGB color space and the faster
R-CNN model perform best. In [106], a comprehensive feature
enhancement module was added into single shot detector for
small object detection on the road at a high speed. Moreover,
a modified faster R-CNN for vehicle detection that adopted
a small anchor scale was designed in [107], which converted
object detection problem into a binary object detection clas-
sification problem. There are also some methods for other
scenarios. Simple VGG16 is modified to detect small insects
such as spiders [109]; a kernelized correlation filter tracking
algorithm based on faster R-CNN was used for detecting and
tracking small sea objects [110].

IV. DISCUSSION

Deep learning has been widely adopted in the task of com-
puter vision and object detection. For the medium and large
object, the generic object detection model has reached high
precision and short inference time. However, the practical
requirement still could not be satisfied with the result of small
object detection. Besides, there is still a huge gap between the
current best performing small object detection networks and
those generic detection models. Many open issues remain to
be dealt with, which we discuss at the following aspects.

A. Novel Metric for Small Object Detection

In fact, the widely used AP metric has several draw-
backs. First, AP value is the area under the recall-precision
(RP) curve. It could not reflect the tendency from the RP
curve, indicating that different RP curves, either low-recall-
high-precision or high-recall-low-precision could obtain the
same AP. Second, detailed tightness level information of
bounding box detection could not be obtained from AP.
However, the real tightness level of the bounding box is critical

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:41:19 UTC from IEEE Xplore. Restrictions apply.



948

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 2, FEBRUARY 2022

TABLE IX
PERFORMANCE COMPARISON OF FOUR PILLOWS BASED ON MS COCO

Group Model Backbone | Dataset Avg.Precision, IoU Avg.Precision

0.5:095 0.5 075 | S M L

MDSSD512 [63] VGG16 COCO 2015 test-dev | 30.1 50.5 314 | 139 - -
Multi-scale DR-CNN [64] VGG16 COCO 2015 test-dev | 36.5 59.7 382 | 186 393 477
representaion MRFSWShnet512 [66] | VGGI16 COCO 2015 test-dev | 33.1 53 347 | 175 371 479
CADNet512 [72] VGG16 COCO 2015 test-dev | 30.5 50.8 321 | 114 35 44.8
Contextual ION [73] VGG16 COCO 2015 test-dev | 33.1 557 346 | 145 352 472
information DiCSSD300* [77] VGG16 COCO 2015 test-dev | 26.9 463 277 | 82 275 434
SMN [78] VGG16 COCO 2014 minval 31.6 522 332 | 144 357 458
Super-resolution | SOD-MTGAN [89] ResNet101 | COCO 2014 minval 41.5 62.5 454 | 251 446 541
. SSD-MCN [94] VGG16 COCO 2015 test-dev | 45.6 66.7 517 | 294 484 56.6

Region-proposal

PBLS-RPN [92] VGG16 COCO 2015 test-dev | 31.5 53.8 31.6 | 13.1 338 457

TABLE X
DETECTION RESULTS ON PASCAL VOC2007 TEST SET. EXCEPT FOR THE ION [76], THE OTHER METHODS ARE TRAINED ON VOC2007 AND
VOC2012 TRAINVAL, AND TESTED ON VOC2007 TEST. ION ADDS SBD SEGMENTATION LABELS [128] DURING TRAINING

Model Backbone | mAp  aero bike bird boat bottle  bus car cat chair  cow table dog horse mbike person plant sheep sofa train  tv
YOLO-inception [112] Darknet53 | 78.37 8832 8588 7667 69.07 66.63 8376 87.08 8796 61.08 79.51 7371 8684 8587 8522 824 5216 79.11 7478 8642 74.86
MDSSD [63] VGGl6 80.3 88.8 88.7 83.2 737 583 88.2 89.3 87.4 62.4 85.1 75.1 847 89.7 88.3 832 56.7 84.0 774 839 776
CADNet512 [72] VGG16 80.6 87.3 85.6 79.4 74.8 63.6 88.3 88.8 88.3 65.5 85.1 74.2 86 88.3 87.4 84.2 58.8 80.2 79.7 87.7 79.7
Multi-scale [68] VGG16 76.6 78.8 82.4 75.6 67.2 64.9 853 88.2 873 59.8 832 73.6 85.2 86.3 719 79.3 489 76 72.8 83.6 754
ION [73] VGGl16 79.2 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9 76.5 88.4 87.5 83.4 80.5 524 78.1 772 86.9 83.5
DICSSD300% [77] VGG16 78.1 822 85.4 76.5 69.8 51.1 86.4 86.4 88 61.6 82.7 76.4 86.5 87.9 85.7 78.8 54.2 76.9 776 889 782
SSD+VSSA(Vertical) [74] | MobileNet | 78.7 81.5 88.4 82.7 72.8 55.4 83.5 87.5 87.6 65.2 83.1 74.5 86.3 90.0 83.4 75.8 50.1 80.8 824 88.9 73.1
Feature-Fused-SSD [76] VGG16 78.9 82 86.5 78 71.7 529 86.6 86.9 88.3 63.2 83 76.8 86.1 88.5 87.5 80.4 53.9 80.6 79.5 882 779
PBLS_SRPN [92] VGGl16 78.9 79.7 84.6 79.2 69.7 68.9 88.3 87.8 87.6 61.8 83.7 74.9 86.2 86.6 85.7 79.3 522 71.5 75.5 86.1 82.3

for small object detection because of its sensibility to local-
ization accuracy. A new performance metric for small object
detection is expected to guarantee high localization accuracy.
Therefore, the pixel distance of center point between the pre-
dicted box and ground truth might be a new evaluation metric
for small object detection.

B. Weakly Supervised Object Detection

Almost most previous generic object detectors train their
model based on large public datasets, such as PASCAL VOC,
ImageNet, and MS COCO. However, a few scenes and cat-
egories are only included in the small object datasets. It is
difficult to train a generic network for small objects using a
fully supervised learning method. Therefore, some researches
adopt weakly supervised learning to detect small objects. For
example, [130] only used image-level annotations to learn the
object detectors by a dynamic curriculum learning strategy.
Feng et al. [131] leveraged surrounding context information by
a progressive contextual instance refinement (PCIR) method
to avoid information loss of the whole object in the exist-
ing weakly supervised object detection. Cheng et al. [132]
proposed a proposal generation method combining selec-
tive search and a gradient-weighted class activation mapping
(Grad-CAM)-based technique, which can be widely applied to
weakly supervised object detection.

C. Small Object Datasets

To date, there no large small object dataset such as COCO
has existed. Many researchers adopted dataset constructed by
themselves, which could not demonstrate obvious cross eval-
uation performance comparing with other methods. Moreover,

most of the datasets focus on limited scenes, such as the face,
pedestrian, and traffic signs. Therefore, a common small object
dataset is vital which is accepted by most researchers and can
provide a universal performance evaluation. However, building
a small object dataset costs a lot of time and placing the bound-
ing box properly for IOU evaluation is hard for the limited
pixels of small objects.

D. Combination of Multiple Kinds of Methods

Contextual information, the fusion of multiscale feature
maps, super-resolution images, and smaller anchor size in
the region-proposal stage are four different methods currently
used to improve the performance of small object detection.
Generally, the current leading generic detection framework is
selected as the backbone of the small object detection network
and some other modules could be integrated into the back-
bone, like the above four. Moreover, these modules could be
combined to improve the detection result.

E. Small Object Detection in Videos

With the increasing of video data, relative work about object
detection in videos has attracted much attention because it pro-
vides more consequent and richer information compared to a
still image. The task of object detection in the video requires
objects of each frame to be located with bounding boxes.
Otherwise, it is a kind of real-time object detection applied
to the autonomous driving and monitoring systems. Although
current deep learning-based methods have obtained impressive
performance on object detection in still images, object detec-
tion in the video is facing many challenges. Exploring the
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TABLE XI
DETECTION RESULTS ON TSINGHUA-TENCENT 100K

Model Metrics i2 i4 i5 il100  il60 il80 io ip p10 pll  pl2 pl19 p23 p26 p27
recall 80.7 88.6 924 93.1 90.3 95.5 89.6 84.1 90.4 843 886 945 897 882 923
MR-CNN [65]  precision 822 918 945 922 94.8 87.7 80.3 874 74.7 912 903 951 934 835 &7
Fl-measure 81.4 902 934 92.6 92.5 91.4 847 857 81.8 87.6 894 948 915 858 89.6
FPN* [113] recall 87 97 96 97 98 100 94 88 92 95 95 91 94 95 98
precision 90 92 94 93 98 94 86 90 89 90 94 75 93 89 98
PGAN [87] recall 84 95 95 95 92 95 92 91 89 96 97 97 95 94 98
accuracy 85 92 94 97 95 83 79 90 84 85 88 84 92 83 98
Model Metrics p3 p5 poé pg ph4 ph4.5 ph5S pl100 pl120 pl20 pl30 pl40 plS pl50  pl60
recall 884 921 889 91.5 78.7 88 759 939 94.2 853 91.7 914 853 922 837
MR-CNN [65]  precision 76.6  93.6 76.7 93.2 80.5 84.2 82.8 947 91.4 90.6 90.8 905 87.6 865 91.8
Fl-measure  82.1 92.8 824 92.3 79.6 86.1 79.2 943 92.8 879 912 909 864 893 87.6
FPN* [113] recall 96 98 97 98 86 90 90 100 97 98 97 97 94 97 98
precision 81 91 90 93 94 80 78 98 99 90 92 91 92 90 95
PGAN [87] recall 93 96 100 93 78 88 85 96 98 96 93 96 92 96 91
accuracy 92 90 83 93 97 68 69 97 98 92 91 90 86 87 92
Model Metrics pl70  pI80 pm20 pm30 pmS5 pn pne  po pr40 wlld w32 w55 w57 w59  wo
recall 88.6 923 884 91.8 93.5 88.2 92.5 70.6 92.8 832 686 631 846 745 428
MR-CNN [65]  precision 845 863 927 88.9 78.1 90.4 89.2 715 93.3 825 823 825 893 751 416
Fl-measure 86.5 89.2 90.5 90.3 85.1 89.3 90.8 739 93 828 748 715 869 748 422
FPN* [113] recal.l- 93 99 94 96 97 96 96 82 100 90 91 95 94 93 42
precision 98 92 98 97 86 90 97 81 97 90 95 95 90 68 50
PGAN [87] recall 91 99 88 94 100 96 97 83 97 94 85 95 94 95 53
accuracy 97 86 90 77 81 89 93 78 92 66 83 88 93 71 54

spatial and temporal correlation by methods, such as optical
flow and LSTM, may be a breakthrough point.

F. High Precision or Real-Time Detection Framework

Similar to generic object detection, small object detection
also faces the problem that how to make a balance between
precision and inference time. As the classic region-proposal
network, faster R-CNN is famous for its high detection accu-
racy. However, it has a longer inference time compared with
YOLO and SSD. In fact, the balance of detection accuracy and
inference time is decided by different application scenarios.
For example, high accuracy may be the key point when per-
sonal identity is verified by detecting faces in the bank. From
another perspective, high detection speed would be the first
choice when small object detection techniques are applied to
intelligent transportation, military monitoring, and unmanned
aerial vehicle. Thus, lightweight networks need to be designed
to suit the resource-limited devices.

V. CONCLUSION

Generic object detection has achieved great success due to
powerful learning ability of deep learning methods. These neu-
ral networks even perform better than humans to some extent.
In recent years, small object detection has also drawn more
attention in the computer vision field. Deep learning-based
studies make significant contributions to the development of
the self-driving car, UAV, and other vision systems, which
can detect objects fast in a far distance. Based on the cur-
rent research status of small object detection, lots of related
excellent deep learning-based works are collected in this arti-
cle, providing a detailed classification summary. Moreover,
the most representative networks at five major categories are
described in detail and specific datasets of small object are
summarized. This survey is meaningful for the development

of small object detection, which could provide guidance for
further research in this field.
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