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Abstract—Recently, most background modeling (BM) meth-
ods claim to achieve real-time efficiency for low-resolution and
standard-definition surveillance videos. With the increasing res-
olutions of surveillance cameras, full high-definition (full HD)
surveillance videos have become the main trend and thus pro-
cessing high-resolution videos becomes a novel issue in intelligent
video surveillance. In this article, we propose a novel content-
adaptive resizing framework (CARF) to boost the computation
speed of BM methods in high-resolution surveillance videos. For
each frame, we apply superpixels to separate the content of the
frame to homogeneous and boundary sets. Two novel downsam-
pling and upsampling layers based on the homogeneous and
boundary sets are proposed. The front one downsamples high-
resolution frames to low-resolution frames for obtaining efficient
foreground segmentation results based on BM methods. The
later one upsamples the low-resolution foreground segmentation
results to the original resolution frames based on the superpix-
els. By simultaneously coupling both layers, experimental results
show that the proposed method can achieve better quantitative
and qualitative results compared with state-of-the-art methods.
Moreover, the computation speed of the proposed method with-
out GPU accelerations is also significantly faster than that of
the state-of-the-art methods. The source code is available at
https://github.com/nchucvml/CARF.

Index Terms—Background modeling (BM), frame downsam-
pling, frame resizing, frame upsampling, superpixels.

I. INTRODUCTION

ACKGROUND modeling (BM) methods are shown to
be effective and efficient for foreground segmentation
in intelligent video surveillance (IVS) [1]. It serves as one
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of the most important preprocessing steps for many surveil-
lance applications, such as video event analysis [2], [3], video
synopsis [4], [5], and action recognition [6], [7]. As a pre-
processing step, achieving real-time efficiency is necessary
to avoid the computational bottleneck. Thus, many state-of-
the-art BM methods claim that they can achieve real-time
computation for processing low-resolution (320 x 240) or
standard-definition (640 x 480) videos.

With the increasing resolutions of surveillance cameras, full
high-definition (full HD) surveillance videos (1920 x 1080)
have become the standard specifications in IVS. Full HD
videos can record more details of environments with better res-
olutions and quality, but will require more computation time to
apply BM methods. Obtaining foreground segmentation results
of full HD videos by using current BM methods in real time
becomes a novel and important issue in IVS. The motivation
of this article is to propose a general and novel framework
for boosting the computation speed of any BM methods with-
out using hardware accelerations. Moreover, the quality of the
obtained foreground segmentation results of BM methods with
the proposed framework needs to be as similar as that of the
original foreground segmentation results.

To reduce the computation time of BM methods, a naive
idea is to downsample a full HD video to a low-resolution
video via downsampling methods [8], [9]. Then, the low-
resolution video is processed by using BM methods to obtain
foreground segmentation results. In this way, the computation
time of BM methods can be reduced. Nevertheless, during
downsampling, the color information of several pixels of the
full HD video is merged to retrieve the color information
of a pixel of the downsampled low-resolution video. Thus,
boundary information between foreground objects is generally
unavailable and causes boundary blurs in the low-resolution
video. As a result, the quality of foreground segmentation
results obtained by using BM methods will degrade. Besides
the degradation problem, the foreground segmentation results
are in low-resolution forms. To obtain foreground segmenta-
tion results in the original resolution, the low-resolution results
need to be upsampled based on upsampling methods [10]-[14].
Because the upsampling problem is an ill-posed problem, the
upsampled results obtained from pixels of the low-resolution
video will usually contain artifacts. The boundaries of seg-
mented foreground objects are hard to be correctly recovered
during upsampling. As a result, the quality of the upsampled
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Fig. 1.

Overview of the proposed CARF.

results is worse than that of the results processed from the
original full HD videos.

To boost the computation speed of BM methods in full
HD videos and obtain high-quality foreground segmentation
results, two problems need to be solved. The first one is
how to downsample the original full HD video to a high-
quality low-resolution video, which contains clear boundaries
of foreground objects to avoid degradation of performance
of BM methods. The second one is how to upsample the
low-resolution foreground segmentation results to the origi-
nal full HD resolution and preserve the detected foreground
boundaries of the upsampled results. Most existing downsam-
pling and upsampling methods focus on either downsampling
or upsampling images instead of coupling both image down-
sampling and upsampling steps simultaneously. Thus, existing
methods cannot well solve these problems.

In this article, we propose a novel content-adaptive resizing
framework (CARF), which couples both downsampling and
upsampling layers simultaneously, to boost the computation
speed of BM methods. As shown in Fig. 1, we first apply
superpixels [15], which are computed based on the content of
each frame, to separate the frame as a homogeneous matrix
and a boundary matrix. Based on both matrices, the down-
sampling layer generates the low-resolution frame by using
the proposed downsampling interpolation function. Then, the
low-resolution frame is processed by using BM methods
to obtain low-resolution foreground segmentation results. To
obtain high-resolution results, the upsampling layer is applied
to upsample the low-resolution results based on the superpixel
information to preserve the foreground boundaries. Without
pretraining, the downsampling and upsampling layers provide
their own unified mappings based on the content of each frame,
because each frame contains its own superpixel structure. As
a result, our method can achieve the content-adaptive resizing
and provide high-quality segmentation results. As shown in
the experimental results, both of the quantitative and qualita-
tive results of the proposed method are significantly better than
those of the state-of-the-art methods including deep learning
methods.

The contributions of this article are threefold. First, this
article is the first work to boost the computation speed of
BM methods by coupling both downsampling and upsam-
pling layers. Second, the downsampling and upsampling can
be achieved by adaptively fit the content of each frame
for high-quality resizing results. Third, our method without
GPU accelerations outperforms state-of-the-art methods in

both computational efficiency and quantitative performance
for boosting the computation speed of BM methods. The
remaining parts of this article are organized as follows.
In Section II, we will review the state-of-the-art methods.
Section IIT describes the proposed method. Section IV shows
the experimental results and comparisons with the state-of-the-
art methods. Section V gives the conclusions.

II. RELATED WORK

Because of the practical real-time issue of BM meth-
ods, hardware-based acceleration methods implemented using
CPU and GPU are proposed. For example, Popa et al. [16]
applied multicores and vector processing of CPUs to imple-
ment GMM [17] in the compressed domain. Recently, GPU-
based implementations of BM methods have become a new
trend due to the parallel processing ability of GPU cores.
Pham et al. [18] proposed an improved version of GMM by
using GPUs on HD videos. CUDA optimization techniques are
also considered. Ye and Wan [19] proposed using GPU with
the constant memory and asynchronous GPU implementation
to accelerate the computation of GMM-based BM methods by
using the computational capacity of CUDA cores on GPUs.
Boghdady et al. [20] also implemented GMM-based BM meth-
ods from several simultaneous sources. They also provide
a series of novel optimizations, including pinned memory,
asynchronous memory transfer, and memory coalescing to
improve the overall bandwidth usage. Kumar ez al. [21] imple-
mented GMM, and related post-processing steps, including
morphological operations and blob labeling by exploiting the
computational capacity of CUDA cores on GPUs. They also
show that GPU implementation achieves significant speedup
when performing morphological operations.

Besides the GPU implementation on GMM, implemen-
tations of more recent BM methods which require more
computation time by using GPUs are also proposed.
Poremba et al. [22] evaluated the performance of NVIDIA’s
compute unified device architecture and IBM’s cell broad-
band engine architecture for accelerating different BM meth-
ods. They show that GPU implementations can improve
the performance of using multithreaded dual-core CPU.
Wilson and Tavakkoli [23] implemented a nonparametric sta-
tistical BM method by using the CUDA architecture. The
statistical models for background pixels and the adaptive
mechanism for classifying pixels are also implemented on
the CUDA architecture. Qin et al. [24] proposed a Vibe-
based [25] BM method by using Gabor wavelets filters to
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obtain foreground segmentation results. They improve the ran-
domized expansion and updating the speed of their method
by applying GPU accelerations. Song er al. [26] proposed
a parallel-connected component labeling method to segment
foregrounds by using pixelwise color histograms in GPUs.
Foreground segmentation results will be clustered to obtain
separate different foreground objects. They also implemented
their algorithm by using CUDA. For the review of GPU-based
BM implementation, please refer to [27]. Although using the
multicore CPU and GPU can accelerate the computation speed
of BM methods, it is necessary to reimplement each BM
method based on the hardware architectures. It is thus hard to
apply the multicore CPUs and GPUs to boost the computation
of complicated BM methods such as [28]-[30]. In contrast, the
proposed method can be generally applied to all of the BM
methods and can also boost the computation speed of these
complicated BM methods. To the best of our knowledge, this
article is the first work to discuss the boosting of computation
speed for different BM methods by using a unified framework
of downsampling and upsampling layers without GPU accel-
erations. As a result, our method can be practically applied
to all of the BM methods without modifications, which are
required by the hardware-based acceleration methods.

III. PROPOSED METHOD
A. Problem Formulation

Given the #-th frame f; of the surveillance video of the res-
olution U x V, let I; be the 2-D frame matrix of f;, which
contains the colors of the pixels of f;. The matrix I; is com-
posed by a homogeneous matrix H, of homogeneous regions
and a boundary matrix B; of the boundaries of objects of f; as
follows:

L =H+B, (D

where the dimensions of I;, H;, and B, are also U x V. Let
ItD and ItU be the downsampled and the upsampled frames
whose dimensions are U’ x V' and U x V, respectively. To
obtain I?, a downsampling layer, which contains the pixel-
based downsampling interpolation function FtD (-) for each f;,
is applied to I, as follows:

1? = FP(,). 2)

To recover the high-resolution frame ItU , the upsampling inter-
polation function FY(-) of the upsampling layer is applied to
1P, and 1Y is represented as follows:

1V = F/(ID). 3)

To obtain high-quality upsampled results which are as simi-
lar as the results of the original frames, we aim to solve the
minimization problem as follows:
17 = argmin|| 1Y — 1, | 4)
IU

t

where ||I,U —LJ|? is the two norm between ItU and I, ItU *is
the solution of (4), and I; is the constraint of the minimization
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problem. Then, we substitute (1)—(3) to (4) as follows:
. 2
IV* = arg lr/anFtU(FlD(Hl +B))—H,+By)||". 5
I

Nevertheless, solving the minimization problem is very
time consuming. Thus, we propose novel downsampling and
upsampling interpolation functions, FID () and FIU (+), which
can be adaptively defined based on the content of f; to
solve the optimization problem with high visual quality and
computational efficiency. Then, FP(-) and FY(-) are used
to downsample the full-HD frames and upsample the low-
resolution foreground segmentation results. To represent the
elements in I;, H;, and B;, we define the following symbols.
Let px = [xx yk]T be the 2-D image position of the kth pixel
pr in 1. I;(pr) represents the color vector [rg g bi]T of Pks
where 7y, gk, and by are the red, green, and blue elements
of py, respectively. Similarly, H;(py) and B;(px) are the RGB
color vectors of p; in H; and By, respectively. Based on (1),
L(pr) = H;(pr) + B;(pr). In the following, we will introduce
how to efficiently separate I; to H; and B; based on the con-
tent of f;. Then, CARF is presented to boost the computation
speed of BM methods.

B. Content-Based Frame Separation

To separate the frame matrix I, to H, and B, based on
the content of f;, superpixels [15] are applied. As described
in [15], to make superpixels adaptively adhere to boundaries
of objects in f;, a color quantized image is generated by
dividing pixels into groups based on their colors. Then, a
pixel-superpixel assignment is applied to adaptively determine
superpixels based on spatially connected and visually coherent
groups of pixels of objects. The obtained superpixels can then
correctly adhere to the boundaries of objects in f; and thus are
content adaptive for objects in each frame without any pre-
training process. In the following, we will introduce how to
generate content adaptive H; and B, from I,.

Assume that f; is oversegmented by U’ x V' superpix-
els. Each superpixel s; represents a union of pixels as s; =
{pk| pr € s;}. For a superpixel s;, we separate the pixels in s;
into homogeneous and boundary sets, respectively. The pixels
of the boundary set slB in s; are the pixels that spatially con-
nect to the pixels in the neighbor superpixel s;, where i # j,
as follows:

8 ={pild(pr.p) = Lpr €sipes; Yi#j)  (6)
where d(py, p;) is defined as follows:

dpe.p) = {Ipc —pill lp € siupres; Vi#j) (D)

where px and p; are the 2-D image positions of p; and py,
respectively. The homogeneous set sl-H is then defined as the
pixels are in s; but are not in the boundary set sf as

sfl = —slB. ()

With slH and s? , we define a content-adaptive mapping function
H, 5, (pr) to retrieve pixels of the homogeneous set of s; as
follows:

L(pr). pr € s

Hi s, (pr) = {0, otherwise ®
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are content adaptive and adhere to true objects boundaries in the frame.

where 0 = [000]7 represents the black color. Similarly,
B, 5;(pr) is defined as follows:

L(pr). pr € P
0, otherwise

which represents the pixels in the boundary set of s;. Thus,
L s;(pk) = H; 5, (pr) + By s, (pi) is conducted, where I g, (pk)
represents I;(py) of px in s;. By using [15], each I; can be
segmented to U’ x V' superpixels, i.e., the union of superpixels
represents I,. For each superpixel s;, we retrieve slB and slH by
using (6) and (8), respectively. Thus, s; is the union of s?
and sfq . Because B; and H; are constructed based on all of s?
and sff , respectively, the union of B; and H; is then equivalent
to I; which is constructed based on all of s;. As a result, I,
can be separated as B, and H; as shown in (1).

Fig. 2(a)—(c) shows the visualization results of the matri-
ces I;, H;, and By, respectively. As shown in Fig. 2(b), the
homogeneous sets of each superpixel contain visually similar
pixels. For example, pixels of the gray floor are assigned to the
superpixels, which also contain pixels of the floor. Similarly,
pixels of the red carpet are assigned to the superpixels, which
contain pixels of the red carpet. Thus, different objects are
adaptively separated by using superpixels based on the con-
tent. The boundaries between neighbor superpixels are then
embedded and preserved in the homogeneous matrix H; and
boundary matrix B, as shown in Fig. 2(c). In the following,
we will introduce how to use H; and B; to boost the compu-
tation speed of BM methods and preserve the quality of the
upsampled foreground segmentation results.

Bis;(pr) = { (10)

C. Content-Adaptive Resizing Framework

As shown in Fig. 1, our CARF contains two layers for boost-
ing the computation speed of BM methods. The first one is
the downsampling layer, which is used to downsample f; to a
low-resolution frame. To achieve the goal, we propose a novel
content-adaptive downsampling interpolation function FP(-)
with respect to the content of f; to efficiently and effectively
obtain the low-resolution frame. Then, the low-resolution
frame is processed by using BM methods to reduce the
computation time and obtain low-resolution foreground seg-
mentation results. Finally, the foreground segmentation results
are upsampled by using the upsampling layer which incorpo-
rates the content-adaptive upsampling interpolation function
F tU (-) with the homogeneous matrix and boundary matrix of
f; to obtain high-resolution foreground segmentation results.

(b)
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Visualization results of matrices of (a) I, (b) H;, and (c) B; of the surveillance video frame. Please note that the boundaries shown in H; and B;

One of the most important properties of superpixels is that
superpixels adhere to boundaries of objects in f;, i.e., the
boundary information is encoded in superpixels as shown in
Fig. 2(c) without pretraining. Moreover, each superpixel con-
tains visually similar pixels as shown in Fig. 2(b). If the pixels
of the downsampled frame are computed from the homoge-
neous regions of superpixels, the blur effect caused by the
interpolation of edge and non-edge pixels can be avoided.
Because of these properties of superpixels, each superpixel is
represented as a unit to compute a new downsampled pixel of
the low-resolution frame, i.e., the number of superpixels equals
to the number of pixels of the low-resolution frame. Let two
neighbor superpixels s; and s; belong to different foreground
objects. If the downsampled pixels are constructed from s; and
s;j, respectively, the boundaries between s; and s; will natu-
rally be preserved between pixels of the low-resolution frame.
Instead of considering time-consuming optimization methods
to solve the interpolation problem in (5), we propose a novel
content-adaptive downsampling interpolation function FP(-)
for each f; to transfer superpixels to downsampled pixels of
the low-resolution frame. In the following, we will introduce
how to impose the superpixel information to construct down-
sampled pixels of the low-resolution frame in a very effective
and efficient way.

In our approach, we set the number of superpixels equal
to the number of pixels of the low-resolution frame I”. Each
superpixel s; is then corresponding to a pixel p? of I, The
content-adaptive downsampling interpolation function FP(-)
aims to compute the color vector of p? based on the corre-
sponding superpixel s;. The homogeneous set slH represents the
pixels of content of s;, while the boundary set s? contains the
pixels of the boundaries of s;. To avoid the effects of gradual
changes of color vectors of pixels in the boundary set, we use
the color vectors of pixels in sfi to compute the color vector of
pf-) . Thus, FP(-) is designed to obtain the average color vector
of slH , and the average color vector is used as the color vector
of p?. FP(-) is defined as follows:

Y pees {Hesi 00) IV pic € 577}
Zpkes,-{l |V pr € Sfl}

FP(s) = (11)

where the numerator is the summation of colors of pixels in
sfl and the denominator is the number of pixels in sf{ . By
using (11), the color vector ItD (piD) of the pixel p? is then
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obtained as follows:

12(pP) = FP(s1). (12)

Because sf{ contains homogeneous pixels of s;, the obtained

| (plp ) is also visually similar to the colors of the pixels of s;.
Given two neighbor superpixels s; and s; containing different
colors from different foreground objects, the colors If) (plp ) and
I? (ij) of IID are computed by using (12), respectively. Since
ItD (p? ) and ItD (ij ) are computed from homogeneous regions
of superpixels of different objects, the color vectors of piD and
ij will be different. In this way, the boundary between plD
and pJD is then visually visible in If) . As a result, the boundary
between s; and s; remains existing between p? and ij of the
low-resolution frame which implies that the designed down-
sampling interpolation function FP(-) can effectively preserve
the boundaries of objects during downsampling based on the
content of each f;. In this way, we can obtain the high-quality
low-resolution video, which contains clear boundaries of fore-
ground objects to avoid the degradation of the results of BM
methods. Here, slH and s? of each superpixel are reserved for
boundary information and be used to help achieve high-quality
upsampling.

After the computation of the downsampling layer, the low-
resolution frame I? of f; is obtained. I” then serves as the input
of a BM method. With the low-resolution frames, the proposed
method can be applied to state-of-the-art BM methods to boost
the computation speed of these BM methods and it is not nec-
essary to perform the modifications of these BM methods.
By subtracting the frames and backgrounds provided by BM
methods, low-resolution foreground segmentation results are
obtained. Without loss of generality, we treat the BM pro-
cess as a mapping function M?(IZD (pl.D )) to obtain foreground
segmentation results as follows:

13)

DD\ _ | 255, detected foregrounds
M; (I’ (p i )) - {O, otherwise.

Here, the mapping function MP(.) is varied with respect to
different BM methods, such as GMM [17], Vibe [25], and
SuBSENSE [28]. In the experiments, we will also evaluate
the effectiveness of our method with respect to different BM
methods.

To obtain the high-resolution foreground segmentation
results, the upsampling layer is adopted. Because the upsam-
pled boundaries of foreground objects ItU should be as similar
as those of I, the boundaries of upsampled foreground seg-
mentation results should also be consistent of those of the
objects in the original resolution. However, the upsampling
problem is an ill-posed problem in general. It is very hard to
reconstruct unknown pixels because the boundary information
is usually lost during downsampling. Thus, most of the upsam-
pling methods attempt to interpolate the low-resolution mask
1P by exploiting the information in I?. However, such methods
have some performance limitations as mentioned above and
are not designed for the scenario of boosting BM methods.

Let the upsampled foreground segmentation frame be IZU
which has the same resolution U x V as I;. The question is
how to effectively and efficiently upsample the low-resolution
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TABLE I
INFORMATION OF EVALUATION VIDEOS

Methods # of Frames Resolution Scene
Highway [31] 1700 320%240 Outdoor
PETS2006 [31] 1200 720576 Indoor
Walking [32] 400 1920 1080 Indoor
Dropping [32] 400 1920 1080 Indoor

foreground segmentation results MP(I;(p?)) to 1Y. During
downsampling, a superpixel s; is corresponding to a pixel piD .
It piD belongs to a foreground object based on MP(-), its cor-
responding superpixel s; should also belong to a foreground
object. Because each superpixel adheres to the boundaries of
objects, pixels in s; should also belong to the same foreground
object. In contrast, if piD belongs to a background object,
its corresponding superpixels s; and pixels in s; should also
belong to a background object. The content-adaptive upsam-
pling interpolation function FU(-) is designed to decide if a
pixel pi € s; belongs to a foreground object or a background
object based on the low-resolution foreground segmentation
results of piD . Thus, FtU (+) is defined as follows:

FY(L(pP).pi) = (MP(IP(pP)) IV pr € i} (14)
Then, 1Y (py) is obtained as
1V (p) = F (L(p7), pe)- (15)

By using (14) and (15), the value I,U(pk) of the pixel py of
IV can be efficiently computed based on the low-resolution
foreground segmentation results. Moreover, the upsampled
results can adhere to boundaries of objects and achieve bet-
ter results. Please note that we do not need to interpolate
foreground pixels and directly fill the labels by using the
superpixel information, which means that no uncertain values
exist. Our method takes no thresholds and is content adap-
tive. In (15), pixels of the same superpixels of the upsampled
frame will have consistent foreground labels. Moreover, the
labels of pixels between boundaries will be different based on
the superpixel information. Thus, the upsampled foreground
segmentation results can also maintain the original bound-
aries of foreground objects. In addition, the time complexity
of our method is low in both of the downsampling layer and
upsampling layer, because only pixel-level value assignment
is performed based on the content-adaptive downsampling
interpolation function and upsampling interpolation function.

IV. EXPERIMENTAL RESULTS
A. Experimental Settings

1) Datasets: In the experiments, to evaluate the
performance of the proposed method, we applied four
surveillance videos with different resolutions, including the
highway video [31], the PETS2006 video [31], the drop-
ping video [32], and the walking video [32]. The highway
and PETS2006 videos were used to evaluate the proposed
method in low-resolution videos. The dropping and walking
videos [32] are full HD surveillance videos for evaluating
the performance of the proposed method in high-resolution
videos. The detailed information of the videos is shown in
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Fig. 3.  Average results of the ablation study of the proposed method.
(a) PSNR of s = 2. (b) PSNR of s = 4. (c) SSIM of s = 2. (d) SSIM
of s = 4. (e) F-measure of s = 2. (f) F-measure of s = 4.

Table I. For the evaluation of the computation time, an Intel
17 3.6-GHz computer with 32-GB RAM and GTX-1080 GPU
on Windows 10 is used in the following experiments. Please
note that GPU is only used for competing deep learning
methods.

2) Comparative Baselines and Evaluation Metrics: Our
CARF aims to boost different kinds of BMs methods. To
evaluate the generalization ability of the proposed method
with respect to different BM methods, three state-of-the-art
BM methods are applied, including GMM [17], Vibe [25],
and SuBSENSE [28]. The frames of the original resolutions
of the evaluation videos are processed by these three meth-
ods to obtain the ground-truth (GT) foreground segmentation
results. During the experiments, we performed the downsam-
pling factor s = 2 and s = 4 to obtain the downsampled
low-resolution videos. The frames of the downsampled low-
resolution videos are processed by these three BM methods to
obtain the low-resolution foreground segmentation results, i.e.,
these BM methods provide M? (-) for evaluation. Then, the
low-resolution results are upsampled by state-of-the-art image
upsampling or super-resolution methods.

To the best of our knowledge, the proposed method is
the first method aiming to boost the computation speed of
BM methods by considering frame downsampling and upsam-
pling simultaneously. Thus, we compared our method with
traditional upsampling methods, including the Bicubic inter-
polation [10] and the iterative curvature-based interpolation
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(ICBD) [11]. By considering the most recent advance of deep
learning-based upsampling methods, we also compared our
method with SRCNN [33], RDN [34], and RCAN [35] for
upsampling quality comparisons. The upsampled foreground
segmentation results are compared with the GT to com-
pute PSNR, structural similarity (SSIM) [36], and F-measure
values [31].

B. Ablation Study

Our method contains two layers, including the downsam-
pling layer and the upsampling layer. Ablation studies were
performed to evaluate the necessity of these two layers. The
obtained metrics are the average results of four evaluation
videos. With only downsampling layer means that we replace
the upsampling layer by using bicubic interpolation. With
only upsampling layer means that we replace the downsam-
pling layer by using bicubic interpolation. Fig. 3(a) and (b)
shows the PSNR values of s = 2 and s = 4 with respect to
GMM, Vibe, and SuBSENSE, respectively. With only upsam-
pling layer owns better PSNR values compared with only
downsampling layer with respect to all BM methods. With
the content-adaptive boundary information which is used in
our upsampling layer, the upsampled foreground segmenta-
tion results can truly adhere to the boundaries of foreground
objects and thus, leads to better results. Nevertheless, com-
bining both layers achieves the best results. The SSIM and
F-measure values of Fig. 3(c)—(f) also reveal the same results
as the PSNR values. As a result, combining both layers are
necessary in our method.

C. Quantitative Results

The average PSNR, SSIM, and F-measure values of upsam-
pled foreground segmentation results obtained by BM methods
for each evaluation video with respect to s =2 and s = 4 are
shown in Figs. 4 and 5, respectively. The x-axis represents the
average computation time of each method. The y-axis repre-
sents the average metrics of each method. Fig. 4(a) shows the
PSNR values of our method and competing methods, includ-
ing Bicubic [10], ICBI [11], SRCNN [33], RDN [34], and
RCAN [35] with respect to GMM and s = 2. Traditional
interpolation methods, such as Bicubic and ICBI are hard to
achieve good PSNR values because of the information loss
during downsampling. Nevertheless, pixel-based Bicubic and
ICBI own better results compared with deep learning meth-
ods because GMM detects noisy foregrounds. When noisy
foregrounds are detected, they are easily to be enlarged by
patch-based deep learning methods. Because RCAN and RDN
have deeper network structure, the noise is less enlarged
by their networks. Compared with competing methods, our
method owns the best PSNR value. It is also significantly
faster than ICBI, SRCNN, RCAN, and RDN. By considering
content-adaptive superpixels, our method can better obtain the
boundary information in the downsampling layer and apply
it in the upsampling layer. Fig. 4(b) and (c) also shows the
same results with respect to SSIM and F-measure values,
respectively. Fig. 4(d)—(f) shows the average PSNR, SSIM, and
F-measure values with respect to Vibe, respectively. Because
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(h) SSIM, and (i) F-measure of SubSENSE.

Vibe misdetects fewer backgrounds, deep learning methods,
such as RCAN and RDN can then successfully obtain better
upsampling results as shown in Fig. 4(d)—(f) compared with
the traditional methods. Nevertheless, our method is still the
best one. Similar results can be observed in Fig. 4(g)—(i) with
respect to SubSENSE.

Also shown in Fig. 5 for s = 4 with respect to different
background methods, our method achieves the best PSNR,
SSIM, and F-measure values. Such results show that down-
sampling frames by using the proposed downsampling layer
and recovering boundaries of the foreground segmentation
results by using the proposed upsampling layer are important.
Moreover, the boundaries obtained from the superpixels are
content adaptive for each frame. That is, even if the BM results
are not fit with the boundaries of objects, our method can still
recover the foregrounds based on the boundary information.
In addition, the results of s = 4 are worse than those of s = 2
for all of the methods because the information loss of s = 4
is more than that of s = 2.

TABLE 11

AVERAGE COMPUTATION TIME WITH RESPECT TO DATASETS

Scale Videos GMM Vibe SuBSENSE
Highway 0.0041 0.0309 0.1809
s=1 PETS2006 0.0247 0.1588 0.9912
Walking 0.1161 0.7958 4.9534
Dropping 0.1154 0.8013 4.9559
Highway 0.0038 0.0092 0.0444
s=2 PETS2006 0.0136 0.0473 0.2440
Walking 0.0611 0.2295 1.2354
Dropping 0.0661 0.2344 1.2496
Highway 0.0019 0.0036 0.0117
s=4 PETS2006 0.0088 0.0174 0.0650
Walking 0.0385 0.0774 0.3218
Dropping 0.0391 0.0806 0.3269

Table II shows the average computation time of combining
the proposed method with different BM methods with respect
to each dataset. In our experiments, the computation time
includes the time of obtaining the low-resolution frame, low-
resolution foreground segmentation results based on each BM
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(h) SSIM, and (i) F-measure of SubSENSE.

TABLE III
AVERAGE COMPUTATION TIME OF COMPETING METHODS IN SECONDS

Scale Methods GMM Vibe SuBSENSE
s=1 Original 0.0651 0.4467 2.7704
Bicubic 0.0178 0.1114 0.6760
ICBI 11.0400 11.1335 11.6981
s=2 SRCNN 0.1762 0.2634 0.8340
RDN 4.5641 4.1699 4.5641
RCAN 2.2734 2.2253 2.2802
Ours 0.0362 0.1301 0.6934
Bicubic 0.0061 0.0290 0.1692
ICBI 13.2106 13.2334 13.3736
s=4 SRCNN 0.1489 0.1794 0.3204
RDN 1.8179 1.8405 1.9771
RCAN 1.0314 1.0541 1.1907
Ours 0.0221 0.0447 0.1814

method, and high-resolution foreground segmentation results
based on the upsampling method. When GMM is applied
to obtain foreground segmentation results from the original
videos (s = 1), it can achieve real-time performance in low-
resolution videos (Highway and PET2006). However, when

GMM is applied to full HD videos (Walking and Dropping),
its computation time significantly increases. In contrast, when
applying the proposed method (s = 2 and s = 4) with GMM,
the computation time of GMM is significantly less than that
of GMM in the original resolutions (s = 1). Because Vibe
and SuBSENSE are more complicated methods compared with
GMM, both methods require much more computation time for
full HD videos (s = 1). By using the proposed method (s = 2
and s = 4) with Vibe and SUBSENSE, the computation time
of both BM methods can also be significantly reduced. The
results demonstrate the usefulness of the proposed framework
in boosting the computation of BM methods.

Table III shows the average computation time of our method
and competing methods under different scale factors in sec-
onds for four evaluation videos. Original means that the
average computation time of BM methods performed on the
evaluation videos in the original resolutions. As shown in
Table III, the computation time of Vibe and SuBSENSE
is higher than that of GMM which indicates that Vibe
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Fig. 6. Qualitative results of s = 2 for GMM. (a) Original frame. (b) GT. (c) Bicubic. (d) ICBI. (¢) SRCNN. (f) RDN. (g) RCAN. (h) Our method.

Fig. 7.

and SuBSENSE are hard to achieve real-time performance
for high-resolution videos. Thus, the computation bottleneck
shows the problem of practical usage of these background
models and points out the importance of developing a resiz-
ing framework as our method to boost the computation speed
of these BM methods. Among all of the methods, Bicubic
is the fastest one. However, its upsampling results are not
good. Without GPU accelerations, our method is the sec-
ond fast method which is only slightly slower than Bicubic.
Nevertheless, our method has the best-upsampled foreground
segmentation results. Because SRCNN, RDN, and RCAN
have GPU accelerations, they are much faster than ICBI. In
addition, even with GPU accelerations, the computation time
of SRCNN, RDN, and RCAN is even longer than that of
GMM and Vibe in the original resolution. Thus, these deep
learning methods are hard to be used for real-time BM appli-
cations. In summary, our method can achieve both boosting
the computation speed of BM methods and good performance
of foreground segmentation results.

(€ (h)

Qualitative results of s = 4 for GMM. (a) Original frame. (b) GT. (c) Bicubic. (d) ICBI. (e) SRCNN. (f) RDN. (g) RCAN. (h) Our method.

D. Qualitative Results

In the following, to visualize the error pixels between the
results of each method and the GT, we draw the error pix-
els between the results of each method and the GT by using
red pixels and yellow pixels. The red pixels indicate that the
upsampling method generates additional foreground pixels that
are not generated by the BM method in the original resolution.
The yellow pixels indicate that the upsampling method misses
foreground pixels that are generated by the BM method in the
original resolution. Please note that the following foreground
segmentation results are generated by each competing method
without any post-processing for fair comparison.

Fig. 6 shows the upsampled qualitative results of GMM
with respect to s = 2 for the dropping video. Fig. 6(a) and (b)
shows the original frame and the GT obtained by GMM in the
original resolution. Fig. 6(c)—(h) shows the results of Bicubic,
ICBI, SRCNN, RDN, RCAN, and our method, respectively. As
shown in Fig. 6(c) and (d), ICBI considers edge information
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Fig. 8.

Qualitative results of s = 2 for Vibe. (a) Original frame. (b) GT. (c¢) Bicubic. (d) ICBI. (¢) SRCNN. (f) RDN. (g) RCAN. (h) Our method.

Fig. 9.

for upsampling, and thus achieves better results compared with
Bicubic. Both of the bicubic interpolation and ICBI enlarge
the noise of the foreground segmentation results obtained by
GMM. Compared with the results of ICBI, SRCNN can also
upsample the foreground segmentation results to the original
resolution by pretrained models. Since the pretrained models
are not able to be online modified to fit the content of surveil-
lance videos, the upsampled results of SRCNN then easily
contain more error pixels as shown in Fig. 6(e). Moreover,
the noise is further enlarged by SRCNN, because SRCNN
performs upsampling based on image patches. When a patch
contains noise, SRCNN may incorrectly reconstruct the patch.
Nevertheless, with deeper and complicated network structure
as RDN and RCAN, the upsampled error pixels can be sig-
nificantly reduced as shown in Fig. 6(f) and (g), respectively.
Fig. 6(h) shows the results of our method. The upsampled
results of the proposed method are visually similar to the GT
of GMM. Because the proposed CARF is based on super-
pixels, it can then better represent the details of the content
and achieve fewer error pixels. Moreover, our method does

Qualitative results of s = 4 for Vibe. (a) Original frame. (b) GT. (c) Bicubic. (d) ICBI. (¢) SRCNN. (f) RDN. (g) RCAN. (h) Our method.

not require any pretraining process on collected data which
facilitates the practical usage of our method.

Fig. 7 shows the upsampled qualitative results of GMM
with respect to s = 4 for the PETS2006 video. When
the scale factor becomes larger, the noise is much eas-
ier to be enlarged as shown in Fig. 7(c)-(e), respectively.
Again, as shown in Fig. 7(f) and (g), RDN and RCAN
achieve better results compared with SRCNN. Nevertheless,
because the trained models of RDN and RCAN do not con-
tain the boundaries of the foreground objects of PETS2006
videos, the upsampled boundaries are still different from the
results of the GT. In comparison, the upsampled results of
our method shown in Fig. 7(h) successfully fit the bound-
aries of foreground objects of GTs because of the proposed
CARF. Such results indicate the importance of the content-
adaptive properties when boosting the computation speed of
BM methods.

Besides the evaluation of the content-adaptive properties
of our method, we also evaluate the generalization ability
of our method with respect to different state-of-the-art BM
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Fig. 11.

methods. Fig. 8 shows the upsampled foreground object seg-
mentation results of the highway video obtained by Vibe with
respect to s = 2. Due to the shaking of trees, misdetected
foregrounds can be found in the top-left corner as shown in
Fig. 8(b). Similar to the upsampling results of GMM shown
in Figs. 6 and 7, Bicubic, ICBI, SRCNN, and RCAN signifi-
cantly enlarge the misdetected foregrounds. In contrast, RDN
can remove the misdetected foregrounds due to better rep-
resentation of training data with respect to noise. Compared
with competing methods, our method can also remove misde-
tected foregrounds because the boundary of the misdetected
foregrounds cannot fill the region generated by boundary
information of objects. Such results again indicate that the
content-adaptive properties are important when performing
upsampling.

Fig. 9 shows the upsampled foreground object segmen-
tation results of the walking video obtained by Vibe with
respect to s = 4. Although only the pedestrian is the true
foreground, Vibe misdetects background pixels as foreground

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 2, FEBRUARY 2022

(h)

Qualitative results of s = 4 for SUbSENSE. (a) Original frame. (b) GT. (c) Bicubic. (d) ICBI. (¢) SRCNN. (f) RDN. (g) RCAN. (h) Our method.

pixels as shown in Fig. 9(b). Similar to the results shown
in Fig. 8, the results of the proposed method are signif-
icantly better than those of competing methods in both
containing fewer additional foreground pixels and removing
misdetected background pixels based on content-adaptive
properties in both downsampling and upsampling layers.
Figs. 10 and 11 show the upsampled foreground object
segmentation results obtained by SuBSENSE with respect
to s = 2 and s = 4 for the PETS2006 and dropping
videos, respectively. Again, our results are significantly bet-
ter than those of competing methods and can adhere to
the true boundaries of foreground objects. The qualitative
results show the content-adaptive properties and generaliza-
tion ability of the proposed method in boosting different
kinds of surveillance videos under different BM methods.
Due to limited space, the experimental results, including the
comparative baselines and the proposed method are available
at https://www.youtube.com/playlist?list=PLeFabaAzO2xwAr
_Ya%ui8hWEtFpAieTYR.
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V. CONCLUSION

In this article, we proposed a novel CARF to boost the
computation speed of BM methods in high-resolution videos.
Different from state-of-the-art methods, our method is derived
from superpixels which are computed adaptively for the
content of each frame. Moreover, the downsampling layer
preserves the adaptive boundary information of each frame
and helps the upsampling layer to upsample low-resolution
foreground segmentation results to high-resolution ones. The
proposed downsampling and upsampling layers without GPU
accelerations have been shown their computational efficiency
and qualitative performance in the experimental results com-
pared with recent deep learning-based upsampling methods.
Moreover, the proposed method can be generally applied to
different BM methods for high-resolution surveillance videos
without modifications of BM methods.

Because the proposed CARF reduces the resolutions of
video frames and achieves high-quality upsampling results,
it can also be applied to various video processing applica-
tions for real-time computation. For example, we can replace
the BM and subtraction methods shown in Fig. 1 to opti-
cal flow methods [37], [38]. By using CARF, boosting the
computation speed and obtaining high-quality results of recent
optical flow methods without additional hardware implementa-
tion [39] can be achieved. Our method can also be cooperated
with video saliency detection methods [40], [41] to boost
the computation. In the future, we will extend the proposed
method to boost the aforementioned video processing applica-
tions in high-resolution videos without the need of hardware
accelerations.
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