
1

Evolutionary Optimization of High-Dimensional
Multi- and Many-Objective Expensive Problems

Assisted by a Dropout Neural Network
Dan Guo, Xilu Wang, Kailai Gao, Yaochu Jin, Fellow, IEEE, Jinliang Ding, Senior Member, IEEE, and

Tianyou Chai, Fellow, IEEE

Abstract—Gaussian processes are widely used in surrogate-
assisted evolutionary optimization of expensive problems mainly
due to the ability to provide a confidence level of their outputs,
making it possible to adopt principled surrogate management
methods such as the acquisition function used in Bayesian opti-
mization. Unfortunately, Gaussian processes become less practi-
cal for high-dimensional multi- and many-objective optimization
as their computational complexity is cubic in the number of
training samples. In this paper, we propose a computationally
efficient dropout neural network (EDN) to replace the Gaussian
process and a new model management strategy to achieve a
good balance between convergence and diversity for assisting
evolutionary algorithms to solve high-dimensional multi- and
many-objective expensive optimization problems. While the con-
ventional dropout neural network needs to save a large number of
network models during the training for calculating the confidence
level, only one single network model is needed in the EDN
to estimate the fitness and its confidence level by randomly
ignoring neurons in both training and testing the neural network.
Extensive experimental studies on benchmark problems with
up to 100 decision variables and 20 objectives demonstrate
that, compared to state-of-the-art, the proposed algorithm is not
only highly competitive in performance but also computationally
more scalable to high-dimensional many-objective optimization
problems. Finally, the proposed algorithm is validated on an
operational optimization problem of crude oil distillation units,
further confirming its capability of handling expensive problems
given a limited computational budget.

Index Terms—Neural network, dropout, Gaussian process,
multi- and many-objective optimization, surrogate-assisted evolu-
tionary algorithm, Bayesian optimization, expensive optimization

I. INTRODUCTION

This work was supported in part by a Royal Society International Exchanges
Program under No. IEC\NSFC\170279, in part by the National Key Research
and Development Program of China under Grant 2018YFB1701104, the Na-
tional Natural Science Foundation of China under Grant 61590922, 61525302,
61988101 the Xingliao Plan of Liaoning Province under Grant XLYC1808001
and the Science & Technology program of Liaoning Province under Grant
2020JH2/10500001 and 2020JH1/10100008. (D. Guo and X. Wang contribute
equally. Corresponding authors: Yaochu Jin; Jinliang Ding.)

D. Guo was with the State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, Shenyang 110819, China.
She is now with the Science and Technology on Electromagnetic Scattering
Laboratory, Beijing 100854, China (e-mail: guodan717@163.com). K. Gao, J.
Ding and T. Chai are with the State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, Shenyang 110819, China (e-
mail: kailaigao@163.com; jlding@mail.neu.edu.cn; tychai@mail.neu.edu.cn).

X. Wang and Y. Jin are with the Department of Computer Science,
University of Surrey, Guildford GU2 7XH, U.K. Y. Jin is also with the
State Key Laboratory of Synthetical Automation for Process Industries, North-
eastern University, Shenyang 110819, China (e-mail: xilu.wang@surrey.ac.uk;
yaochu.jin@surrey.ac.uk).

MANY real-world optimization problems have multiple
conflicting objectives to be optimized simultaneously,

which are referred to as multi-objective optimization problems
(MOPs). Evolutionary algorithms (EAs) have been widely em-
ployed to effectively solve MOPs, and various multi-objective
EAs (MOEAs) have been proposed and shown to perform very
well on a wide range of MOPs [1], [2]. However, MOEAs
typically require a large number of fitness evaluations (FEs)
to obtain a set of satisfactory solutions, and unfortunately,
FEs in many real-world problems can be computationally very
intensive or highly costly [3]–[5]. Examples include airfoil
design [4], manufacturing engineering [6], the design of crude
oil distillation units [7], and furnace optimization [8], where
only a small number of FEs is affordable. Such expensive
MOPs have posed great challenges to MOEAs due to the
limited evaluation budget. Therefore, data-driven surrogate-
assisted evolutionary algorithms (SAEAs) have become popu-
lar to reduce the number of required expensive FEs in EAs
[9], [10]. Generally, SAEAs construct surrogate models to
approximate the original expensive objective functions, then
the surrogates can be used to evaluate part of the candidate
solutions, thereby reducing the computational cost. To enhance
their prediction performance, new samples should be identified
to be evaluated by the true objective functions for updating
the surrogates, which is referred to as model management
[11]. SAEAs have been demonstrated to be able to find better
solutions than their baseline EAs, when a limited number
of expensive real FEs is allowed. Comprehensive reviews of
SAEAs can be found in [12], [13].

Recently, complex MOPs with more than three objectives,
known as many-objective optimization problems (MaOPs)
have received increased attention [14], [15]. Various ap-
proaches to solving MaOPs have been proposed, which can
be roughly divided into three categories. The first category
of the methods aims to enhance the selection pressure to-
wards the Pareto front (PF) by modifying the dominance
relations. For example, ε-dominance [16], L-optimality [17],
and preference order ranking [18]. Another group of ideas
is known as decomposition-based approaches. By using a set
of reference points, an MaOP can be decomposed into many
single-objective subproblems. A representative work is the
decomposition-based MOEA (MOEA/D) [19], which has been
popular for handling both MOPs and MaOPs. Furthermore, an
extension of NSGA-II [2] using a set of reference points to
divide the objective space into a number of small subspaces,

2

termed NSGA-III, is proposed for handling MaOPs [20]. The
third category of methods is based on a performance indicator
that is able to account for both convergence and diversity
properties of a solution set. Along this line of research, typical
indicators including hypervolume [21], ε-indicator [22] and R2
indicator [23]. Although they have achieved great success on
small to medium scale MOPs and MaOPs, the performance
of MOEAs often seriously deteriorates for high-dimensional
problems. For this reason, plenty of research efforts have
been dedicated to extending MOEAs to high-dimensional
MOPs/MaOPs [24], [25], many of which are based on the
cooperative coevolution framework [26], [27].

It is not uncommon that high-dimensional MOPs/MaOPs
also involve the expensive FEs as mentioned before, mak-
ing it increasingly important to improve the scalability of
SAEAs. However, most current SAEAs are not well scalable
to expensive high-dimensional MOPs/MaOPs. Only recently
have a few efforts been dedicated to developing surrogate
techniques for tackling expensive high-dimensional single- or
multi-objective problems, which are briefly reviewed below.

• SAEAs for expensive MaOPs: A surrogate-assisted
reference vector guided EA, known as K-RVEA, was
proposed to handle MaOPs, where Gaussian processes
(GPs) are employed to approximate each expensive ob-
jective function [28]. K-RVEA balances the convergence
and diversity by leveraging the uncertainty provided by
GPs and limits the number of training data to control the
computational complexity. By contrast, a classification
surrogate based EA (CSEA) was proposed in [29], where
a feedforward neural network is trained to learn the
dominance relationship between the candidate solutions
and a set of selected reference solutions, thereby requiring
only one surrogate to solve MaOPs. The effectiveness of
most SAEAs has been validated only on small to medium
scale MaOPs, where the number of decision variables
ranges from 10 to 30, and up to 15 decision variables for
most GP-based SAEAs.

• SAEAs for high-dimensional expensive single- and
multi- objective problems: Few GP-based SAEAs have
been developed for high-dimensional problems due to the
high computational complexity. A common idea is to re-
place GPs with approximation methods whose complex-
ity is more scalable to the number of training samples.
For example, Sun et al. employ particle swarm optimizers
assisted by a radial-basis-function (RBF) network and
fitness inheritance to solve expensive high-dimensional
single-objective problems [30]. A heterogeneous ensem-
ble consisting of a least square support vector machine
(SVM) and two RBF networks is constructed to replace
GPs in [31]. This way, the uncertainty of the approxi-
mated fitness can be obtained by calculating the variance
of the outputs of the ensemble members. Although the
heterogeneous ensemble has shown to be effective [31],
the SVM used in the ensemble is single-output model,
making it hardly scalable to the number of objectives.
Furthermore, the success in generating a diverse and
accurate ensemble heavily depends on feature selection

and feature extraction, which may be problem-dependent.
GPs are a common choice for surrogate models as they can

provide a confidence level of their predictions, which enables
us to use mathematically sound model management techniques
known as infill criteria or acquisition functions. Popular GP
assisted MOEAs include ParEGO [32], MOEA/D-EGO [33]
and K-RVEA [28], among many others. However, GP-based
SAEAs that perform well on low-dimensional MOPs will be-
come computationally intractable when they are used to solve
high-dimensional MOPs/MaOPs, mainly due to the following
three reasons [34]. First, the computational complexity of
GPs will become prohibitively high for large datasets as their
computational complexity is O(n3), where n is the number
of training samples [35]. The higher the dimensionality of
the decision space is, the more training data is required
for constructing GPs in SAEAs to obtain sufficiently good
approximation accuracy. Second, since GPs are single-output
regression models [36], the number of GP models we need
equals to the number of objectives if the GPs are used to
approximate the objective functions, making GPs unpractical
for handling MaOPs. Thirdly, GP models must be completely
rebuilt when new samples are included in the training data
[36], which is very undesirable since the GP model needs to
be frequently updated during the optimization.

Due to the above challenges, most existing SAEAs are
devised for low-dimensional expensive single- or multi- objec-
tive optimization problems and their applications are severely
restricted in the scope of expensive MOPs with small-scale
decision variables [37], [38].

It is worth noting that in the field of machine learning, deep
NNs have been used as a computationally efficient replacement
of GP models [39]. Moreover, dropout is a commonly used
technique in deep NNs to alleviate over-fitting [40], [41]. Gal
and Ghahramani threw light on dropout properties by inter-
preting it as a Bayesian model, resulting from its capability of
representing model uncertainty in deep learning [42]. Further,
dropout deep NNs with an arbitrary depth and nonlinearities
have been proposed and mathematically proved that they
are equivalent to an approximation of the probabilistic deep
Gaussian process model [42]. Existing dropout deep NNs,
however, is computationally intensive in the training stage,
because a large number of NNs needs to be stored and updated
[43].

Given that expensive high-dimensional MOPs/MaOP are
widely seen in the real world, this work aims to develop
an SAEA with a surrogate that is functionally similar to but
computationally more scalable than the GP model to solve
high-dimensional MOPs/MaOPs. To the best of our knowl-
edge, this is the first time that surrogates have been adopted
for tackling expensive high-dimensional MOPs/MaOPs, where
complexities resulted from a large search space together with
a large number of objectives. Main contributions of this work
are summarized as follows.
• An efficient dropout NN, called EDN, is proposed as

a computationally scalable alternative of the GP model
for assisting the solution of expensive high-dimensional
MOPs/MaOPs. Different from the original dropout tech-
nique, EDN uses dropout not only at training phase, but

3

at the test phase as well. As a result, only one single
network model is needed in EDN, which is different
from traditional SAEAs that adopt multiple surrogates
for estimating a degree of uncertainty [31], [44] or for
robust fitness estimation [45]. It is worth noting that the
original dropout technique cannot be directly applied to
SAEAs due to its highly time-consuming training pro-
cess, resulting from the storage and update of many NNs
required for the estimations of fitness and uncertainty.

• A model management strategy for choosing new samples
and training data is suggested and integrated into an
indicator-based MOEA with reference point adaptation
(AR-MOEA) [46] to achieve a better balance between
exploration and exploitation during the search, making
the proposed algorithm well suited for both multi- and
many-objective optimization. Specifically, two sets of
reference vectors are introduced based on AR-MOEA to
estimate the quality of the samples obtained so far, and
to determine whether convergence or the diversity should
be prioritized when selecting new samples.

• The proposed EDN-assisted AR-MOEA, termed EDN-
ARMOEA, is compared with state-of-the-art surrogate-
assisted MOEAs on high-dimensional MOPs and MaOPs.
Empirical results on two suites of test problems and
a real-world operational optimization problem of crude
oil distillation units demonstrate EDN-ARMOEA is very
competitive in performance and computationally much
more scalable than existing surrogate-assisted MOEAs.

The rest of this paper is organized as follows. Section II
provides the background of the work, including a problem
definition and an introduction to AR-MOEA and the dropout
NN. The details of the proposed EDN-ARMOEA are elabo-
rated in Section III. The results of all comparative and ablation
studies, as well as sensitivity analysis are presented in Section
IV. Finally, conclusions and future work are given in Section
V.

II. BACKGROUND

In this section, we at first give a brief problem definition,
then introduce the main components of AR-MOEA. Finally,
dropout neural networks are briefly described.

A. Problem Definition

In this work, we consider the following expensive high-
dimensional multi- and many-objective optimization problems:

minx f(x) = (f1(x), f2(x), . . . , fm(x))
s.t. x ∈ X (1)

where x = (x1, x2, . . . , xd) is the decision vector with d
decision variables, X denotes the decision space, the objective
vector f consists of m(m > 2) objectives. Note that for
MaOPs, the number of objectives m is larger than 3. Moreover,
the objective functions are black-box that can be evaluated
by either time-consuming numerical simulations, or costly
physical experiments. Hence, surrogates must be built based
on data collected via numerical simulations of experiments to
solve the optimization problem [9]. Note that in the context of

surrogate-assisted evolutionary optimizations, problems with
d > 30 is known as high-dimensional problems and the
majority of the existing SAEAs can solve problems with less
than 30 decision variables. It should also be noted that for
MOPs/MaOPs, there exists a set of trade-off Pareto optimal
solutions, known as the Pareto set (PS), rather than a single
solution that optimizes all objectives. The projection of the PS
in the objective space is known as the PF.

B. AR-MOEA

The performance of most MOEAs is heavily dependent on
the shape of the PF. AR-MOEA aims to remedy this issue by
developing a versatile algorithm whose performance is less
sensitive to various MOPs or MaOPs having disconnected,
degenerate, concave or biased PFs [46]. AR-MOEA adopts the
enhanced inverted generational distance (IGD-NS) indicator
[47] to calculate the fitness value of an individual in mating
and environmental selection. The reference points (reference
solutions) for calculating the IGD-NS are composed of two
parts, one containing uniformly distributed solutions and the
other are solutions stored in an external archive.

The general framework of AR-MOEA is described in Al-
gorithm 1. The two main components of AR-MOEA, i.e., the
IGD-NS indicator and the reference point adaptation method
will be briefly described in the following.

Algorithm 1 AR-MOEA
Input: Population size N ; Maximum iterations iter;
Output: Final population P ;
1: Create an initial population P1 of size N ;
2: Uniformly sample reference points W from a unit hyper-

plane;
3: [A1, R1]← UpdateRefPoint(P1,W);
4: for t = 1 to iter do
5: Use the IGD-NS values with respect to Rt to select

solutions from Pt for a mating pool;
6: Create offspring Ot using simulated binary crossover

and polynomial mutation;
7: [At+1, Rt+1]← UpdateRefPoint([At;Ot],W);
8: Use the IGD-NS values with respect to Rt+1 to select

the population Pt+1 from Pt and Ot for next generation;
9: end for

1) IGD-NS Indicator: IGD with noncontributing solution
detection, termed IGD-NS, is an enhanced IGD indicator [47].
Similar to IGD, IGD-NS evaluates the quality of a set of
solutions with respect to both convergence and diversity. Fur-
thermore, IGD-NS takes the non-contributing solutions, which
are ignored in IGD, into consideration, thereby providing a
more precise evaluation of a given solution set. A solution is
called non-contributing if it is not the nearest neighbor of any
reference point. The IGD-NS indicator is defined as follows:

IGD-NS(Q,R) =
∑
r∈R

min
q∈Q

dis(q, r) +
∑
q′∈Q′

min
r∈R

dis(q′, r)

(2)
where function dis(·) denotes the Euclidean distance between
two solutions in objective space, and Q, Q′(Q′ ∈ Q) and R

4

represent the non-dominated solution set, the non-contributing
solution set, and the reference point set, respectively. The first
term calculates the sum of the minimum distance from each
non-dominated solution to the points in R, and the second term
calculates the sum of the minimum distance from each non-
contributing solution to the points in R, aiming to minimise
the number of non-contributing solutions. The fitness of a
candidate solution p is calculated by IGD-NS(P\{p}, R),
where ”\” denotes the complementary set. Therefore, in AR-
MOEA, a solution with a larger IGD-NS value will be the
winner during the tournament selection and the population
truncation. The efficient non-dominated sorting method [48]
is first used in the environmental selection to screen solutions
in the combined population of parents and offspring, then the
solutions from the last known front are selected based on the
IGD-NS indicator.

As the different ranges of different objectives can bias
the uniform distribution of the solutions, the objective values
of solutions in P and Q are normalized by subtracting z∗,
following the calculation of the ideal point z∗ and nadir point
znad. Note that z∗ and znad can be obtained by minimizing
and maximizing each objective individually. Subsequently, the
reference point set R is adjusted for a fair calculation of the
distance between the solutions. More specifically, the solution
q ∈ Q having the minimum perpendicular distance to vector−→
z∗r is detected by minimizing ‖f(q)‖ sin(

−→
z∗r, f(q)), where f

is the mapping from the decision space to the objective space.
Then, each r ∈ R is adjusted to the orthogonal projection of
f(q) on vector

−→
z∗r, described as follows:

r′i =
ri
‖r‖
× ‖f(q)‖ cos(

−→
z∗r, f(q)), i = 1, 2, . . . ,m (3)

where m is the number of objectives.
2) Reference Point Adaptation: Before the adaptation of

the reference points Rt, the external archive At is updated
to At+1 according to the fixed reference points W and the
offspring population Ot. The update of At is also based on
the definition of contribution in IGD-NS. Firstly, we delete the
duplicate and dominated solutions in At. Next, the contributing
solutions in At with respect to W , denoted as Act , are copied
to At+1. Lastly, the point p from At\At+1 with the maximum
value of minq∈At+1 arccos(f(p), f(q)) is continuously chosen
to fill At+1 until the size of At+1 reaches min (3|W |, |At|).
This way, the solutions having the maximum angles to the
selected solutions can be added to the archive to ensure a
good distribution.

After At+1 is obtained, the adapted reference points Rt are
updated to Rt+1. Firstly, the fixed reference points W closest
to the any solution in A′ct , are identified and denoted as the
valid reference point set W v . W v are copied to Rt+1. Then,
the point q from At+1 \ Rt+1 with the maximum value of
minr∈Rt+1 arccos(f(q), r) is continuously chosen to fill Rt+1

until the size of Rt+1 reaches min (|W |, |W v|+ |At+1|). The
requirement on the minimal angle of filling points can ensure
that the solutions in At+1 and the reference points in Rt+1

distribute evenly.
Since the external archive A is able to reflect the geometry

of PFs, the adaptive reference points in R guided by A and the

uniformly distributed reference points W can adapt to various
shapes of the PFs. Empirical results in [46] demonstrate
that the parameter-free method for reference point adaptation
significantly contributes to the robust performance of AR-
MOEA. The procedure of the reference point adaptation is
presented in Algorithm S1 in the Supplementary material. We
use the notation ’S’ to indicate tables, figures and algorithms
in the Supplementary materials in order to avoid confusion.

C. Dropout Neural Networks

Dropout has been proposed to alleviate overfitting prob-
lems for NNs by randomly removing neurons along with
their connections in a NN [40]. Studies such as [43], [49]
have suggested that dropout can be regarded as an effective
regularization method. Randomly dropping out neurons can
discourage excessive co-adaptation of units, which can be
interpreted as adding noise to make the units robust [41].
We consider the situation when dropout is applied to NNs
containing multiple fully-connected layers.

Note that neurons are dropped with a specified probability
at the training phase although they are present at test phase
[40]. Assume dl is a row vector for a layer l (l ∈ [1, L]) of
a NN, and each of its elements is sampled from a Bernoulli
distribution:

dl ∼ Bernoulli(p), ∀dl ∈ dl (4)

where 0.5 ≤ p < 1. With dropout, the output yl of layer l
becomes

ŷl = fl

(
1

p
(xl ◦ dl)Wl + bl

)
(5)

where ◦ denotes the Hadamard product, and fl is the activation
function of layer l. xl, Wl and bl are the D-dimensional input
vector, the D×K weight matrix and the K-dimensional bias
vector of layer l, respectively. The unsuppressed neurons of xl
are scaled by 1

p to make sure that the expected output of the
NN with dropout will be the same as that of the NN without
dropout. dl is regenerated for different training cases during
the forward pass. Wl is updated by backpropagation, which
is the same as that in the standard NNs. During the backward
pass for a training case, the weights in Wl connected to the
suppressed neurons of xl are not updated. As every unit has
two choices, i.e., a dropout NN with n units is an ensemble
of 2n pruned NNs, which explains why dropout can improve
the generalization capability of NNs.

In the original dropout technique, no suppressing takes place
in prediction. The output of the dropout NN at a new input
xnew is

ŷL = fL (xL(xnew)×WL + bL) . (6)

To estimate the mean ŷnew and variance ŝ2new of a given new
decision variable, T sets of vectors of realisations from the
Bernoulli distribution are sampled, resulting in T NNs. This is
equivalent to performing T stochastic forward passes through
the network and calculating the mean and the variance of the

5

output of each NN. This way, ŷnew and ŝ2new of the output for
xnew can be expressed by [42], [43]:

ŷnew =
1

T

T∑
t=1

ŷtL

ŝ2new =
1

T

T∑
t=1

(ŷtL)
TŷtL − ŷTnewŷnew + τ−11

(7)

where τ =
pl2p
2Nλ and 1 denotes an N -dimensional row vector

of ones. lp is the prior length-scale, and λ and N represent
the hyperparameter for weight decay and the number of
training data, respectively. Every several or dozens of forward-
backward passes during the training, the output of the dropout
NN is saved for the variance prediction. It should be pointed
out that the original dropout technique cannot be directly
applied in SAEAs because the training process of the dropout
NNs is highly time-consuming. If the original dropout NN is
used as the surrogate in SAEAs, NNs at T time instants need to
be stored for the estimations of fitness and uncertainty. Every
time when new samples are included in the training data during
the optimization, all T NN models will be updated.

III. AN EFFICIENT DROPOUT NEURAL
NETWORK-ASSISTED AR-MOEA

In this section, the framework of the proposed EDN-
ARMOEA is introduced at first. Then, the proposed model
management is given in terms of the selection of new samples
and training data, respectively. Finally, the mechanism of the
proposed efficient dropout neural networks is presented.

A. The Overall Algorithm

One main difference between the proposed EDN-ARMOEA
and other GP-assisted MOEAs is that EDN-ARMOEA adopts
an efficient dropout NN (EDN) to replace the GP for fitness
approximation, in which the EDN estimates the uncertainty
of the approximated fitness by randomly suppressing neurons
during the test process. Besides, EDN-ARMOEA uses the
reference vectors of AR-MOEA to strike a balance between
diversity and convergence in model management.

Algorithm 2 presents the overall framework of the proposed
EDN-ARMOEA. Before optimization starts, a data set of
size 11d − 1 for training the EDN is generated using the
Latin hypercube sampling (LHS) method, where d is the
number of decision variables. The main reason for setting
the offline training data size to 11d − 1 is due to the LHS
method [50]. To further investigate the training data size in
Gaussian process based optimization algorithms, Jones et al.
[51] recommended to have a convenient, finite-decimal value
for the spacing between points, thereby setting e.g., 21 points
for two dimensions. This setting has been followed by many
SAEAs [10], [37], [52]. Once the EDN is constructed the first
time or updated during the optimization (Line 5 in Algorithm
2), AR-MORA will perform evolutionary optimization for iter
generations based on the objective functions approximated by
the EDN (Line 6). Then, the model management strategy will
select k solutions from those in the final generation (xpop,

ŷpop, ŝpop) for real function evaluations (Line 8). Thus, k new
samples are added in the database (X , Y), refer to Line 9.
Then 11d− 1 samples are selected from the database (X , Y)
as the training data (X1, Y1) so that the number of training
data is limited to 11d−1 (Line 10). Note that both the decision
variables and the objective values of the training data are
scaled within the range [−1, 1], denoted as (Xs, Ys), before
they are used for the construction or update of the EDN (Line
5). Details of the training and test procedures of the EDN will
be provided in the next Section III-C and Algorithm 3.

Algorithm 2 EDN-ARMOEA
Input: f (expensive functions), FEmax (total function evalu-

ations), d (search dimension), delta ∈ [0, 1] is a parameter,
k (the number of real fitness evaluations in each genera-
tion), P is the population size, and iter is the maximum
generation)

Output: X and Y (the decision variables and objective
values of final solutions);

1: X ← LhsDesign(d, 11d− 1), Y ← f(X);
2: X1 = X , Y1 = Y , FE = 11d− 1;
3: while FE ≤ FEmax do
4: (Xs, Ys)← Normalize(X1, Y1);
5: The EDN is initialized by Net ← EDN(Xs, Ys) or

updated by Net← EDN(Xs, Ys, Net);
6: (xpop, ŷpop, ŝpop, rf, rf0)←AR−MOEA(N,iter,Net);
7: If there is no rb, rb is initializd by rb = rf0;
8: Xnew←SelectIndividual(xpop,ŷpop,̂spop,rf, rb,delta,k),

Ynew ← f(Xnew);
9: X ← X ∪Xnew, Y ← Y ∪ Ynew;

10: (X1, Y1)← SelectTrainData(X,Y);
11: rb = rf , FE = FE + |Xnew|;
12: end while

In the following, we explain the details of two main compo-
nents in the model management strategy of EDN-ARMOEA,
namely, the selection of solutions for real function evaluations
(Line 8) and the selection of training data (Line 10).

B. Proposed Model Management Strategy

Deciding which new samples should be collected, i.e.,
which candidate solutions should be evaluated by the ex-
pensive objective functions, and how to update the surrogate
are known as model management in SAEAs [3], [13]. The
model management is vital in SAEAs and therefore many
ideas for surrogate management have been proposed. Among
them, mathematically more principled methods such as infill
criteria [51], also known as acquisition functions in Bayesian
optimization [53], are popular in SAEAs [37]. However, the
original infill criteria are meant for single-objective optimiza-
tion, which cannot be directly adopted for MOPs/MaOPs. In
the following, we present a new model management strategy
for effectively handling high-dimensional MOPs/MaOPs.

1) Selection of solutions for expensive function evaluations:
The new samples to be evaluated by the expensive objective
function are chosen from the solutions in the final popula-
tion of AR-MOEA, which optimizes the objective functions

6

approximated by the EDN (Line 6 in Algorithm 2). To start
with, the solutions in the final population are categorized into
k groups using the k-means clustering algorithm, aiming to
select a representative subset which can serve as good new
samples for updating the surrogates and achieve a balanced
search towards the Pareto front.

As we mentioned before, it is well recognized that these new
samples should be carefully selected due to their influence on
the balance between exploitation and exploration. In SAEAs,
we tune the balance between exploration and exploitation by
detecting whether convergence or diversity is in demand. More
specifically, the solutions contributing to the improvement of
convergence should be selected for real function evaluations
unless the diversity of the population must be prioritized,
similar to the idea suggested in [54]. When convergence is the
selection criterion, the solution having the minimum Euclidean
distance to the origin in the objective space in each cluster
will be selected for real function evaluations. By contrast,
the solution that has the maximum mean uncertainty in each
cluster will be chosen for evaluation when diversity must be
promoted. The diversity of the population is measured by the
ratio of r = |W v|/|W |, where |W v| and |W | are the number
of valid reference points and total number of fixed reference
points, respectively. Here, a reference point is called valid if
there is a contributing solution (defined by the IGD-NS) in the
population associated with the reference point. If the difference
of ri−1 and ri (the diversity of the population in the i−1th and
ith generations, respectively) larger than a given threshold, i.e.,
ri−1− ri > delta, then the diversity of the population should
be enhanced and therefore the most uncertain solution in each
cluster should be selected for real function evaluations. Note
that all objective values should be translated by the minimum
objective values before calculating the Euclidean distance.

2) Selection of Training Data: The number of the training
data (X1,Y1) is limited to 11d− 1 to reduce the computation
time in updating the EDN. In selection, priority is given to
the newly evaluated solutions. Firstly, the newly evaluated
solutions (Xnew,Ynew) are added to data set (X ,Y) for storage
of all real evaluations. Hence, the empty (X1, Y1) is filled with
(Xnew,Ynew). Subsequently, the objective value set Y of the
augmented data set (X ,Y) is normalized with its minimum.
After that, solutions from data set (X \X1, Y \Y1) are added
to (X1, Y1) one by one, with each chosen p solution having
the maximum value of minq∈Y1 arccos(f(p), f(q)), where f(p)
is the objective vector of p in (X \X1, Y \ Y1), and f(q) is
the objective vector of a solution q in (X1, Y1). This way, the
solutions that have the maximum angles to solutions in (X1,
Y1) will be added to the training data to make sure that the
training data distribute as evenly as possible in the objective
space. The newly evaluated samples together with the data
selected in terms of the diversity form the data set (X1, Y1)
for training the EDN in the next generation.

C. Efficient Dropout Neural Networks

The dropout technique was originally developed for NNs
containing a large number of fully-connected layers. However,
such complex NNs are not suited for surrogates. Therefore,

D

1

j

J

1

k

K

Input

layer
Hidden

layer

Hidden

layer

Output

layer

ReLU Tanh
W1：
d×J

W2：J×K W3：
 K×m

+1

+1 +1

B1：
1×J

B2：1×K

B3：
 1×m

xsd

D

D

D

Dxs1

xs：
batchsize×d

 ：
batchsize×m

ˆ
sy

1
ˆ

sy

ˆ
smy

Fig. 1. The structure of the efficient dropout neural network used in EDN-
ARMOEA.

the proposed EDN contains two hidden layers [55], [56] to
reduce the computational complexity while making sure that
dropout can be performed on it. The first hidden layer uses
the ReLU activation function, which enables fast training and
is easy to implement [57]. The activation function of the
second hidden layer is the Tanh function, which makes the
EDN well suited for the regression of normalized training
data. The mini-batch learning is adopted in the training and
batchsize is used to represent the number of training data
in one pass. Fig. 1 shows an example of the EDN, where d
(the dimensionality of decision space) and m (the number of
objectives) are the number of inputs (xs) and outputs (ŷs),
and J and K are the number of neurons in the first and
second hidden layers, respectively. The weight matrices and
the bias vectors are denoted by W1, W2, W3, and B1, B2,
B3, respectively. Finally, a symbol D in the input and first
hidden layers denotes that these nodes may be dropped out.

The output of EDN in the forward pass for the training stage
can be expressed as follows:

yR = fR

(
1

pI
(xs ◦ dI)W1 +B′1

)
yT = fT

(
1

pR
(yR ◦ dR)W2 +B′2

)
ŷs = yTW3 +B′3

(8)

where yR and yT are the outputs of the first and second hidden
layer, respectively. The elements of dI (for the input layer)
and dR (for the first layer) are sampled from a Bernoulli
distribution with parameter pI and pR, respectively. Matrices
B′1, B′2 and B′3 are composed of batchsize copies of B1, B2

and B3. fR and fT represent the ReLU function and the Tanh
function, respectively. Then the approximation errors are used
in back-propagation,

e = ŷs − ys

E =
1

2

batchsize∑
i=1

m∑
j=1

e2ij + wd×Wsum

 (9)

7

where ys is a matrix composed of the real objective values of
the decision variables xs, wd is the weight decay, while Wsum

is the quadratic sum of all elements in W1, W2 and W3. The
update for weights and biases is based on the gradient method
and the chain rule as in the standard NNs.

After the training stage is finished, the EDN will be used
to evaluate the fitness of the population xpop in AR-MOEA,

ŷi =

fT

(
1

pR

(
fR

(
1

pI
(xpop ◦ dI)×W1+B

′
1

)
◦ dR

)
×W2+B

′
2

)
×W3 +B′3.

(10)
Different from the original dropout technique, the dropout
in EDN takes place not only at training time, but at test
time as well. The output will be calculated for itertest times
to approximate the fitness of new candidate solutions in the
population, where dI and dR are regenerated in every time.
Each output is mapped to its original range, and then the mean
fitness estimations ŷpop of xpop as well as the confidence level
ŝpop of ŷpop can be given by

ŷpop =
1

itertest

itertest∑
i=1

ŷi

ŝpop =

√√√√ 1

itertest

itertest∑
i=1

ŷTi ŷi − ŷTpopŷpop.

(11)

The pseudo code describing the training and fitness ap-
proximation using the proposed EDN is listed in Algorithm
3. The update of EDN (Line 5 in Algorithm 2) is similar
to the training of EDN (Lines 2-5 in Algorithm 3), except
that the number of forward-backward passes is changed to
iterr. Note that the number of iterations iterr for updating the
EDN during the optimization is typically much smaller than
the number of iterations itertrain for constructing the EDN
the first time. The EDN will be used to predict the fitness
and confidence level of populations in AR-MOEA (Line 6 of
Algorithm 2), and the selection of solutions for real FEs (Line
8 of Algorithm 2) are based on xpop, ŷpop and ŝpop of the final
population. When new samples are included in the training
data during the optimization, there is only one single network
model to be updated in EDN rather than multiple NN models
in the conventional dropout NNs, so the proposed dropout
method for estimating the confidence level is computationally
much simpler than the conventional dropout NNs.

It should be noted that dropout has been shown effective in
alleviating overfitting in deep NNs. In addition, a theoretical
framework is developed in [42] that a dropout NN can be
seen as a Bayesian network working in a similar way to a
GP model [42]. It is also suggested that there is a trade-
off between the complexity of the model and the accuracy
in fitness and uncertainty estimation. The EDN we used in
this work is relatively simple, which may reduce the accuracy
in fitness and uncertainty estimation. In this case, a dropout
NN can be seen as an ensemble of NNs that approximates the
probability distribution described by a GP model.

Algorithm 3 EDN
Input: Xs and Ys (training data pair), pI and pR (probability

of retaining neurons), wd (weight decay), lr (learning
rate), itertrain (number of forward-backward passes),
batchsize (batch size), itertest (number of calculations
for the tested outputs), xpop (population of AR-MOEA)

Output: ŷpop and ŝpop (the fitness and the confidence esti-
mations for xpop);

1: Initialize the network net. The elements of weights
W = {W1,W2,W3} and biases B = {B1, B2, B3} are
randomly generated within [−0.5, 0.5];

2: for i = 1 to itertrain do
3: A mini-batch of size batchsize (xs and ys) is created

by randomly selecting from Xs and Ys;
4: (net,W,B)←TrainNet(xs, ys, net,W,B,pI , pR, wd, lr);
5: end for
6: for i = 1 to itertest do
7: ŷi ← TestNet(xpop, net,W,B, pI , pR);
8: end for
9: Calculate ŷpop and ŝpop by equation (11).

The computational complexity of GP is O(N3) (N is the
number of training data), since the inversion of an N × N
correlation matrix is needed. N is often set to be linear to the
search dimension in SAEAs. The computational complexity
for constructing the EDN is O(itertrain · batchsize · J ·K),
where J and K are the number of neurons in the two hidden
layers. A GP model is usually built for an expensive function
and GP models must be rebuilt when newly sampled data are
included in the training data, as mentioned in the Section I.
Assume that the number of objectives is m and that the number
of selection of solutions for the expensive FE is iters, then
the total computational complexity of the GP model in GP-
assisted MOEAs is O(N3 ·m ·iters). While NNs are multiple-
output regression models and the computational complexity
for updating the EDN is O(iterr · batchsize · J ·K), where
iterr is generally much smaller than itertrain, the total com-
putational complexity of EDN in EDN-assisted MOEAs is still
O(itertrain ·batchsize ·J ·K). The computational complexity
of AR-MOEA is O(m·P 3), where P is the size of the popula-
tion. Since AR-MOEA is adopted as the underlying MOEA in
our proposed EDN-ARMOEA, the computational complexity
of EDN-ARMOEA is O(itertrain ·batchsize ·J ·K+m ·P 3).

To summarize, the computational complexity of EDN-
assisted evolutionary optimization is more scalable than GP-
assisted evolutionary optimization for high-dimensional many-
objective expensive problems for the following main reasons.
First, the complexity of training a NN is more scalable to the
increase in the number of training samples than that of training
a GP. Second, updating the EDN during the optimization is
computationally much more efficient than updating the GP.
The same computational complexity is needed for updating
the GP model every time when the training data are changed,
assuming that the data size remains the same. By contrast,
the computational complexity for updating the EDN becomes
much smaller than that for building the initial EDN, so long as

8

the training data do not change completely. Finally, the EDN
can be extended to approximate multiple objectives with little
increase in computational complexity, while there will be a
linear increase in complexity if the GP is used, in case a GP
must be built for each objective.

IV. EMPIRICAL RESULTS

In this section, we at first examine the effectiveness of the
proposed model management strategy by comparing three vari-
ants (GP-ARMOEA, GPC-ARMOEA and GPD-ARMOEA)
of the proposed EDN-ARMOEA algorithms. Specifically, GP-
ARMOEA is a variant of EDN-ARMOEA where EDN is re-
placed with GPs and the proposed model management strategy
is emplyed, similarly, GPC-ARMOMO and GPD-ARMOEA
adopt GPs as the surrogates but use different model manage-
ment strategies. GPC-ARMOEA only uses convergence as the
selection criterion, while GPD-ARMOEA only uses diversity
as the selection criterion. Note that both the selection criteria
are defined in Section III.B. To further test the effectiveness
of the proposed strategies, EDN-ARMOEA is compared with
GP-ARMOEA, the heterogeneous ensemble (HeE)-assisted
AR-MOEA [31]. Then, the performance of the proposed EDN
model is tested by comparing with the HeE and GP. Finally, the
performance of EDN-ARMOEA is compared with two state-
of-the-art SAEAs, and the parameter sensitivity analysis is
given. Moreover, in Section VII in the Supplementary material,
EDN-ARMOEA is applied to the optimization of crude oil
distillation units to verify the performance of the proposed
algorithm on real-world problems. DTLZ [58] and WFG [59]
test suites are adopted in the simulations. Note that it has
been a common practice to test SAEAs on computationally
efficient benchmark problems such as DTLZ and WFG, rather
than directly on expensive real-world problems. One major
difference from testing other EAs, however, is that only a very
limited number of FEs using the objective functions is allowed
so as to satisfy the assumption that the evaluations of the
objectives in the benchmarks are computationally expensive.
For each test problem, the largest number of decision variables
and objectives are set to 100 and 20, respectively.

A. Parameter Settings

The following parameter settings are used in the empirical
studies, where the number of decision variables and the
number of objectives are denoted by d and m, respectively:

1) The number of independent runs is 20.
2) In Algorithm 2, 120 real function evaluations are used to

test the performance of compared algorithms except the
initial 11d−1 training data, so the maximum number of
function evaluations FEmax is 11d+119; the parameter
delta is set to 0.08; the number of individuals to be
evaluated by the real functions in each generation k is
set to 5 (number of clusters in the k-means algorithm);
based on our pilot study given in the Supplementary
material, the population size P and the maximum num-
ber of generations iter for AR-MOEA are 50 and 20,
respectively. The sensitivity analysis for delta and k is
presented in Section IV-D.

3) In Algorithm 3, both the probabilities pI and pR are set
to 0.9; as suggested in [42], the weight decay wd and the
learning rate lr are set to 1×10−5 and 0.01, respectively;
the number of neurons in both hidden layers J and K
are 40; the size of mini-batch batchsize is equal to the
number of the decision variables; the iteration number
for building the initial EDN itertrain is set to 8× 104;
the number of calculations for approximating the output
itertest is 100; and the iteration number for updating
the EDN iterr is 8×103. Note again that the depth and
size of the EDN are relatively small, mainly because the
available number of training data is very limited. As J
and K are fixed for all test problems considered in this
work and the number of training data linearly increases
with the number of decision variables, itertrain and
iterr are also fixed. The sensitivity analysis for pI , pR,
J , K, itertrain and iterr is given in Section IV-D.

4) The GP model is implemented by DACE, a Matlab
Kriging toolbox. The zero order polynomial and the
Gaussian kernel function are adopted for the regression
model and the correlation model, respectively; all initial
parameters of the correlation function are set to 5; the
lower and upper bounds for the parameters of the cor-
relation function are set to 1e-05 and 100, respectively.

In the WFG test suite, the number of position-related
parameters k is set to m − 1 when m is 3 or 5, while k
is 2(m − 1) when m is 10 or 20. The performance indicator
adopted is the inverted generational distance (IGD) [60]. One
thousand reference points are used to calculate IGD for m = 3.
The Wilcoxon rank sum is used to conduct statistical tests at
a significance level of 5%, where a symbol + indicates that
EDN-ARMOEA outperforms the compared algorithm, while
a − means that the compared algorithm outperforms EDN-
ARMOEA, and a ≈ means that the results obtained by the
two algorithms are statistically comparable. All experiments
are conducted on a computer with an Intel Core i7, 3.4 GHz
CPU, and the Microsoft Windows 7 Enterprize SP1 64-bit
operating system. All compared algorithms are implemented
in Matlab R2014a based on the PlatEMO toolbox [61].

B. Comparison with GPC-ARMOEA and GPD-ARMOEA
This set of comparative studies aims to verify the model

management strategy proposed in III.B by comparing the GP-
ARMORA with the GPC-ARMOEA and GPD-ARMOEA.
Table I presents the statistical results in terms of IGD obtained
by GP-ARMOEA, GPC-ARMOEA and GPD-ARMOEA on
20-D test problems. From these results, we can see that GP-
ARMOEA achieves the best performance in terms of conver-
gence and diversity on eight out of the sixteen test instances,
while GPC-ARMOEA and GPD-ARMOEA perform best on
DTLZ2 and WFG1, respectively. It is a general accepted
notion that the key to achieve good performance on MOPs
relies on whether the algorithm can achieve a good balance
between convergence and diversity. Based on the observations
in Table I, the proposed model management strategy helps the
algorithm converge towards a set of well distributed solutions
in the sense that both the convergence metric and diversity
metric are taken into consideration.

9

TABLE I
MEAN (STANDARD DEVIATION) IGD VALUES OBTAINED BY
GP-ARMOEA, GPC-ARMOEA AND GPD-ARMOEA ON

20-DIMENSIONAL 3-OBJECTIVE TEST INSTANCES

GP-ARMOEA GPC-ARMOEA GPD-ARMOEA

DTLZ1 350.95 ≈ 344.13 ≈ 360.41
3.4e+01 3.6e+01 3.7e+01

DTLZ2 0.7224 − 0.6898 + 0.8278
7.9e-02 9.8e-02 5.7e-02

DTLZ3 1063.6 ≈ 1078.7 ≈ 1081.2
1.4e+02 1.5e+02 1.5e+02

DTLZ4 0.9692 + 1.0276 + 1.0590
8.0e-02 1.2e-01 9.9e-02

DTLZ5 0.5884 ≈ 0.5897 + 0.7420
7.e-02 7.7e-02 5.2e-02

DTLZ6 13.004 + 14.043 + 13.428
4.5e-01 4.6e-01 7.1e-01

DTLZ7 2.1828 + 2.9850 ≈ 2.2538
3.8e-01 6.5e-01 9.8e-02

WFG1 2.3241 ≈ 2.3479 − 2.2480
1.1e-01 1.0e-01 8.9e-02

WFG2 0.6802 ≈ 0.6903 + 0.7812
3.1e-02 3.2e-02 3.6e-02

WFG3 0.6836 ≈ 0.6997 ≈ 0.7184
2.2e-02 2.4e-02 1.3e-02

WFG4 0.5236 ≈ 0.5329 + 0.5488
1.1e-02 3.7e-02 1.6e-02

WFG5 0.6631 + 0.7041 + 0.6946
1.9e-02 2.6e-02 1.9e-02

WFG6 0.8698 ≈ 0.8779 ≈ 0.8777
1.4e-02 3.9e-02 1.3e-02

WFG7 0.6679 ≈ 0.6698 ≈ 0.6857
1.2e-02 2.1e-02 1.7e-02

WFG8 0.7271 + 0.7971 + 0.7648
2.1e-02 3.1e-02 2.0e-02

WFG9 0.8895 ≈ 0.8795 ≈ 0.8977
3.3e-02 5.1e-02 4.9e-02

+/− / ≈ 5/1/10 8/1/7

C. Comparison with GP-ARMOEA and HeE-ARMOEA

To demonstrate the effectiveness of the EDN, we compare
the performance of AR-MOEA assisted by the EDN, GP and
HeE, respectively, on the DTLZ and WFG test suites. The
results in terms of IGD and HV values on DTLZ1-7 are
presented in Table II and III, respectively, while the results
on WFG1-9 are presented in Table SIII and Table SIV in the
Supplementary material.

First, DTLZ and WFG test suits with d = 20, 40, 60, 100
when m = 3 are used to test the impact of the dimensionality
of the decision space. Table SIII in the Supplementary material
and Table II summarizes the statistical results in terms of IGD
values obtained by EDN-ARMOEA, GP-ARMOEA and HeE-
ARMOEA for different decision variables. We can see from
these results that EDN-ARMOEA achieves the best overall
performance, followed by HeE-ARMOEA. EDN-ARMOEA
outperforms GP-ARMOEA and HeE-ARMOEA on 60, and
perform comparably with GP-ARMOEA and HeE-ARMOEA
on 36, respectively, out of a total of 64 test instances. Note
that although HeE-ARMOEA also shows promising perfor-
mance, its performance degrades as the number of objectives
increases. Second, the impact of the number of objectives is
examined by setting m = 3, 5, 10, 20 when d = 40. Table
SIV in the Supplementary material and Table III presents the

TABLE II
MEAN (STANDARD DEVIATION) OF THE IGD VALUES OBTAINED BY

EDN-ARMOEA, GP-ARMOEA AND HEE-ARMOEA FOR DIFFERENT
NUMBERS OF DECISION VARIABLES ON THE DTLZ TEST SUITE

Algorithm d EDN-ARMOEA GP-ARMOEA HeE-ARMOEA

DTLZ1
20 350.0 (3.9e+01) 350.9 (3.4e+01) ≈ 345.6 (3.2e+01) ≈
40 859.9 (5.8e+01) 884.9 (6.2e+01) ≈ 862.3 (6.8e+01) ≈

60 1425 (4.9e+01) 1445 (6.8e+01) ≈ 1458 (5.5e+01) +

100 2596 (7.0e+01) 2614 (6.8e+01) ≈ 2605 (6.1e+01) ≈

DTLZ2
20 0.647 (6.6e-02) 0.723 (7.9e-02) + 0.311 (2.4e-02) −

40 1.972 (1.2e-01) 2.007 (1.2e-01) ≈ 0.712 (5.3e-02) −

60 3.296 (1.3e-01) 3.316 (1.4e-01) ≈ 1.437 (1.1e-01) −

100 6.097 (1.5e-01) 6.104 (1.5e-01) ≈ 3.329 (2.6e-01) −

DTLZ3
20 1064 (1.4e+02) 1064 (1.4e+02) ≈ 1062 (1.2e+02) ≈
40 2778 (1.6e+02) 2754 (1.5e+02) ≈ 2781 (1.5e+02) ≈
60 4548 (2.0e+02) 4507 (1.7e+02) ≈ 4571 (1.9e+02) ≈
100 8252 (2.1e+02) 8274 (2.1e+02) ≈ 8253 (2.9e+02) ≈

DTLZ4
20 0.844 (1.8e-01) 0.969 (8.0e-02) + 0.974 (3.0e-02) +

40 2.096 (1.7e-01) 2.305 (1.9e-01) + 1.242 (5.4e-02) −

60 3.450 (2.0e-01) 3.666 (1.6e-01) + 1.725 (1.2e-01) −

100 6.322 (2.2e-01) 6.332 (2.3e-01) ≈ 3.250 (1.7e-01) −

DTLZ5
20 0.464 (7.8e-02) 0.588 (7.5e-02) + 0.157 (1.6e-02) −

40 1.906 (1.2e-01) 1.949 (1.4e-01) ≈ 0.558 (5.0e-02) −

60 3.220 (1.6e-01) 3.235 (1.7e-01) ≈ 1.306 (8.7e-02) −

100 6.015 (1.8e-01) 6.029 (1.6e-01) ≈ 3.280 (2.2e-01) −

DTLZ6
20 13.71 (7.9e-01) 13.00 (4.5e-01) − 14.18 (2.7e-01) +

40 31.64 (4.3e-01) 32.21 (6.0e-01) + 32.13 (4.6e-01) +

60 49.53 (7.1e-01) 49.77 (4.7e-01) ≈ 49.73 (5.3e-01) ≈

100 49.53 (7.1e-01) 85.35 (6.6e-01) ≈ 85.53 (7.4e-01) +

DTLZ7
20 2.959 (7.0e-01) 2.183 (3.8e-01) − 4.440 (5.7e-01) +

40 4.574 (9.5e-01) 8.581 (1.2e+00) + 6.393 (7.1e-01) +

60 5.215 (5.8e-01) 9.322 (5.7e-01) + 6.837 (8.0e-01) +

100 6.559 (5.0e-01) 9.924 (2.7e-01) + 7.505 (3.5e-01) +

+/− / ≈ 9/2/17 9/11/8

TABLE III
MEAN (STANDARD DEVIATION) OF THE IGD VALUES OBTAINED BY

EDN-ARMOEA, GP-ARMOEA AND HEE-ARMOEA FOR DIFFERENT
NUMBERS OF OBJECTIVES ON THE DTLZ TEST SUITE

Algorithm m EDN-ARMOEA GP-ARMOEA HeE-ARMOEA

DTLZ1
3 859.9 (5.8e+01) 884.9 (6.2e+01) ≈ 862.3 (6.8e+01) ≈

5 677.6 (4.0e+01) 687.1 (5.2e+01) + 681.1 (6.9e+01) ≈

10 490.6 (3.2e+01) 532.4 (5.0e+01) + 490.7 (4.9e+01) ≈
20 11.90 (5.5e-15) 11.90 (5.5e-15) ≈ 11.90 (5.5e-15) ≈

DTLZ2
3 1.972 (1.2e-01) 2.007 (1.2e-01) ≈ 0.712 (5.3e-02) −

5 2.641 (7.1e-02) 2.676 (6.1e-02) ≈ 3.150 (2.4e-01) +

10 2.725 (1.3e-02) 2.877 (5.1e-02) + 3.340 (8.5e-02) +

20 11.68 (2.0e-01) 11.87 (4.3e-02) ≈ 11.85 (6.4e-02) ≈

DTLZ3
3 2778 (1.6e+02) 2754 (1.5e+02) ≈ 2781 (1.5e+02) ≈
5 2531 (1.4e+02) 2130 (1.0e+02)≈ 2588 (1.6e+02) ≈
10 2308 (1.5e+02) 2154 (1.e+02) ≈ 2130 (1.0e+02)≈
20 9.355(9.0e-01) 9.818 (6.4e-01) + 10.27 (9.7e-01) +

DTLZ4
3 2.096 (1.7e-01) 2.304 (1.9e-01) + 1.242 (5.4e-02) −

5 3.529 (9.1e-02) 3.652 (1.8e-01) + 3.821 (2.3e-01) +

10 8.889 (1.1e-01) 9.202 (1.0e-01) + 9.242 (1.0e-01) +

20 9.611 (1.0e-01) 9.699 (8.3e-02) ≈ 9.768 (8.6e-02) +

DTLZ5
3 1.906 (1.2e-01) 1.949 (1.4e-01) ≈ 0.558 (5.0e-02) −

5 2.740 (7.0e-02) 2.788 (7.9e-02) ≈ 3.348 (1.9e-01) +

10 8.786 (6.0e-02) 9.012 (8.1e-02) + 9.248 (1.2e-01) +

20 11.90 (5.3e-05) 11.90 (6.4e-05) ≈ 11.90 (6.1e-05) ≈

DTLZ6
3 31.64 (4.3e-01) 32.21 (6.0e-01) + 32.13 (4.6e-01) +

5 25.92 (2.1e-01) 26.12 (2.5e-01) + 26.26 (1.5e-01) +

10 12.28 (7.1e-01) 20.68(9.1e-01) + 27.33 (7.9e-01) +

20 11.89 (9.8e-04) 11.90 (5.2e-04) ≈ 11.90 (9.8e-04) ≈

DTLZ7
3 4.574 (9.5e-01) 8.581 (1.2e+00) + 6.393 (7.1e-01) +

5 11.70 (6.0e-01) 19.382 (1.8e+00) + 14.92 (1.3e+00) +

10 23.59 (1.0e+00) 40.58 (4.1e+00) + 31.89 (2.9e+00) +

20 10.53 (4.1e-03) 10.68 (4.9e-03) + 10.59 (1.0e-03) +

+/− / ≈ 15/0/13 15/3/10

10

450 500 550
Function evaluation number

1.5

2

2.5

IG
D EDN-ARMOEA

GP-ARMOEA
HeE-ARMOEA

(a)

450 500 550
Function evaluation number

2.1

2.2

2.3

2.4

2.5

IG
D

(b)

450 500 550
Function evaluation number

0.72

0.74

0.76

IG
D

(c)

450 500 550
Function evaluation number

0.88

0.9

0.92

0.94

0.96

0.98

IG
D

(d)

Fig. 2. The error bars of the IGD values versus the number of real function evaluations (d = 40, m = 3). (a) DTLZ4; (b) WFG1; (c) WFG5; (d) WFG9.

20 40 60 100

Number of decison variables

0

500

1000

1500

T
ra

in
in

g
 t

im
e

 o
f

s
u

rr
o

g
a

te
s
 /

s
e

c EDN-ARMOEA

GP-ARMOEA

(a)

20 40 60 100

Number of decison variables

0

2

4

O
p

ti
m

iz
a

ti
o

n
 t

im
e

fo
r

o
n

e
 r

u
n

 /
s
e

c

10
4

(b)

3 5 10 20

Number of objectives

0

200

400

600

T
ra

in
in

g
 t

im
e

 o
f

s
u

rr
o

g
a

te
s
 /

s
e

c

(c)

3 5 10 20

Number of objectives

0

5000

10000

O
p

ti
m

iz
a

ti
o

n
 t

im
e

fo
r

o
n

e
 r

u
n

 /
s
e

c

(d)

20 40 60 100

Number of decison variables

0

5

10

15

T
ra

in
in

g
 t

im
e

 o
f

s
u

rr
o

g
a

te
s
 /

s
e

c EDN-ARMOEA

HeE-ARMOEA

(e)

20 40 60 100

Number of decison variables

0

5000

10000

15000

O
p

ti
m

iz
a

ti
o

n
 t

im
e

fo
r

o
n

e
 r

u
n

 /
s
e

c

(f)

3 5 10 20

Number of objectives

0

2

4

6

8
T

ra
in

in
g

 t
im

e
 o

f

s
u

rr
o

g
a

te
s
 /

s
e

c

(g)

3 5 10 20

Number of objectives

0

5000

10000

O
p

ti
m

iz
a

ti
o

n
 t

im
e

fo
r

o
n

e
 r

u
n

 /
s
e

c

(h)

Fig. 3. The error bars of the training and optimization time for EDN-ARMOEA, GP-ARMOEA and HeE-ARMOEA on DTLZ7. (a) Training time of the
surrogates versus the number of decision variables d in EDN-ARMOEA and GP-ARMOEA. (b) Optimization time for one run versus d in EDN-ARMOEA and
GP-ARMOEA. (c) Training time of the surrogates versus the number of objectives m in EDN-ARMOEA and GP-ARMOEA. (d) Optimization time for one
run versus m in EDN-ARMOEA and GP-ARMOEA. (e) Training time of the surrogates versus d in EDN-ARMOEA and HeE-ARMOEA. (f) Optimization
time for one run versus d in EDN-ARMOEA and HeE-ARMOEA. (g) Training time of the surrogates versus m in EDN-ARMOEA and HeE-ARMOEA. (h)
Optimization time for one run versus m in EDN-ARMOEA and HeE-ARMOEA.

statistical results in terms of IGD values obtained by the three
compared algorithms. It is clear that the best overall perfor-
mance on all the test instances is achieved by EDN-ARMOEA,
confirming the scalability of EDN-ARMOEA. In particular,
EDN-ARMOEA shows significantly better performance than
GP-ARMOEA on a majority of the test instances (41 out
of 64), which further demonstrates the advantage of the pro-
posed EDN over GP for addressing high-dimensional MaOPs.
This might be attributed to two reasons. First, the proposed
model management strategy is capable of achieving a better
balance between the convergence and diversity. Second, EDN-
ARMOEA benefits from the proposed EDN model in that the
EDN model can provide more accurate fitness predictions and
useful uncertainty information for high-dimensional problems.
To sum up, we conclude that the proposed EDN-ARMOEA
is well suited for high-dimensional problems, especially when
the number of objectives is large.

Taking the test instance DTLZ7 as an example, Fig. 3 plots
the error bars of the computation time used for training and
the optimization as the number of decision variables and the

number of objectives change. It can be observed that the
proposed EDN is much more scalable than GP and HeE to
the increase in the number of training samples and the number
of objectives, which confirms our theoretical analysis of the
computational complexity of the EDN. Since feature selection
in HeE is performed off-line only once based on the initial
training data, the time consumption for feature selection is
not included in the training time of HeE-ARMOEA. That
is why the training time for EDN-ARMOEA is more than
that for HeE-ARMOEA, while the optimization time of EDN-
ARMOEA is less than that of HeE-ARMOEA. Fig. 2 plots
the change of the average IGD values over the number of real
FEs when d is 40 and m is 3. The IGD values of EDN-
ARMOEA decrease quickly on WFG1 and WFG5 as the
evolution proceeds, while the IGD values of HeE-ARMOEA
decrease quickly on the other two test problems.

D. Comparisons in Fitness and Uncertainty Estimation
To further understand the advantages of the proposed EDN

over HeE and GP models in terms of the fitness approximation

11

and uncertainty estimation, we examine the mean absolute
error (MAE) of the fitness estimated by the models under
comparison. Meanwhile, we calculate the mean standard devi-
ation (STD) of the estimated variance (ŝ2) to assess the ability
of the compared models to provide uncertainty information.
More specifically, in each run, EDN, HeE and GP models
are trained with the same training data at first. Subsequently,
50 random samples are generated as the test data. Finally,
each model estimates the fitness and the uncertainty on each
test data. Besides, each model also estimates the fitness on
each training data. Twenty independent runs are performed
to obtain the mean MAE and mean STD of the estimated
fitness and the uncertainty, respectively. Here, our hypothesis
is that the smaller the mean MAE, the better the accuracy
of the model, whereas the larger the mean STD, the better
ability of estimating the uncertainty. The results are shown in
Tables SV-SVII in the Supplementary material. Regarding to
the mean MAE of the estimated fitness, on the one hand, the
smallest absolute error of the predictions for the test data is
achieved by the proposed EDN, indicating that the estimated
objective values obtained by EDN is the closest to the real
objective values. On the other hand, the comparison between
the EDN and HeE in Table SVI demonstrates that the EDN
model also can give better predictions on the training data.
It is evident according to Table SVII that the mean STD
of ŝ obtained by GP is the smallest, which agrees with the
observations obtained in [31], [62], indicating that GP fails to
properly predict the uncertainty for high-dimensional problems
when the number of training data is small. By the contrast,
the proposed EDN is still able to provide the uncertainty
information for high-dimensional problems.

To take a further look at how the approximated objective
values and estimated uncertainties have contributed to the
optimization, we perform comparative studies to examine
how efficiently EDN-ARMORA, HeE-ARMOEA and GP-
ARMOEA can identify solutions that can contribute to perfor-
mance improvement. Fig. S1 in the Supplementary material
plots the number of solutions that have contributed to the
improvement of IGD over the number of real FEs during
the evolution on four test problems. From these results, we
can find that both EDN-ARMOEA and HeE-ARMOEA can
find more contributing solutions than GP-ARMORA. EDN-
ARMOEA finds the most contributing solutions on DTLZ4
and WFG9, while HeE-ARMOEA is most efficient in identify-
ing contributing solutions on WFG1 and WFG5. These results
are consistent with the observed differences in the performance
of the three compared algorithms.

E. Comparison with Some State-of-the-art SAEAs

In this subsection, the performance of the proposed EDN-
ARMOEA on high-dimensional MOPs/MaOPs is compared
with two state-of-the-art SAEAs, namely GP-assisted RVEA
(K-RVEA) [54] and GP-assisted MOEA/D (MOEA/D-EGO)
[33]. More precisely, two sets of experiments are conducted
on the DTLZ test suite, investigating the impact of the dimen-
sionality of the search space and the number of objectives,
respectively, on the performance of the three algorithms. The

corresponding statistical results in terms of IGD values of the
solution sets obtained by the three algorithms are presented in
Tables SVIII-SIX in the Supplementary material, respectively.

It is evident according to Table SVIII that the proposed
algorithm shows better performance in terms of convergence
and diversity than K-RVEA and MOEA/D-EGO, revealing
its superiority in handling high-dimensional MOPs. EDN-
ARMOEA significantly outperforms K-RVEA and MOEA/D-
EGO on nine and eleven, respectively, out of 21 problems
in total, while K-RVEA and MOEA/D-EGO achieve the best
results on two and three instances with d = 20, respectively. It
confirms that the EDN with the proposed model management
strategy can benefit the EDN-ARMOEA for solving high-
dimensional problems. Similar conclusion regarding the num-
ber of objectives can be drawn from Table SIX.

F. Parameter Sensitivity Analysis
The influence of the number of the initial samples has

been discussed in [31], [51] and the results demonstrate that
the differences between the performances of different initial
samples are small, so the sensitivity to the initial samples is
not included here. Similarly, the size of the population and
the maximum number of generation are set based on our pilot
study. The sensitivity to the five important parameters in EDN-
ARMOEA are analyzed in the following and all results are
averaged over 20 independent runs.

1) Sensitivity to the Number of Training Iterations
(itertrain, iterr): itertrain and iterr are the number of
learning iterations in constructing and updating the EDN,
respectively. The number of iterations is a key parameter
determining the quality and efficiency of the proposed EDN.
If itertrain and iterr are too small, the EDN is not able to
approximate the fitness values adequately well. If itertrain and
iterr are too large, training the EDN as well as approximating
the fitness using EDN will be very time-consuming.

We examine the performance of EDN-ARMOEA on four
WFG instances for different itertrain and iterr values. The
results are plotted in Figs. S2-S3 in the Supplementary ma-
terial. EDN-ARMOEA performs well on WFG1 as itertrain
increases, while the IGD values on WFG2, WFG3 and WFG4
are not very sensitive to itertrain. EDN-ARMOEA performs
well on WFG1 and WFG4 as iterr increases, whereas the IGD
values on WFG2 and WFG3 are not very sensitive to iterr.
Since the EDN has 353 parameters in total, we recommend
that itertrain and iterr should be about 30 times and 3 times
of the number of the parameters in EDN, respectively.

2) Sensitivity to the Number of Hidden Neurons (J,K):
We assume that J is equal to K for simplicity. More hidden
neurons mean that more data and more time are needed in
the training. The performance of EDN-ARMOEA is examined
under four different settings based on the sensitivity analysis
on itertrain and iterr. It can be seen from Fig. S4 in the
Supplementary material that the IGD on WFG4 hardly changes
when the number of hidden neurons is more than 20, while
the IGD values on the other three problems decrease as J and
K increase except on WFG1 when J and K are 50 and on
WFG2 when J and K are 40. Thus, we recommend that J
and K are 40 in consideration of the computational time.

12

3) Sensitivity to the Dropout Probability (1 − pI , 1 − pR):
Srivastava et al. recommended that the dropout probability is
0.2 for the input layer and that the dropout probability is 0.5
for hidden layers [41], while other dropout probability has also
been suggested [63]. There is no theoretic guidance for setting
the dropout probability, meaning that this parameter needs to
be properly tuned for different problems. The error bars of
the mean IGD of EDN-ARMOEA over 1− pI and 1− pR is
plotted in Fig. S5 in the Supplementary material, indicating
that a dropout probability between 0.1 and 0.2 for both input
and hidden layers should work well for most problems. We
set both dropout probabilities to 0.1 in this work.

4) Sensitivity to the Number of Solutions Evaluated by the
Real Fitness Function in Each Generation (k): The results
of sensitivity analysis for k are plotted in Fig. S6 in the
Supplementary material. The best IGD values are achieved
on WFG1 and WFG2 when k is set to 3, while the best IGD
values are achieved on WFG3 and WFG4 when k equals to 5.
The performance change is relatively small except on WFG1.
In this work, we set k to 5 as a compromise.

5) Sensitivity to the Parameter delta: Parameter delta is
used to enhance the diversity of the population when the
proportion of the valid reference points in the current gener-
ation is smaller than that in the previous generation. A larger
delta indicates that fewer valid reference points are needed
in the current generation, so an increase in delta decreases
the frequency of selecting the uncertain solutions for the real
FE. Fig. S7 in the Supplementary material shows the influence
of delta on the mean frequency of enhancing diversity. The
frequency decreases quickly as delta increases, and the effect
of delta on the frequency is different for different problems.
The frequency of enhancing diversity determines the trade-off
between the convergence and diversity of the achieved optimal
solution set, and in this work, delta is set to 0.08.

V. CONCLUSION

GPs are not well suited for high-dimensional, multi- and
many-objective problems because of their prohibitive compu-
tational complexity when the number of training data becomes
large. This work proposes an efficient dropout neural network
(EDN) to replace GPs for surrogate-assisted evolutionary opti-
mization of computationally expensive problems with a large
number of decision variables or many objectives. The main
motivation comes from the fact that neural networks are more
scalable to the number of training samples and the number
of outputs than GPs in computational complexity and that
dropout neural networks can also reason about the uncertainty
of their outputs. The proposed EDN is more computationally
efficient than the conventional dropout neural networks so that
it can be used as a surrogate in SAEAs.

EDN-ARMOEA, which employs EDN to assist AR-MOEA,
a recently proposed robust MOEA for solving multi- and
many-objective optimization problems, is verified on test
problems with up to 100 decision variables and up to 20
objectives in comparison with state-of-the-art SAEAs. The
results show that EDN-ARMOEA not only outperforms the
compared algorithms on the majority of the test instances

studied in this work, but also is computationally much more
efficient. The difference in computational efficiency becomes
more significant as the number of decision variables and
the number of objective increase. Finally, EDN-ARMOEA
is compared with AEMOEA, GP-assisted AR-MOEA, and
heterogeneous ensemble assisted AR-MOEA on operational
optimization in crude oil distillation units. The results confirm
the advantage of the proposed EDN-ARMOEA over the three
compared algorithms, demonstrating its capability in solving
real-world optimization problems.

Although the proposed EDN outperforms the GP in both
computational efficiency and optimization performance on
most high-dimensional or MOPs/MaOPs, the computational
complexity of the EDN can be further reduced and the
performance of the EDN-assisted optimization can be further
enhanced. Compared with the ensemble-based approach, the
EDN has better computational scalability, but slightly worse
performance in optimization of high-dimensional problems.
Therefore, our future work will be dedicated to the devel-
opment of more efficient dropout technique to enhance its
accuracy in fitness approximation and uncertainty estimation
without increasing its computational complexity. More ef-
ficient model management techniques that do not rely on
sensitive user-defined parameters will also be investigated.

REFERENCES

[1] Y. Tian, C. He, R. Cheng, and X. Zhang, “A multistage evolutionary al-
gorithm for better diversity preservation in multiobjective optimization,”
Trans. Syst. Man Cybern. Syst., 2019.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[3] Y. Jin and B. Sendhoff, “Fitness approximation in evolutionary
computation-a survey,” in Proc. Genetic Evol. Comput. Conf, 2002, pp.
1105–1112.

[4] ——, “A systems approach to evolutionary multiobjective structural
optimization and beyond,” IEEE Comput. Intell. Mag., vol. 4, no. 3,
pp. 62–76, Aug. 2009.

[5] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization of
computationally expensive problems via surrogate modeling,” AIAA J.,
vol. 41, no. 4, pp. 687–696, 2003.

[6] D. E. Ighravwe, S. A. Oke, and K. A. Adebiyi, “A surrogate model
for optimal maintenance workforce cost determination in a process
industry,” Eng. Appl. Sci. Res., vol. 44, no. 4, pp. 202–207, 2017.

[7] L. M. Ochoa-Estopiera, V. M. Enrı́quez-Gutierreza, J. M. Lu Chena,
L. H.-S. Fernández-Ortizb, and M. Jobsonc, “Industrial application of
surrogate models to optimize crude oil distillation units,” Chem. Eng.
Trans., vol. 69, 2018.

[8] D. Guo, T. Chai, J. Ding, and Y. Jin, “Small data driven evolutionary
multi-objective optimization of fused magnesium furnaces,” in Proc.
IEEE Symp. Comput. Intell. (SSCI), Athens, Greece, December 2016.

[9] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven
evolutionary optimization: An overview and case studies,” IEEE Trans.
Evol. Comput., vol. 23, no. 3, pp. 442–458, 2019.

[10] D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl, “Model-
based multi-objective optimization: taxonomy, multi-point proposal,
toolbox and benchmark,” in Proc. Int. Conf. Evol. Multi Criterion
Optim., Guimarães, Portugal, 2015, pp. 64–78.

[11] A. Dı́az-Manrı́quez, G. Toscano, J. H. Barron-Zambrano, and E. Tello-
Leal, “A review of surrogate assisted multiobjective evolutionary algo-
rithms,” Comput. Intell. Neurosci., vol. 2016, 2016.

[12] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70,
2011.

[13] R. Allmendinger, M. T. M. Emmerich, J. Hakanen, Y. Jin, and E. Rigoni,
“Surrogate-assisted multicriteria optimization: Complexities, prospective
solutions, and business case,” J. Multi-Criteria Decis. Anal., vol. 14, no.
1/2, pp. 5–25, 2017.

13

[14] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 48, no. 1,
pp. 1–35, 2015.

[15] H. Chen, R. Cheng, W. Pedrycz, and Y. Jin, “Solving many-objective
optimization problems via multistage evolutionary search,” Trans. Syst.
Man Cybern. Syst., 2019, DOI: 10.1109/TSMC.2019.2930737.

[16] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining conver-
gence and diversity in evolutionary multiobjective optimization,” Evol.
Comput., vol. 10, no. 3, pp. 263–282, 2002.

[17] X. Zou, Y. Chen, M. Liu, and L. Kang, “A new evolutionary algorithm
for solving many-objective optimization problems,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 38, no. 5, pp. 1402–1412, 2008.

[18] F. Di Pierro, S.-T. Khu, and D. A. Savic, “An investigation on preference
order ranking scheme for multiobjective evolutionary optimization,”
IEEE Trans. Evol. Comput., vol. 11, no. 1, pp. 17–45, 2007.

[19] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, 2007.

[20] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, 2013.

[21] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, 2007.

[22] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Proc. 8th Int. Conf. Parallel Probl. Solving Nat. Springer,
2004, pp. 832–842.

[23] A. Dı́az-Manrı́quez, G. Toscano-Pulido, C. A. C. Coello, and R. Landa-
Becerra, “A ranking method based on the R2 indicator for many-
objective optimization,” in 2013 Proc. IEEE Congr. Evol. Comput.
IEEE, 2013, pp. 1523–1530.

[24] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-
based evolutionary algorithm for large-scale many-objective optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, 2018.

[25] Y. T. X. Z. R. C. Y. J. Cheng He, Lianghao Li and X. Yao, “Accelerating
large-scale multi-objective optimization via problem reformulation,”
IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 949–961.

[26] L. M. Antonio and C. A. C. Coello, “Use of cooperative coevolution
for solving large scale multiobjective optimization problems,” in 2013
Proc. IEEE Congr. Evol. Comput. IEEE, 2013, pp. 2758–2765.

[27] A. Song, Q. Yang, W.-N. Chen, and J. Zhang, “A random-based dynamic
grouping strategy for large scale multi-objective optimization,” in 2016
Proc. IEEE Congr. Evol. Comput. IEEE, 2016, pp. 468–475.

[28] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A
surrogate-assisted reference vector guided evolutionary algorithm for
computationally expensive many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 129–142, 2016.

[29] L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A classification-
based surrogate-assisted evolutionary algorithm for expensive many-
objective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp.
74–88, 2018.

[30] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted co-
operative swarm optimization of high-dimensional expensive problems,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 644–660, Aug. 2017.

[31] D. Guo, Y. Jin, J. Ding, and T. Chai, “Heterogeneous ensemble-based
infill criterion for evolutionary multiobjective optimization of expensive
problems,” IEEE Trans. Cybern, vol. 49, no. 3, pp. 1012–1025, 2018.

[32] J. Knowles, “ParEGO: a hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, 2006.

[33] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective
optimization by MOEA/D with Gaussian process model,” IEEE Trans.
Evol. Comput., vol. 14, no. 3, pp. 456–474, 2009.

[34] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets
big data: A review of scalable GPs,” Trans Neural Netw. Learn. Syst.,
2020.

[35] D. Büche, N. N. Schraudolph, and P. Koumoutsakos, “Accelerating
evolutionary algorithms with Gaussian process fitness function models,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 35, no. 2, pp. 183–
194, May 2005.

[36] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[37] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective
optimization by MOEA/D with Gaussian process model,” IEEE Trans.
Evol. Comput., vol. 14, no. 3, pp. 456–474, Jun. 2010.

[38] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Trans. Evol. Comput., vol. 14,
no. 3, pp. 329–355, Jun. 2010.

[39] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. Patwary, M. Prabhat, and R. Adams, “Scalable Bayesian optimization
using deep neural networks,” in ICML, 2015, pp. 2171–2180.

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Suskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv:1207.0580, 2012.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[42] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Appendix,” [Online]. Available: https://arxiv.org/abs/1506.02157.

[43] ——, “Dropout as a bayesian approximation: Representing model un-
certainty in deep learning,” in International Conference on Machine
Learning, 2016, pp. 1050–1059.

[44] H. Wang, Y. Jin, and J. Doherty, “Committee-based active learning for
surrogate-assisted particle swarm optimization of expensive problems,”
IEEE Trans. Cybern., vol. 47, no. 9, pp. 2664–2677, Sep. 2017.

[45] N. Azzouz, S. Bechikh, and L. Ben Said, “Steady state IBEA assisted
by MLP neural networks for expensive multi-objective optimization
problems,” in Genet. Evol. Comput. Conf. ACM, 2014, pp. 581–588.

[46] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator based
multi-objective evolutionary algorithm with reference point adaptation
for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp.
609–622, 2018.

[47] Y. Tian, X. Zhang, R. Cheng, and Y. Jin, “A multi-objective evolutionary
algorithm based on an enhanced inverted generational distance metric,”
in 2016 Proc. IEEE Congr. Evol. Comput. IEEE, 2016, pp. 5222–5229.

[48] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach
to nondominated sorting for evolutionary multiobjective optimization,”
IEEE Trans. Evol. Comput., vol. 19, no. 2, pp. 201–213, 2015.

[49] S. Wager, S. Wang, and P. S. Liang, “Dropout training as adaptive
regularization,” in Advances in Neural Information Processing Systems,
2013, pp. 351–359.

[50] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61,
2000.

[51] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Glob. Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[52] J. Knowles, “ParEGO: a hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, 2006.

[53] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[54] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A
surrogate-assisted reference vector guided evolutionary algorithm for
computationally expensive many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 21, no. 1, pp. 129–142.

[55] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, and M. Sjödin,
“DeepMaker: A multi-objective optimization framework for deep neural
networks in embedded systems,” Microprocess Microsyst., vol. 73, p.
102989, 2020.

[56] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv preprint arXiv:1808.05377, 2018.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[58] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proc. IEEE Congr. Evol.
Comput., vol. 1, Honolulu, HI, USA, 2002, pp. 825–830.

[59] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006.

[60] P. A. N. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.

[61] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization,” IEEE Comput.
Intell. Mag., vol. 12, no. 4, pp. 73–87, 2017.

[62] J. Tian, Y. Tan, J. Zeng, C. Sun, and Y. Jin, “Multi-objective infill
criterion driven Gaussian process assisted particle swarm optimization

14

of high-dimensional expensive problems,” IEEE Trans. Evol. Comput.,
vol. 23, no. 3, pp. 459–472, 2019.

[63] P. Morerio, J. Cavazza, R. Volpi, R. Vidal, and V. Murino, “Curriculum
dropout,” in Proceedings of the IEEE Int. Conf. Comput. Vis., 2017, pp.
3544–3552.

Dan Guo received the B.Sc. and Ph.D. degrees
from Northeastern University, Shenyang, China, in
2012 and 2019, respectively. She currently works
at the Science and Technology on Electromagnetic
Scattering Laboratory, Beijing. Her current research
interests include surrogate-assisted multiobjective
evolutionary optimization and machine learning.

Xilu Wang received B.Sc. and M.Sc. from Harbin
Institute of Technology in 2016 and Xidian Uni-
versity in 2018, respectively. She is currently a
PhD student at the University of Surrey under the
supervision of Prof. Yaochu Jin.

Kailai Gao received the B.Sc. degree from North-
east Petroleum University, Daqing, China, in 2016,
and the M.Sc. degree from Northeastern University,
Shenyang, China, in 2019, where she is currently
pursuing the Ph.D. degree in control theory and
control engineering with the State Key Laboratory
of Synthetical Automation for Process Industry. Her
current research interests include multitasking evo-
lutionary optimization, and their application.

Yaochu Jin (M’98-SM’02-F’16) received the B.Sc.,
M.Sc., and Ph.D. degrees from Zhejiang University,
Hangzhou, China, in 1988, 1991, and 1996, respec-
tively, and the Dr.-Ing. degree from Ruhr Univer-
sity Bochum, Germany, in 2001. He is currently
a Distinguished Chair Professor in Computational
Intelligence with the Department of Computer Sci-
ence, University of Surrey, Guildford, U.K., where
he heads the Nature Inspired Computing and Engi-
neering Group. He was a Finland Distinguished Pro-
fessor with the University of Jyväskylä, Finland, and

Changjiang Distinguished Visiting Professor with the Northeastern University,
China. His main research interests include evolutionary computation, multi-
objective machine learning, secure machine learning, and self-organizing
collective systems.

Dr. Jin was a recipient of the 2014, 2016, and 2019 IEEE Computational
Intelligence Magazine Outstanding Paper Award, the 2018 and 2020 IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION Outstanding Pa-
per Award, and the Best Paper Award of the 2010 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology. He
was named 2019-2020 Highly Cited Researchers by the Web of Science
Group. Dr Jin is presently the Editor-in-Chief of the IEEE TRANSACTIONS
ON COGNITIVE AND DEVELOPMENTAL SYSTEMS and Complex &
Intelligent Systems. He was an IEEE Distinguished Lecturer for the period
from 2013 to 2015 and 2017 to 2019. He is a Fellow of IEEE.

Jinliang Ding (M’09-SM’14) received the Ph.D. de-
gree in control theory and control engineering from
Northeastern University, Shenyang, China, in 2012.
He is a Professor with the State Key Laboratory of
Synthetical Automation for Process Industry, North-
eastern University. He has authored or co-authored
over 100 refereed journal papers and refereed papers
at international conferences. He is also the inventor
or co-inventor of 17 patents. His current research
interests include modeling, plant-wide control and
optimization for the complex industrial systems,

stochastic distribution control, and multiobjective evolutionary algorithms and
its application.

Dr. Ding was a recipient of the Young Scholars Science and Technology
Award of China in 2016, the National Science Fund for Distinguished Young
Scholars in 2015, the National Technological Invention Award in 2013, two
First-Prize of Science and Technology Award of the Ministry of Education
in 2006 and 2012, respectively, and the IFAC Control Engineering Practice
2011-2013 Paper Prize.

Tianyou Chai (M’90-SM’97-F’08) received the
Ph.D. degree in control theory and engineering from
Northeastern University, Shenyang, China, in 1985.

He has been with the Research Center of Au-
tomation, Northeastern University, Shenyang, China,
since 1985, where he became a Professor in 1988
and a Chair Professor in 2004. He is the founder and
Director of the Center of Automation, which became
a National Engineering and Technology Research
Center in 1997. He has made a number of important
contributions in control technologies and applica-

tions. He has authored and coauthored two monographs, 84 peer reviewed
international journal papers and around 219 international conference papers.
He has been invited to deliver more than 20 plenary speeches in international
conferences of IFAC and IEEE. His current research interests include adaptive
control, intelligent decoupling control, integrated plant control and systems,
and the development of control technologies with applications to various
industrial processes.

Prof. Chai is a member of the Chinese Academy of Engineering, an
academician of International Eurasian Academy of Sciences, and IFAC Fellow.
He is a distinguished visiting fellow of The Royal Academy of Engineering
(UK) and an Invitation Fellow of Japan Society for the Promotion of Science
(JSPS). For his contributions, he has won three prestigious awards of National
Science and Technology Progress, the 2002 Technological Science Progress
Award from the Ho Leung Ho Lee Foundation, the 2007 Industry Award for
Excellence in Transitional Control Research from the IEEE Control Systems
Society, and the 2010 Yang Jia-Chi Science and Technology Award from the
Chinese Association of Automation.

