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Abstract—This article investigates the tracking problem of
an uncertain n-link robot manipulator with guaranteed safety
and performance. To tackle parametric uncertainties, the torque
filtering-augmented concurrent learning (CL) method is intro-
duced for online identification of the unknown system without
requirements of joints acceleration. By using CL, the param-
eter convergence is guaranteed by exploiting the current and
historical data simultaneously. This technique enjoys practica-
bility compared with common methods that need to incorporate
external noises to satisfy the persistence of excitation condition
for the parameter convergence. Based on the estimated model,
we design a barrier Lyapunov function (BLF)-based adaptive
control law by the backstepping technique and Lyapunov anal-
ysis. By ensuring the boundness of the BLF, the system output
and the tracking error are proved to lie in the safety set and
performance set, respectively. Numerical simulation results and
experiment tests validate the proposed strategy.

Index Terms—Adaptive control, backstepping method, bar-
rier Lyapunov function (BLF), concurrent learning (CL), output
constraints, parametric uncertainties, torque filtering.

I. INTRODUCTION

SAFETY issues due to physical human–robot interactions
and parametric uncertainties caused by environmental

influences are inevitable in robotic systems. For given tasks in
real applications, uncertain robot manipulators need to work in
consideration of requirements for both safety and performance.
Control strategies that partially focus on performance without
safety guarantee [1] often result in a lack of practicability and
vice verse [2]. This motivates us to develop an effective control
strategy for a robot manipulator such that safety, performance,
and uncertainty could be considered together.

A. Prior and Related Works

In terms of the safety guarantee problem, existing works
include reference governors [3], invariant sets [4], quadratic
programming (QP)-based methods [5], [6], etc. However,
although the importance of safety has been stressed, these
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works do not fully consider requirements of task performance
during the controller design process. Model predictive control
(MPC) [7] is an effective method that considers objectives
of both safety and performance, whereas it suffers from high
computational complexity, which limits its application in real-
time scenarios [8]. Given the task performance, methods based
on Bellman’s principle of optimality [9] or Pontryagin’s maxi-
mum principle [10] are common. Nonetheless, based on these
existing optimization frameworks [11], safety issues are diffi-
cult to be tackled. As an alternative, learning-based methods
proposed in [2] and [12] can tackle safe optimization prob-
lems but with no stability guarantee. Clearly, it is nontrivial
work to achieve the objectives of safety and performance
simultaneously. To this end, we integrate the requirements
of both safety and performance together and formulate a
comprehensive constrained adaptive control problem.

To deal with constraints, the barrier Lyapunov function
(BLF), which enjoys simplicity and low computational com-
plexity for practical applications [13], emerges as an efficient
tool based on the backstepping technique [14], [15]. BLF
can be categorized as symmetric BLF (SBLF) and asym-
metric BLF (ABLF). Symmetric and asymmetric constraints
can be effectively addressed by SBLF and ABLF-based con-
trollers, respectively. SBLFs are originally proposed in [16]
and extended in [13] to deal with symmetric output con-
straints. In addition, multiple SBLFs in a weighted form are
used to construct ABLFs to deal with asymmetric output
constraints [13]. For further extensions (see [17]–[20]).

Although BLF-based controllers have been used for vari-
ous aims, their effectiveness relies on an explicit model that
is not always available in real applications [21]. For exam-
ple, even for a well-structured robot manipulator, parametric
uncertainties may still occur [22]. To tackle model uncer-
tainties, function approximation-based methods are widely
utilized. The present function approximation-based meth-
ods can be categorized in terms of different approximation
schemes, such as polynomials [23], trigonometric series [24],
orthogonal functions [25], splines [26], fuzzy systems [27],
and neural networks (NNs) [28]. Among these approxima-
tion schemes, NNs play a vital role in learning-based control
methods [29]–[31]. Normally, the NN approximation scheme
is first adopted to approximate an unknown dynamics and
then, a BLF-based control law is designed based on this
approximated model to deal with corresponding constraints.
See [20], [32], [33] for its applications. Note that the adopted
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NNs are in essence linearly parameterized two-layer NNs with
a hidden layer and an output layer. The hidden layer performs
a fixed nonlinear transformation of the input, and NN weights
appear linearly between the hidden layer and the output layer.
The radial basis function (RBF) NN approximation scheme
reported in [20] is a local approximation scheme where each
basis function only contributes to the output locally. In this
regard, the approximation ability of the RBF NNs depends on
the valid region of each chosen RBF. The valid region of the
RBF is determined by their centers and widths. These hyper-
parameters should be determined a priori by considering the
whole working space of the investigated system. However, the
working space is often unknown, especially when there exist
uncertainties. To give full play of the effectiveness of the RBF
NN approximation scheme, the choice of suitable RBFs needs
trials and fails.

Among all the aforementioned applications of BLF-based
controllers via the NN approximation scheme, the funda-
mental problem about weight convergence of NNs is yet
to be discussed. In general, weight (parameter) convergence
is not required in adaptive control, and it has been illus-
trated in [20], [21], [34], and [35] that parameter estimation
errors may not converge to 0 (indeed it may not converge
at all) even though an acceptable tracking performance is
achieved. However, it has been proved that robustness and
transient performance of adaptive control methods can be
improved with guaranteed parameter convergence [36]–[38].
For the aforementioned literature based on the NN approx-
imation scheme [20], [32], [33], the problem of guaranteed
parameter convergence to the actual value, nonetheless, is out
of consideration. Conventionally, the persistence of excitation
(PE) condition is used to check the parameter convergence.
Parameter convergence to the actual value is guaranteed if
the PE condition is satisfied [35], [39]. Among the existing
works [21], [40], although the PE condition can be satisfied
by incorporating external noises to control inputs, this method
is restrictive to practical applications in terms of the follow-
ing aspects: 1) as for the robot control, it may degrade control
performance and cause nuisance, waste of energy, etc.; 2) since
the satisfaction of the PE condition is a problem relying on
future signals, it is often impractical to monitor online whether
the PE condition is satisfied or not; and 3) there is no generic
method to construct the appropriate form of external noises
to satisfy the PE condition since it correlates with scenar-
ios [41]. Thus, instead of using external noises to satisfy the
PE condition, we adopt the concurrent learning (CL) method
by using the current and historical data simultaneously to pro-
vide the required excitation for the parameter convergence.
The CL technique is first introduced in [42] to tackle para-
metric uncertainties of the model reference adaptive control
(MRAC). Then, CL is extended to identify parameters of an
Euler–Lagrange (E–L) system [43]. However, information of
joints acceleration that is sensitive to noises is required in [43]
for parameter identification. To control a robot manipulator
efficiently for real applications, we need to develop a kind of
CL technique that avoids using the information of joints accel-
eration directly. Closely related to CL is the experience replay
technique, which replays experience data to accelerate the

online learning process, adopted in the reinforcement learning
field [44]. However, its usage accompanies with extensive
parameter tuning efforts and the subsequent way of data usage
suffers from a data deficiency problem.

B. Contributions

The main contribution of this article is to develop a sta-
ble adaptive control strategy that can deal with the following
problems simultaneously: 1) safety issues in terms of output
constraints; 2) guaranteed performance concerning tracking
errors; and 3) parametric uncertainties of a partially unknown
robot manipulator. By integrating requirements of safety and
performance together, a simple BLF is first designed to
account for the safety and performance-related constraints
simultaneously. Then, a novel double regressor matrix tech-
nique is developed to enable the combination of the BLF-based
control strategy and the torque filtering augmented CL (TF-
CL) aided online system identification feasible. The torque
filtering technique is integrated into CL to get rid of joints
acceleration for the parameter estimation, and the guaran-
teed parameter convergence to the actual value is achieved
for the function approximation-based BLF control strategy.
Additionally, an efficient history stack management algo-
rithm is proposed to collect sufficient rich data to enable the
estimated parameters to converge to the desired values fast.

C. Organization of This Article

The remainder of this article is organized as follows.
Section II introduces preliminaries and the problem formu-
lation of the stable adaptive control of a partially unknown
robot manipulator with guaranteed safety and performance.
The torque filtering technique is illustrated in Section III,
which serves to Section IV to construct a TF-CL aided online
parameter estimation update law based on the double regressor
matrix technique and the history stack management algorithm.
Section V elucidates the recursive design process of the BLF-
based controller by the backstepping technique and presents
stability proofs, compact sets of both tracking errors and
system outputs. Numerical simulation and experimental results
shown in Section VI illustrate the effectiveness of the proposed
control strategy. The conclusion is provided in Section VII.

Notations: Throughout this article, R denotes the set of real
numbers, Rn is the Euclidean space of the n-dimensional real
vector, R

n×m is the Euclidean space of n × m real matri-
ces, λmax(M) and λmin(M) are the maximum and minimum
eigenvalues of a symmetric real matrix M, respectively, and
‖ · ‖ represents the Euclidean norm for vectors and induced
norm for matrices. Denoting xi as the ith entry of a vector
x ∈ R

n, diag(x) is the n × n diagonal matrix with the ith
diagonal entry equals xi. For any two real vectors a, b ∈ R

n,
a ≤ (�)b is the component-wise comparison, i.e., ai ≤ (<)bi

for ∀i ∈ {1, . . . , n}.

II. PRELIMINARIES AND PROBLEM FORMULATION

The dynamics of an n-link robot manipulator is represented
by the following E–L equation:

M(q)q̈+ C(q, q̇)q̇+ G(q)+ Fq̇ = τ (1)
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where M(q) : Rn → R
n×n is the symmetric positive-definite

inertia matrix, C(q, q̇) : R
n × R

n → R
n×n is the matrix of

centrifugal and Coriolis terms, G(q) : R
n → R

n represents
the gravitational terms, F ∈ R

n×n denotes values of viscous
friction, q ∈ R

n, q̇ ∈ R
n, and q̈ ∈ R

n are the vectors of joint
angles, velocities, and accelerations, respectively, and τ ∈ R

n

represents the vector of input torques applied at each joint.
Property 1 [22]: The left-hand side of system equation (1)

can be written as the following linear in parameter (LIP) form:

Y(q, q̇, q̈)θ∗ = τ (2)

where Y(q, q̇, q̈) : R
n × R

n × R
n → R

n×m is the regressor
matrix and θ∗ ∈ R

m is the desired coefficient vector of the
E–L system dynamics.

Remark 1: Property 1 exploits the known model proper-
ties at hands to construct the regression matrix Y(q, q̇, q̈).
Considering the E–L equation (1), model uncertainties include
varying masses or lengths of joints, varying friction param-
eters, and unknown payloads. The aforementioned model
uncertainties can all be incorporated into the coefficient vec-
tor θ∗ of (2). Note that for the model-free NN approximation
scheme [28], the known physical structure of the investigated
system is abandoned, which usually inevitably suffers from
the well known poor sample complexity problem.

The E–L equation (1) can be written in the following state-
space form by setting x1 = q and x2 = q̇:

ẋ1 = x2

ẋ2 = M−1(x1)(τ − C(x1, x2)x2 − G(x1)− Fx2)

y = x1 (3)

where y ∈ R
n is the system output that denotes joint angles of

the n-link robot manipulator, and assuming that it lies in the
following set:

C = {y ∈ R
n : ke � y� kf

}
. (4)

Here, we consider a trajectory tracking problem, where the
robot manipulator is driven to track the desired trajectory yd

precisely. Throughout this article, we confine ourselves that
the desired trajectory yd satisfies the following assumption.

Assumption 1: The desired trajectory yd ∈ R
n satisfies

−y
d
≤ yd ≤ yd, where y

d
and yd are positive constant vectors.

Based on the system output y of (3) and the desired trajectory
yd, we define the tracking error e1 ∈ R

n as

e1 = y− yd. (5)

For the safety issues considered during the trajectory track-
ing process, following the definition of barrier functions
illustrated in [45], here, the safety set regarding the system
output y is defined as:

S = {y ∈ R
n : h(y) ≤ 0

}
(6)

where h(y) : Rn → R is a continuous function. The explicit
form of h(y) is determined by considering various safety
issues during the tracking process. As for the investigated
n-link robot manipulator, considering the human–robot inter-
actions or limited spaces, its safety set is usually defined as

an allowable operation region [46], [47] that follows:

S̄ = {y ∈ R
n : kc � y� kd

}
(7)

where kc = [kc1, . . . , kcn ]	 ∈ R
n and kd = [kd1 , . . . , kdn ]	 ∈

R
n are known constant vectors determined by controller

designers. The safety set S̄ in (7) is a representative and
explicit form of S in (6). Note that kc � −y

d
and yd � kd

hold, i.e., yd lies in the safety set S̄ .
For the performance issues, we demand that the tracking

error e1 (5) lies in the following performance set:

P = {e1 ∈ R
n : − ka � e1 � kb

}
(8)

where ka = [ka1, . . . , kan ]	 ∈ R
n and kb = [kb1, . . . , kbn ]	 ∈

R
n are the predefined constant vectors. According to (5), the

resulting working space based on the desired tracking error
bound (8) would be

P̄ =
{

y ∈ R
n : − ka − y

d
� y� kb + yd

}
. (9)

To counter the constraints concerning safety in (7) and
performance in (8), BLF emerges as an efficient tool. To deal
with both symmetric and asymmetric constraints, a simple
indicator function-based BLF is proposed as

V(z) = p(z)
z2

k2
u − z2

+ (1− p(z))
z2

k2
l − z2

(10)

where z ∈ R, kl ∈ R and ku ∈ R are constraint bounds. When
z → kl or z → ku, V(z) → ∞, and p(z) is an indicator
function that follows:

p(z) =
{

1, z > 0
0, z ≤ 0.

(11)

According to [13, Definition 2], the proposed BLF in (10)
is an effective BLF. Note that when the value of p(z) in (10)
is always set as 0 or 1 regardless of the value of z, (10) is
an SBLF, and it can only deal with the symmetric constraint
of which the constraint boundaries are ±kl or ±ku. When the
value of p(z) alternates between 0 and 1 as defined in (11), (10)
is an ABLF that can counter an asymmetric constraint. For the
ABLF case, we set kl < 0 and ku > 0, where kl and ku are the
lower bound and upper bound of the asymmetric constraint
set, respectively.

Remark 2: From the perspective of the guaranteed
performance represented by (8), prescribed performance con-
trol (PPC) [48] is closely related to our work, which exploits
the prescribed performance function (PPF)-based system
transformation technique to guarantee that the tracking error
converges to an explicit residual set, the convergence rate is
no less than a predefined value, and a maximum overshoot is
less than a prespecified constant. However, although multiple
performance criteria could be provided by PPC, we found
in practice that its efficient application requires extensive
parameter tuning efforts because the adopted PPF is sensitive
and easier lead to singularity. Moreover, the system trans-
formation process results in additional complexity. Thus, a
simple BLF is chosen here to achieve guaranteed performance
and safety. Although no explicit values of the final residual
set and convergence rate are provided by our designed
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BLF-based control strategy in Section V, both simulation
and experimental results in Section VI have shown satisfying
performance comparable to the PPC-based work [48].

For the investigated tracking problem, the priority of safety
is over performance. To improve the tracking performance
while always guaranteeing safety, C ⊆ S̄ and C ⊆ P̄ should
be satisfied together. For the purpose of achieving these con-
siderations simultaneously, we could first choose the values
of −ka and kb to meet P̄ ⊆ S̄ , and then design a tracking
controller to enforce C ⊆ P̄ . For example, consider a scenario
that a robot manipulator works close to humans, where the pre-
planned yd for given tasks ensures collision free with humans.
To guarantee the collision avoidance while accomplishing the
predefined tasks, we need to restrict the operation range of the
robot manipulator such that C ⊆ S̄ and enable the robot manip-
ulator to track yd precisely to satisfy C ⊆ P̄ , respectively.
The aforementioned safety and performance requirements can
be integrated together by choosing the explicit values (i.e.,
−ka and kb) of the guaranteed tracking performance such that
P̄ ⊆ S̄ holds. Then, a BLF-based controller that drives the
robot manipulator to track yd with the guaranteed tracking
performance also enforces the executed trajectory to lie in
the restricted operation range at the same time. Although it
seems to be a conservative approach, comparing to works
that can only consider partial objectives of performance [1]
or safety [49], the resulting BLF-based controller can drive
the robot manipulator to track the desired trajectory while
satisfying the requirements of both safety and performance
together.

Based on the aforementioned settings, the tracking problem
with guaranteed safety and performance is formulated as
follows.

Problem 1: Given the uncertain robot manipulator (1), the
desired trajectory yd is within the prior known safety set S̄ (7).
Choose appropriate bounds for the performance set P (8)
and design a stable adaptive control strategy based on the
proposed BLF (10) to drive the uncertain robot manipulator
to track the desired trajectory yd while satisfying requirements
of safety characterized by S̄ and performance denoted as P
together.

III. TORQUE FILTERING TECHNIQUE

For the LIP form of the E–L equation given in (2), mea-
surements of the acceleration q̈ are required to construct the
regressor matrix Y(q, q̇, q̈). Since the information of joint
acceleration is sensitive to measurement noises, it is not appli-
cable to use it directly to design a controller. To eliminate
the need for this information, the torque filtering technique
is adopted here to reformulate the original LIP form (2) to
get a new equivalent LIP form without requirements for the
information of joints acceleration. Comparing to the common
Kalman filter that highly depends on prior knowledge (e.g.,
noises to be filtered) and requires extensive parameter tuning
efforts [50], the adopted torque filtering technique is a simple
and easily implemented method for real applications.

To introduce the torque filtering technique, two auxiliary
vectors h(q, q̇) : Rn×R

n → R
n and g(q, q̇) : Rn×R

n → R
n

are first defined as

h(q, q̇) = M(q)q̇ = Y1(q, q̇)θ∗

g(q, q̇) = −Ṁ(q)q̇+ C(q, q̇)q̇+ G(q)+ Fq̇ = Y2(q, q̇)θ∗

(12)

where Y1(q, q̇) : Rn×R
n → R

n×m and Y2(q, q̇) : Rn×R
n →

R
n×m are two new regressor matrices without incorporating

the information of q̈.
Based on the auxiliary vectors in (12), system equation (1)

can be rewritten as

ḣ(q, q̇)+ g(q, q̇) = (Ẏ1(q, q̇)+ Y2(q, q̇))θ∗ = τ (13)

where ḣ(q, q̇) = Ṁ(q)q̇+M(q)q̈ = Ẏ1(q, q̇)θ∗.
The advantage of writing the robot manipulator model in

the form (13) is that this new equivalent form of (1) has been
separated in a way that allows q̈ to be filtered out. To filter
out q̈ existing in Ẏ1(q, q̇), a linear stable filter is introduced as

f (s) = 1

ks+ 1
(14)

where s is the Laplace operator and k ∈ R is a time constant.
By filtering (13) based on (14), we can get the filtered version
of (13) as

ḣf (q, q̇)+ gf (q, q̇) = τf (15)

where ḣf (q, q̇) : Rn×R
n → R

n and gf (q, q̇) : Rn×R
n → R

n

are the filtered versions of ḣ(q, q̇) and g(q, q̇), respectively.
τf ∈ R

n is the filtered version of τ .
Based on (13), the corresponding LIP form of the filtered

system (15) is given as

(Ẏ1f (q, q̇)+ Y2f (q, q̇))θ∗ = τf (16)

where Y1f (q, q̇) : R
n × R

n → R
n×m and Y2f (q, q̇) : R

n ×
R

n → R
n×m are the filtered versions of the regressor matrices

Y1(q, q̇) and Y2(q, q̇), respectively.
For the filter given in (14), the filtered variables and their

original forms satisfy the following equations:

kẎ1f (q, q̇)+ Y1f (q, q̇) = Y1(q, q̇), Y1f (q, q̇)|t=0 = 0

kẎ2f (q, q̇)+ Y2f (q, q̇) = Y2(q, q̇), Y2f (q, q̇)|t=0 = 0

kτ̇f + τf = τ, τf |t=0 = 0. (17)

Substituting the first equation of (17) into (16), finally, we
get the filtered LIP form of the E–L equation (1) as

Yf (q, q̇)θ∗ = τf (18)

where Yf (q, q̇) = (Y1(q, q̇) − Y1f (q, q̇))/k + Y2f (q, q̇) : Rn ×
R

n → R
n×m is the new filtered regressor matrix without

requirements for information of joints acceleration.
Now, the new filtered regressor matrix Yf (q, q̇) and the

resulting filtered LIP form (18) can be adopted to identify
the unknown coefficient vector θ∗ without requirements for
information of joint acceleration, which is clarified in detail
in the next section.
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IV. CONCURRENT LEARNING AIDED SYSTEM

IDENTIFICATION

Since the ideal coefficient vector θ∗ in (18) is unknown and
only the estimated parameter vector θ̂ is available, the iden-
tification problem to be addressed here is to obtain θ̂ online
based on the system input u, the output state y, and the fil-
tered regression matrix Yf . Online identification of θ̂ is an
adaptive parameter estimation problem, where the PE condi-
tion needs to be satisfied before estimated parameters converge
to the desired values. Unlike common methods that introduce
external noises to satisfy the PE condition, based on the LIP
form in (18), the TF-CL method is adopted here to guarantee
the parameter convergence by utilizing both the current and
historical data.

A. Parameter Estimation Update Law

Denoting the parameter estimation error as θ̃ = θ̂ − θ∗, the
corresponding model approximation error follows:

ef = Yf θ̃ . (19)

Define the quadratic cost of the approximation error as Vef =
1/2e	f ef , by following the common gradient descent method
to minimize Vef , the adaptive parameter estimation update law
is derived as:

˙̂
θ = −�Y	f ef (20)

where � ∈ R
m×m is a constant positive-definite matrix. It is

well known that the estimated θ̂ converges to the desired θ∗,
iff the regression matrix Yf satisfies the PE condition [51]

∫ t+T

t
Y	f (τ )Yf (τ )dτ ≥ γ I (21)

where γ , T ∈ R are appropriate positive constants. The
PE condition in (21) can be interpreted as requirements for
a degree of data richness: when the regressor matrix Yf

varies sufficiently enough over the time interval T so that the
entire γ dimension parameter space is spanned, the estimated
parameters are guaranteed to converge to the desired values.

Common methods usually adopt the parameter estimation
update law in (20) and introduce external noises, e.g., signals
in sin or cos form, to satisfy the PE condition shown as (21).
However, the PE condition in (21) is hard to check online
whether it is satisfied or not. An online verification condition is
desirable to tell controller designers that under this condition,
the estimated parameters are guaranteed to converge to the
desired values. Observing that the PE condition is, in essence,
a condition about data richness, and only current data con-
tribute to the common parameter estimation update law (20);
therefore, to get rich enough data, historical data will also be
exploited here to construct the parameter estimation update
law.

In this section, a parameter estimation update law is
proposed by using the current and historical data simultane-
ously. The need for adding external noises to satisfy the PE
condition (21) can be avoided with the benefit of the recorded
historical data. Based on the TF-CL method, the parameter

estimation update law for the unknown coefficient vector θ∗
is designed as

˙̂
θ = −�ktY

	
f ef −

P∑

j=1

�khY	fj efj (22)

where kt, kh ∈ R are the positive constant gains to tradeoff the
relative importance between the current and historical data to
the parameter estimation update law. P is a positive natural
number denoting the volume of the history stacks H and E.
The history stacks H and E are collections of historical data,
where the filtered regressor matrix Yfj and the filtered approx-
imation error efj denote the jth collected data of the history
stack H and E, respectively.

The parameter estimation update law in (22) contains
two parts. The first part −�ktY	f ef relates to the current
data, which is a common gradient descent update law to
minimize the quadratic model approximation error Vef , as
like (20). However, an update law only with the first part can-
not guarantee parameter convergence. Thus, the second part
−∑P

j=1 �khY	fj efj , which is constructed by historical data, is
introduced to provide the sufficient excitation required for the
parameter convergence. To analyze the parameter convergence
problem based on the parameter estimation update law (22),
a rank condition is first clarified in Assumption 2.

Assumption 2: Given a history stack H = [Y	f1 , . . . , Y	fP ] ∈
R

m×(n×P), where Yfj ∈ R
n×m is the jth collected data of H,

there holds rank(HH	) = m.
Note that comparing to the traditional PE condition in (21),

the rank condition of a history stack H in Assumption 2 pro-
vides an index about the richness of the historical data that can
be checked online. If the rank condition is satisfied, it guaran-
tees that the estimated parameters will converge to the desired
values and vice versa. Proofs for parameter convergence are
given as follows.

Theorem 1: Given Assumption 2 and the parameter esti-
mation update law in (22), the parameter estimation error θ̃

converges to 0 asymptotically.
Proof: See Appendix A.

B. History Stack Management Algorithm

The parameter estimation update law and the correspond-
ing convergence proof have been provided in Theorem 1. The
premise of Theorem 1 is the satisfaction of the rank condition
in Assumption 2, i.e., a history stack H containing suffi-
ciently different data is needed. Besides, according to (56) and
Q = HH	, the convergence rate of the estimated parameters is
related to the minimum eigenvalues of the history stack H, i.e.,
λmin(HH	). With the above analysis, we know that the conver-
gence of the estimated parameters to the desired values with a
fast speed equals: 1) the satisfaction of the rank condition in
Assumption 2 and 2) the enlargement of the minimum eigen-
values λmin(HH	). Thus, to achieve parameter convergence
with a fast speed, in our algorithm, the history stacks H and E
are updated with new data points based on two criteria: one is
the data threshold ε that acts as a criterion for data difference,
and guides the algorithm to collect different enough data to
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Algorithm 1 History Stack Management Algorithm
Input: Iteration number: i ≥ 1; Data threshold: ε; Volume: P;

Auxiliary variables: Th, Te; Index: I = P; Empty set: S; State
dimension: n.

Output: History stacks H, E.
1: if i ≤ P then
2: if

∥∥Yf − H(:, ni− n+ 1 : ni)
∥∥/
∥∥Yf
∥∥ ≥ ε then

3: H(:, ni− n+ 1 : ni) = Y	f in (18)
4: E(:, n) = ef in (19)
5: i = i+ 1
6: end if
7: else
8: if

∥∥Yf − H(:, nI − n+ 1:nI)
∥∥/
∥∥Yf
∥∥ ≥ ε then

9: Th = H; Te = E; V = σmin(HH	)
10: for l = 1:P do
11: H(:, nl− n+ 1:nl) = Y	f in (18)

12: S(l) = σmin(HH	); H = Th
13: end for

[Vmax, I] = max(S)
14: if Vmax ≥ V then
15: H(:, nI − n+ 1:nI) = Y	f in (18)
16: E(:, I) = ef in (19)
17: else
18: H = Th; E = Te
19: end if
20: end if
21: end if

satisfy the rank condition; the other is the minimum eigen-
values of the history stack H that relates to the convergence
rate of the estimated parameters. Note that for computation
simplicity, the minimum singular value σmin(HH	) replaces
with λmin(HH	) to act as a criterion for data storage given
that σmin(HH	) = √λmin(HH	).

The details of Algorithm 1 are as follows. First, the hyper-
parameter data threshold ε ensures that only new data that
is sufficiently different from the latest collected data will be
incorporated into the history stacks H and E. Second, to
improve the parameter convergence speed, when H reaches
its volume limit P, only data points that lead to an incre-
ment of the minimum singular values of the history stack H
will be collected. As for the method proposed in [42], the
same data might be used multiple times in the history stack
H (data richness deteriorates), and the monotonic increment
of the minimum singular values cannot be guaranteed (con-
vergence rate of the estimated parameter is discouraged). To
ensure monotonic increment of the minimum singular values,
in our algorithm, the newly coming data always compares with
the latest data inserted into the history stack H. Note that the
history stack volume P is a hyperparameter that requires care-
ful tuning, which requires P ≥ m to satisfy the rank condition
in Assumption 2, where m is the dimension of the desired
coefficient vector θ∗. The pseudocode of the history stack
management algorithm is shown as Algorithm 1.

Remark 3: In very special cases, it is still possible that the
collected historical data from one single trajectory might not
be rich enough to satisfy the rank condition in Assumption 2.
To counter this potential data deficiency problem, in the initial
learning period, a random noise 	 can be incorporated into
the regressor matrix, i.e., Yf ← Yf +	, within a short time to

Fig. 1. Schematic of the proposed method that consists of the TF-CL aided
system identification process followed by the BLF-based controller design.

enable Algorithm 1 to collect the historical data that the real
system does not experience. The random noise 	 is abandoned
once the rank condition in Assumption 2 is satisfied.

V. CONTROLLER DESIGN FOR ROBOT MANIPULATOR

In this section, based on the identified system from
Section III, a recursive controller design process is clarified
to yield a stable adaptive control strategy by the backstepping
technique and Lyapunov analysis, as shown in Fig. 1.

The resulting control strategy renders the time derivative
of the BLF (10) to be always negative semidefinite, which
guarantees that with a finite initial value of the BLF, then
the BLF value will always be bounded during the tracking
process. The boundness of the BLF implies that the safety
set (7) and the performance set (8) will not be transgressed,
i.e., requirements of safety and performance are both satisfied.
Note that since an SBLF is a special case of an ABLF, the
following derivation is based on an ABLF, which makes the
controller design more challenging.

Recall the tracking error e1 = x1 − yd in (5) and define the
error e2 = x2 − α, where α ∈ R

n is a stabilizing function to
be designed.

Step 1: For the n-link robot manipulator, the following
ABLF candidate is chosen to design a controller:

V1 = 1

2

n∑

i=1

p
(
e1i

) e2
1i

k2
bi
− e2

1i

+ (1− p
(
e1i

)) e2
1i

k2
ai
− e2

1i

. (23)

Taking the time derivative of V1 yields

V̇1 =
n∑

i=1

p
(
e1i

) k2
bi

e1i ė1i
(

k2
bi
− e2

1i

)2
+ (1− p

(
e1i

)) k2
ai

e1i ė1i
(

k2
ai
− e2

1i

)2
.

(24)

The time derivative of e1 is

ė1 = ẋ1 − ẏd = x2 − ẏd = e2 + α − ẏd. (25)

Substituting (25) into (24) yields

V̇1 =
n∑

i=1

p
(
e1i

)k2
bi

e1i

(
e2i + αi − ẏdi

)

(
k2

bi
− e2

1i

)2

+ (1− p
(
e1i

))k2
ai

e1i

(
e2i + αi − ẏdi

)

(
k2

ai
− e2

1i

)2
(26)
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where αi and ẏdi are the ith dimension of α and ẏd, respec-
tively. In order to make (26) be negative semidefinite, the
stabilizing function α is designed as

α = ẏd − p(e1)
(

k	b kb − e	1 e1

)2
k1e1

− (1− p(e1))
(

k	a ka − e	1 e1

)2
k1e1 (27)

where k1 ∈ R
n×n is a diagonal matrix of positive constants,

and its ith diagonal entry is denoted as k1i. Since asym-
metric constraints are considered in this article, the last two
terms of (27) are designed to characterize the upper and lower
constraint boundaries, i.e., kb and −ka, respectively.

For simplicity, denoting L =∑n
i=1 p(e1i) [(k2

bi
e1i e2i)/((k

2
bi−e2

1i
)2)] + (1−p(e1i)) [(k2

ai
e1i e2i)/((k

2
ai
−e2

1i
)2)]. Then, (26)

can be rewritten as the following form based on (27):

V̇1 = −
n∑

i=1

p(e1i)k1i k
2
bi

e2
1i
+ (1− p(e1i))k1i k

2
ai

e2
1i
+ L

= −e	1 k1[p(e)k	b kb + (1− p(e))k	a ka]e1 + L

= −e	1 K1e1 + L (28)

where K1 = k1[p(e)k	b kb + (1 − p(e))k	a ka] ∈ R
n×n is a

positive-definite matrix.
Step 2: We define

V2 = 1

2
e	2 M(x1)e2 (29)

and choose

Vblf = V1 + V2. (30)

The time derivative of Vblf is

V̇blf = V̇1 + V̇2 = V̇1 + e	2 M(x1)ė2 + 1

2
e	2 Ṁ(x1)e2. (31)

Considering (3), the time derivative of e2 follows:

ė2 = ẋ2 − α̇

= M−1(x1)(τ − C(x1, x2)x2 − G(x1)− Fx2)− α̇. (32)

Invoking (28), (31), and (32) yields

V̇blf = −e	1 K1e1 + L+ e	2
[
τ − C(x1, x2)x2 − G(x1)

− Fx2 −M(x1)α̇ + 1

2
Ṁ(x1)e2

]

(33)

where the stabilizing function α is defined in (27).
If an accurate model is available, a stabilizing control law

can be directly designed as

τ = M(x1)α̇ + C(x1, x2)x2 + G(x1)+ Fx2

− k2e2 −
(

e	2
)+

L− 1

2
Ṁ(x1)e2 (34)

where k2 ∈ R
n×n is a matrix of positive constants to be

designed, (e	2 )+L is a stabilizing term, and + stands for the
Moore–Penrose inverse.

Accurate model information is required in (34) to design
a stabilizing control law, but it is not always available. To

provide an approximation of the unknown model information
existing in the right-hand side of (34), comparing the dif-
ference between (2) and (34), a double regressor matrices
technique for the TF-CL is introduced here. Specifically speak-
ing, like the regressor matrix Y(q, q̇, q̈) that is proposed for
approximation of the system (2), a new regressor matrix
X(x1, x2, α, α̇) is formulated to approximate the unknown
model in (34). Based on the newly designed X(x1, x2, α, α̇),
the following approximation equation establishes:

X(x1, x2, α, α̇)θ∗ = M(x1)α̇ + C(x1, x2)x2

+ G(x1)+ Fx2 − 1

2
Ṁ(x1)e2 (35)

where X(x1, x2, α, α̇) ∈ R
n×m is a regressor matrix constructed

based on the information of x1, x2, α, and α̇. We defer a
detailed discussion of the relationship between regressor matri-
ces X(x1, x2, α, α̇) and Y(q, q̇, q̈) in Remark 4 and focus now
on the design of the parameter estimation update law for the
BLF-based controller with help of the new regressor matrix
X(x1, x2, α, α̇).

Based on (35), the model based control law (34) can be
reformulated as

τ = X(x1, x2, α, α̇)θ∗ − k2e2 − (e	2 )+L. (36)

Since θ∗ is unknown and only θ̂ is available, based on the
double regressor matrices technique, a TF-CL-aided param-
eter estimation update law for the BLF-based controller is
designed as

˙̂
θ = −�X	e2 − �ktY

	
f ef −

P∑

j=1

�khY	fj efj . (37)

Comparing the difference between (22) and (37), the first
term of (37) is designed as a stabilizing term, which serves
to provide the stability proof in Theorem 2. By adjusting the
values of �, kt, and kh, the importance of each part to the
parameter estimation update law is traded off. Finally, based
on the estimated parameter vector θ̂ from the TF-CL method,
the stabilizing control law (36) can be rewritten as

τ = X(x1, x2, α, α̇)θ̂ − k2e2 −
(

e	2
)+

L. (38)

Remark 4: Observing (2) and (35), we find that these
two equations share the same coefficient vector θ∗ but with
different regressor matrices. The double regressor matrices
technique illustrated here makes a combination of the TF-CL
method and the BLF-based control strategy feasible. Y(q, q̇, q̈)

is a regressor matrix fully dependents on the model structure.
X(x1, x2, α, α̇) is a regressor matrix constructed based on both
model properties and the stabilizing function α.
In the reaming part of this section, the main conclusions of
this article and the corresponding proofs are given based on
the parameter estimation update law (37) and the stabilizing
control law (38).

Theorem 2: Consider an n-link robot manipulator in (1),
the parameter estimation update law (37) and the control pol-
icy (38). Given Assumptions 1 and 2, for initial values of the
system output and the tracking error lying in the predefined
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safety set (7) and performance set (8), the following properties
hold.

1) The tracking error e1, error e2, and parameter estimation
error θ̃ are stable and converge to 0 asymptotically.

2) The tracking error e1 is bounded by �e1 , where

�e1 =
{
e1 ∈ R

n : − Ue1
≤ e1 ≤ Ue1

} ∈ P (39)

where Ue1
= [Ue1i

, . . . , Ue1n
]	 ∈ R

n, Ue1i
=

kai

√
[(2V(0))/(1+ 2V(0))]; Ue1 = [Ue1i

, . . . , Ue1n
]	 ∈

R
n, Ue1i

= kbi

√
[(2V(0))/(1+ 2V(0))]; V(0) is the

value of the BLF at t = 0. The error e2 remains in
the compact set �e2

�e2 =
{

e2 ∈ R
n:‖e2‖ ≤

√
2V(0)

λmin(M)

}

. (40)

3) For all t > 0, there holds y(t) ∈ �y, where

�y =
{

y ∈ R
n : − Ue1

− y
d
� y� Ue1 + yd

}
∈ S̄.

(41)

Proof: See Appendix B.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, both numerical simulations and experiments
are implemented to show the effectiveness of the proposed
parameter estimation update law (37) and the BLF-based con-
trol strategy (38). Numerical simulations are first conducted
on a popular 2-DoF robot manipulator [40], [52] in two cases:
1) a static coefficient vector and 2) a time-varying coefficient
vector. The 2-DoF robot manipulator model can serve as a
benchmark problem to test whether the TF-CL method can
enable the estimated parameters to converge to the desired
values. Then, experiments are applied to a more complex 3-
DoF robot manipulator to show the superiority of our method.
Unlike the numerical simulations presented in Section VI-A,
the desired values of θ∗ is unknown for the 3-DoF robot
manipulator case. By using the collected historical data, the
parameter convergence result is shown, and the satisfaction of
both safety and performance criteria are achieved.

A. Illustrated Example on 2-DoF Robot Manipulator

1) 2-DoF Robot Manipulator With Static Coefficient Vector:
To test the effectiveness of the proposed method, a 2-DoF
robot manipulator is chosen as a benchmark example. For
brevity, denoting c2 = cos q2, s2 = sin q2. The white-box
model of the 2-DoF robot manipulator is given as

M(q)q̈+ C(q, q̇)q̇+ Fq̇ = τ (42)

where q = [q1, q2]	 ∈ R
2, q̇ = [q̇1, q̇2]	 ∈ R

2,

M(q) =
[

p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

]
∈ R

2×2, C(q, q̇) =
[−p3q̇2s2 −p3(q̇1 + q̇2)s2

p3q̇1s2 0

]
∈ R

2×2, and F =
[

f1 0
0 f2

]
∈ R

2×2.

The filtered regressor matrices Y1(q, q̇) ∈ R
2×5 and

Y2(q, q̇) ∈ R
2×5 and the coefficient vector θ∗ ∈ R

5 for the

Fig. 2. Evolution of values for the estimated parameter vector θ̂ using the
TF-CL method.

Fig. 3. Evolution of values for the parameter estimation errors θ̃ using the
TF-CL method.

TF-CL method are given as

Y1(q, q̇) =
[

q̇1 q̇2 2q̇1c2 + q̇2c2 0 0
0 q̇1 + q̇2 q̇1c2 0 0

]
(43)

Y2(q, q̇) =
[

0 0 0 q̇1 0
0 0 q̇1q̇2s2 + q̇2

1s2 0 q̇2

]
(44)

θ∗ = [p1 p2 p3 f1 f2
]	

. (45)

For simulation, according to [52], the desired values of θ∗ are
set as p1 = 3.473, p2 = 0.196, p3 = 0.242, f1 = 5.3, and
f2 = 1.1. The regressor matrix X(q, q̇, α, α̇) ∈ R

2×5 in (38)
follows:

X(q, q̇, α, α̇) =
[
α̇1 0 X1 q̇1 0
0 α̇1 + α2 X2 0 q̇2

]
(46)

where α = [α1, α2]	 ∈ R
2, X1 = 2α̇1c2 + α̇2c2 − 1/2q̇2

2s2 −
q̇1q̇2s2+(1/2α2−α1)q̇2s2 and X2 = α̇1c2+q̇2

1s2+1/2q̇1q̇2s2−
1/2α̇1. In simulation, hyperparameters for the TF-CL part are
set as � = I5×1, kt = 200, kh = 0.001, P = 7, and ε =
0.1. The time constant of the filter is set as k = 0.001. The
initial values of the estimated parameters are set as θ̂ (0) =
[0, 9, 6, 0, 0]	.

As for the ABLF-based control law (38), the control param-
eters are set as k1 = diag(40, 30) and k2 = diag(30, 40).
yd = [ sin 0.5t, 2 cos 0.5t]	 is chosen as the desired trajec-
tory. The required safety and performance issues for the two
joints are set as follows. For joint 1, the safety set is chosen
as S̄1 = {−1.17 < q1 < 1.2}, the performance set follows
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Fig. 4. Trajectories of q1, q2 and their reference trajectories q1r , q2r under the proposed control strategy (38). (a) Trajectory of q1 and reference q1r , safety
bound kd1 and kc1 . (b) Trajectory of q2 and reference q2r , safety bound kd2 and kc2 .

Fig. 5. Trajectories of the tracking errors of joint 1 e11 and joint 2 e12 ,
performance bound kb and −ka.

P1 = {−0.17 < e11 < 0.2}; For joint 2, the safety set is
set as S̄2 = {−2.17 < q2 < 2.2}, the performance set is
chosen as P2 = {−0.17 < e12 < 0.2}. To ensure that the
2-DoF robot manipulator track the desired trajectory while sat-
isfying the above-illustrated safety and performance criteria,
parameters are set as kc = [−1.17,−2.17]	, kd = [1.2, 2.2]	,
ka = [0.17, 0.17]	, and kb = [0.2, 0.2]	. In order to ensure
initial values lie in the corresponding safety and performance
sets, we choose x1(0) = [0, 2]	, and x2(0) = [0.5, 0]	.

The parameter estimation update law (37) is adopted for
the online estimation of the unknown coefficient vector θ∗. In
Fig. 2, without incorporating external noises to satisfy the PE
condition, the estimated parameters converge to the desired
values. The corresponding parameter estimation errors are
shown in Fig. 3, where they finally converge to a small neigh-
borhood around 0, which means that an estimated model with
high quality is gotten. However, even though a good track-
ing performance is achieved in [20], the norm of estimated
weights does not converge.The proposed control law (38) is
applied to the system and the simulation results are shown as
follows. Fig. 4(a) and (b) shows that trajectories of q1 and
q2 can follow their desired trajectories q1r and q2r precisely.
The safety set S̄1 for q1 with upper bound kd1 and lower
bound kc1 , and safety set S̄2 for q2 with upper bound kd2

Fig. 6. Trajectories of the control τ under the proposed control strategy (38).

and lower bound kc2 are never be violated during the track-
ing process.The tracking errors of the two joints are shown
in Fig. 5. Tracking errors of the two joints finally con-
verge to 0 and always lie in the required performance set
P1 and P2, respectively. Note that in simulation, P1 and
P2 share the same upper bound kb and lower bound −ka.
The control trajectory is shown in Fig. 6, where τ oscil-
lates when the estimated parameter vector is in the converging
process. From the above analysis, it is concluded that the
proposed parameter estimation update law (37) guarantees
that the estimated parameters converge to their desired val-
ues. The control strategy given in (38) can drive the 2-DoF
robot manipulator to track the reference trajectory precisely
and satisfy the requirements of safety and performance
together.

2) 2-DoF Robot Manipulator With Time-Varying Coefficient
Vector: For the 2-DoF robot manipulator, to test the effec-
tiveness of the proposed parameter estimation update law to
counter time-varying uncertainties in terms of unknown pay-
loads or friction parameters, the initial desired coefficient
vector θ∗ = [3.473, 0.196, 0.242, 5.3, 1.1]	 is randomly reset
as a new desired parameter vector θ∗d = [4, 0.2, 0.3, 5.6, 0.8]	
at time t = 50s. In practice, only parts of the coefficient vector
will change due to environmental effects on the mass, length,
or friction parameters, a hard disturbance is chosen here
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Fig. 7. Evolution of values for the estimated parameter vector θ̂ , where an
additional disturbance is incorporated at t = 50 s.

to show the superiority of the proposed method. Simulation
results with a time-varying coefficient vector are shown from
Figs. 7–11.

Fig. 7 shows trajectories of the estimated parameters, where
an additional disturbance is incorporated at t = 50 s. As dis-
played in Fig. 7, in the first 50 s, the estimated parameters
converge to the initial desired values of θ∗. When an additional
disturbance is added at t = 50 s, the TF-CL method collects
new data and enables the estimated parameters to finally con-
verge to the new desired values of θ∗d . As shown in Fig. 8, the
trajectories of parameter estimation errors abruptly change at
t = 50s when an additional disturbance is added. Then, the
parameter estimation errors still converge to a small neighbor-
hood around zero. Fig. 9(a) and (b) demonstrates that under the
proposed control strategy (38), two joints track their reference
trajectories efficiently and will not violate their corresponding
predefined safety sets S̄1 and S̄2 even when additional distur-
bance is added. The tracking errors of the two joints are shown
in Fig. 10. It can be observed that the tracking errors e11 and
e12 oscillate when the disturbance is added at time t = 50
s, then they finally converge to 0. The tracking errors always
lie in the given performance set defined by lower bound −ka

and upper bound kb. The control trajectories given in Fig. 11
could provide additional information about the influence of the
time-varying uncertainties on the control strategy. When the
disturbance is added at t = 50 s, the magnitude of control τ1
increases, and the magnitude of control τ2 decreases in order
to drive the robot to track the desired trajectory.

B. Experimental Validation on 3-DoF Robot Manipulator

Here, the proposed control strategy and the parameter esti-
mation update law are applied to a 3-DoF robot manipulator
to show their effectiveness. The 3-DoF robot manipulator
(see Fig. 12), created by the Chair of Automatic Control
Engineering (LSR), Technical University of Munich (TUM),
is adopted in this article. The experiment configurations are
as follows. The manipulator is actuated by 3 Maxon torque
motors with a turn ratio of 1:100. The incremental encoders
offer the joint position measurements with a resolution of
2000. The sensors and actuators are connected with the
computer using a peripheral component interconnect (PCI)
communication card. The executable algorithm is created by
MATLAB 2017a in Ubuntu 14.04 LTS with the first-order

Fig. 8. Evolution of the parameter estimation error θ̃ , where an additional
disturbance is incorporated at t = 50 s.

Euler solver at the sampling rate of 1 kHz. More detailed
information about the manipulator kinematics and dynamics
can be found in [53] and [54].

Since the robot manipulator is confined in the horizontal
plane, the gravity term is omitted here. Thus, the E–L equation
of the 3-DoF robot manipulator follows:

M(q)q̈+ C(q, q̇)q̇+ Fq̇ = τ (47)

where

q = [q1, q2, q3
]	 ∈ R

3, q̇ = [q̇1, q̇2, q̇3
]	 ∈ R

3

M(q) =
⎡

⎣
m11 m12 m13
m12 m22 m23
m13 m23 m33

⎤

⎦ ∈ R
3×3

F =
⎡

⎣
f1 0 0
0 f2 0
0 0 f3

⎤

⎦ ∈ R
3×3

and C(q, q̇)q̇ = [N1, N2, N3]	 ∈ R
3.

For brevity, denoting c23 = cos(q2 + q3), s3 = sin q3, and
s23 = sin(q2 + q3); For each element of the inertial matrix
M(q), m11 = p1+p2c23+p3c2+p4c3, m12 = p5+p6c23+p7c2+
p4c3, m13 = p8+p6c23+p9c3, m22 = p5+p10c3, m23 = p8+
p9c3, and m33 = p8; Besides, N1 = −p2(s23q̇1q̇3 + s23q̇2q̇3 +
s23q̇1q̇2)−p3s2q̇1q̇2−p4(s3q̇1q̇3+s3q̇2q̇3)−p6(s23q̇2

2+s23q̇2
3)−

p7s2q̇2
2−p9s3q̇2

3, N2 = p7s2q̇2
1+p6s23q̇2

1−p9s3q̇2
3−p4s3q̇1q̇3−

p4s3q̇2q̇3, and N3 = p9(s3q̇2
1+ s3q̇2

2)+p6s23q̇2
1+p4s3q̇1q̇2. For

brevity, as for viscous friction values, f1 = f2 = f3 = f is
assumed.

According to the above-illustrated model structure, the
unknown coefficient vector θ∗ ∈ R

11 can be written as

θ∗ = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, f
]	

. (48)

The corresponding filtered regressor matrices Y1(q, q̇),
Y2(q, q̇) ∈ R

3×11 are given as

Y1(q, q̇) = [Y11, Y12, Y13]	 (49)

where Y11, Y12, Y13 ∈ R
1×11 are in the following forms:

Y11 =
[
q̇1, c23q̇1, c2q̇1, c3q̇1 + c3q̇2, q̇2, c23q̇2

+ c23q̇3, c2q̇2, q̇3, c3q̇3, 0, 0
]

Y12 =
[
0, 0, 0, c3q̇1, q̇1

+ q̇2, c23q̇1, c2q̇1, q̇3, c3q̇3, c3q̇2, 0
]
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Fig. 9. Trajectories of q1 and q2 and their reference trajectories q1r and q2r where an additional disturbance is incorporated at t = 50 s. (a) Trajectory of
q1 and reference q1r , safety bound kd1 and kc1 , where an additional disturbance is incorporated at t = 50 s. (b) Trajectory of q2 and reference q2r , safety
bound kd2 and kc2 , where an additional disturbance is incorporated at t = 50s.

Fig. 10. Trajectories of the tracking errors e11 and e12 , performance bound
kb and −ka, where an additional disturbance is incorporated at t = 50 s.

Fig. 11. Trajectories of the control τ , where an additional disturbance is
incorporated at t = 50 s.

and Y13 =
[
0, 0, 0, 0, 0, c23q̇1, 0, q̇1

+ q̇2 + q̇3, c3q̇1 + c3q̇2, 0, 0
]

Y2(q, q̇) = [Y21, Y22, Y23]	 (50)

where Y21, Y22, Y23 ∈ R
1×11 follows:

Y21 =
[
0, s23(q̇2 + q̇3)q̇1 − s23q̇1q̇2 − s23q̇1q̇3

− s23q̇2q̇3, 0, 0, 0, s23(q̇2 + q̇3)q̇2 + s23(q̇2 + q̇3)q̇3

− s23q̇2
2 − s23q̇2

3, 0, 0, 0, 0, q̇1

]

Fig. 12. 3-DoF Robot manipulator for experimental validation.

Fig. 13. Reference trajectories for three joints.

Y22 =
[
0, 0, 0,−s3q̇2q̇3, 0, s23(q̇2 + q̇3)q̇1

+ s23q̇2
1, s2q̇1q̇2 + s2q̇2

1, 0, 0, s3q̇2q̇3, q̇2

]

and

Y23 =
[
0, 0, 0, s3q̇1q̇2, 0, s23(q̇2 + q̇3)q̇1 + s23q̇2

1, 0, 0, s3q̇1q̇3

+ s3q̇2q̇3 + s3q̇2
2 + s3q̇2

1, 0, q̇3

]
.

The regressor matrix X(q, q̇, α, α̇) ∈ R
3×11 in (38) follows:

X(q, q̇, α, α̇) = [X1, X2, X3]	 (51)
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Fig. 14. Experimental results: trajectories of the tracking error e for three joints under different payloads. (a) Trajectories of the tracking error e11 under
different payloads. (b) Trajectories of the tracking error e12 under different payloads. (c) Trajectories of the tracking error e13 under different payloads.

where X1, X2, X3 ∈ R
1×11 terms are defined as

X1 =
[
α̇1, c23α̇1 − s23q̇1q̇2 − s23q̇1q̇3 − s23q̇2q̇3

+ 0.5s23(q̇2 + q̇3)(q̇1 − α1), c2α̇1 − s2q̇1q̇2

+ 0.5s2q̇2(q̇1 − α1), c3α̇2 + c3α̇1 − s3q̇1q̇3

− s3q̇2q̇3 + 0.5s3q̇3(q̇1 − α1)+ 0.5s3q̇3(q̇2 − α2)

α̇2, c23α̇2 + c23α̇3 − s23q̇2
2 − s23q̇2

3 + 0.5s23(q̇2 + q̇3)

× (q̇2 − α2)+ 0.5s23(q̇2 + q̇3)(q̇3 − α3), c2α̇2

− s2q̇2
2 + 0.5s2q̇2(q̇2 − α2), α̇3, c3α̇3 − s3q̇2

3

+ 0.5s3q̇3(q̇3 − α3), 0, q̇1
]

X2 =
[
0, 0, 0, c3α̇1 − s3q̇1q̇3 − s3q̇2q̇3 + 0.5s3q̇3(q̇1 − α1)

α̇1 + α̇2, c23α̇1 + s23q̇2
1 + 0.5s23(q̇2 + q̇3)(q̇1 − α1)

c2α̇1 + s2q̇2
1 + 0.5s2q̇2(q̇1 − α1), α̇3, c3α̇3 − s3q̇2

3

+ 0.5s3q̇3(q̇3 − α3), c3α̇2 + 0.5s3q̇3(q̇2 − α2), q̇2
]

and

X3 =
[
0, 0, 0, s3q̇1q̇2, 0, s23q̇2

1 + c23α̇1 + 0.5s23(q̇2 + q̇3)

(q̇1 − α1), 0, α̇1 + α̇2 + α̇3, c3α̇1 + c3α̇2 + s3q̇2
1

+ s3q̇2
2 + 0.5s3q̇3(q̇1 − α1)+ 0.5s3q̇3(q̇2 − α2), 0, q̇3

]
.

During the experiment, the 3-DoF robot manipulator is
driven to track the desired sinusoidal trajectory qr ∈ R

3 that
is designed as

qr =
(

1+ sin
( t

2
− π

2

))
kamp, 5 ≤ t ≤ 143 (52)

where kamp = [0.2, 0.5, 0.8]	 is the coefficient vector to dis-
tribute different amplitudes to each joint. The desired trajecto-
ries of the three joints are displayed in Fig. 13. Considering the
required safety and performance issues, for joint 1, the safety
set is set as S̄1 = {−0.1 < q1 < 0.52}, the performance set is
chosen as P1 = {−0.1 < e11 < 0.12}; for joint 2, the safety
set is designed as S̄2 = {−0.1 < q2 < 1.15}, the performance
set follows P2 = {−0.1 < e12 < 0.15}. The safety set and
performance set for joint 3 follow S̄3 = {−0.15 < q3 < 1.8}
and P3 = {−0.15 < e13 < 0.2}, respectively. To ensure that
the 3-DoF robot manipulator tracks the desired trajectory while
satisfying the above safety and performance criteria, parame-
ters are set as ka = [0.1, 0.1, 0.15]	, kb = [0.12, 0.15, 0.2]	,
kc = [−0.1,−0.1,−0.15]	, and kd = [0.52, 1.15, 1.8]	.

During the experiment, parameters for the TF-CL method
are set as: � = 0.06I11×1, kh = 0.4, kt = 0.8, P = 15,

Fig. 15. Experimental results: Evolution of values for the estimated parameter
vector θ̂ using the TF-CL method for without load case.

and ε = 0.1. Note that comparing to the simulation part, a
smaller value of kt is chosen here to suppress the influence of
external noises existing in practical experiments. Time con-
stant of the filter is set as k = 0.001. The initial values of
the estimated parameters are set as θ̂ (0) = 011×1. For the
ABLF-based control law (38), control parameters are set as
k1 = diag(20, 20, 20) and k2 = diag(25, 25, 25). The initial
values are set as x1(0) = [0, 0, 0]	 and x2(0) = [0, 0, 0]	.

To verify the robustness of the proposed method, the exper-
iment is conducted with different payloads under the above
same parameter settings. The payloads are installed to the end
effector of the manipulator. The tracking errors of the three
joints with different payloads are displayed in Fig. 14(a)–(c),
respectively. It can be observed that during the experiment,
even under different payloads, the robot manipulator can track
the desired trajectory well, tracking errors always lie in the
required performance set Pi, i = 1, 2, 3.For the robot manip-
ulator without the payload case, the convergence result of
the estimated parameters is shown in Fig. 15. As displayed
in Fig. 15, in the beginning, the estimated parameters reach
undesirable values with limited data. When rich enough data
are recorded, the TF-CL technique effectively identifies the
unknown parameters and parameter convergence is achieved.
Note that the regular peaks of the estimated parameters are
caused by encoder position drifting.

VII. CONCLUSION

This article presented a stable adaptive control strategy
with guaranteed safety and performance based on ABLF, TF-
CL, and backstepping methods. The TF-CL-based parameter
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estimation update law guarantees that without incorporating
external noises to satisfy the PE condition, the estimated
parameters converge to the desired values fast. The information
of joints acceleration is avoided by the torque filtering tech-
nique. Based on the estimated model, the proposed control
strategy can drive the uncertain n-link robot manipulator to
track the desired trajectory efficiently, while satisfying the
requirements of safety and performance simultaneously. It is
proven that the system output always remains in the predefined
safety set, the tracking error is bounded by the performance
set, and the parameter estimation error finally converges to 0
asymptotically. Both simulation and experimental results show
the effectiveness of the proposed parameter estimation update
law and the control strategy. To improve the generality and
practicability of our method, the future work aims to extend
the developed method to provide guaranteed performance and
safety on full states even under the consideration of input
saturation. Besides, the considered safety issue regarding the
restricted operation range in this article allows us to integrate
objectives of both safety and performance. The future work
aims to extend the proposed method to tackle general safety
concepts, e.g., collision avoidance with dangerous regions.

APPENDIX A
PROOF OF THEOREM 1

Let Vcl : Rm → R be a candidate continuously differential
Lyapunov function defined as

Vcl = 1

2
θ̃	�−1θ̃ . (53)

The bound of the Lyapunov function is

1

2
λmin(�

−1)

∥∥∥θ̃
∥∥∥

2 ≤ Vcl ≤ 1

2
λmax(�

−1)

∥∥∥θ̃
∥∥∥

2
. (54)

Calculating time derivative of Vcl and substituting (22) into it
yields

V̇cl = θ̃	�−1 ˙̃θ = θ̃	�−1 ˙̂θ

= −ktθ̃
	Y	f ef − θ̃	

P∑

j=1

khY	fj efj

= −ktθ̃
	Y	f Yf θ̃ − θ̃	

P∑

j=1

khY	fj Yfj θ̃

≤ −θ̃	
P∑

j=1

khY	fj Yfj θ̃ = −θ̃	Qθ̃ (55)

where Q = ∑P
j=1 khY	fj Yfj ∈ R

m×m. According to
Assumption 2, Q is positive definite and λmin(Q) is a positive
constant. Thus, the following inequality holds:

V̇cl ≤ −λmin(Q)

∥∥∥θ̃
∥∥∥

2
. (56)

It is concluded that the parameter estimation error will con-
verge to zero asymptotically. This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof of 1): For the stability proof, let Z = [e1, e2, θ̃ ]	 ∈
R

2n+m and consider the following Lyapunov function:

V(Z) = Vblf + Vcl. (57)

The time derivative of (57) based on (55) and (33) yields

V̇(Z) = V̇blf + V̇cl

= −e	1 K1e1 + L+ e	2
[
τ − C(x1, x2)x2 − G(x1)

− Fx2 −M(x1)α̇ + 1

2
Ṁ(x1)e2

]

+ θ̃	�−1 ˙̃θ. (58)

Substituting (35), (37) and (38) into (58) follows:

V̇(Z) = −e	1 K1e1 + L+ e	2
[

Xθ̂ − k2e2 −
(

e	2
)+

L− Xθ∗
]

+ θ̃	�−1 ˙̂θ
= −e	1 K1e1 − e	2 k2e2 + e	2 Xθ̃ + θ̃	�−1

×
⎡

⎣−�X	e2 − �ktY
	
f ef −

P∑

j=1

�khY	fj efj

⎤

⎦

= −e	1 K1e1 − e	2 k2e2 − ktθ̃
	Y	f Yf θ̃ − θ̃	

P∑

j=1

khY	fj

×
(

Yfj θ̂j − τfj

)

= −e	1 K1e1 − e	2 k2e2 − ktθ̃
	Y	f Yf θ̃ − θ̃	

P∑

j=1

khY	fj

×
(

Yfj θ̂j − Yfjθ
∗)

≤ −e	1 K1e1 − e	2 k2e2 − θ̃	
P∑

j=1

khY	fj Yfj θ̃ . (59)

Let N = diag(K1, k2, Q) ∈ R
(2n+m)×(2n+m) with Q =∑P

j=1 khY	fj Yfj ∈ R
m×m, (59) can be rewritten as

V̇(Z) ≤ −Z	NZ ≤ −λmin(N)‖Z‖2 (60)

where λmin(N) = min(λmin(K1), λmin(k2), λmin(Q)). Finally,
it is concluded that the tracking error e1, the error e2, and the
parameter estimation error θ̃ converge to zero asymptotically.

Proof of 2): Since V(Z) is positive definite and V̇(Z) < 0
according to (60), V(Z) ≤ V(Z(0)) establishes. From V(Z) =
V1(e1)+V2(e2)+Vcl(θ̃) and the fact that V2(e2) and Vcl(θ̃) are
positive functions, it is concluded that V1(e1) < V(Z(0)), i.e.,
V1(e1) is bounded. From characteristics of the ABLF (23),
when e1 → −ka or e1 → kb, V1(e1) → ∞. The bound-
ness of V1(e1) means that e1 �= −ka or e1 �= kb. Given that
−ka � e1(0) � kb, it is concluded that −ka � e1(t) �
kb,∀t > 0, which means that the tracking error always lies
in the required performance set (8). Besides, from the above
analysis, we know that V1(e1) < V(0). To get the bound of
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e1, first we take the ith element of e1 as an example. For e1i ,
the following inequalities establish:

V(0) >

⎧
⎪⎪⎨

⎪⎪⎩

e2
1i

2
(

k2
bi
−e2

1i

) 0 < e1i < kbi

e2
1i

2
(

k2
ai
−e2

1i

) −kai < e1i < 0.

(61)

It can be represented as the following equivalent form:

e2
1i

<

{
k2

bi

2V(0)
1+2V(0)

0 < e1i < kbi

k2
ai

2V(0)
1+2V(0)

−kai < e1i < 0.
(62)

From above it is concluded that for e1i > 0,
e1i < kbi

√
[(2V(0))/(1+ 2V(0))], and e1i >

−kai

√
[(2V(0))/(1+ 2V(0))] when e1i < 0.

Furthermore since
√

[(2V(0))/(1+ 2V(0))] < 1,
−kai < −kai

√
[(2V(0))/(1+ 2V(0))] < e1i <

kbi

√
[(2V(0))/(1+ 2V(0))] < kbi establishes. Consider

all elements of e1 and the performance set P in (8), (39)
establishes.

Consider the case of e2, since V2(e2) = 1/2e	2 Me2 < V(0),
‖e2‖ ≤ √[(2V(0))/(λmin(M))] establishes, i.e., e2 remains in
the set �e2 .

Proof of 3): The output y = x1 = e1+yd. According to (39),
−Ue1

≤ e1 ≤ Ue1 establishes. We know that −y
d
≤ yd ≤ yd

from Assumption 1, it is easy to get that −Ue1
− y

d
≤ y ≤

Ue1+yd. Since Ue1
� ka and Ue1 � kb, −ka−y

d
� −Ue1

−
y

d
� 0 and 0� Ue1 + yd � kb+ yd establishes, i.e., �y ∈ P̄ .

Since −ka and kb are chosen to satisfy P̄ ⊆ S̄ , �y ∈ S̄
also establishes, i.e., system outputs will not transgress the
predefined safety set (7). This completes the proof.

REFERENCES

[1] D. P. Bertsekas, Approximate Dynamic Programming. Belmont, MA,
USA: Athena Sci., 2012.

[2] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
Gaussian processes,” in Proc. IEEE 55th Conf. Decis. Control (CDC),
Las Vegas, NV, USA, 2016, pp. 4661–4666.

[3] A. Bemporad, “Reference governor for constrained nonlinear systems,”
IEEE Trans. Autom. Control, vol. 43, no. 3, pp. 415–419, Mar. 1998.

[4] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[5] A. D. Ames and M. Powell, “Towards the unification of locomotion and
manipulation through control Lyapunov functions and quadratic pro-
grams,” in Control of Cyber-Physical Systems. Heidelberg, Germany:
Springer, 2013, pp. 219–240.

[6] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proc. Vol., vol. 40, no. 12, pp. 462–467, 2007.

[7] E. F. Camacho and C. B. Alba, Model Predictive Control. London, U.K.:
Springer, 2013.

[8] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” Int. J. Robust Nonlinear
Control IFAC Affiliated J., vol. 18, no. 8, pp. 816–830, 2008.

[9] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based rein-
forcement learning for approximate optimal regulation,” in Control of
Complex Systems. Oxford, U.K.: Elsevier, 2016, pp. 247–273.

[10] R. Vinter, Optimal Control. Boston, MA, USA: Springer, 2010.
[11] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. New York,

NY, USA: Wiley, 2012.
[12] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe exploration for

optimization with Gaussian processes,” in Proc. 32nd Int. Conf. Mach.
Learn. Res., vol. 37, 2015, pp. 997–1005.

[13] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[14] H. K. Khalil and J. W. Grizzle, Nonlinear Systems, vol. 3. Upper Saddle
River, NJ, USA: Prentice-Hall, 2002.

[15] W. Sun, Y. Liu, and H. Gao, “Constrained sampled-data ARC for a
class of cascaded nonlinear systems with applications to motor-servo
systems,” IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 766–776,
Feb. 2019.

[16] K. B. Ngo, R. Mahony, and Z.-P. Jiang, “Integrator backstepping
using barrier functions for systems with multiple state constraints,”
in Proc. 44th IEEE Conf. Decis. Control, Seville, Spain, 2005,
pp. 8306–8312.

[17] K. P. Tee and S. S. Ge, “Control of nonlinear systems with full state
constraint using a barrier Lyapunov function,” in Proc. 48th IEEE Conf.
Decis. Control (CDC) Held Jointly 28th Chin. Control Conf., Shanghai,
China, 2009, pp. 8618–8623.

[18] W. He, Z. Yin, and C. Sun, “Adaptive neural network control of a marine
vessel with constraints using the asymmetric barrier Lyapunov function,”
IEEE Trans. Cybern., vol. 47, no. 7, pp. 1641–1651, Jul. 2017.

[19] K. P. Tee, B. Ren, and S. S. Ge, “Control of nonlinear systems with time-
varying output constraints,” Automatica, vol. 47, no. 11, pp. 2511–2516,
2011.

[20] W. He, H. Huang, and S. S. Ge, “Adaptive neural network control of a
robotic manipulator with time-varying output constraints,” IEEE Trans.
Cybern., vol. 47, no. 10, pp. 3136–3147, Oct. 2017.

[21] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control, vol. 13. New York, NY, USA: Springer, 2013.

[22] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator
Control: Theory and Practice. Boca Raton, FL, USA: CRC Press, 2003.

[23] J. Villadsen and M. L. Michelsen, Solution of Differential Equation
Models by Polynomial Approximation, vol. 7. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1978.

[24] A. Zygmund, Trigonometric Series, vol. 1. Cambridge, U.K.: Cambridge
Univ. Press, 2002.

[25] N. K. Bary, A Treatise on Trigonometric Series, vol. 1. New York, NY,
USA: Elsevier, 2014.

[26] L. Schumaker, Spline Functions: Basic Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2007.

[27] L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approx-
imation, and orthogonal least-squares learning,” IEEE Trans. Neural
Netw., vol. 3, no. 5, pp. 807–814, Sep. 1992.

[28] S. N. Kumpati and P. Kannan, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Netw., vol. 1, no. 1,
pp. 4–27, Mar. 1990.

[29] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with
guaranteed tracking performance,” IEEE Trans. Neural Netw., vol. 6,
no. 3, pp. 703–715, May 1995.

[30] J. de Jesús Rubio, “SOFMLS: Online self-organizing fuzzy modi-
fied least-squares network,” IEEE Trans. Fuzzy Syst., vol. 17, no. 6,
pp. 1296–1309, Dec. 2009.

[31] I. Elias et al., “Genetic algorithm with radial basis mapping network
for the electricity consumption modeling,” Appl. Sci., vol. 10, no. 12,
p. 4239, 2020.

[32] B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, “Adaptive neural control for
output feedback nonlinear systems using a barrier Lyapunov function,”
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1339–1345, Aug. 2010.

[33] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of an
uncertain robot with full-state constraints,” IEEE Trans. Cybern., vol. 46,
no. 3, pp. 620–629, Mar. 2016.

[34] B. Anderson, “Exponential stability of linear equations arising in
adaptive identification,” IEEE Trans. Autom. Control, vol. 22, no. 1,
pp. 83–88, Feb. 1977.

[35] S. Boyd and S. S. Sastry, “Necessary and sufficient conditions for
parameter convergence in adaptive control,” Automatica, vol. 22, no. 6,
pp. 629–639, 1986.

[36] K. J. Åström and B. Wittenmark, Adaptive Control. North Chelmsford,
MA, USA: Courier Corp., 2013.

[37] J.-S. Lin and I. Kanellakopoulos, “Nonlinearities enhance parameter
convergence in output-feedback systems,” IEEE Trans. Autom. Control,
vol. 43, no. 2, pp. 204–222, Feb. 1998.

[38] V. Adetola and M. Guay, “Finite-time parameter estimation in adaptive
control of nonlinear systems,” IEEE Trans. Autom. Control, vol. 53,
no. 3, pp. 807–811, Apr. 2008.

[39] S. B. Roy and S. Bhasin, “Robustness analysis of initial excitation based
adaptive control,” in Proc. IEEE 58th Conf. Decis. Control (CDC), Nice,
France, 2019, pp. 7055–7062.

[40] R. Kamalapurkar, H. Dinh, S. Bhasin, and W. E. Dixon, “Approximate
optimal trajectory tracking for continuous-time nonlinear systems,”
Automatica, vol. 51, pp. 40–48, Jan. 2015.



LI et al.: CONCURRENT LEARNING-BASED ADAPTIVE CONTROL OF UNCERTAIN ROBOT MANIPULATOR 3313

[41] S. Kersting and M. Buss, “Direct and indirect model reference adaptive
control for multivariable piecewise affine systems,” IEEE Trans. Autom.
Control, vol. 62, no. 11, pp. 5634–5649, Nov. 2017.

[42] G. Chowdhary and E. Johnson, “Concurrent learning for convergence in
adaptive control without persistency of excitation,” in Proc. 49th IEEE
Conf. Decis. Control (CDC), Atlanta, GA, USA, 2010, pp. 3674–3679.

[43] R. Kamalapurkar, “Simultaneous state and parameter estimation for
second-order nonlinear systems,” in Proc. IEEE 56th Annu. Conf. Decis.
Control (CDC), Melbourne, VIC, Australia, 2017, pp. 2164–2169.

[44] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.

[45] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[46] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Task-space
control of robot manipulators with null-space compliance,” IEEE Trans.
Robot., vol. 30, no. 2, pp. 493–506, Apr. 2014.

[47] M. Saveriano and D. Lee, “Learning barrier functions for constrained
motion planning with dynamical systems,” 2020. [Online]. Available:
arXiv:2003.11500.

[48] C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control
of feedback linearizable MIMO nonlinear systems with prescribed
performance,” IEEE Trans. Autom. Control, vol. 53, no. 9,
pp. 2090–2099, Oct. 2008.

[49] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Proc. Int. Workshop Hybrid Syst. Comput.
Control, 2007, pp. 428–443.

[50] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Dept.
Comput. Sci., Univ. North Carolina, Chapel Hill, NC, USA, Rep. TR
95-041, 1995.

[51] G. Tao, Adaptive Control Design and Analysis, vol. 37. Hoboken, NJ,
USA: Wiley, 2003.

[52] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral concurrent
learning: Adaptive control with parameter convergence without pe or
state derivatives,” 2015. [Online]. Available: arXiv:1512.03464.

[53] Z. Zhang, M. Leibold, and D. Wollherr, “Integral sliding-mode observer-
based disturbance estimation for Euler–Lagrangian systems,” IEEE
Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2377–2389, Nov. 2020.

[54] R. Hayat, “Model-free robust-adaptive controller design and identifica-
tion for robot manipulators,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Technische Universität München, Munich, Germany, 2019.

Cong Li received the M.Sc. degree in con-
trol science and engineering from Xi’an Jiaotong
University, China, in 2018. He is currently pursu-
ing the Ph.D. degree in automatic control with the
Chair of Automatic Control Engineering, Technical
University of Munich, Munich, Germany.

He is also a Research Associate with the
Chair of Automatic Control Engineering, Technical
University of Munich. His research interests include
reinforcement learning, robust control, constraint
optimization, and robotics.

Fangzhou Liu (Member, IEEE) received the M.Sc.
degree in control theory and engineering from the
Harbin Institute of Technology, Harbin, China, in
2014, and the Doktor-Ingenieur degree in electri-
cal engineering from the Technical University of
Munich, Munich, Germany, in 2019.

He is currently a Lecturer and a Research
Fellow with the Chair of Automatic Control
Engineering, Technical University of Munich. His
current research interests include networked control
systems, modeling, analysis, and control on social

networks, concurrent learning, and their applications.
Dr. Liu has received the Dimitris N. Chorafas Prize and the Promotionspreis

der Fakultät für Elektrotechnik und Informationstechnik for his Ph.D. thesis.

Yongchao Wang received the M.Sc. degree in con-
trol science and engineering from Xidian University,
Xi’an, China, in 2016. He is currently pursing
the Ph.D. degree in automatic control with the
Chair of Automatic Control Engineering, Technical
University of Munich, Munich, Germany.

He is also a Research Associate with the
Chair of Automatic Control Engineering, Technical
University of Munich. His research interests include
adaptive control, robust nonlinear control, optimal
control, backstepping, and robotics.

Martin Buss (Fellow, IEEE) received the Diploma
Engineering degree in electrical engineering from
the Technische Universität Darmstadt, Darmstadt,
Germany, in 1990, and the Doctor of Engineering
degree in electrical engineering from the University
of Tokyo, Tokyo, Japan, in 1994.

In 1988, he was a Research Student with
the Science University of Tokyo, Tokyo, for one
year. From 1994 to 1995, he was a Postdoctoral
Researcher with the Department of Systems
Engineering, The Australian National University,

Canberra, ACT, Australia. From 1995 to 2000, he was a Senior Research
Assistant and a Lecturer with the Chair of Automatic Control Engineering,
Department of Electrical Engineering and Information Technology, Technical
University of Munich, Munich, Germany. From 2000 to 2003, he was a Full
Professor, the Head of the Control Systems Group, and the Deputy Director
of the Faculty IV, Electrical Engineering and Computer Science, Institute of
Energy and Automation Technology, Technical University of Berlin, Berlin,
Germany. Since 2003, he has been a Full Professor (Chair) with the Chair
of Automatic Control Engineering, Faculty of Electrical Engineering and
Information Technology, Technical University of Munich, where he has been
with the Medical Faculty since 2008. His research interests include automatic
control, mechatronics, multimodal human system interfaces, optimization,
nonlinear, and hybrid discrete-continuous systems.

Prof. Buss has been awarded the ERC Advanced Grant SHRINE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


