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Proportional-Integral Observer Design for Uncertain
Time-Delay Systems Subject to Deception Attacks:

An Outlier-Resistant Approach
Di Zhao, Zidong Wang, Qing-Long Han and Guoliang Wei

Abstract—This paper deals with the proportional-integral
observer (PIO) design problem for a class of linear systems
with distributed time-delays and randomly occurring parameter
uncertainties. The measurement signals, transmitted from the
sensors to the observer, might suffer from the randomly occur-
ring deception attacks. The random occurrences of parameter
uncertainties and deception attacks are governed by two series
of Bernoulli random variables with known probability distri-
butions. An outlier-resistant PIO is developed by introducing
an innovation saturation mechanism for the sake of alleviating
the adverse effects induced by the deception attacks on the
estimation performance. The purpose of the addressed problem
is to design a PIO that is capable of guaranteeing the mean-
square boundedness of the estimation errors while achieving the
desired security level. The desired PIO gain is designed by solving
a matrix inequality and the validity of the results obtained is
shown by a numerical simulation example.

Index Terms—Proportional-integral observer, outlier-resistant
state estimation, randomly occurring deception attacks, randomly
occurring parameter uncertainties, distributed time-delays.

I. I NTRODUCTION

AS early as in the seventies, the proportional-integral ob-
server (PIO) has been constructed in [40] by introducing

an extra integral operation with respect to the output estima-
tion error into the traditional Luenberger observer. Hitherto,
the PIO has shown great potential in a diverse range of
practical domains such as manufacturing processes, network
communication systems, power circuit systems and economic
systems [3], [5]. Briefly speaking, the PIO consists of the
proportional term and the integral term with respect to the
output estimation error, thereby reflecting the current and
historical information for achieving better performance as
compared with the traditional Luenberger observer. Thanks
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to the utilization of integral action, the PIO has exhibited
promising advantages in improving the system robustness,
eliminating the steady-state error as well as increasing the
observer design freedom. Accordingly, considerable research
attention has been paid to the PIO design issue with fruitful
results available in the literature, see e.g. [9], [21], [22], [31],
[33], [34].

Time-delays, which are known to have substantial impacts
on system performance, are often encountered in many real
systems (e.g. aerospace systems, industrial control systems,
telemedicine system, robot teleoperation system and network
communication systems) for a variety of reasons such as
equipment aging and complicated structure. In the past few
decades, there has been an enormous research effort into
the investigation on various kinds of time-delays including
constant delays, time-varying delays, random delays, and dis-
tributed delays [19], [20], [27], [39], [46]. Apart from the time-
delay phenomena, parameter uncertainties serve as another
main factor that complicates the system analysis and synthesis
[4], [25], [28], [37]. In today’s networked world, parameter
uncertainties may take place in a random way due probably to
network-induced random faults, sudden environmental distur-
bances and unpredictable fluctuations of network load. Such
kind of uncertainties is customarily referred to as randomly
occurring parameter uncertainties (ROPUs) which, together
with time-delays, may result in undesirable dynamic behaviors
such as oscillation, chaos or even divergence. Therefore, it is
of great importance to make dedicated efforts in disposing of
the influence from time-delays and/or ROPUs on the system
analysis and synthesis [26], [45].

With the rapid advancement of networking technologies,
networked systems (NSs) has become an emerging research
frontier in the past few decades [7], [8], [10], [13], [15],
[23], [29]. In practical applications of NSs, it is a normal
practice for the system components (such as controllers,
sensors, estimators and actuators) to be connected through
shared network media, thereby achieving remote, reliable,
real-time yet collaborative operation and control. Because of
the inherent openness of the shared communication channel,
NSs are vulnerable to miscellaneous cyber-threats, and some
representative examples found in the real world include Regin
malware threat, Operation Aurora, Petya Ransomware, and
DigiNotar hacker incident, to name a few. As a result, partic-
ular research interest has been gained to develop appropriate
estimation/control schemes to improve the system security and
relieve the negative effects caused by cyber-attacks on the
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system performance [11], [32], [42]. For example, in [6], [8],
[17], [47], the security control problems have been investigated
for systems under cyber-attacks, and the security-guaranteed
estimation schemes have been developed in [14], [35], [41].

In general, the common cyber-attacks can be classified as
denial of service attacks and deception attacks in terms of
the ways they are implemented, and the deception attacks are
known to be comparatively dangerous due to their behaviors
of data hijacking and falsification. When launching deception
attacks, the adversaries capture the data packets and inject
the false information (or IP address) to deliberately prevent
the system operation from normal execution, thus destroying
hardware/software and even crashing the whole system. On
the other hand, the intended cyber-attacks sent by the adver-
saries mightnot be always successful on account of various
reasons such as 1) deployment of the detection software
and protection equipment; 2) inherent bandwidth limit of
the shared communication channel; and 3) network-induced
phenomena such as packet losses, communication delays and
channel fading, and all these have led to the random nature
of the deception attacks. As such, it is practically meaningful
to model the NS-based deception attacks as random events
obeying certain distributions, and such a modeling strategy
has been adopted in quite a few recent results, see e.g. [24],
[36], [44] where the deception attacks have been assumed to be
regulated by Bernoulli/Markov process with known probability
distributions.

It is worth noting that, due to effects of the deception
attacks, the measurement outputs might undergo abrupt yet
large disturbances which, in turn, might induce the so-called
measurement outlierscontributing further to the deterioration
of the estimation performance. In other words, it is quite likely
that the measurement outliers, if not adequately tackled, would
give rise to abnormal changes of the innovation values in the
state estimator, thereby jeopardizing the estimation accuracy.
As such, it becomes necessary to develop an estimator that
is insensitive/invulnerable to the measurement outliers, and
such an estimator is termed as theoutlier-resistantestimator.
Recently, the outlier-resistant state estimation issue has begun
to arouse initial research interest with some elegant results,
see e.g. [2], [12], [30], [38], [48]. For instance, a Kalman
filter with saturated output injection has been constructed in
[16] to withstand the measurement outliers, and the outlier-
resistant state estimation issue has been discussed in [1]
for a class of linear time-invariant systems in the presence
of measurement outliers. Nonetheless, a thorough literature
search has exhibited that the relevant results for the outlier-
resistant PIO design issues have been really scattered due
primarily to the analytical complexity induced by the integral
term in PIO, and this motivates our current investigation.

Inspired by the above discussions, the focus of this paper
is on the design of the outlier-resistant PIO for a class of
discrete-time delayed systems with ROPUs subject to random-
ly occurring deception attacks (RODAs). In doing so, we are
confronted with the following three fundamental challenges: 1)
how to establish a suitable theoretical framework to handle the
analytical complexity brought by the random occurrences of
the parameter uncertainties and the deception attacks? 2) how

to develop a reliable scheme to deal with the measurement
outliers induced by the deception attacks? and 3) how to
construct an appropriate criteria to quantify the combined
impact caused by the RODAs and the stochastic noises on
the estimation errors? As such, the objective of this paper is to
conquer the three challenges. The main technical contributions
lie in that: 1) the PIO design issue is, for the first time,
addressed for a kind of discrete-time delayed system subject
to RODAs; 2) an innovation-saturation-based mechanism is
employed in the PIO design to alleviate the impacts from the
deception attacks on the estimation errors; and 3) sufficient
conditions are derived to ensure the exponentially mean-
square (EMS) boundedness and further achieve the desired
security level.

The rest of this paper is organized as follows. The outlier-
resistant PIO design issue is formulated for the discrete-time
delayed systems subject to RODAs in Section II. In Section III,
the EMS boundedness of the estimation errors is analyzed and
a sufficient condition for security is provided. Subsequently,
the expected outlier-resistant PIO is designed by using the
linear matrix inequality (LMI) method. Section IV presents a
numerical example to verify the usefulness and advantage of
the proposed PIO design scheme, and some conclusions are
drawn in Section V.

Notation. For notational convenience,Rn×m andR
n are,

respectively, used to denote the set of alln×m real matrices
and then-dimensional Euclidean space.X < Y (respectively,
X ≤ Y ) implies thatY −X is positive definite (respectively,
positive semi-definite), whereX and Y are real symmetric
matrices.Iq stands for aq-dimensional identity matrix and the
Kronecker product is denoted by the symbol “⊗”. In addition,
λmin(Z) and λmax(Z) are, respectively, the minimum and
maximum eigenvalues of the symmetric matrixZ.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The System Model

Consider a class of linear discrete time-delayed systems
with ROPUs:
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

x(s+ 1) =
(

A+ κ(s)B(s)
)

x(s) +Mw(s)

+H

~
∑

h=1

ℓhx(s− h)

y(s) =Cx(s)

z(s) =Dx(s)

x() =φ(), ∀ ∈ H , {−~, . . . , −1, 0}

(1)

where x(s) ∈ R
nx , y(s) ∈ R

ny , and z(s) ∈ R
nz are,

respectively, the state, the measurement output and the output
to be estimated;~ is a given positive integer andℓh is a positive
scalar;φ() is the initial condition sequence;A, C, D, M and
H are given matrices with compatible dimensions.w(s) ∈ R

possesses the following statistical properties:

E{w(s)} = 0, E{w(p)w(q)} =

{

ϑ2w, if p = q

0, if p 6= q
(2)

whereϑw is a known scalar.
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The random variableκ(s) is a Bernoulli-distributed se-
quence satisfying

Prob{κ(s) = 1} =κ̄, Prob{κ(s) = 0} = 1− κ̄

whereκ̄ ∈ [0, 1) is a constant that is known a priori.
The real matrixB(s), which accounts for the parameter

uncertainty, meets the following constraint:

B(s) = RS(s)T (3)

where matricesR and T are known,S(s) ∈ R
ns×ns is an

unknown matrix function satisfying

ST (s)S(s) 6 I. (4)

B. The Cyber-Attack Model

In the current investigation, the measurement signals are
transmitted to the observer via a shared communication net-
work, where the data transmission might be maliciously falsi-
fied through the RODAs expressed by

υ(s) =y(s) + ϑ(s)̟(s). (5)

Here, υ(s) ∈ R
ny denotes the input signal of the observer

that is corrupted by the attackers,̟(s) ∈ R
ny denotes

the deception attack sent by the hostile attackers and is
characterized by

̟(s) = −y(s) + δ(s) (6)

with δ(s) 6= 0 being an arbitrary signal.ϑ(s) is a Bernoulli
random variable regulating the RODAs with the following
probability distribution:

Prob{ϑ(s) = 1} =ϑ̄, Prob{ϑ(s) = 0} = 1− ϑ̄

whereϑ̄ ∈ [0, 1) is a known constant. Without loss of gener-
ality, ϑ(s), κ(s) andw(s) are assumed to be uncorrelated.

Remark 1: In practical engineering, deception attacks sent
by the adversaries cannot be always successful because of the
anti-attack countermeasures (e.g. deployment of the defense
devices or detectors) and the limited communication capacity.
In this sense, from the defender’s perspective, the deception
attacks take place in a random manner obeying a Bernoulli
sequence with certain statistical property. In accordance with
(5), if the deception attack is successful, i.e.ϑ(s) = 1, the
actual signal received by the observer isδ(s), which means
that the measurement outlier is injected to the observer. If
the deception attack is unsuccessful, i.e.ϑ(s) = 0, the actual
signal received by the observer isy(s), which indicates that the
normal measurement signals are transmitted to the observer.
Note that the probability of successful deception attacksϑ̄ can
be identifieda priori via some statistical experiments.

C. The Outlier-Resistant PIO

For restraining the estimation performance from being dis-
torted by the RODAs, a saturation function ispurposelyintro-
duced when handling the observer design issue. Specifically,

the outlier-resistant PIO is proposed as follows:
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

x̂(s+ 1) =Ax̂(s) +H

~
∑

h=1

ℓhx̂(s− h)

+ FPℑ
(

υ(s)− Cx̂(s)
)

+ FIχ(s)

χ(s+ 1) =χ(s) + Fℑ
(

υ(s)− Cx̂(s)
)

ẑ(s) =Dx̂(s)

χ(0) =0

x̂() =0, ∀ ∈ H

(7)

where x̂(s) ∈ R
nx is x(s)’s estimation,ẑ(s) ∈ R

n is z(s)’s
estimation, andχ(s) ∈ R

nχ describes the integral of the
weighted output estimation error. Here,FP , FI and F are
the observer parameters to be determined.

Define the saturation functionℑ(·) : Rny → R
ny as

ℑ(l) =
[

ℑ(l1) ℑ(l2) · · · ℑ(lny
)
]T
, ∀l ∈ R

ny (8)

whereℑ(lq) = sign(lq)min{lMq , |lq|} andlMq is theqth entry
of saturation level vectorlM (q ∈ Y , {1, 2, . . . , ny}).
Moreover, the saturation functionℑ(·) is a sector-bounded
nonlinear function satisfying:

(

ℑ(αq)− µqαq

)T (ℑ(αq)− αq

)

6 0, (q ∈ Y) (9)

whereαq is a given scalar andµq is a positive scalar satisfying
0 < µq < 1.

Remark 2:Different from the conventional PIO, the outlier-
resistant PIO constructed in (7) contains an intentionally intro-
duced saturation constraint on the innovations and, according-
ly, the measurement outliers (induced by the deception attacks)
could be adequately tackled. Specifically, the innovation in
the outlier-resistant PIO (7) can be constrained within a pre-
determined range owing to the saturation function (8), where
the saturation levellM is dependent on the prior knowledge
(on the range of the innovation and the tolerance level of the
detector). In this case, the outlier-resistant PIO would be more
effective than the conventional PIO in alleviating the negative
effects of the deception attacks on the estimation errors. In
fact, the outlier-resistant PIO specializes to the conventional
PIO when the saturation levellM approaches infinity.

Denotingx̃(s) , x(s) − x̂(s) and z̃(s) , z(s) − ẑ(s), the
dynamics of the estimation errors can be written as
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

x̃(s+ 1) =Ax̃(s) +H

~
∑

h=1

ℓhx̃(s− h) + κ(s)B(s)x(s)

− FPℑ
(

υ(s)− Cx̂(s)
)

− FIχ(s) +Mw(s)

χ(s+ 1) =χ(s) + Fℑ
(

υ(s)− Cx̂(s)
)

z̃(s) =Dx̃(s)

χ(0) =0

x̃() =φ(), ∀ ∈ H
(10)

Setting ψ(s) ,
[

xT (s) x̃T (s) χT (s)
]T

, the following
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augmented system is obtained:

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ψ(s+ 1) =
(

A+ κ̄B(s) + κ̃(s)B(s)
)

ψ(s)

+H
~
∑

h=1

ℓhψ(s− h) +Mw(s)

+ Fℑ
(

ζ(s)
)

ψ() =ϕ(), ∀ ∈ H

(11)

whereϕ() ,
[

φT () φT () 0
]T

and

A ,





A 0 0
0 A −FI

0 0 I



 , H ,





H 0 0
0 H 0
0 0 0





B(s) ,





B(s) 0 0
B(s) 0 0
0 0 0





M ,





M

M

0



 , κ̃(s) , κ(s)− κ̄

F ,





0
−FP

F



 , ϑ̃(s) , ϑ(s)− ϑ̄

ζ(s) ,
(

C1 + ϑ̃(s)C2
)

ψ(s) +
(

ϑ̄+ ϑ̃(s)
)

δ(s)

C1 ,
[

−ϑ̄C C 0
]

, C2 ,
[

−C 0 0
]

.

For facilitating the subsequent analysis, the definitions of
EMS boundedness and mean-square security are given as
follows.

Definition 1: The compacted system (11) is exponentially
ultimately bounded in mean-square sense if the system dy-
namicsψ(s) is constrained by

E{‖ψ(s)‖2} 6ǫsα+ ν(s) and lim
s→+∞

ν(s) = ν̄. (12)

whereǫ, α and ν̄ are constants satisfying0 < ǫ < 1, α > 0
and ν̄ > 0.

Definition 2: The augmented system (11) is mean-square
ς-secure if the following two conditions are satisfied simul-
taneously: a) the augmented system (11) is exponentially
ultimately bounded in mean-square sense; and b) the system
dynamicsψ(s) is governed by

E{‖ψ(s)‖2} 6 ς, ∀k > 0, (13)

whereς is a given positive scalar denoting the desired security
level.

Remark 3: In this paper, the concept of EMS boundedness
presented in Definition 1 is employed to depict the joint
influence from the RODAs and the stochastic noise on the
estimation errors, and the concept of mean-square security
presented in Definition 2 is used to characterize the ability of
the NSs to tolerate adversaries and recover from cyber-attacks.
Obviously, if the augmented system (11) is exponentially
ultimately bounded in mean-square sense, then it must be
mean-squareς-secure.

The objective of this paper is to design an outlier-resistant
PIO (7) for system (1) subject to RODAs.

III. M AIN RESULTS

In this section, we are going to design an outlier-resistant
PIO for the system (1) subject to RODAs. Sufficient conditions
are provided to guarantee the EMS boundedness of the esti-
mation errors and the mean-square security is simultaneously
satisfied. Then, the desired PIO gains are parameterized in
terms of the solution to an LMI.

The following lemmas are given to facilitate the sequel
development.

Lemma 1:The saturation functionℑ
(

ζ(s)
)

in (11) satisfies

ℑT
(

ζ(s)
)

ℑ
(

ζ(s)
)

+ ζT (s)UT ζ(s)

− ζT (s)(UT + I)ℑ
(

ζ(s)
)

6 0 (14)

whereU , diag{µ1, µ2, . . . , µq}.
Proof: From (9), it is easy to verify that

(

ℑ(l)− Ul
)T (ℑ(l)− l

)

=

ny
∑

q=1

(

(

ℑ(αq)− µqαq

)T (ℑ(αq)− αq

)

)

60. (15)

By letting l = ζ(s), we have

(

ℑ(ζ(s)) − Uζ(s)
)T(

ℑ(ζ(s)) − ζ(s)
)

6 0

which implies that inequality (14) holds.
Lemma 2:Let z(s) ∈ R

nz (nz = 2nx + nχ), Z ∈ R
nz×nz

be a positive semi-definite matrix,bh > 0 (h = 1, 2, . . . , ~)
be scalar constants, and~ be a positive integer. The following
relationship is true:

(

~
∑

h=1

bhz(s)

)T

Z

(

~
∑

h=1

bhz(s)

)

6

(

~
∑

h=1

bh

)

~
∑

h=1

bhz
T (s)Zz(s). (16)

Lemma 3:Let X = XT , Y and W be real matrices of
appropriate dimensions, andG(s) satisfiesGT (s)G(s) 6 I.
Then

X + Y G(s)W +WTGT (s)Y T < 0 (17)

if and only if there exists a positive scalarπ such that

X + πY Y T +
1

π
WTW < 0 (18)

or




X πY WT

πY T −πI 0
W 0 −πI



 < 0. (19)
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A. Security Analysis

In this subsection, we shall analyze the EMS boundedness
of the estimation errors and derive a sufficient condition to
guarantee theς-security of (11).

Theorem 1:Let the observer parametersFP , FI andF be
given. If there exist positive definite matricesP ,Q and positive
scalarι satisfying

Ω =

[

Ω1 ⋆

Ω2 Ω3

]

< 0 (20)

and

ℓ̄λmax(Q)~(ε~ − 1) + (~+ 1)λ̄

λmin(P )ερ
sup
∈H

E{‖ϕ()‖2}

+
ε

λmin(P )(ε− 1)
β 6 ς. (21)

where

Ω1 ,









Ω11
1 ⋆ ⋆ ⋆

0 Ω22
1 ⋆ ⋆

Ω31
1 0 Ω33

1 ⋆

Ω41
1 0 Ω43

1 Ω44
1









Ω2 ,
[

A+ κ̄B(s) H F 0
]

, ℓ̄ ,

~
∑

h=1

ℓh

Ω3 ,− P−1, λ̄ , max{λmax(P ), ℓ̄λmax(Q)}
Ω11

1 ,− P + ℓ̄Q − ιCT
1 U

TC1 − ι(ϑ̄− ϑ̄2)CT
2 U

TC2
Ω22

1 ,− 1

ℓ̄
Q, Ω33

1 , −ιI, Ω44
1 , −ιϑ̄UT

Ω31
1 ,

1

2
ι(UT + I)C1, Ω41

1 , −ιϑ̄UT
(

C1 + C2 − ϑ̄C2
)

Ω43
1 ,

1

2
ιϑ̄(UT + I), β , λmax(MTPM)ϑ2w

andε > 1 in (21) is determined by

λmax(P )(ε− 1)− γε+ 2ℓ̄λmax(Q)ε(ε~ − 1) = 0 (22)

with

γ , λmin

(

− Ω1 − ΩT
2 PΩ2

)

,

then the augmented system (11) isς-secure in the sense of
mean-square.

Proof: For examining the EMS boundedness of the aug-
mented system (11), we construct the following Lyapunov-
Krasovskii functional:

V
(

ψ(s)
)

= V1
(

ψ(s)
)

+ V2
(

ψ(s)
)

(23)

where

V1
(

ψ(s)
)

,ψT (s)Pψ(s)

V2
(

ψ(s)
)

,
~
∑

h=1

ℓh

s−1
∑

r=s−h

ψT (r)Qψ(r).

Then, the difference ofV
(

χ(s)
)

is denoted by

ℜV
(

ψ(s)
)

=ℜV1
(

ψ(s)
)

+ ℜV2
(

ψ(s)
)

(24)

where

ℜV1
(

ψ(s)
)

,E{V1
(

ψ(s+ 1)
)

|ψ(s)} − V1
(

ψ(s)
)

ℜV2
(

ψ(s)
)

,E{V2
(

ψ(s+ 1)
)

|ψ(s)} − V2
(

ψ(s)
)

.

The difference ofV1
(

ψ(s)
)

along (11) is calculated by

E
{

ℜV1
(

χ(s)
)}

=E
{

V1
(

ψ(s+ 1)
)

− V1
(

ψ(s)
)}

=E

{(

(

A+ κ̄B(s) + κ̃(s)B(s)
)

ψ(s) + Fℑ
(

ζ(s)
)

+H
~
∑

h=1

ℓhψ(s− h) +Mw(s)
)T

P

×
(

(

A+ κ̄B(s) + κ̃(s)B(s)
)

ψ(s) + Fℑ
(

ζ(s)
)

+H
~
∑

h=1

ℓhψ(s− h) +Mw(s)
)

− ψT (s)Pψ(s)
}

=E

{

ψT (s)
(

ATPA− P +
(

κ̄+ κ̃(s)
)2BT (s)PB(s)

+
(

κ̄+ κ̃(s)
)

ATPB(s) +
(

κ̄+ κ̃(s)
)

BT (s)PA
)

ψ(s)

+ ℑT
(

ζ(s)
)

FTPFℑ
(

ζ(s)
)

+

(

~
∑

h=1

ℓhψ(s− h)

)T

×HTPH
(

~
∑

h=1

ℓhψ(s− h)

)

+ wT (s)MTPMw(s)

+ 2ℑT
(

ζ(s)
)

(

FTPA+
(

κ̄+ κ̃(s)
)

FTPB(s)
)

ψ(s)

+ 2

(

~
∑

h=1

ℓhψ(s− h)

)T
(

HTPA+
(

κ̄+ κ̃(s)
)

HT

× PB(s)
)

ψ(s) + 2wT (s)
(

MTPA+
(

κ̄+ κ̃(s)
)

×MTPB(s)
)

ψ(s) + 2

(

~
∑

h=1

ℓhψ(s− h)

)T

HT

× PFℑ
(

ζ(s)
)

+ 2wT (s)MTPFℑ
(

ζ(s)
)

+ 2wT (s)

×MTPH
(

~
∑

h=1

ℓhψ(s− h)

)}

6E

{

ψT (s)
(

ATPA− P + κ̄BT (s)PB(s)

+
√
κ̄ATPB(s) +

√
κ̄BT (s)PA

)

ψ(s) + ℑT
(

ζ(s)
)

×FTPFℑ
(

ζ(s)
)

+

(

~
∑

h=1

ℓhψ(s− h)

)T

HTPH

×
(

~
∑

h=1

ℓhψ(s− h)

)

+ wT (s)MTPMw(s)

+ 2ℑT
(

ζ(s)
)

(

FTPA+
√
κ̄FTPB(s)

)

ψ(s)

+ 2

(

~
∑

h=1

ℓhψ(s− h)

)T
(

HTPA+
√
κ̄HTPB(s)

)

× ψ(s) + 2

(

~
∑

h=1

ℓhψ(s− h)

)T

HTPFℑ
(

ζ(s)
)

}

. (25)
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Furthermore, in light of Lemma 2, we compute the difference
of V2

(

ψ(s)
)

as follows:

E
{

ℜV2
(

ψ(s)
)}

=E
{

V2
(

ψ(s+ 1)
)

− V2
(

ψ(s)
)}

=E

{

~
∑

h=1

ℓh

s
∑

r=s−h+1

ψT (r)Qψ(r)

−
~
∑

h=1

ℓh

s−1
∑

r=s−h

ψT (r)Qψ(r)

}

=E

{

ℓ̄ψT (s)Qψ(s)−
~
∑

h=1

ℓhψ
T (s− h)Qψ(s− h)

}

6E

{

ℓ̄ψT (s)Qψ(s)− 1

ℓ̄

(

~
∑

h=1

ℓhψ(s− h)

)T

Q

×
(

~
∑

h=1

ℓhψ(s− h)

)}

. (26)

Bearing in mind the statistical characteristics ofw(s), we
calculate the termwT (s)MTPMw(s) (contained in (25)) as
follows:

E{wT (s)MTPMw(s)}
6λmax(MTPM)E{wT (s)w(s)} = β. (27)

Substituting (25)-(27) into (24) leads to

E
{

ℜV
(

ψ(s)
)}

=E

{

ℜV1
(

ψ(s)
)

+ ℜV2
(

ψ(s)
)

}

6E

{

ψT (s)
(

ATPA− P + κ̄BT (s)PB(s)

+
√
κ̄ATPB(s) +

√
κ̄BT (s)PA+ ℓ̄Q

)

ψ(s)

+ ℑT
(

ζ(s)
)

FTPFℑ
(

ζ(s)
)

+

(

~
∑

h=1

ℓhψ(s− h)

)T

×
(

HTPH− 1

ℓ̄
Q
)

(

~
∑

h=1

ℓhψ(s− h)

)

+ 2ℑT
(

ζ(s)
)

(

FTPA+
√
κ̄FTPB(s)

)

× ψ(s) + 2

(

~
∑

h=1

ℓhψ(s− h)

)T
(

HTPA

+
√
κ̄HTPB(s)

)

ψ(s) + 2ℑT
(

ζ(s)
)

FTPH

×
(

~
∑

h=1

ℓhψ(s− h)

)

+ β

}

=ℑT
1 (s)Ψ1ℑ1(s) + β (28)

where

ℑ1(s) ,





ψ(s)
∑~

h=1 ℓhψ(s− h)
ℑ
(

ζ(s)
)



 , Ψ1 ,





Ψ11
1 ⋆ ⋆

Ψ21
1 Ψ22

1 ⋆

Ψ31
1 Ψ32

1 Ψ33
1





Ψ11
1 , − P + ℓ̄Q +ATPA+ κ̄BT (s)PB(s)

+
√
κ̄ATPB(s) +

√
κ̄BT (s)PA

Ψ22
1 ,HTPH− 1

ℓ̄
Q, Ψ33

1 , FTPF

Ψ21
1 ,HTPA+

√
κ̄HTPB(s)

Ψ31
1 ,FTPA+

√
κ̄FTPB(s)

Ψ32
1 ,FTPH.

Then, it follows from Lemma 1 that

E
{

ℜV
(

ψ(s)
)}

6E
{

ℑT
1 (s)Ψ1ℑ1(s)

}

+ β − ιE
{

ℑT
(

ζ(s)
)

ℑ
(

ζ(s)
)

+ ζT (s)UT ζ(s)− ζT (s)(UT + I)ℑ
(

ζ(s)
)}

=E
{

ℑT
1 (s)Ψ1ℑ1(s)

}

+ β − ιE
{

ℑT
(

ζ(s)
)

ℑ
(

ζ(s)
)}

− ιE
{(

(

C1 + ϑ̃(s)C2
)

ψ(s) +
(

ϑ̄+ ϑ̃(s)
)

δ(s)
)T

UT

+
(

(

C1 + ϑ̃(s)C2
)

ψ(s) +
(

ϑ̄+ ϑ̃(s)
)

δ(s)
)}

+ ιE
{(

(

C1 + ϑ̃(s)C2
)

ψ(s) +
(

ϑ̄+ ϑ̃(s)
)

δ(s)
)T

× (UT + I)ℑ
(

ζ(s)
)

}

=E

{

ℑT
1 (s)Ψ1ℑ1(s)

}

+ β − ιE
{

ℑT
(

ζ(s)
)

ℑ
(

ζ(s)
)

}

− ιE
{

ψT (s)
(

CT
1 U

T C1 + (ϑ̄− ϑ̄2)CT
2 U

TC2
)

ψ(s)

+ ϑ̄δT (s)UT δ(s) + 2ϑ̄δT (s)UT
(

C1 + C2
)

ψ(s)

− 2ϑ̄2δT (s)UTC2ψ(s)
}

+ ιE
{

ℑT
(

ζ(s)
)

(UT + I)

× C1ψ(s) + ϑ̄δT (s)(UT + I)ℑ
(

ζ(s)
)

}

=E
{

ℑT
2 (s)Ψ2ℑ2(s)

}

+ β (29)

where

ℑ2(s) ,









ψ(s)
∑~

h=1 ℓhψ(s− h)
ℑ
(

ζ(s)
)

δ(s)









Ψ2 ,









Ψ11
2 ⋆ ⋆ ⋆

Ψ21
1 Ψ22

1 ⋆ ⋆

Ψ31
2 Ψ32

1 Ψ33
2 ⋆

Ω41
1 0 Ω43

1 Ψ44
2









Ψ11
2 ,− P + ℓ̄Q+ATPA+ κ̄BT (s)PB(s)

+
√
κ̄ATPB(s) +

√
κ̄BT (s)PA

− ιCT
1 U

TC1 − ι(ϑ̄− ϑ̄2)CT
2 U

TC2
Ψ33

2 ,FTPF − ιI, Ψ44
2 , −ιϑ̄UT

Ψ31
2 ,FTPA+

√
κ̄FTPB(s) + 1

2
ι(UT + I)C1.

By applying the Schur Complement Lemma, we derive from
(20) that

Ψ2 = Ω1 +ΩT
2 PΩ2 < 0 (30)

which further implies

E
{

ℜV
(

ψ(s)
)}

6 −γE
{

‖ℑ2(s)‖2
}

+ β. (31)
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Next, we shall proceed to estimate the upper bound of
E
{

‖ψ(s)‖2
}

. Based on the definition ofV
(

ψ(s)
)

, one obtains

V
(

ψ(s)
)

6λmax(P )‖ψ(s)‖2

+ ℓ̄λmax(Q)

s−1
∑

r=s−~

‖ψ(r)‖2. (32)

Furthermore, for anyτ > 1, it follows from (31) that

E
{

τs+1V (ψ(s+ 1))} − E{τsV (ψ(s))
}

=τs+1
E
{

ℜV (ψ(s))
}

+τs+1
E
{

V (ψ(s))
}

− τsE
{

V (ψ(s))
}

=τs+1
E
{

ℜV (ψ(s))
}

+ τs(τ − 1)E
{

V (ψ(s))
}

6τs+1
(

− γE
{

‖ℑ2(s)‖2
}

+ β
)

+ τs(τ − 1)

×
(

λmax(P )‖ψ(s)‖2 + ℓ̄λmax(Q)

s−1
∑

r=s−~

‖ψ(r)‖2
)

6τs+1
(

− γE
{

‖ψ(s)‖2
}

+ β
)

+ τs(τ − 1)

×
(

λmax(P )‖ψ(s)‖2 + ℓ̄λmax(Q)

s−1
∑

r=s−~

‖ψ(r)‖2
)

6̺1(τ)τ
s
E
{

‖ψ(s)‖2
}

+ ̺2(τ)

s−1
∑

r=s−~

τsE
{

‖ψ(r)‖2
}

+ τs+1β (33)

where

̺1(τ) ,− τγ + (τ − 1)λmax(P )

̺2(τ) ,(τ − 1)ℓ̄λmax(Q).

For arbitrary positive integerρ > ~, summarizing both sides
of (33) from 0 to ρ− 1 associated withs results in

E
{

τρV (ψ(ρ))} − E{V (ψ(0))
}

6̺1(τ)

ρ−1
∑

s=0

τsE
{

‖ψ(s)‖2
}

+
τ(1 − τρ)

1− τ
β

+ ̺2(τ)

ρ−1
∑

s=0

s−1
∑

r=s−~

τsE
{

‖ψ(r)‖2
}

. (34)

Besides, the last item in (34) is calculated as

ρ−1
∑

s=0

s−1
∑

r=s−~

τsE
{

‖ψ(r)‖2
}

6





−1
∑

r=−~

r+~
∑

s=0

+

ρ−~−1
∑

r=0

r+~
∑

s=r+1

+

ρ−1
∑

r=ρ−~

ρ−1
∑

s=r+1



τsE
{

‖ψ(r)‖2
}

6
τ~− 1

τ − 1

−1
∑

r=−~

E{‖ψ(r)‖2}+ τ(τ~−1)

τ−1

ρ−1
∑

r=0

τrE
{

‖ψ(r)‖2
}

+
τ(τ~−1)

τ−1

ρ−1
∑

r=0

τrE
{

‖ψ(r)‖2
}

. (35)

From (34) and (35), one has immediately that

E
{

τρV (ψ(ρ))} − E{V (ψ(0))
}

6̺1(τ)

ρ−1
∑

s=0

τsE
{

‖ψ(s)‖2
}

+
τ(1− τρ)

1− τ
β

+ ̺2(τ)

(

τ~ − 1

τ − 1

−1
∑

r=−~

E{‖ψ(r)‖2}

+
τ(τ~ − 1)

τ − 1

ρ−1
∑

r=0

τrE
{

‖ψ(r)‖2
}

+
τ(τ~ − 1)

τ − 1

ρ−1
∑

r=0

τrE
{

‖ψ(r)‖2
}

)

6̺3(τ)

ρ−1
∑

s=0

τsE
{

‖ψ(s)‖2
}

+
τ(1− τρ)

1− τ
β

+ ̺4(τ) sup
∈H

E{‖ϕ()‖2}. (36)

where

̺3(τ) ,̺1(τ) + ̺2(τ)
2τ~+1 − 2τ

τ − 1

̺4(τ) ,̺2(τ)~
τ~ − 1

τ − 1
.

Noting that̺3(1) = −γ < 0 and limτ→∞ ̺3(τ) = +∞,
it is readily seen that there exists a scalarε > 1 such that
̺3(ε) = 0, which indicates that

E
{

ερV (ψ(ρ))} − E{V (ψ(0))
}

6
ε(1− ερ)

1− ε
β + ̺4(ε) sup

∈H

E{‖ϕ()‖2}. (37)

It can be observed from (23) that

E{V (ψ(0))
}

6 (~+ 1)λ̄ sup
∈H

E{‖ϕ()‖2} (38)

and

E
{

ερV (ψ(ρ))} > λmin(P )ε
ρ
E{‖ψ(ρ)‖2}. (39)

Furthermore, one has

E{‖ψ(ρ)‖2} 6
̺4(ε) + (~+ 1)λ̄

λmin(P )ερ
sup
∈H

E{‖ϕ()‖2}

+
1− ερ

λmin(P )ερ−1(1− ε)
β

=ǫρα sup
∈H

E{‖ϕ()‖2}+ ν(ρ) (40)

with

ǫ ,
1

ε
, α ,

̺4(ε) + (~+ 1)λ̄

λmin(P )

ν(ρ) ,
1− ερ

λmin(P )ερ−1(1− ε)
β.

According to Definition 1, the ultimate upper bound of the
estimation error in the mean-square sense can be expressed
by:

ν̄ = lim
ρ→+∞

ν(ρ) =
ε

λmin(P )(ε− 1)
β. (41)

To proceed, we derive from (21), (40) and (41) that

E{‖ψ(ρ)‖2} 6
̺4(ε) + (~+ 1)λ̄

λmin(P )ερ
sup
∈H

E{‖ϕ()‖2}
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+
ε

λmin(P )(ε− 1)
β 6 ς. (42)

Obviously, it is not difficult to see from Definition 2 that
the augmented system (11) isς-secure in mean-square sense,
which ends the proof.

B. Outlier-Resistant PIO Design

In this subsection, we are devoted to solving the design
problem of the outlier-resistant PIO.

Theorem 2:If there exist positive definite matriceśP1, Ṕ2,
Ṕ3, Q́1, Q́2 and Q́3, matricesF́P , F́I and F́ , and positive
scalarι andπ satisfying

Λ =

[

Ω1 ⋆

Λ2 Λ3

]

< 0 (43)

and

ℓ̄λmax(Q)~(ε~ − 1) + (~+ 1)λ̄

λmin(P )ερ
sup
∈H

E{‖ϕ()‖2}

+
ε

λmin(P )(ε− 1)
β 6 ς. (44)

where

Λ2 ,





Á H́ F́ 0
0 0 0 0
T 0 0 0





Λ3 ,





−P ⋆ ⋆

κ̄RT −πI ⋆

0 0 −πI





Á ,





Ṕ1A 0 0

0 Ṕ2A −F́I

0 0 Ṕ3





H́ ,





Ṕ1H 0

0 Ṕ2H 0
0 0 0





F ,





0

−F́P

F́



 , R ,





R

R

0





T ,
[

T 0 0
]

P ,diag{Ṕ1, Ṕ2, Ṕ3}
Q ,diag{Q́1, Q́2, Q́3}

and the constantε > 1 in (44) satisfies

λmax(P )(ε− 1)− γε+ 2ℓ̄λmax(Q)ε(ε~ − 1) = 0 (45)

with

γ , λmin

(

− Ω1 − ΩT
2 PΩ2

)

,

then the augmented system (11) isς-secure in mean-square
sense. Furthermore, the gain matrices of the outlier-resistant
PIO (7) are calculated by

FP = Ṕ−1
1 F́P , FI = Ṕ−1

2 F́I , F = Ṕ−1
3 F́ . (46)

Proof: First, we shall deal with the parameter uncertain-
ties by rewriting (20) in the form of (19). It follows from the
notations in (11) that

B(s) = RS(s)T , (47)

and therefore (20) can be rewritten as follows:

Ω = Θ1 +ΘRS(s)ΘT +ΘT
TS

T (s)ΘT
R (48)

where

Θ1 ,

[

Ω1 ⋆

Θ2 Ω3

]

, Θ2 ,
[

A H F 0
]

ΘR ,
[

0 0 0 0 κ̄RT
]T
, ΘT ,

[

T 0 0 0 0
]

.

Then, by using Lemma 3, it is not difficult to see that (48)
holds if and only if there exists a positive scalarπ such that
the following inequality holds:





Θ1 πΘR ΘT
T

πΘT
R −πI 0

ΘT 0 −πI



 < 0. (49)

Pre-multiplying and post-multiplying the inequality (49) by
diag{I, I, I, I, P, I, I} and its transpose, and utilizing the
variable substitution

F́P = Ṕ1FP , F́I = Ṕ2FI , F́ = Ṕ3F, (50)

we conclude that (49) can be ensured by (43).
According to Theorem 1, one can conclude that, with the

outlier-resistant PIO gain matricesFP , FP and F given in
(46), the augmented system (11) isς-secure in mean-square
sense. The proof is complete.

C. Outlier-Resistant Luenberger Observer Design

In this subsection, we shall design an outlier-resistant Lu-
enberger observer for system (1). To begin with, the outlier-
resistant Luenberger observer is constructed as follows:























x̂(s+ 1) =Ax̂(s) +H

~
∑

h=1

ℓhx̂(s− h)

+ Lℑ
(

υ(s)− Cx̂(s)
)

x̂() =0, ∀ ∈ H

(51)

whereL is the observer gain matrix to be designed.
Accordingly, from (1) and (51), the estimation error dynam-

ics can be written as follows:






















x̃(s+ 1) =Ax̃(s) +H

~
∑

h=1

ℓhx̃(s− h) +Mw(s)

+ κ(s)B(s)x(s) − Lℑ
(

υ(s)− Cx̂(s)
)

x̃() =φ(), ∀ ∈ H

(52)

Letting ψ̆(s) ,
[

xT (s) x̃T (s)
]T

, the augmented system
is characterized as follows:



































ψ̆(s+ 1) =
(

Ă+ κ̄B̆(s) + κ̃(s)B̆(s)
)

ψ̆(s)

+ H̆
~
∑

h=1

ℓhψ̆(s− h) + M̆w(s)

+ F̆ℑ
(

ζ̆(s)
)

ψ̆() =ϕ̆(), ∀ ∈ H

(53)

where

Ă ,

[

A 0
0 A

]

, H̆ ,

[

H 0
0 H

]
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B̆(s) ,
[

B(s) 0
B(s) 0

]

, M̆ ,

[

M

M

]

F̆ ,

[

0
−L

]

, C̆1 ,
[

−ϑ̄C C
]

C̆2 ,
[

−C 0
]

, ϕ̆() ,
[

φT () φT ()
]T

ζ̆(s) ,
(

C1 + ϑ̃(s)C2
)

ψ̆(s) +
(

ϑ̄+ ϑ̃(s)
)

δ(s).

In the following corollary, sufficient conditions are provided
to a) ensure that the augmented system (53) isς-secure in
mean-square sense and b) give an explicit form of the gain
matrix of outlier-resistant Luenberger observer (51) by means
of LMI technique.

Corollary 1: If there exist positive definite matrices̀P1, P̀2,
Q̀1 and Q̀2, matrix L̀, and positive scalar̆ι and π̆ satisfying

Ξ =

[

Ξ1 ⋆

Ξ2 Ξ3

]

< 0 (54)

and

ℓ̄λmax(Q̆)~(ε̆~ − 1) + (~+ 1)λ̆

λmin(P̆ )ερ
sup
∈H

E{‖ϕ̆()‖2}

+
ε̆

λmin(P̆ )(ε̆− 1)
β̆ 6 ς. (55)

where

Ξ1 ,









Ξ11
1 ⋆ ⋆ ⋆

0 Ξ22
1 ⋆ ⋆

Ξ31
1 0 Ξ33

1 ⋆

Ξ41
1 0 Ξ43

1 Ξ44
1









, Ξ2 ,





À H̀ F̀ 0
0 0 0 0

T̆ 0 0 0





Ξ3 ,





−P̆ ⋆ ⋆

κ̄R̆T −π̆I ⋆

0 0 −π̆I



 , β̆ , λmax(M̆T P̆M̆)ϑ2w

À ,

[

P̀1A 0

0 P̀2A

]

, P̆ , diag{P̀1, P̀2}

H̀ ,

[

P̀1H 0

0 P̀2H

]

, Q̆ , diag{Q̀1, Q̀2}

F̀ ,

[

0

−L̀

]

, R̆ ,

[

R

R

]

, T̆ ,
[

T 0
]

Ξ11
1 ,− P̆ + ℓ̄Q̆− ῐC̆T

1 U
T C̆1 − ῐ(ϑ̄− ϑ̄2)C̆T

2 U
T C̆2

Ξ22
1 ,− 1

ℓ̄
Q̆, Ξ33

1 , −ῐI, Ξ44
1 , −ῐϑ̄UT

Ξ31
1 ,

1

2
ῐ(UT + I)C̆1, Ξ41

1 , −ῐϑ̄UT
(

C̆1 + C̆2 − ϑ̄C̆2
)

Ξ43
1 ,

1

2
ῐϑ̄(UT + I), λ̆ , max{λmax(P̆ ), ℓ̄λmax(Q̆)}

and the constant̆ε > 1 in (55) satisfies

λmax(P̆ )(ε̆− 1)− γ̆ε̆+ 2ℓ̄λmax(Q̆)ε̆(ε̆~ − 1) = 0 (56)

with

γ̆ ,λmin

(

− Ξ1 − ΞT
3 P̆Ξ3

)

Ξ3 ,
[

Ă+ κ̄B̆(s) H̆ F̆ 0
]

,

then the augmented system (53) isς-secure in mean-square
sense. Furthermore, the gain matrix of the outlier-resistant
Luenberger observer (51) is calculated by

L = P̀−1
2 L̀. (57)

Proof: The proof of this corollary is easily obtained only
by settingFI = 0 andF = 0 in Theorems 1-2, and is therefore
omitted here.

Remark 4:Up to now, we have thoroughly investigated
the outlier-resistant PIO design issue for a kind of discrete-
time delayed system with ROPUs subject to RODAs. With
the designed outlier-resistant PIO, the EMS boundedness of
the estimation errors has been guaranteed and the security
requirement has been met. In addition, the feasibility of the
PIO design problem has been transformed into the solvability
of an LMI. In comparison with the existing literature, our
main results exhibit the following distinctive novelties: 1)
the PIO design problem is, for the first time, addressed for
discrete time-delayed systems with RODAs; 2) the outlier-
resistant PIO design scheme is developed to attenuate the
effect of malicious attacks; and 3) a criterion is derived to
reveal the influences of the RODAs and the stochastic noise on
the estimation performance. Our main results can be extended
to more complicated NSs with more comprehensive network-
induced phenomena or cyber-attacks [18], [43].

IV. N UMERICAL SIMULATION

In this section, an illustrative example is provided to show
the effectiveness and superiority of the proposed outlier-
resistant PIO design scheme.

Consider a linear discrete time-delayed system described by
(1) with the following parameters:

A =

[

0.46 0.92
−0.44 0.61

]

, H =

[

0.11 0.14
0.15 −0.13

]

C =
[

−0.72 0.61
]

, D =
[

1.1 0.9
]

, U = 0.35

M =

[

−0.06
0.11

]

, R =

[

0.6
0.5

]

, T =

[

0.2
0.3

]T

, κ̄ = 0.3

~ =3, ℓh = 2−(h+1), S(s) = 0.8 sin(s).

A. Effectiveness and Superiority of the Proposed Outlier-
Resistant PIO Design Approach

In the simulation, the deception signal sent by adversary is
denoted byδ(s) = 5 cos(s) − tanh(s) and the probability of
launching a successful deception attack is given asϑ̄ = 0.4.
In addition, the security level is selected asς = 0.2 and the
initial condition is taken asx(0) =

[

0.5 −0.5
]T

.
The solutions to LMI (43) in Theorem 2 are obtained as

follows:

Ṕ1 =

[

9.5817 −1.6386
−1.6386 16.8731

]

, Q́1 =

[

1.6118 −0.0089
−0.0089 1.6029

]

Ṕ2 =

[

9.3057 −1.5956
−1.5956 20.3154

]

, Q́2 =

[

1.6421 −0.0241
−0.0241 1.5996

]

Ṕ3 =8.7174, Q́3 = 2.2466, F́ = −0.0090, π = 1.2797

F́P =

[

−0.6424
3.5330

]

, F́I =

[

−0.3534
0.5101

]

, ι = 1.3848.

Accordingly, the outlier-resistant PIO gains can be computed
as follows:

FP =

[

−0.0318
0.2063

]

, FI =

[

0.0429
0.0285

]

, F́ = −0.0010.
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Furthermore, according to Corollary 1, the solutions of LMI
(54) and the gain of outlier-resistant Luenberger observer (51)
are listed as follows:

P̀1 =

[

4.4852 −0.6864
−0.6864 7.1213

]

, Q̀1 =

[

0.6057 −0.0033
−0.0033 0.6071

]

P̀2 =

[

4.3151 −0.5025
−0.5025 7.2158

]

, Q̀2 =

[

0.6057 −0.0034
−0.0034 0.6063

]

L̀ =

[

−0.0275
2.3519

]

, L =

[

0.0318
0.3282

]

, π̆ = 7.5951, ῐ = 6.9122.

For manifesting the superiority of the outlier-resistant PIO,
we make comparisons for evaluating the estimation perfor-
mance under different observers as follows: 1) estimating
with the outlier-resistant PIO; 2) estimating with the outlier-
resistant Luenberger observer; 3) estimating with the conven-
tional PIO (which corresponds tolM = ∞).

The estimation results are shown in Figs. 1-2, which depict
the system states and their estimates with different observers.
From Figs. 1-2, we observe that the outlier-resistant Luen-
berger observer and the conventional PIO cannot achieve the
desired estimation performance whereas the outlier-resistant
PIO can. Figs. 3-5 plot the trajectories of estimation errorx̃(s)
with the outlier-resistant PIO, the outlier-resistant Luenberger
observer, and the conventional PIO, respectively.

From the above simulation results, a conclusion can be
drawn that the outlier-resistant PIO is able to mitigate the
negative effects of the RODAs and achieve a satisfactory
estimation performance. Consequently, the design scheme of
the developed outlier-resistant PIO is indeed efficient and
performs better than the outlier-resistant Luenberger observer
and the conventional PIO.

0 10 20 30 40 50 60 70 80 90 100
Time(s)

-3

-2

-1

0

1

2

3

4

Fig. 1: Trajectories of statex1(s) and its estimate.

B. Comparisons With Different Attack Probabilities

For the sake of truly revealing the impact from the RODAs
on our estimation algorithm, the simulations are repeated 100
times and the comparisons with different attack probabilities
are made in this subsection. To facilitate discussion, the

0 10 20 30 40 50 60 70 80 90 100
Time(s)
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0
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4

Fig. 2: Trajectories of statex2(s) and its estimate.
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Fig. 3: Trajectories of estimation error̃x(s) with
outlier-resistant PIO.

average mean-square estimation error (AMSEE) with respect
to the output is defined by:

Z =
1

p

p
∑

s=1

1

q

q
∑

ı=1

‖zı(s)− ẑı(s)‖2

wherep denotes the number of time instants andq stands for
the number of simulation trials.

Fig. 6 depicts the trajectories of measurement outputy(s),
observer inputυ(s), and the time spots when the system
suffers from deception attacks with̄ϑ = 0.4. Moreover, the
relation between the attack probabilitȳϑ and the AMSEE of
the estimated outputZ is given in Table I, which can be
observed that the AMSEE of the output increases when the
attack probability increases. Therefore, we can naturally draw
a conclusion that, with the increase of the attack probability,
the estimation performance deteriorates.
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Fig. 4: Trajectories of estimation error̃x(s) with
outlier-resistant Luenberger observer.
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Fig. 5: Trajectories of estimation error̃x(s) with
conventional PIO.

V. CONCLUSIONS

In this paper, the PIO design issue has been addressed for
a kind of discrete-time delayed system with ROPUs subject
to RODAs. A Bernoulli-distributed random variable has been
utilized to regulate the random nature of deception attacks
initiated by the adversaries. For the purpose of attenuating
the impact of the malicious attacks on the estimation per-
formance, an outlier-resistant PIO has been constructed, in
which a saturation constraint has been imposed on the inno-
vations. Sufficient conditions have been derived to guarantee
the EMS boundedness and achieve the prescribed security
level. The explicit forms of the desired PIO parameters have
been described in terms of the solutions to an LMI. Finally,
the effectiveness and superiority have been validated via an
illustrative simulation example.

0 10 20 30 40 50 60 70 80 90 100
Time(s)
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Fig. 6: The trajectories of measurement outputy(s) and
observer inputυ(s), and the time instants of successful

deception attacks with̄ϑ = 0.4.

TABLE I: AMSEE IN 100 EXPERIMENTS WITH
DIFFERENT ϑ̄

ϑ̄ Z

ϑ̄ = 0.1 0.0191
ϑ̄ = 0.2 0.0205
ϑ̄ = 0.3 0.0229
ϑ̄ = 0.4 0.0233
ϑ̄ = 0.5 0.0255
ϑ̄ = 0.6 0.0261
ϑ̄ = 0.7 0.0286
ϑ̄ = 0.8 0.0326
ϑ̄ = 0.9 0.0372
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