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ABSTRACT

Verification is a critical process in the development of engineered systems. Through verification,
engineers gain confidence in the correct functionality of the system before it is deployed into opera-
tion. Traditionally, verification strategies are fixed at the beginning of the system’s development and
verification activities are executed as the development progresses. Such an approach appears to give
inferior results as the selection of the verification activities does not leverage information gained
through the system’s development process. In contrast, a set-based design approach to verification,
where verification activities are dynamically selected as the system’s development progresses, has
been shown to provide superior results. However, its application under realistic engineering scenar-
ios remains unproven due to the large size of the verification tradespace. In this work, we propose
a parallel tempering approach (PTA) to efficiently explore the verification tradespace. First, we
formulate exploration of the verification tradespace as a tree search problem. Second, we design a
parallel tempering (PT) algorithm by simulating several replicas of the verification process at differ-
ent temperatures to obtain a near-optimal result. Third, We apply the PT algorithm to all possible
verification states to dynamically identify near-optimal results. The effectiveness of the proposed
PTA is evaluated on a partial model of a notional satellite optical instrument.

Keywords verification strategy · engineered system · set-based design · tradespace exploration · tree search · Bayesian
network · parallel tempering
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1 Introduction

System verification, defined as the process of evaluating whether a system or its components fulfill their requirements,
is generally executed during the development of engineered systems [Engel, 2010, Grobelna et al., 2016, Machin et al.,
2016]. System verification is often planned and implemented as a strategy of the verification activities, which can be
executed at different developmental phases and on different system configurations [Salado and Kannan, 2018a]. A
well-designed verification strategy can contribute to the expected utility of a system in multiple ways such as by
shaping beliefs about a system exhibiting certain characteristics, consuming resources, or informing the need for
certain design features [Salado and Kannan, 2018b].

In current practice, verification strategies are usually defined and fixed at the beginning of system development by
allocating and committing the resources necessary to execute the planned verification activities (VA) throughout the
development process [Engel, 2010]. Several optimization algorithms have been proposed to support this approach
(e.g., [Engel, 2010, Engel and Barad, 2003, Barad and Engel, 2006, Lv et al., 2014, Xiao et al., 2017]), all of which
rely on the assumption that the value (or information) provided by an individual VA is a constant. However, the
information generated by a verification activity and, hence, its value and the necessity to perform it, is a function of
the results of VAs that have previously been performed [Salado and Kannan, 2018a]. In other words, as the system
development progresses, VAs that were initially considered necessary may become unnecessary given intermediate
verification results and vice versa [Xu and Salado, 2019]. Therefore, defining and fixing a verification strategy early
in system development yields suboptimal value [Xu and Salado, 2019]. Instead, dynamically defining verification
strategies, where the selection and execution of verification activities change as verification results from previous
verification activities are obtained, yield higher value [Xu and Salado, 2019]. In essence, with dynamic verification
strategies, a VA is only performed if worthy, not because it was originally committed at the beginning of the system
development.

The set-based design (SBD) [Ward et al., 1995a,b] is a promising technique to define dynamic verification strate-
gies [Xu and Salado, 2019]. However, operationalization concerns remain in the implementation of such a technique.
In particular, as the effect of each activity is influenced by both the results of previous activities and the choice of
future activities, verification strategies cannot be decomposed into basic activities that are assessed independently. In-
stead, whole verification strategies should be considered when assessing how valuable each VA is. However, as the
number of possible verification activities increases, the magnitude of the resulting possible verification strategies (i.e.,
the verification tradespace) becomes so large that using enumeration to identify the best verification strategy becomes
infeasible due to the curse of dimensionality [Ernest, 2003]. Therefore, operationalizing the design and use of dynamic
verification strategies requires development of feasible exploration approaches for large verification tradespaces.

To overcome these problems, this paper presents a feasible exploration framework based on a parallel tempering
approach (PTA) that enables the application of SBD to dynamically define verification strategies in large verification
tradespaces. First, we reformulate the verification tradespace as a tree space rather than as a path space. In this way,
the exploration approach becomes a process that identifies the near-optimal VA at each state to narrow down the set
of verification strategies. Next, we design a parallel tempering (PT) algorithm that runs a series of system replicas to
find the near-optimal foresight verification tree (FVT), where the root node of the FVT is set as the near-optimal VA at
each state. Finally, the exploration results for all states are collected as a hindsight verification tree (HVT) to evaluate
the performance of our proposed method.

The remainder of this paper is organized as follows. Section 2 reviews the background about SBD and PT algorithm.
Section 3 describes the proposed methodology to make the exploration of the verification tradespace feasible. Section 4
presents our experiments and related analyses, and, finally, a summary of the conclusions of this paper is presented in
Section 5.

2 Background

2.1 Set-based Design

There is often a lack of knowledge about a system at the beginning of development of that system [Blanchard et al.,
1990]. Such a lack of knowledge motivates the emergence of SBD [Ward et al., 1995a,b]. SBD is built on the principle
of working simultaneously with a plethora of design alternatives instead of converging quickly to a single option. As
knowledge about the system increases during system development, suboptimal alternatives are discarded until a pre-
ferred one remains [Bernstein, 1998]. SBD has been successfully applied in multiple applications, including structural
design [Miller et al., 2018], naval systems [Singer et al., 2009], multiplate clutch systems [Canbaz et al., 2014], and
3D metal forming processes [Schjøtt-Pedersen et al., 2019], among others. SBD has also been shown to strengthen
the performance of tradespace exploration [Small et al., 2018]. In particular, whereas tradespace exploration can iden-
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tify numerous solutions in the initial design set [Ross and Hastings, 2005], SBD can reduce the burden of finding the
optimal choice in early stages. For example, Specking et al. [Specking et al., 2018] proposed an integrated framework
for an unmanned aerial vehicle case and showed how SBD was able to find a larger set of feasible designs early in the
design process compared to traditional methods.

In the field of system verification, Xu and Salado [Xu and Salado, 2019] proposed using SBD to enable the design of
dynamic verification strategies as verification results become available. In essence, an engineering team would work
with a set of verification paths instead of only a single verification path. The set is formed by those verification paths
that are optimal for the different results that future verification activities might yield. Once a VA is executed and its
results are known, the values of the verification paths in the set are updated, which makes some of them suboptimal.
These suboptimal paths are then removed from the set, which continuously shrinks as system development progresses.
In Xu and Salado’s concept paper, identification of optimal paths within the verification tradespace was performed
using enumeration. Hence, the computational approach is not scalable and cannot address the design of verification
strategies for more realistic systems. This is the main shortcoming that is addressed in this paper.

2.2 Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that represents a set of random variables and their con-
ditional dependencies via a directed acyclic graph [Cai et al., 2017]. BNs have been used as fundamental tools for
verifying engineered systems [Salado and Kannan, 2018a]. In particular, system parameters to be verified and verifi-
cation activities to be performed are modeled as nodes in the BN, where edges represent their information influence.
Then, the information dependency of verification activities is captured by joint distribution of the BN.

The execution of a verification strategy is, hence, modeled as a Bayesian inference process [Koller and Friedman,
2009] that captures the way in which engineers build confidence in the state of the system as verification evidence
becomes available [Salado and Kannan, 2019]. Realization of this Bayesian inference process consists of three steps:
(1) A network structure is built that captures the causal relationships between all system parameters and verification
activities; (2) The network nodes are assigned with prior distributions generated through knowledge elicitation; and
(3) Activity results are collected during the verification process, enabling updates of posterior distributions of the state
of the system.

2.3 Parallel Tempering

For problems where finding an optimal solution is very difficult or not practical, heuristic methods are often
used to facilitate the process of finding a satisfactory solution [Wikipedia contributors, 2020, Zhang et al., 2013,
Xiong and Zhou, 1998]. Parallel Tempering (PT) is a heuristic method originally devised by Swendsen and
Wang [Swendsen and Wang, 1986]. This method simulates M replicates {Ω(Ψm)} of the original system of interest si-
multaneously. Each replica is assigned with a different temperatureΨm that originally represents physical temperature
in molecular dynamics [Swendsen and Wang, 1986]. For ordinary systems, temperatures are used as hyperparameters
of the PT algorithm that have a direct impact on the acceptance probability of the Monte Carlo process. If the tem-
perature of a replica is high, the replica can accept new samples in a larger solution space. Even though PT has M
replicas, which requires M times more computational effort than a standard, single-temperature replica simulation,
PT is over 1/M times more efficient than the latter because it allows the lower temperature system to jump out of its
regular region of sampling [Earl and Deem, 2005]. In addition, PT can make efficient use of large CPU clusters, since
replicas can be simulated in parallel. Due to these benefits, this paper leverages the PT method to identify optimal
verification strategies with limited computational resources.

The standard PT method consists of a two-level sampling process, a basic level and an advanced level, as shown in
Algorithm 1. Suppose there are M replicas {Ω(Ψm)} with their own configurations (i.e., Ω(Ψm) = xi

m)). In the basic
level, a Markov chain Monte Carlo (MCMC) simulation [Metropolis et al., 1953] would be run for each replica. In the
advanced level, all pairs of two neighboring replicas may exchange their configurations {xi

m, xi
m+1} with acceptance

probability p = min(1, exp(∆β∆E)), where ∆β = 1
Ψm

− 1
Ψm+1

, ∆E = Em − Em+1, and Em is the performance

metric of the configuration xi
m. The probability is chosen in such a way that the exchange of replicas is reversible

by satisfying the detailed balance condition [Wang et al., 2009]; hence, this condition is satisfied for the complete
PT method. This is an inherent advantage of PT, since it can provide a desirable equilibrium state for the sampling
process.

Design of a PT method involves three major hyperparameters [Wang et al., 2009]: the total number of swaps Ns, the
number of MCMC iterations Nit, and the set of temperatures {Ψm}. Several rules of thumb have been proposed
for designing these parameters. First, Nit should be large enough so that a replica reaches equilibrium after (M −
1)Nit steps [Wang et al., 2009]. In terms of temperatures, the highest temperature should be high enough that its
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Algorithm 1 Standard PT Algorithm

1: Inputs:
Ns, Nit, {Ψm},m = 1, . . . ,M .

2: Initialize:
{Ω(Ψm)} : Ω(Ψm) = xi

m.
3: for i = 1 to Ns do
4: for m = 1 to M do
5: Apply the MCMC method to Ω(Ψm) for Nit

iterations.
6: end for
7: for m = 1 to M-1 do
8: Swap xi

m with xi
m+1 with the probability p =

min(1, exp(∆β∆E)).
9: end for

10: end for

corresponding replica can cross the whole solution space; the lowest temperature should be low enough that its replica
approaches the local minimum,min(Em) [Wang et al., 2009]. Moreover, an optimal allocation of temperatures should
lead to a uniform acceptance probability for all pairs of neighboring replicas [Rathore et al., 2005]. A simplistic

approach is provided in [Kofke, 2002], which states that a geometric progression of temperatures (i.e.,
Ψm+1

Ψm
= C)

for ordinary systems could result in uniform acceptance probabilities. The spacing between the temperatures should
also be small enough that a sufficiently large acceptance probability is reached [Wang et al., 2009, Kofke, 2002]. The
optimal acceptance probability is recommended to be 20% for the cases in [Rathore et al., 2005].

3 Proposed Methodology to Design Verification Strategies

3.1 Basic Model of a Verification Construct

In this work, the basic verification construct is modeled as a BN, which was also used in the previous
study [Salado and Kannan, 2018a], under the assumption that a BN can capture all confidence relationship between a
complex system and its verification activities. To illustrate the idea, an exemplar network is presented in Fig. 1. Sys-
tem parameters are denoted by θk and verification activities by Ai. Then the confidence of the target parameter P (θ1)
can be deduced using the Bayesian inference. For this paper, all nodes are considered binary: a system presents either
error or no error, and a VA can yield either positive or negative results. Arrows represent information dependencies.

The verification process constitutes the execution of a verification strategy, i.e., a set of verification activities within
T time intervals that form a verification path. Each activity is conducted at the beginning of its corresponding time
interval, i.e., t = 0, ..., T − 1 and can be conducted at most once in the verification process. Once the verification
process is completed, the system will be deployed at the end t = T .

1 2

A1 A4A2 A3

Figure 1: Illustration of an exemplar network

3.2 Valuation of Dynamic Verification Strategies

In this study, the value of a verification path, U , is given by the summation of three factors. The first factor is the
verification activity execution cost, CAi

, which is a fixed amount of financial resources necessary to conduct a VA,
Ai. The second factor is the rework cost, CRi

, which represents the financial resources necessary to adjust the system
when necessary. This cost is only incurred if rework activity, Ri, is triggered. The third factor is the system revenue,
Bk, which is obtained once the system is deployed and operates correctly.

While CAi
is linked to the execution of a VA, CRi

and Bk depend on the evolution in confidence that the system is
operating correctly as verification activities are performed. For simplicity, decision rules for the execution of rework
activities and deployment of the system have been defined in this paper, regardless of their actual optimality within an

4



arXiv Template A PREPRINT

expected utility framework [Von Neumann and Morgenstern, 1953]. In particular, a rework activity may be initiated
when a VA, Ai, fails and the resulting confidence in the correct operation of the system falls below a predefined
thresholdHl. Hl mean the confidence threshold of rework activities. They are specific in the experiments and provided
beforehand. Moreover, it is assumed that a rework activity raises confidence in the correct operation of the system to the
level that would have been attained if the last verification activity before the rework had been successful. Similarly, we
consider the system to be deployed when the confidence levels, P (θk), of the target parameters, θk, reach or surpass
certain thresholds. For simplicity and practicality, these rework and system deployment rules against confidence
thresholds are predefined.

Under these conditions, the expected value of a verification path at the end, t = T , is given by:

U(ST ) =
∑

k

BkP (θk|ST )δ(P (θk|ST ) > Hu)

−
∑

i

CAi
−
∑

(i,t)

CRi
δ(P (θk|St) < Hl),

(1)

where a verification state St, t = 0, ..., T , is a vector of variables containing the results of all verification activities.
Considering the verification model in Section 3.1 as an example, the verification state at time interval t can be denoted
as St = [A1, A2, A3, A4], where Ai records the evidence of each activity node. Evidence can take on three values.
If the node has not been verified, its value is 0. If the result of the VA (i.e., node evidence) is true (positive), its
value is 1, and if the result is false (negative), its value is -1. P (θk|St) is the conditional confidence level given the
verification state St at time interval t. δ(·) is an indicator function that captures the rework and deployment decision
rules. Specifically for rework, δ(·) equals 1 if P (θk|St) is lower than the threshold Hl; otherwise, its value is 0. For
deployment, δ(·) equals 1 if P (θk|ST ) is higher than the threshold Hu; otherwise, its value is 0.

The design of an optimal dynamic verification strategy Vopt consists of finding a set of optimal verification activities
that maximizes the expected value of the verification strategy at time t = 0, ..., T − 1, considering that the expected
value of all possible verification paths stemming from the verification strategy at the end t = T :

Vopt = argmax
Vh

E{ST }[U(ST )|Vh = {Ai|St}], (2)

where a dynamic verification strategy Vh consists of the activities {Ai} for their corresponding verification states {St}.
Here, the notation E{ST }[·] means taking expectation with respect to ST .

3.3 Tree Search in Verification Tradespace

As discussed in Section 3.1, a key challenge of designing verification strategies is the randomness of activity results,
which means different results may lead to different verification paths. To account for this property of system verifi-
cation, we formulate the verification tradespace as a directed tree space where each node of the tree represents one
possible VA and the number of sub-branches of a node represents the number of results a VA can yield. For example,
if all verification activities that could form a verification strategy have two possible results, the resulting tree space
would become a binary directed tree. Hence, the maximum depth of the tree is given by the number of time intervals in
which verification activities could be performed. Its width, however, is undetermined because the verification process
could be stopped early in three situations. First, when reaching an intermediate time interval, a confidence level that is
high enough to allow deployment of the system without requiring any further verification. Second, when reaching an
intermediate time interval, a certain low confidence level could not be recovered, through rework and/or future VAs,
into a sufficient confidence level that allows for an eventual deployment of the system. Third, it should be noted that,
while it would be possible to opt to not execute any VA at a specific time interval (referred to as ‘NA’), for simplicity, it
is assumed for this paper that once ‘NA’ is taken the verification process stops. Given this tree structure, all verification
strategies can be organized as this type of directed trees in this study.

Instead of searching for the near-optimal tree in one step, the search for a dynamic verification strategy is focused on
selecting a near-optimal VA that could maximize the expected value of all possible verification paths remaining for the
rest of the time intervals, as suggested in prior work [Xu and Salado, 2019]. However, as opposed to [Xu and Salado,
2019], we assume that the near-optimal VA is determined by choosing the root node of a foresight verification tree
(FVT, denoted as V F

h ) that shares the same structure of the directed tree above. For example, considering the exemplar
network in Fig. 1, if the near-optimal FVT at the state [0, 0, 0, 0] is the tree in Fig. 3 (a), A2 at the root node is selected
as the near-optimal VA at t = 0. After A2 is implemented, if the state becomes [0, 1, 0, 0], another FVT is explored in
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the same way to search for the next near-optimal activity. Similar to Eq. 2, optimality of a FVT V F
opt is then assessed

using its expected value:

V F
opt = argmax

V F
h

E{ST }[U(ST )|V
F
h = {Ai|St}]. (3)

To calculate this expected value, E(U), the posterior probabilities, Pp,q , of each branch p of a path q in V F
h are

deduced using Bayesian inference on the BN model [Koller and Friedman, 2009]. The probability of path Pq can then
be obtained by multiplying all probabilities of all branches along this path, Pq =

∏
p Pp,q . Thus, the expected value

of this FVT E(U) can be calculated as the weighted sum of the values of all paths:

E(U) = E{Sq,T }(U(Sq,T )) =
∑

q

PqU(Sq,T )

=
∑

q

(
∏

p

Pp,q)U(Sq,T ),
(4)

where {Sq,T } enumerates the verification states of all paths of a FVT at t = T .

Dynamic verification strategies are then evaluated by connecting the near-optimal activities sequentially as a hindsight
verification tree (HVT, denoted as V H

opt) after all possible states of a verification process are explored. The near-optimal
activities of all possible states are connected according to their individual results. For example, if the first optimal
action turns out to be A2, all states following from A2 onward, that is, [0, 1, 0, 0] and [0,−1, 0, 0], will be explored
during the next time interval. For simplicity, the probabilities of all branches of V H

opt are deduced using Bayesian

inference on the BN model [Koller and Friedman, 2009]. So the distribution of these two states P (A2 = T/F ) can be
deduced from the BN model. Given the probabilities of all branches, the expected value of V H

opt can be calculated in
the same way as Eq. 4.

3.4 Proposed Parallel Tempering Approach

The PT algorithm proposed in this paper leverages the standard PT framework, but it includes some modifications
necessary to effectively address the specific characteristics of the system verification problem. The most important
characteristic is that the execution of rework mechanisms influences the value of the verification strategy, but they
remain uncertain when exploring the tradespace. To reduce the influence caused by this factor, the original MCMC of
each replica was extended with an iterative loop to generate new samples, as shown in Fig 2. This loop first generated
a raw verification tree (RVT), which is denoted as V R

h . RVT is a tree diagram that has nT−t − 1 nodes, where there
remains T − t time intervals and each VA has n results. All VAs that have not been implemented before t can be
selected as nodes of V R

h . This RVT was then evaluated by going through all paths from its root node. If the attained
confidence level is lower than the threshold Hl, a rework activity is triggered and the false result is corrected to a
true result. If the confidence level reaches the threshold Hu or ‘NA’ is implemented, the verification process would
be stopped. After the RVT evaluation is completed, all nodes of V R

h that have been visited form the corresponding

FVT, V F
h . In other words, given a V R

h , its V F
h is created by pruning the non-visited branches with the rework rules

in Section 3.2 and the early stopping rules in Section 3.3. For example, consider a RVT is generated as the tree in
Fig. 3 (a) and Hl = 0.2, Hu = 0.95. If the result of the first activity A2 is false, a rework activity is triggered because
P (θ1) = 0.05 < 0.2. So the following VA A4 is pruned and only the following state [0, 1, 0, 0] needs exploration. If
the following A1 is true, the process will stop because P (θ1) = 0.99 > 0.95. If the result of A1 is false, the process
will also stop because the next activity is ‘NA’. The generated FVT V F

h is shown in Fig. 3 (b). Finally, if V F
h is not

near-optimal, another new RVT, V R
h+1, will be generated for the next loop. Otherwise, V F

h is the exploration result.

RVT

Evaluation
RVT Near-optimal?FVT

Generate 

a New RVT

T

F

Figure 2: The Iterative Loop Method

Within this iterative loop method, the generation of RVTs can be realized in a similar way to the MCMC approach. In
line with the MCMC idea that every sampling step is reversible (i.e., detailed balance condition), every new RVT V R

h+1

would be generated from the previous RVT V R
h rather than from the previous FVT V F

h . In this way, the invariance

6



arXiv Template A PREPRINT

of the distribution of samples is ensured [Tierney, 1994]. In addition, it is not possible to use the traditional statistic
sampling method directly because, due to the tree structure of the samples, there is no specific distribution in the RVT
tree space. Instead, new samples are generated in this study using the basic exchange and replacement rules. For
simplicity, we assume that the exchange rule will be adopted with 80% possibility while the replacement one will be
adopted with 20% possibility in practice.

Algorithm 2 Verification Activity Correction Algorithm

1: Inputs:
V R
h+1 = {qi}, i = 1, . . . , I , X = {A′

1, A
′
2}.

2: Initialize:
A position set: Y = {ø}.

3: Add the positions of A′
1 and A′

2 to Y .
4: while r = True do
5: r = False.
6: for i = 1 to I do
7: if An activity A′

j ∈ X is executed twice in qi then

8: Identify the position (i, j) from the two posi-
tions that is not within Y .

9: Add the position (i, j) to Y .
10: Replace A′

j at (i, j) with another activity in X .
11: r = True.
12: end if
13: end for
14: end while

To be more specific, the exchange rule is used to randomly select two verification activities {A′
1, A

′
2} from V R

h and
switch their node positions to generate new samples. In particular, there is a restriction that each VA can be executed
only once along each verification path qi. Taking the RVT in Fig. 3 (a) as an example, if the activities {A2, A1} in the
first path {A2, A1, A4, NA} are switched, there is an activity conflict in the last two paths q7/q8 = {A1, A4, A1, NA}
because A1 is executed twice. The second A1 in q7/q8 can be replaced with A2 to correct this conflict. Because this
kind of activity conflict may happen in an unpredictable way, we examine all paths and correct conflicting activities
iteratively until there are no activity conflicts. A verification activity correction algorithm is added to correct all
conflicting activities along all paths {qi} of V R

h+1 after the exchange, as shown in Algorithm 2. In addition, the
replacement rule is used to replace a randomly selected VA, As, with another target activity to generate new samples.
The target VA is sampled from all candidate activities that do not appear along the paths of the activity As. ‘NA’ is
also included as a candidate VA. For simplicity, candidate verification activities are randomly chosen according to a
uniform distribution.

As an acceleration technique of the two rules, all activities in the previous RVT V R
h are assigned with weights ac-

cording to their node positions. That is, the sampling weights of all time intervals, as well as those of all verification
activities within one time interval, follow the uniform distribution. This is done by setting the probability of impor-
tance (i.e., weight) for each VA Wi as the reverse function of the number of remaining T − t time intervals and the
number of branches Nt at its time interval t. The formula is Wi = 1

Nt·(T−t) . One illustration example is shown in

Fig. 3 (c). Given such weights of all node positions, a new sample V R
h+1 can be generated from the original one V R

h

with the two rules above.

Another modification of the standard PT algorithm is the specification of parameters. First, different from the mini-
mization problem of the standard PT method, the target function used in this study is to maximize the expected value
of replicas. So the acceptance probability is changed to Pe = min(1, exp(−∆β∆E)), where ∆β = 1

Ψm
− 1

Ψm+1
,

∆E = Em − Em+1, and Em is the expected value of V F
h (Ψm) in the replica Ω(Ψm). Second, the temperatures

{Ψm}, as major hyperparameters of the PT algorithm, have a direct impact on the acceptance probability. Considering
the rules of thumb presented in Subsection 2.3, three conditions are identified to determine the temperatures. The first
condition is that Pe should be larger than some threshold C1 for the pair of replicas with the two highest temperatures
{Ω(ΨM−1),Ω(ΨM )}, even when ∆E is maximum. So the constraint about ∆β can be deduced as:

exp(−∆β∆Emax) > C1,

∆β > −
log(C1)

∆Emax

.
(5)
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(a) A RVT Example (b) A FVT Example (c) Sampling Weights

Figure 3: Illustration Example of the Iterative Loop Method. (a) A RVT V R
h is generated as a tree diagram; (b) A FVT

V F
h is created from V R

h ; (c) All time intervals follow uniform distribution and the activities within each time interval
share the same sampling weights.

The second condition is that Pe should be smaller than some thresholdC2 for the pair with the two lowest temperatures
{Ω(Ψ1),Ω(Ψ2)} as long as ∆E is larger than a threshold ∆Ethres. So another constraint about ∆β can be deduced
as:

exp(−∆β∆Ethres) < C2,

∆β < −
log(C2)

∆Ethres

.
(6)

Then the range of ∆β is [− log(C1)
∆Emax

,− log(C2)
∆Ethres

]. Next, following the analytical study in [Kofke, 2002], we assumed

there is a constant ratio value C3 = Ψm+1

Ψm
between all pairs of temperatures for simplicity. The set of temperatures can

be calculated with these three conditions. While the specific values of temperatures depend on the initial conditions of
the experiment, their calculation is discussed in Section 4.1.

Finally, a convergence rule is proposed to obtain a satisfactory FVT solution with limited computational resources. In
the standard PT algorithm, the total number of swaps is determined first, which makes it hard to compare benchmark
methods. Thus, the convergence of tree search is determined according to the duration of near-optimal solutions.
As all replicas of the verification process are repeatedly sampled over time, they are divided into a series of non-
overlapping periods, which we term the window period. The length of each window period is set as Nit. Within each
period, the optimal FVT sample, V F

opt, can be found from all replicas. The basic idea is that if V F
opt remains the best

alternative after a certain number of replica iterations (named Convergence Length L), we treat it as the near-optimal
one. Determining the specific value of L requires experimental tests because its value depends on the specific context,
which will be discussed in Section 4.4. Note, once L is determined, it is unnecessary to specify Ns because both
function as constraints on the total length of the replica iterations.

In summary, compared with Algorithm 1, the proposed PT approach presents three main modifications: the iterative
loop method, the specification of parameters, and the convergence rule. The complete PT algorithm used in this paper
is shown in Algorithm 3.

4 Experimental Design

In this section, we apply the proposed methodology to design a dynamic verification strategy for an optical instrument
in a satellite. The performance of the proposed method is assessed in sixteen cases having different complexity.

4.1 Experimental Setup

We use an optical instrument as the system model and a notional set of possible verification activities presented
in[Salado and Kannan, 2019] as the test case for this study. The engineered system and its possible verification activ-
ities are represented, as shown in Fig. 5, as a BN where system parameters are shown as circle nodes and candidate
verification activities are denoted as square nodes. The full network contains three components that contribute to the
field of view (θ1), the modular transfer function (θ3), and the system degradation (θ6). The definition of each node is
given in[Salado and Kannan, 2019] and is not reproduced here, since they do not affect the results of this paper. Each
node is characterized in this paper with its own conditional probability table (CPT), which is provided as a digital
file. Specific values are synthetic and have been generated using the Noisy-or model [Pearl, 2014], which takes into
account the physical meaning of the different modes when estimating their mutual effects for reasonability of the data.
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Algorithm 3 Proposed PT Algorithm

1: Inputs:
Nit, {Ψm},m = 1, . . . ,M.

2: Initialize:
{Ω(Ψm)} : Ω(Ψm) = V R

0 (Ψm).
3: while True do
4: for m = 1 to M do
5: Apply the iterative loop method to Ω(Ψm) for Nit

iterations.
6: end for
7: for m = 1 to M-1 do
8: Swap V R

h (Ψm) with V R
h (Ψm+1) with the proba-

bility p = min(1, exp(−∆β∆E)).
9: end for

10: Search for the best sample V F
opt from {Ω(Ψm)}.

11: if V F
opt meetsthe proposed convergence rule then

12: Stop.
13: end if
14: end while

Figure 4: Small Network (within the dashed line) and Medium Network (i.e., the whole graph)

Figure 5: Large Network (within the dashed line) and Full Network (i.e., the whole graph)

9
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Table 1: Lower Thresholds of Different Rework Rules
Time Interval (t) 0 1 2 3 4

Low 0.2 0.2 0.2 0.2 0.2
Low-high 0.2 0.3 0.575 0.85 0.95
High-low 0.95 0.85 0.575 0.3 0.2

High 0.95 0.95 0.95 0.95 0.95

In this experiment, we assume that system revenue is driven by system parameter θ3. Hence, θ3 is set as the single
target parameter. The number of time intervals is set as 5, as it provides sufficient complexity to demonstrate the
performance of PTA without requiring extensive computational effort. Four types of rework rules are used in the study
to explore different interpretations of the rework triggering mechanism. They are modeled as different values of Hl

at each time interval and are referred to as ‘Low’, ‘Low-high’, ‘High-low’, and ‘High’. The specific values of Hl are
shown in Table 1. A low Hl at some time interval models a situation in which immediate rework may not be necessary.
In contrast, a high Hl models a situation in which rework must be performed straight away. The threshold for the
system deployment rule, Hu, is set as 0.95.

Four networks of different sizes are used to explore the scalability of the approach with problem size. First, we apply
the PTA method to a small network, consisting only of system attributes and verification activities related to θ3. This
is outlined by the dashed line in Fig. 4. Second, we apply the proposed PTA to a medium network whose nodes are
closely related to θ3, as shown in Fig 4. Third, we reduce the scope of the proposed PTA to a large network whose
nodes are related to θ3 and θ6. It is outlined by the dashed line in Fig. 5. Finally, we apply the proposed PTA to the
full network in Fig. 5. These four types of networks share the same parameter θ3 as the target node. They have scaling
relationships from some closest nodes to all connected nodes. To ensure that the four networks are comparable, we set
the joint distributions of all subnetworks, including small, medium, and large networks, as the marginal distribution of
the full network. That is, the probabilistic relationships defined for the full network are completely reserved in all four
types of networks.

Cost data have also been synthetically generated in thousand dollar units ($1,000). The revenue Bk has been set to
20,000 so that it provides a balance when choosing verification activities. The execution costs of the different VAs,
as well as the corresponding rework costs, are provided in Table 2. The execution costs have been generated from
a range [250, 1000]. Specific values have been defined according to the type of VA defined in [Salado and Kannan,
2019]. In particular, VAs directly associated with system parameters θ1, θ2, θ3, and θ6 have been considered to be
more expensive than the rest.

Rework costs associated with each node Ai have been designed by considering two factors, as defined
in [Salado and Kannan, 2019]: the development phase in which the VA is executed (e.g., Preliminary Design Re-
view (PDR), Critical Design Review (CDR), etc.) and the type of system parameter (including verification model) the
VA verifies. In general, it is assumed that the later the rework is executed in the system development, the higher the
rework cost is [Blanchard et al., 1990]. This rule of thumb is also incorporated as a penalty factor to promote rework
happening as early as possible. The rework penalty factor was specifically defined as the multiplication coefficient
[1, 1.11, 1.22, 1.36, 1.5], where each element in the vector corresponds to increasing time intervals. For example, exe-
cuting rework after A23 at the first time interval t = 0 costs 740, while executing the same rework after A23 occurs at
t = 4 would cost 740 ∗ 1.5 = 1110. To simplify the experiment, the values of all cost items are assumed to be fixed
and known beforehand.

The specification of parameters follows the rules presented in Section 3.4. The temperatures are determined according
to the three conditions described earlier. Given the cost values defined in Table 2, the range of ∆E within 5 time
intervals is within [−3.8 ∗ 105, 3.8 ∗ 105]. So ∆Emax = 3.8 ∗ 105. We also assign the constants with values C1 =
0.05, C2 = 0.05, C3 = 2,∆Ethres = 100. Then the range of ∆β is calculated as [0.79 ∗ 10−5, 0.03]. The final
temperatures has been set as

{Ψm} ={10, 20, 39, 78, 156, 312, 625, 1250, 2500,

5000, 10000, 20000, 40000, 80000, 160000}
(7)

to cover the range of ∆β. The convergence length L is set at 1, 000 iterations, as discussed in Subsection 4.4. We
also set Nit = 50 (i.e., the length of the window period is 50 iterations), as it does not yield any sensitivity for fixed
convergence length.

Finally, the PTA has been implemented with 15 cores (for each core, CPU: Intel E5-2683V4 2.1GHz, Memory: 4GB)
in the parallel computing environment provided by Advanced Research Computing at Virginia Tech.
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Table 2: Verification Activity Execution Costs and Rework Costs (Unit: $1,000)

Verification Activity A22 A23 A24 A25 A26 A27 A28 A29 A30

Activity Cost (CA) 350 800 350 250 800 350 350 550 450
Rework Cost (CR) 39,010 740 36,620 38,430 5,160 37,550 30,970 8,310 7,030

Verification Activity A31 A32 A33 A34 A35 A36 A37 A38 A39 A40

Activity Cost (CA) 300 250 700 250 700 450 300 350 350 550
Rework Cost (CR) 7,880 1,860 8,180 6,200 8,070 6,020 7,800 1,490 770 7,910

Verification Activity A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

Activity Cost (CA) 1000 450 450 950 950 250 250 400 850 250
Rework Cost (CR) 740 8,020 1,700 1,470 1,270 1,160 1,600 1,330 1,010 1,220

4.2 Experimental Method

The proposed PTA in this experiment is compared against several benchmark methods, including the fixed path method
(FP), the basic Monte Carlo method (MC), the dynamic Monte Carlo method (DMC), and the static FVT approach
(SFVT). The FP represents the approach commonly used in verification engineering practice. In essence, a set of VAs
is defined at the beginning of system development, which are strictly conducted regardless of their results. While the
selection of the specific set of activities (and path) is performed following industry standards or subject matter expert
experience [Engel, 2010], an optimal path found via full enumeration is used in this case. Hence, the FP benchmark
used in this paper represents a best-case scenario of industry practice. The MC is based on the random generation of
solution trees, which are compared in terms of their expected values, with the best one among the set being chosen
as a static verification strategy. The DMC combines the MC method and dynamic design, such that, for each possible
verification state of a verification process, MC is used to identify a near-optimal VA. Finally, to illustrate the effect of
dynamic design, we consider the SFVT, which uses the near-optimal FVT generated at T = 0 as the static verification
strategy.

To make a fair comparison, we grouped the proposed PTA method and the DMC method together and set the rest of
the methods as a separate group to show the effect of dynamic design. As to run time, we apply the same convergence
rule (i.e., L = 1, 000) and the parallel computing environment (15 cores) to all these methods under the 16 cases. The
wall clock time (i.e., elapsed real time) is used to compare computational efficiency.

4.3 Experimental Results

We applied the proposed PTA to all 16 cases that are combinations between four networks and four rework rules in
this experiment. As shown in Fig. 7, the sixteen HVTs are generated by the algorithm and can be read as follows:
(1) These HVTs summarize the root nodes of the near-optimal FVT at each verification state. For example, in Case
(j), which has a medium network and high-low rework rule, a FVT is generated first at t = 0, as shown in Fig. 6 (a).
A38 is chosen as the first near-optimal VA. If the result of A38 is true, another FVT is generated at t = 1, as shown
in Fig. 6 (b). A32 is recommended as the next near-optimal VA. The same reasoning applies throughout the five time
intervals. All near-optimal activities are connected as the HVT in Fig. 7 (j). (2) The posterior confidence on the correct
functioning of the system, i.e., that of the target node θ3, has been labelled next to each activity result (T or F) in Fig. 7.
As expected, the posterior confidence is shaped by verification results [Salado et al., 2019]. If P (θ3) is lower than the
lower threshold Hl, a rework activity is triggered, which is represented as a dashed curve. (3) Stop endpoints indicate
the early stopping rules in Section 3.3. If P (θ3) is larger than Hu, the system can be deployed and there is a stop
endpoint. Otherwise, a stop endpoint indicates the near-optimal activity of a FVT is ‘Stop’. That is, the certain low
confidence level could not be recovered into a high confidence level through rework and/or future VAs.

The evolution of the values of the different verification strategies as they progress through the time intervals is depicted
in Fig. 8. Each plot consists of a series of lines that match all possible paths for the HVT. The dashed lines show the
expected values of the HVTs. The blue lines represent the paths that yield higher values than the expected value at the
end t = T ; the red lines represent those paths that yield lower values. The values yielded by each path at each time
interval are the sum of the items that have happened and the expected values of the following FVTs in the following
time intervals. For most cases, the values at early time intervals do not represent the value at the end, which can be
observed by tracing the changes of lines.

From the 16 HVTs and their value plots, it can be found the network size has a fundamental but limited impact on the
generation of strategies. When the network is small, there are at most two verification activities in the strategy because
the small network contains only five activity choices. When the network become a medium one, both the depth of
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(a) The 1st FVT

(b) The 2nd FVT

(c) The 3rd FVT

(d) The 4th FVT

(e) The 5th FVT

Figure 6: Dynamic Generation of FVTs

trees and the number of paths increases. However, comparing the medium network with large/full networks, there are
no much changes of tree shapes even though the specific selection of some nodes is different. A possible explanation
is that most of the system parameters and verification activities in large/full networks not included in the medium
network are farther from the target node than those of the medium network. This means that the additional nodes have
limited influence on the confidence level of P (θ3). This can also be certificated by comparing the expected values
of value plots. That is, there is a sharp increase of expected values from the small network to the medium network.
The expected values do not increase so much from the medium network to larger ones. This contradicts the intuition
that more activities would bring more choices and potential opportunities for better results. We assume, however, that
the reason for this result is that including more possible verification activities enlarges the verification tradespace and,
hence, requires more calculations to find the solution.

In addition, the rework rules also significantly influence the selection of VAs. When the decision threshold is set at a
high level, triggering rework activities becomes much easier. Thus the number of different paths can be reduced for a
certain network size. This can be clearly seen in the last two columns of HVTs in Fig. 7. From the value plots, when
the rework rule is set at a high level and the network is larger than the small one, the range of path values at t = 5
also decreases to [5000, 40000]. This is explained by the effect of frequent rework that can prevent more serious errors
in the late time intervals. It is noticeable that frequent rework does not necessarily result in lower expected values
because of the optimization process. That is, verification activities that are associated with low rework costs become
much more preferred when rework is inevitable. In contrast, when the lower threshold is on the low end, those VAs
that have a high impact on confidence can be tested with a lower risk of large rework costs.

The expected value comparison between the proposed method and benchmark methods are listed in Table 3 and Fig. 9
(a)-(d). Notably, as there are many more system parameters and VAs in the large and full networks, the brute force-
based FP method cannot be applied in these two networks. Results show that the expected values of the verification
strategies yielded by PT-based methods (i.e., PTA and SFVT) is always better than those of the verification strategies
yielded by the brute force-based and Monte Carlo-based methods (i.e., FP, DMC, MC). It can be found dynamic design
could also enhance the performance to some extent by comparing PTA with SFVT and comparing DMC and MC. The
proposed PTA always yields the highest expected value among the different methods tested. Superiority, however, is
marginal for the small network or the ‘High-low’ and ‘High’ rework rules. A possible explanation for this performance
is that the network size or rework mechanism causes a shrinkage of the verification tradespace. For example, when the
‘High’ rework rule is applied, the rework is almost always triggered. As a consequence, the resulting tree tradespace
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(a) Small / Low (b) Medium / Low (c) Large / Low (d) Full / Low

(e) Small / Low-
high

(f) Medium / Low-high (g) Large / Low-high (h) Full / Low-high

(i) Small / High-
low

(j) Medium / High-low (k) Large / High-low (l) Full / High-low

(m) Small / High (n) Medium / High (o) Large / High (p) Full / High

Figure 7: HVTs of the 16 Cases

becomes a path tradespace that has no more than 5 fixed activities. While there is up to 10∗92∗84∗78∗616 = 5.40×1025

tree solutions with a 31-node tree structure (i.e., 1 + 2 + 4 + 8 + 16 = 31 dimensions), the path tradespace has no
more than 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 = 30, 240 solutions. Obviously, exploration is much easier for the latter example.

Run time results of the methods in comparison are listed in Table 4 and Fig. 9 (e)-(h). When the network scales from
small to full, the order of time magnitude of all methods increases significantly. So it can be concluded that network
size has a direct impact on run time. From the aspects of methods, the FP method is more efficient than others when the
network is small. But as the network size increases to a medium one, the FP method is the most time-consuming. This
is explained by the inherent brute-force method that all possible strategies must be examined. The rest of the methods
maintain the same order of time magnitude for each case. In particular, the PT-based methods (i.e, PTA, SFVT) is
slightly better than MC-based methods (i.e., MC, DMC), especially when the network size is small or medium.

4.4 Discussion

We would like to make several remarks for the proposed methodology and the obtained experimental results.

First, from Tables 3 and 4 and Fig. 9, it is found that the proposed PTA outperforms the benchmark methods consider-
ing both expected value and run time. This advantage is mainly attributed to the dynamic design and the PT feature of
continually optimizing the sub-optimal solutions. To be more specific about the PT feature, as the PT-based methods
always generates similar samples to previous ones, it can consistently explore around the certain sample spaces before
jumping out to another space, especially in the low temperature replicas [Earl and Deem, 2005]. In contrast, the MC
method always generates a completely new sample at each iteration. Even though the MC method can jump out of the
local optimum quickly, it lacks the ability to exploit the promising space. The experimental results also show that the
benchmark methods have their own merits. The FP method is more efficient than the other methods when the network
is small. The HVTs of the FP also have the highest expected value when the ‘High’ rework rule is applied. Compared
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Figure 8: Value Plots of the 16 HVTs

Table 3: Expected Value Comparison between the Proposed Method (i.e., PTA) and Benchmark Methods (i.e., FP, MC,
DMC, and SFVT) (unit: $1,000)

Rework
Rule

Network
Size

PTA DMC FP SFVT MC

Low

Small 3,884 3,884 50 3,884 3,884
Medium 7,835 7,422 4,786 7,497 7,137

Large 8,733 8,574 - 8,574 7,375
Full 10,267 9,431 - 9,344 7,895

Low-high

Small 3,884 3,884 50 3,884 3,884
Medium 10,080 9,892 6,907 8,009 6,922

Large 10,111 6,517 - 8,358 6,517
Full 8,128 6,226 - 7,035 5,528

High-low

Small 3,356 3,356 3,356 3,356 3,356
Medium 12,832 12,832 12,821 12,821 11,401

Large 13,042 12,270 - 13,042 8,554
Full 13,175 12,631 - 13,175 11,765

High

Small 3,356 3,356 3,356 3,356 3,356
Medium 13,551 13,437 13,551 13,551 12,541

Large 13,551 13,551 - 13,551 10,417
Full 13,551 13,519 - 13,551 12,412
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Table 4: Run Time Comparison between the Proposed Method (i.e., PTA) and Benchmark Methods (i.e., FP, MC,
DMC, and SFVT) (unit: second)

Network
Size

Rework
Rule

PTA DMC FP SFVT MC

Low

Small 649 1,595 163 277 607
Medium 8,999 10,826 33,827 2,383 4,927

Large 28,036 33,784 - 10,173 14,802
Full 131,625 126,870 - 78,393 31,489

Low-high

Small 752 1,551 148 241 923
Medium 7,009 9,741 33,347 2,375 4,563

Large 21,936 21,584 - 5,807 11,958
Full 63,413 53,353 - 21,917 24,829

High-low

Small 428 809 153 172 305
Medium 3,523 5,369 31,422 1,455 3,228

Large 15,090 17,130 - 7,160 3,888

Full 30,723 32,181 - 13,852 12,155

High

Small 340 586 155 130 267
Medium 1,824 4,522 31,592 686 883

Large 7,351 7,291 - 4,251 3,677

Full 15,576 23,576 - 4,874 12,706
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Figure 9: Comparison of Expected Values (a - d) and Run Time (e - h) between the Proposed Method (i.e., PTA) and
Benchmark Methods (i.e., FP, MC, DMC, and SFVT)

with the PTA, the SFVT is an economic choice to solve the strategy design problem, especially when the dimensions
of a tradespace is small. The reason is its run time is always less than one half of the PTA and the expected values of
its HVTs are close to that of the PTA.

Second, as presented in Section 2.3, there are several important parameters for designing the PT, including tempera-
tures and convergence length. The parameters need further evaluation in terms of the computing performance after
the experiment. First, the spacing between temperatures can be tuned by evaluating the acceptance probability. We
calculate the average acceptance probability every 20 swaps (i.e., 1000 iterations) of all neighboring replicas for Case
(d), which has the largest tradespace. For example, the swap between the two replicas {Ω(Ψ1 = 10),Ω(Ψ2 = 20)}
is denoted as ‘10-20’, as shown in Fig. 10. The two lowest pairs ‘10-20’, ‘20-39’ become 0 after the first 2000 iter-
ation. This is because the best configuration is swapped to the lowest temperature replica at iteration 1600 and stay
there afterwards. Most of other pairs are larger than the recommended value of 0.2 [Rathore et al., 2005]. So the
configurations can be accepted between high and low temperature replicas actively. Second, a sensitivity analysis is
made for the convergence length L. We test the effect of various length values with a unit of 50 for Case (d). As
shown in Fig. 11, when the length is larger than 200 iterations, the expected value is no less than 8,430. To ensure
a sufficient redundancy, its value was set as 1,000 so that there was enough time to find a better solution before the
iteration process converged. As the PTA is a heuristic method, it is still possible to generate an unsatisfactory solution.
However, we assume that with this length, the probability of this phenomenon could be controlled within a certain
range.
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Figure 11: Sensitivity Test for the Convergence Length

Third, an implicit result of verification strategies can be found through the comparison of the generated HVTs in
Fig. 7. Note that A24 is always conducted at the end of verification processes when the confidence P (θ3) is high
enough. As A24 has larger rework costs than other activities, it is riskier to conduct this type of activities if they are
likely to trigger rework activities after collecting their results. Therefore, conducting low-risk activities first may yield
more information about the engineered system being verified, while reducing the probability that rework happens. For
example, the prior probability P (A24 = F ) is 0.396. But if A38 is implemented first and its result is A38 = T , as
shown in case (d), P (A24 = F |A38 = T ) will decrease to 0.334. As a result, rework is less likely to be triggered.
From a practitioner’s standpoint, this result can be interpreted as prioritizing verification activities that quickly increase
confidence at low risk of rework, gradually incorporating high risk activities as the confidence on the correct operation
of the system increases.

5 Conclusion

In this paper, we present a parallel tempering approach to explore high-dimension verification tradespaces for engi-
neered systems. This approach follows the need to apply SBD to the design of verification strategies. When consid-
ering dynamic verification strategies, the exploration problem of near-optimal verification activities is formulated as
a tree search problem. Then, we designed the PT algorithm with the characteristics of verification processes. The
experiments are designed with four networks of different sizes and four rework rules.

The experiments show that the proposed PTA outperforms the benchmark methods in most cases. Its scalability in
network size is also justified by comparing four networks. The expected values of the verification strategies yielded by
the PTA are always better than those achieved when using baseline methods, especially in high dimension tradespaces.
In terms of computational efficiency, the proposed PTA outperforms current approaches based on enumeration when
the network is large. PTA also shows its advantage in low dimension tradespaces, and is on par with the other bench-
mark methods in high dimension tradespaces. We suggest that adding features or rules about the system of interest
could accelerate optimization.

It is also important to note that the proposed method has been designed with certain assumptions for simplicity. First,
we assumed that Bayesian networks can fully capture the confidence relationships of engineered systems and verifica-
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tion strategies, which may be hard to realize in reality. Second, predefined rework and system deployment rules against
confidence thresholds have been used instead of determining optimal actions. Third, the values of all parameters are
assumed to be fixed for all cases. More adaptive mechanisms can be added to accelerate the PT process as a future
work. Nevertheless, we suggest that these assumptions are reasonable within the context of the work presented in this
paper.

Estimating these values (e.g., cost values and rework thresholds), while important, were left outside of the scope of
the paper. Yet, we offer some informative (non-prescriptive) guidance for how they may be calculated. Estimating
verification setup costs is common in practice. Proprietary parametric cost models that are built using historical
data could be used to create initial, rough estimations. Direct proposals from vendors and service providers, which
require more effort to obtain, may be used to refine and/or increase the confidence of the estimates. Estimating
rework costs and rework thresholds is less straightforward. Rough estimations of rework costs may be obtained
by leveraging historical data as a function of those incurred at different milestones in the development process. To
improve estimation confidence, adequate tasking, planning, and resource allocation (in terms of personnel, material,
and facility/equipment) could be used to identify those tasks that would need to be repeated for each verification
node, should a rework decision be made for that particular node. Because rework thresholds are used as pre-defined
rework decisions based on achieved confidence level, we suggest to establish them using utility theory. Specifically,
the confidence level could be set by finding the expected consequence of carrying on a system error (as a function of
the confidence), adjusted with the risk profile specific for the project, that is equivalent to the expected cost of rework.
While this approach does not guarantee optimality (for that, rework thresholds should be substituted by dedicated
rework decisions), we believe that it offers a sufficiently good approximation while making it feasible for adoption in
practice.
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