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Abstract—This study focuses on the quasisynchronization
problem for reaction–diffusion neural networks (RDNNs) in
the presence of deception attacks. Under deception attacks, a
time–space sampled-data (TSSD) control mechanism is proposed
for RDNNs. Compared with traditional control strategies, the
proposed control mechanism can not only save network band-
width but also improve the cybersecurity of communications.
Inspired by Halanay’s inequality, a new inequality is proposed,
which can be effectively applied to the quasisynchronization
problem for dynamical systems. Then, by using this inequal-
ity and the Lyapunov functional approach, quasisynchronization
criteria are set for RDNNs. The desired control gain is gained
from solving a group of linear matrix inequalities. Moreover, in
the absence of deception attacks, the exponential synchronization
problem is studied for RDNNs. In the end, simulation results are
given to demonstrate the usefulness of the theoretical analysis.

Index Terms—Deception attacks, quasisynchronization,
reaction–diffusion neural networks (RDNNs), time–space
sampled-data (TSSD) control.

I. INTRODUCTION

OVER the past decades, neural networks have attracted
increasing attention because of their extensive appli-

cations in several areas, such as model identification,
stock market prediction, cryptography, and combinatorial
optimization [1]–[6]. Great efforts heretofore have been
devoted to investigate the dynamical properties of neural
networks, including stability, consensus, and dissipativity.
Among these, synchronization is one of the most important.
Since the finding of synchronization in chaotic dynamical
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systems [7], the synchronization of neural networks has been
extensively investigated [8]–[12]. For instance, in [9], synchro-
nization was studied for neural networks with state-dependent
parameters. In [10], by using state-feedback control, fixed-
time synchronization of neural networks was studied. In [11],
event-triggered synchronization was investigated for coupled
neural networks.

Under the assumption that all neurons of interest are
fully mixed, most neural networks are represented by ordi-
nary differential equations (ODEs). In these ODE models,
the neuron states are dependent only on time, that is, only
temporal evolution is considered, whereas spatial evolution
is ignored. Reaction–diffusion processes are ubiquitous in
a variety of technological applications, such as electric cir-
cuits, as well as in applications involving biological and
chemical systems [13]–[17]. For example, in [14], by design-
ing an image encryption algorithm, reaction–diffusion neural
networks (RDNNs) were used for secure image communi-
cation. In [15], to better protect and control a population,
RDNNs were used to model different population densities of
species. The RDNNs introduced in [18] were applied to artifi-
cial locomotion [19]. Reaction–diffusion neural networks can
effectively approximate the temporal and spatial movements
of dynamical systems. They use the aforementioned ODE
neural-network models and can exhibit more unpredictable and
complex behavior. Recently, the synchronization of RDNNs
has attracted considerable attention, resulting in a massive
research output [20]–[24].

Various synchronization control strategies have been
proposed for RDNNs, including feedback [25], adaptive [26],
and pinning control [27]. These approaches are imple-
mented by using continuous-time-feedback signals. However,
in practice, digital-feedback signals are required for con-
trol schemes [28]. Therefore, sampled-data control (SDC)
has attracted considerable attention [29]–[32]. It has more
advantages than the existing control schemes, including sim-
ple structure, convenient installation, high reliability, and
low cost. Recently, synchronization for RDNNs has been
extensively studied by using SDC [33]–[36]. For instance,
in [34], the exponential synchronization of fuzzy RDNNs was
investigated using fuzzy SDC. Wang et al. [35] studied the
synchronization problem for RDNNs through quantized SDC.
In [36], the synchronization of reaction–diffusion FitzHugh–
Nagumo systems was considered by using spatial SDC.
Furthermore, owing to network-bandwidth limitations, it is dif-
ficult to utilize a sophisticated security system for network
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transmission. Cybersecurity risks are inevitable in network
systems. Accordingly, cyberattacks have attracted consider-
able attention. For example, in [37], Denial-of-Service (DoS)
attacks, in which the adversary attempts to prevent the avail-
ability of transmitted data at their terminal points by launching
external jammers, were considered for cyber–physical systems.
In [38]–[42], various types of deception attacks were stud-
ied, including replay attacks, false-data injection attacks, and
data modification attacks. Unlike in DoS attacks, in deception
attacks, the transmitted data can reach their destination, but
the true values are replaced by false signals. Thus, deception
attacks are stealthy and dangerous. They may degrade system
performance, or even damage the system, by destroying the
integrity of data resources. To save network bandwidth and
improve the cybersecurity of communications, it is crucial to
design an effective SDC scheme for RDNNs under deception
attacks.

However, in existing studies on RDNNs [20]–[27],
[33]–[36], it is assumed that there is no deception attack.
Deception attacks have not been considered in the design of
controllers, particularly when the time–space SDC mechanism
is concurrently considered. Specifically, three difficulties are
involved.

1) Deception attacks preclude a complete synchronization
criterion for RDNNs. Then, the quasisynchronization
problem should be considered. Quasisynchronization is
a special type of synchronization pattern, in which all
systems are almost synchronized with a given synchro-
nization error [43].

2) Some existing approaches, such as the well-known
Halanay’s inequality [44], are useful for synchronization
but not for quasisynchronization.

3) Time–space sampled-data (TSSD) signals and reaction–
diffusion processes make it difficult to derive quasisyn-
chronization criteria for RDNNs. To our knowledge, the
quasisynchronization problem under deception attacks
has not yet been investigated for RDNNs with time–
space sampled data.

Motivated by the above, in this study, we focus on the qua-
sisynchronization of RDNNs with time–space sampled data
under deception attacks. The main contributions are as follows.

1) A time–space SDC mechanism is considered for RDNNs
under deception attacks. This mechanism can save
network bandwidth and improve the cybersecurity of
communications.

2) Inspired by Halanay’s inequality [44], a new inequality
is proposed in Lemma 3. It is very helpful to solve the
quasisynchronization problem for dynamical systems.

3) The quasisynchronization problem for RDNNs is stud-
ied, and new quasisynchronization criteria are provided.

Notations: For a matrix X , Sym{X } denotes the symmet-
ric matrix obtained as X + X T . Let R n×n denote the set
of n × n real matrices, R n be the n-dimensional Euclidean
space, col{· · ·} be a column vector, λmin(·) be the minimum
eigenvalue of a symmetric matrix, and diag{· · ·} be a block-
diagonal matrix. For ϑ(s, x) ∈ R n, the norm is denoted by
‖ϑ(s, x)‖ = (

∫ κ̄

κ
ϑT(s, x)ϑ(s, x)dx)(1/2). 0n, In, and 0n,m stand

for n × n zero matrices, n × n identity matrix, and n × m zero
matrices, respectively.

II. PROBLEM FORMULATION

Let us consider the following RDNN:

∂ϑ(t, x)

∂t
= D ∂2ϑ(t, x)

∂x2
− Cϑ(t, x) + W1f (ϑ(t, x))

+ W2f (ϑ(t − τ(t), x)) + J (t) (1)

where t ∈ [t̂0,+∞), x ∈ � � {x|κ ≤ x ≤ κ̄}
is the space variable, and κ and κ̄ are constants. D =
diag{d1, d2, . . . , dn}, di > 0 (i = 1, 2, . . . , n) is the
transmission diffusion coefficient. C = diag{c1, c2, . . . , cn},
with ci > 0. W1 = (w1,ij)n×n ∈ R n×n and W2 =
(w2,ij)n×n ∈ R n×n are the connection strength matrices.
ϑ(t, x) = col{ϑ1(t, x), ϑ2(t, x), . . . , ϑn(t, x)} is the state vec-
tor, where ϑi(t, x) is the ith neuron in space x and at time t.
τ(t) is the delay, with τ̇ (t) ≤ μ < 1 and 0 ≤ τ(t) ≤ d∗.
f (ϑ(t, x)) = col{f1(ϑ1(t, x)), . . . , fn(ϑn(t, x))} is the neuron
activation function. J (t) = col{J1(t),J2(t), . . . ,Jn(t)} is the
input vector.

The Dirichlet boundary condition and the initial condition
of system (1) are given as follows:

ϑ(t, κ) = ϑ(t, κ̄) = 0, t ∈ [t̂0,+∞)
(2)

ϑ
(
s + t̂0, x

) = φ1(s, x) ∈ C
([−d∗, 0

]× �,R n) (3)

respectively, where C([−d∗, 0]×�,R n) denotes the set of all
continuous real-valued functions from [−d∗, 0] × � to R n.

Regarding system (1) as the drive system, its response
system is as follows:

∂υ(t, x)

∂t
= D ∂2υ(t, x)

∂x2
− Cυ(t, x) + W1f (υ(t, x))

+ W2f (υ(t − τ(t), x)) + U(t, x) + J (t) (4)

where υ(t, κ) = υ(t, κ̄) = 0, t ∈ [ť0,+∞), υ(s + ť0, x) =
φ2(s, x) ∈ C([−d∗, 0] × �,R n), and U(t, x) ∈ R n is the
control signal.

We define the error signal δ(t, x) = υ(t, x) − ϑ(t, x) =
col{δ1(t, x), δ2(t, x), . . . , δn(t, x)}. Then, from (1) and (4), the
following error system is obtained:

∂δ(t, x)

∂t
= D ∂2δ(t, x)

∂x2
− Cδ(t, x) + W1g(δ(t, x))

+ W2g(δ(t − τ(t), x)) + U(t, x) (5)

where δ(t, κ) = δ(t, κ̄) = 0, t ∈ [t0,+∞), δ(s + t0, x) =
φ(s, x) ∈ C([−d∗, 0] × �,R n), and g(δ(t, x)) = f (υ(t, x)) −
f (ϑ(t, x)).

For t ∈ [tk, tk+1) and x ∈ [xp, xp+1), we consider the
following TSSD controller:

{U(t, x) = Kδ
(
tk, x̄p

)

x̄p = xp+xp+1
2

(6)

where tk is from a time-sampling sequence t0 < t1 < · · · <

tk < · · · , xp is the space-sampling instant generated by divid-
ing � into m sampling intervals, with κ = x0 < x1 < · · · <
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Fig. 1. Structure of drive–response RDNNs subjected to deception attacks.

xm = κ̄ , and K ∈ R n×n is the control gain to be designed.
The time-sampling interval hk satisfies the following:

0 < h ≤ hk ≤ h̄ (7)

where hk = tk+1 − tk, and h and h̄ are positive constants.
Inspired by [40]–[42] and [45], when the network channel

between the sensor and the controller suffers bias-injection
attacks, the TSSD controller under deception attacks can be
modeled as follows:

Ū(t, x) = �
(
tk, x̄p

)+ U(t, x)

= Kδ̃
(
tk, x̄p

)
, t ∈ [tk, tk+1), x ∈ [xp, xp+1

)
(8)

where �(tk, x̄p) ∈ R n is the injected attack signal sent by the
attackers. As the attack resources of the adversary are lim-
ited, the constraint ‖�(tk, x̄p)‖ ≤ θ is required. Moreover,
δ̃(tk, x̄p) = δ(tk, x̄p) + G(tk, x̄p) and �(tk, x̄p) = KG(tk, x̄p).
We note that the adversary’s injection signal �(tk, x̄p) will
lead the control center to believe that the true network state is
δ̃(tk, x̄p). Fig. 1 shows the structure of drive–response systems
subjected to deception attacks.

Replacing U(t, x) by Ū(t, x), and combining (5) and (8), we
obtain

∂δ(t, x)

∂t
= D ∂2δ(t, x)

∂x2
− Cδ(t, x) + W1g(δ(t, x))

+ W2g(δ(t − τ(t), x)) + Kδ
(
tk, x̄p

)

+ �
(
tk, x̄p

)
, t ∈ [tk, tk+1), x ∈ [xp, xp+1

)

δ(t, κ) = δ(t, κ̄) = 0, t ∈ [t0,+∞)

δ(s + t0, x) = φ(s, x) ∈ C
([−d∗, 0

]× �,R n). (9)

Remark 1: In practice, because of network-bandwidth lim-
itations, it is necessary to reduce the network transmission
signals. In SDC, signals are transmitted only at discrete-
sampling points and, thus, the number of transmission signals
can be effectively reduced. Moreover, it is well known that
deception attacks are universal and dangerous, as they are
intended to inject vicious data to degrade performance or even
damage the system. However, the results of most existing
studies on RDNNs [20]–[27], [33]–[36] were obtained under
the assumption that there is no deception attack and, thus,
they are invalid in the presence of such attacks. Hence, a
TSSD controller under deception attacks is considered in (8).
This controller can save network bandwidth and improve
communications security in RDNNs.

Assumption 1 [25]: For any s1, s2 ∈ R , there exist scalars
l−i and l+i such that fi(·) in (1) satisfies

l−i ≤ fi(s1) − fi(s2)

s1 − s2
≤ l+i , s1 �= s2, i = 1, 2, . . . , n.

Definition 1 [42]: Under deception attacks, the drive–
response RDNNs (1) and (4) are quasisynchronous in the
mean-square sense if there exists a bound � > 0 such that
the error signal δ(t, x) converges to the set

S =
{
δ(t, x)|‖δ(t, x)‖2 ≤ �

}

as t → ∞.
Lemma 1 [46]: For a continuously differentiable function

ϕ : [la, lb] → R n and a matrix A = A T ≥ 0, we have

−
∫ lb

la
ϕ̇T(s)A ϕ̇(s)ds ≤ − 1

lb − la

(
�

T
1 A�1 + 3�T

2 A�2
)

where �1 = ϕ(lb) − ϕ(la) and �2 = ϕ(lb) + ϕ(la) −
(2/lb − la)

∫ lb
la

ϕ(s)ds.
Lemma 2 [47]: For B ≥ 0 ∈ R n×n, and all functions

y ∈ C([κ, κ̄],R n) with y(κ) = 0 or y(κ̄) = 0, the following
inequality holds:

∫ κ̄

κ

yT(x)B y(x)dx ≤ 4
(
κ̄ − κ

)2

π2

∫ κ̄

κ

ẏT(x)B ẏ(x)dx.

Furthermore, if y(κ) = y(κ̄) = 0, one has
∫ κ̄

κ

yT(x)B y(x)dx ≤
(
κ̄ − κ

)2

π2

∫ κ̄

κ

ẏT(x)B ẏ(x)dx.

Lemma 3: Let ν > 0, τ > 0, and 0 < a < 2b be constants.
If there exists an absolutely continuous function V(t):[t0 −
τ,+∞) → [0,+∞) satisfying

V̇(t) + 2bV(t) ≤ a sup
−τ≤s≤0

V(t + s) + ν, t ≥ t0

then

V(t) ≤ e−2α(t−t0) sup
−τ≤s≤0

V(t0 + s) + ν̄, t ≥ t0

where ν̄ = (ν/[ae2ατ + 2α − a]), and α > 0 is the unique
positive solution of α = b − (ae2ατ /2).

Proof: Let z(t) = e−2α(t−t0) sup−τ≤s≤0 V(t0 + s) + ν̄. One
has

V(t) < z(t), t ∈ [t0 − τ, t0]. (10)

Thus, we should prove

V(t) ≤ z(t), t ≥ t0. (11)

If (11) does not hold, by the continuity of V(t), there exists
t∗ > t0 such that

⎧
⎨

⎩

V(t) < z(t), t ∈ [t0 − τ, t∗)
V(t∗) = z(t∗)
V̇(t∗) ≥ ż(t∗).

(12)

It is noted that

ż(t) = −2αz(t) + 2αν̄

= −2bz(t) + ae2ατ z(t) + 2αν̄

= −2bz(t) + az(t − τ) + ae2ατ ν̄ − aν̄ + 2αν̄. (13)



7836 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 12, DECEMBER 2022

Then, from (13), one has

V̇
(
t∗
) ≤ −2bV

(
t∗
)+ a sup

−τ≤s≤0
V
(
t∗ + s

)+ ν

= −2bz
(
t∗
)+ a sup

t∗−τ≤s≤t∗
V(s) + ν

< −2bz
(
t∗
)+ a sup

t∗−τ≤s≤t∗
z(s) + ν

= −2bz
(
t∗
)+ a sup

t∗−τ≤s≤t∗

{

e−2α(s−t0)

× sup
−τ≤s1≤0

V(t0 + s1) + ν̄

}

+ ν

= −2bz
(
t∗
)+ ae−2α(t∗−τ−t0) sup

−τ≤s≤0
V(t0 + s)

+ aν̄ + ν

= −2bz
(
t∗
)+ az

(
t∗ − τ

)+ ν

= ż
(
t∗
)−

(
ae2ατ − a + 2α

)
ν̄ + ν

= ż
(
t∗
)

(14)

which contradicts (12). Thus, (11) holds
Remark 2: Note that Lemma 3 is newly proposed and can

be effectively applied to the quasisynchronization problem for
dynamic systems. When ν = 0, the inequality is reduced
to Halanay’s inequality [44] and, thus, Halanay’s inequal-
ity is a special case of Lemma 3. However, Halanay’s
inequality is not applicable to the quasisynchronization
problem. It should be noted that a new inequality was
proposed for quasisynchronization of delayed memristive neu-
ral networks in [48, Lemma 4]. By comparing Lemma 4
of [48] and Lemma 3 in this study, the following can be
concluded.

1) In [48, Lemma 4], V(t) is required to satisfy V̇(t) ≤
−2bV(t)+aV(t−τ(t))+ν, where τ(t) ≤ τ . However, in
Lemma 3 of this study, V(t) is required to satisfy V̇(t) ≤
−2bV(t)+a sup−τ≤s≤0 V(t+s)+ν. It is clear that V̇(t) ≤
−2bV(t) + aV(t − τ(t)) + ν implies V̇(t) ≤ −2bV(t) +
a sup−τ≤s≤0 V(t + s) + ν, but not conversely. Thus, the
required condition in Lemma 4 of [48] is stronger than
that in Lemma 3 of this study.

2) In [48, Lemma 4], ν̄ = (ν/2α), whereas in Lemma 3
of this study, ν̄ = (ν/2b − a). The condition α = b −
(ae2ατ /2) implies (ν/2α) > (ν/2b − a). Thus, Lemma
3 in this study provides a tighter quasisynchronization
error bound than that by Lemma 4 of [48].

Hence, the inequality in Lemma 3 of this study is less
conservative.

III. MAIN RESULTS

We study the quasisynchronization of RDNNs under decep-
tion attacks by using time–space SDC. We first derive suffi-
cient conditions for the drive–response systems (1) and (4)
to be quasisynchronized. Subsequently, we design the TSSD
controller (8). In addition, we study the exponential synchro-
nization problem for RDNNs in the absence of deception
attacks.

A. Quasisynchronization for RDNNs Under Deception
Attacks

Herein, a new quasisynchronization criterion is derived
for RDNNs by selecting an appropriate Lyapunov–
Krasovskii functional (LKF). Let σ(t) = t − tk,
L+ = diag{l+1 , l+2 , . . . , l+n }, L− = diag{l−1 , l−2 , . . . , l−n },
Ii = [0n,(i−1)n In 0n,(7−i)n], (i = 1, . . . , 7), and
η(t, x) = col{δ(t, x), δ(tk, x), g(δ(t, x)), (∂δ(t, x)/∂t),
(1/t − tk)

∫ t
tk

δ(s, x)ds, δ(t − τ(t), x), g(δ(t − τ(t), x))}.
Theorem 1: Let scalars h > 0, h̄ > 0, ρ > 0, θ > 0,

0 < a < 2α ≤ 2ε, and m∗ > 0 be given. If there exist diagonal
matrices �i > 0 ∈ R n×n(i = 1, 2), matrices H > 0 ∈ R n×n,
H ≥ m∗In, M > 0 ∈ R n×n, P > 0 ∈ R n×n, Q > 0 ∈ R n×n,
R > 0 ∈ R n×n, S > 0 ∈ R n×n, Ti > 0 ∈ R n×n(i = 1, 2),
and any matrices N ∈ R n×n, Y1 ∈ R n×2n, Y2 ∈ R n×3n, for
any hk ∈ {h, h̄} satisfying ND > 0 and
[−ρIn N T

∗ −T2

]

≤ 0 (15)
[−aND (NK)T

∗ −π2

h̃2
x
T1

]

≤ 0 (16)

�∗(0; hk, 0) < 0 (17)
⎡

⎢
⎣

�∗(0; hk, hk)
[
IT

1 , IT
2

]
YT

1

[
IT

1 , IT
2 , IT

5

]
YT

2

∗ − e2αh̄

hk
P 0

∗ ∗ − e2αh̄

3hk
P

⎤

⎥
⎦ < 0.

(18)

Then, the drive–response RDNNs (1) and (4) are quasisyn-
chronous in the mean-square sense, and the error signal δ(t, x)
converges to the set

S =
{
δ(t, x)|‖δ(t, x)‖2 ≤ �

}
(19)

where � = (m̄/m∗)(1 + [1/1 − e−ξh]), ξ = α −
(ae2ξτ /2), m̄ = (ρθ2/ae2ξτ + 2ξ − a), �∗(ι; hk, σ (t)) =
�(ι; hk, σ (t)) − aIT

2 HI2, and h̃x = max0≤p≤m−1{xp+1 − xp},
with �(ι; hk, σ (t)) = ∑3

i=1 �k(ι; hk, σ (t)) and

�1(ι; hk, σ (t))

= 2αIT
1 HI1 + Sym

{
IT

1 HI4
}+ IT

1 MI1 + IT
3 QI3

− (1 − μ)e−2ατIT
6 MI6 − (1 − μ)e−2ατIT

7 QI7

+ 2(α − ε)π2

(
κ̄ − κ

)2 IT
1 NDI1 + (hk − σ(t))IT

4 PI4

+ ιe−2αh̄σ(t)
[
IT

1 , IT
2

]
YT

1 P−1Y1
[
IT

1 , IT
2

]T

+ 3ιe−2αh̄σ(t)
[
IT

1 , IT
2 , IT

5

]
YT

2 P−1Y2
[
IT

1 , IT
2 , IT

5

]T

− e−2αh̄Sym
{
(I1 − I2)

TY1
[
IT

1 , IT
2

]T}

− 3e−2αh̄Sym
{
(I1 + I2 − 2I5)

TY2
[
IT

1 , IT
2 , IT

5

]T}

+ 2α(hk − σ(t))(I1 − I2)
TR(I1 − I2)

− (I1 − I2)
TR(I1 − I2)

+ (hk − σ(t))Sym
{
(I1 − I2)

TRI4
}

+ αh̄2

2
IT

5 SI5 + (hk − 2σ(t))IT
5 SI5
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+ (hk − σ(t))Sym
{
IT

5 S(−I5 + I1)
}

�2(ι; hk, σ (t))

= Sym
{(
I3 − L−I1

)T
�1
(
L+I1 − I3

)}

+ Sym
{(
I7 − L−I6

)T
�2
(
L+I6 − I7

)}

�3(ι; hk, σ (t))

= Sym
{(
IT

4 + εIT
1

)
N (−I4 − CI1 + W1I3 + W2I7)

}

+ Sym
{(
IT

4 + εIT
1

)
NKI2

}+ (I4 + εI1)
TT1(I4 + εI1)

+ (I4 + εI1)
TT2(I4 + εI1).

Proof: See the Appendix.
Remark 3: As is well known, by Lyapunov stability the-

ory, constructing a suitable LKF for deriving synchroniza-
tion criteria is crucial. In this study, (29) is constructed as
the LKF, where V1(t) is generally needed, V2(t) is con-
structed to capture the information of the activation func-
tion g(δ(·, x)), and V3(t) is used to counteract the term
2
∑m−1

p=0

∫ xp+1
xp

(∂δT(t, x)/∂t)ND(∂δ2(t, x)/∂x2)dx in (44). For
SDC systems, sampling information is useful in reducing the
conservatism of synchronization criteria. In this regard, the
sawtooth structure terms Vi(t) (i = 4, 5, 6) are introduced to
capture sampling information.

Remark 4: In the defect of deception attacks, obtaining a
complete synchronization criterion for RDNNs is impossible.
Furthermore, to our knowledge, there is no result on the qua-
sisynchronization of RDNNs with time–space sampled data
under deception attacks. This issue is addressed in the present
study. By constructing the LKF in (29) and using the new
inequality in Lemma 3, a novel quasisynchronization criterion
is established for RDNNs in Theorem 1.

B. Time–Space Sampled-Data Controller Design

Note that Theorem 1 is not linear matrix inequalities
(LMIs), as the terms (NK)T and Sym{(IT

4 + εIT
1 )NKI2} are

not linear. The TSSD controller cannot be directly obtained by
the conditions in Theorem 1. Rather, the TSSD controller is
designed in the following theorem by converting the nonlinear
inequalities of Theorem 1 into linear inequalities.

Theorem 2: Let scalars h > 0, h̄ > 0, ρ > 0, θ > 0,
0 < a < 2α ≤ 2ε, and m∗ > 0 be given. If there exist diagonal
matrices �i > 0 ∈ R n×n(i = 1, 2), matrices H > 0 ∈ R n×n,
H ≥ m∗In, M > 0 ∈ R n×n, P > 0 ∈ R n×n, Q > 0 ∈ R n×n,
R > 0 ∈ R n×n, S > 0 ∈ R n×n, Ti > 0 ∈ R n×n(i = 1, 2),
and any matrices N ∈ R n×n, K∗ ∈ R n×n, Y1 ∈ R n×2n,
Y2 ∈ R n×3n, for any hk ∈ {h, h̄} satisfying ND > 0 and
[−ρIn N T

∗ −T2

]

≤ 0 (20)
[−aND K∗T

∗ −π2

h̃2
x
T1

]

≤ 0 (21)

�∗∗(0; hk, 0) < 0 (22)
⎡

⎢
⎣

�∗∗(0; hk, hk)
[
IT

1 , IT
2

]
YT

1

[
IT

1 , IT
2 , IT

5

]
YT

2

∗ − e2αh̄

hk
P 0

∗ ∗ − e2αh̄

3hk
P

⎤

⎥
⎦ < 0

(23)

then the drive–response RDNNs (1) and (4) are qua-
sisynchronous in the mean-square sense, and the
error signal δ(t, x) converges to the set S in (19),
where �∗∗(ι; hk, σ (t)) = �̃(ι; hk, σ (t)) − aIT

2 HI2 and
�̃(ι; hk, σ (t)) = ∑2

i=1 �k(ι; hk, σ (t)) + �̃3(ι; hk, σ (t)), with

�̃3(ι; hk, σ (t))

= Sym
{(
IT

4 + εIT
1

)
N (−I4 − CI1 + W1I3 + W2I7)

}

+ Sym
{(
IT

4 + εIT
1

)
K∗I2

}+ (I4 + εI1)
TT1(I4 + εI1)

+ (I4 + εI1)
TT2(I4 + εI1)

and other notations as in Theorem 1. Furthermore, the TSSD
controller gain for (8) is given as follows:

K = N−1K∗. (24)

Proof: Let NK = K∗. Then, Theorem 1 implies
that (20)–(23) hold. The proof is completed.

C. Exponential Synchronization for RDNNs

In defect of deception attacks, the error system (9) is
reduced to

∂δ(t, x)

∂t
= D ∂2δ(t, x)

∂x2
− Cδ(t, x) + W1g(δ(t, x))

+ W2g(δ(t − τ(t), x)) + Kδ
(
tk, x̄p

)

t ∈ [tk, tk+1), x ∈ [xp, xp+1
)

δ(t, κ) = δ(t, κ̄) = 0, t ∈ [t0,+∞)

δ(s + t0, x) = φ(s, x) ∈ C
([−d∗, 0

]× �,R n). (25)

Let m∗ = λmin(H) and θ = 0. As in the proof of
Theorem 1, we have the exponential synchronization condition
for RDNNs (1) and (4) as follows.

Corollary 1: Let scalars h > 0, h̄ > 0, and 0 < a <

2α ≤ 2ε be given. The drive–response RDNNs (1) and (4)
are exponentially synchronized if there exist diagonal matrices
�i > 0 ∈ R n×n(i = 1, 2), matrices H > 0 ∈ R n×n, M > 0 ∈
R n×n, P > 0 ∈ R n×n, Q > 0 ∈ R n×n, R > 0 ∈ R n×n, S >

0 ∈ R n×n, T1 > 0 ∈ R n×n, and any matrices N ∈ R n×n,
K∗ ∈ R n×n, Y1 ∈ R n×2n, Y2 ∈ R n×3n, for any hk ∈ {h, h̄}
satisfying ND > 0, (21), and

�̂∗∗(0; hk, 0) < 0 (26)⎡

⎢
⎢
⎣

�̂∗∗(0; hk, hk)
[
IT

1 , IT
2

]
YT

1

[
IT

1 , IT
2 , IT

5

]
YT

2

∗ − e2αh̄

hk
P 0

∗ ∗ − e2αh̄

3hk
P

⎤

⎥
⎥
⎦ < 0

(27)

where �̂∗∗(ι; hk, σ (t)) = �̂(ι; hk, σ (t)) − aIT
2 HI2 and

�̂(ι; hk, σ (t)) = ∑2
i=1 �k(ι; hk, σ (t)) + �̂3(ι; hk, σ (t)), with

�̂3(ι; hk, σ (t))

= Sym
{(
IT

4 + εIT
1

)
N (−I4 − CI1 + W1I3 + W2I7)

}

+ Sym
{(
IT

4 + εIT
1

)
K∗I2

}+ (I4 + εI1)
TT1(I4 + εI1)

and other notations as in Theorem 1. Furthermore, the TSSD
controller gain for (6) is given as follows:

K = N−1K∗. (28)
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Remark 5: It should be noted that the quasisynchronization
criterion in Theorem 2 and the synchronization criterion in
Corollary 1 are LMIs. In LMI conditions, the number of deci-
sion variables (NDVs) and the dimensions of the LMIs are
important factors affecting the complexity of computing [49].
In general, the NDV is a measure of the complexity of com-
puting. The NDVs in Theorem 2 and Corollary 1 are 11n2+6n
and 10.5n2 + 5.5n, respectively. When the size of the LMIs
increases, the computational complexity may be a problem
because of limited computational resources. Thus, for high-
dimensional LMI conditions, calculation complexity should be
maintained at a reasonable level.

Remark 6: The proposed sufficient conditions in Theorem
2 and Corollary 1 are in the form of LMIs and can be verified
through the following steps.

Step 1: For given 0 < a < 2α ≤ 2ε, m∗ > 0, ρ > 0, and
θ > 0, specify the ranges h̄ in increments of �h̄ > 0. Set
h̄ = �h̄.

Step 2: Use MATLAB LMI Toolbox to solve the LMIs in
Theorem 2 with specified h̄.

Step 3: If there is a feasible solution, let h̄ = h̄ + �h̄ and
carry out step 2; if not, carry out step 4.

Step 4: If h = �h, output “No feasible solutions.” Then,
reselect 0 < a < 2α ≤ 2ε, m∗ > 0, ρ > 0, and θ > 0, and
carry out step 1; if not, carry out step 5.

Step 5: Output h̄ = h̄ − �h̄, which is the maximum time-
sampling interval (MTSI). With this h̄ and using MATLAB
LMI Toolbox to solve the LMIs in Theorem 2, one gets the
feasible matrices. Then, from (24), we obtain the time–space
SDC gains K.

The LMI conditions of Corollary 1 can be verified similarly.

IV. SIMULATION EXAMPLES

Here, two examples are presented to demonstrate the use-
fulness of the theoretical results.

Example 1: Let us consider the RDNN (1) with parameters
as follows:

D =
[

0.6 0
0 0.6

]

, C = I2

W1 =
[

2 −0.1
−5 3

]

, W2 =
[−1.5 −0.1

−0.2 −2.5

]

fi(ϑi(t, x)) = tanh(ϑi(t, x)) (i = 1, 2)

� = {x| − 1 ≤ x ≤ 5}, τ (t) = 1, J (t) = 0.

It is clear that l+1 = l+2 = 1 and l−1 = l−2 = 0. In this
example, we take α = 0.6, a = 0.9956, ε = 7, and the initial
condition of system (1) is φ11(s, x) = 0.5 cos(π(x − 2)/6) and
φ12(s, x) = −0.9 cos(π(x − 2)/6). The initial condition of the
response RDNN (4) is φ21(s, x) = 0.475 cos(π(x − 2)/6) and
φ22(s, x) = −0.945 cos(π(x − 2)/6); moreover, (4) has the
same structure as system (1).

The following two cases are now discussed.
Case 1: Quasisynchronization for RDNNs (1) and (4) under

deception attacks.
Case 2: Exponential synchronization for RDNNs (1) and (4)

without deception attacks.

Fig. 2. Trajectories of uncontrolled states and attack signal: (a) δ1(t, x),
(b) δ2(t, x), (c) ‖δ(t, x)‖, and (d) attack signal �i(tk, x̄p).

In case 1, we set the attack signal �i(tk, x̄p) =
(θ/2

√
3) sin(tk + x̄p) (i = 1, 2) and select θ = 0.1, ρ = 1,

m∗ = 3, h̃x = 0.1, and h̄ = h = 0.0438. When U(t, x) = 0, the
trajectories of δ1(t, x) and δ2(t, x), and the error signal ‖δ(t, x)‖
are shown in Fig. 2(a)–(c). The dynamical behavior of the
attack signal �i(tk, x̄p) is shown in Fig. 2(d). It can be seen
from Fig. 2(a)–(c) that, under deception attacks, the quasisyn-
chronization of systems (1) and (4) cannot be accomplished
without control input.

Now, we check the effectiveness of Theorem 2. Following
the steps in Remark 6, one obtains the following feasible
solutions (to save space, some of the matrices are not listed):

H =
[

3.4370 0.1399
0.1399 3.0455

]

, M =
[

4.5530 1.2800
1.2800 0.7502

]

,

N =
[

0.4164 −0.0470
−0.0060 0.3104

]

, K∗ =
[−4.7048 0.2592

0.7182 −4.4038

]

.

Then, from (24), the desired time–space SDC gain is
obtained as follows:

K =
[−11.0625 −0.9801

2.1014 −14.2061

]

.

With the above parameters, Fig. 3 shows the controlled
time–space behavior of states δi(t, x) (i = 1, 2) and the TSSD
controller U(t, x). The evolution of the controlled error signal
‖δ(t, x)‖ is plotted in Fig. 4, where it can be seen that the
drive-response RDNNs (1) and (4) are quasisynchronous in
the mean-square sense, with the error signal δ(t, x) converg-
ing to the set S = {δ(t, x)|‖δ(t, x)‖2 ≤ 3.7483}. Thus, the
effectiveness of Theorem 2 is verified.

Then, we demonstrate the effect of deception attacks on the
quasisynchronization of RDNNs (1) and (4). For various θ ,
the corresponding quasisynchronization bounds � are given
in Table I, where it can be seen that � increases with θ .
This implies that deception attacks affect the dynamics of the
considered RDNNs. Moreover, for different values of θ , the
evolution of ‖δ(t, x)‖ is shown in Fig. 5.

In case 2, we take θ = 0. For various space-sampling
intervals h̃x, the corresponding MTSI h̄ is listed in Table II.
From Table II, one finds that as h̃x increases, h̄ decreases.
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Fig. 3. Behavior of controlled states for error system (5) and the cor-
responding TSSD controller: (a) δ1(t, x), (b) δ2(t, x), (c) U1(t, x), and
(d) U2(t, x).

Fig. 4. Evolution of error signal ‖δ(t, x)‖ with U(t, x).

Fig. 5. Evolution of error signal ‖δ(t, x)‖ for various θ of the deception
attacks.

TABLE I
QUASISYNCHRONIZATION BOUND � FOR VARIOUS θ OF THE

DECEPTION ATTACKS IN CASE 1

TABLE II
MTSI h̄ FOR VARIOUS SPACE-SAMPLING INTERVALS h̃x IN CASE 2

When h̃x = 0.2 and h̄ = 0.0203, by Corollary 1, one obtains
the following time–space SDC gain:

K =
[−9.4739 −1.3766

1.8696 −11.9591

]

.

Without control input, the state trajectory of the error sig-
nal ‖δ(t, x)‖ of system (25) is shown in Fig. 6 (a). Then,
with the above parameters and control gain, the evolution of
‖δ(t, x)‖ is shown in Fig. 6 (b), where it is seen that the error

Fig. 6. Evolution of error signal ‖δ(t, x)‖ of system (25): (a) ‖δ(t, x)‖ without
control input and (b) ‖δ(t, x)‖ with TSSD controller U(t, x).

Fig. 7. Evolution of error signal ‖δ(t, x)‖: (a) ‖δ(t, x)‖ without control input
and (b) ‖δ(t, x)‖ with controller U(t, x).

signal ‖δ(t, x)‖ converges to zero only in the presence of the
TSSD controller U(t, x). This indicates the effectiveness of
Corollary 1.

Example 2: We consider the 3-D RDNN (1) with

D = 0.01I3, W1 =
⎡

⎣
1 + π

4 20 0.001
0.1 1 + π

4 0.001
3 −0.56 −0.12

⎤

⎦

C = I3, W2 =
⎡

⎢
⎣

−1.3
√

2π
4 0.1 −0.001

0.1 −1.3
√

2π
4 0.01

2 −0.85 0.02

⎤

⎥
⎦.

fi(ϑi(t, x)) = ([|ϑi(t, x) + 1| − |ϑi(t, x) − 1|]/2)(i =
1, 2, 3), � = {x|−0.5 ≤ x ≤ 0.5}, τ(t) = 0.9, and J (t) = 0. It
is clear that l+i = 1 and l−i = 0 (i = 1, 2, 3). The attack signal
is set as �i(tk, x̄p) = θ√

2
sin(tk + x̄p) (i = 1, 3), �2(tk, x̄p) =

θ√
2

cos(tk + x̄p). The initial conditions of systems (1) and (4)
are φ11(s, x) = 1.5I(x), φ12(s, x) = −2I(x), φ13(s, x) =
0.5I(x), and φ21(s, x) = 1.425I(x), φ22(s, x) = −3I(x), and
φ23(s, x) = 0.55I(x), respectively, where I(x) = cos πx.

We set α = 1.4, a = 2.7799, ε = 11, θ = 0.002, ρ = 1,
m∗ = 3, h̃x = 0.02, and h̄ = h = 0.0043. By Theorem 2, we
obtain the desired time–space SDC gain as follows:

K =
⎡

⎣
−25.3568 −10.3852 1.9627

2.5893 −17.2092 −2.4012
1.8349 −1.2973 −19.4113

⎤

⎦.

The behavior of ‖δ(t, x)‖ without control input and with the
TSSD controller U(t, x) is shown in Fig. 7. From Fig. 7(a), it
can be seen that the trajectory of the error signal ‖δ(t, x)‖ is
divergent if there is no control input. In contrast, Fig. 7(b)
shows that the trajectory of δ(t, x) converges to the set
S = {δ(t, x)|‖δ(t, x)‖2 ≤ 1.5413}. This implies that qua-
sisynchronization of the drive-response RDNNs (1) and (4)
is realized in the mean-square sense.



7840 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 12, DECEMBER 2022

V. CONCLUSION

In this study, we studied the quasisynchronization problem
for RDNNs with TSSD under deception attacks. By proposing
a new inequality and an SDC mechanism subjected to
deception attacks, and by selecting an appropriate LKF, we
derived new quasisynchronization criteria for RDNNs. The
new inequality is highly effective in the quasisynchroniza-
tion problem for dynamical systems. The SDC mechanism
is more applicable, as it can save network bandwidth and
improve the cybersecurity of communications, and the desired
SDC gain can be obtained by solving LMIs. Furthermore,
we investigated the exponential synchronization of RDNNs
with TSSD in the absence of deception attacks. In the end,
we presented two examples to verify the usefulness of our
theoretical results. In future work, state-dependent deception
attacks, stochastic deception attacks, and arbitrary deception
attacks will be considered for networked control systems [50],
and quasisynchronization will be discussed for multiagent
systems [51].

APPENDIX

PROOF OF THEOREM 1

For t ∈ [tk, tk+1), the LKF for system (9) is selected as
follows:

V(t) =
6∑

i=1

Vi(t) (29)

where

V1(t) =
∫ κ̄

κ

δT(t, x)Hδ(t, x)dx

V2(t) =
∫ κ̄

κ

∫ t

t−τ(t)
e2α(s−t)[δT(s, x)Mδ(s, x)

+ gT(δ(s, x))Qg(δ(s, x))
]
dsdx

V3(t) =
∫ κ̄

κ

∂δT(t, x)

∂x
ND ∂δ(t, x)

∂x
dx

V4(t) = (hk − σ(t))
∫ κ̄

κ

∫ t

tk
e2α(s−t) ∂δT(s, x)

∂s
P ∂δ(s, x)

∂s
dsdx

V5(t) = (hk − σ(t))
∫ κ̄

κ

ζ T
1 (t, x)Rζ1(t, x)dx

V6(t) = (hk − σ(t))σ (t)
∫ κ̄

κ

ζ T
2 (t, x)Sζ2(t, x)dx

with ζ1(t, x) = δ(t, x) − δ(tk, x) and ζ2(t, x) =
(1/t − tk)

∫ t
tk

δ(s, x)ds. It is noted that Vi(t) (i = 4, 5, 6)

vanishes before and after tk. Thus, V(t) is continuous.
Calculating V̇(t) along the trajectories of system (9) yields

V̇1(t) = 2
∫ κ̄

κ

δT (t, x)H ∂δ(t, x)

∂t
dx (30)

V̇2(t) ≤ −2αV2(t) +
∫ κ̄

κ

δT (t, x)Mδ(t, x)dx

− (1 − μ)e−2ατ

∫ κ̄

κ

δT (t − τ(t), x)Mδ(t − τ(t), x)dx

(31)

− (1 − μ)e−2ατ

∫ κ̄

κ

gT (δ(t − τ(t), x))Q

× g(δ(t − τ(t), x))dx +
∫ κ̄

κ

gT (δ(t, x))Qg(δ(t, x))dx

(32)

V̇3(t) = 2
∫ κ̄

κ

∂2δT (t, x)

∂x∂t
ND ∂δ(t, x)

∂x
dx (33)

V̇4(t) ≤ −e−2αh̄
∫ κ̄

κ

∫ t

tk

∂δT (s, x)

∂s
P ∂δ(s, x)

∂s
dsdx

+ (hk − σ(t))
∫ κ̄

κ

∂δT (t, x)

∂t
P ∂δ(t, x)

∂t
dx − 2αV4(t) (34)

V̇5(t) = −
∫ κ̄

κ

ζ T
1 (t, x)Rζ1(t, x)dx

+ 2(hk − σ(t))
∫ κ̄

κ

ζ T
1 (t, x)R∂δ(t, x)

∂t
dx (35)

V̇6(t) = (hk − 2σ(t))
∫ κ̄

κ

ζ T
2 (t, x)Sζ2(t, x)dx

+ 2(hk − σ(t))
∫ κ̄

κ

ζ T
2 (t, x)S[δ(t, x) − ζ2(t, x)]dx. (36)

Lemma 1 and (34) imply

−e−2αh̄
∫ κ̄

κ

∫ t

tk

∂δT(s, x)

∂s
P ∂δ(s, x)

∂s
dsdx

≤ −e−2αh̄

σ(t)

∫ κ̄

κ

[
ζ T

1 (t, x)Pζ1(t, x)

+ 3ζ T
3 (t, x)Pζ3(t, x)

]
dx (37)

where ζ3(t, x) = δ(t, x) + δ(tk, x) − 2ζ2(t, x).
Let ζ4(t, x) = col{δ(t, x), δ(tk, x)} and ζ5(t, x) =

col{δ(t, x), δ(tk, x), ζ2(t, x)}. For any matrices Y1 ∈ R n×2n

and Y2 ∈ R n×3n, the following inequalities hold:

1

σ(t)
(Pζ1(t, x) − σ(t)Y1ζ4(t, x))TP−1

× (Pζ1(t, x) − σ(t)Y1ζ4(t, x)) ≥ 0 (38)

and

1

σ(t)
(Pζ3(t, x) − σ(t)Y2ζ5(t, x))TP−1

× (Pζ3(t, x) − σ(t)Y2ζ5(t, x)) ≥ 0 (39)

from which, one obtains

−e−2αh̄

σ(t)

∫ κ̄

κ

ζ T
1 (t, x)Pζ1(t, x)dx

≤ −2e−2αh̄
∫ κ̄

κ

ζ T
1 (t, x)Y1ζ4(t, x)dx

+ e−2αh̄σ(t)
∫ κ̄

κ

ζ T
4 (t, x)YT

1 P−1Y1ζ4(t, x)dx (40)

and

−3e−2αh̄

σ(t)

∫ κ̄

κ

ζ T
3 (t, x)Pζ3(t, x)dx

≤ −6e−2αh̄
∫ κ̄

κ

ζ T
3 (t, x)Y2ζ5(t, x)dx
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+ 3e−2αh̄σ(t)
∫ κ̄

κ

ζ T
5 (t, x)YT

2 P−1Y2ζ5(t, x)dx. (41)

By Assumption 1, we have for any diagonal matrices �i >

0 ∈ R n×n(i = 1, 2) that

2
∫ κ̄

κ

(
ג
−(t, x)

)T
ג�1

+(t, x)dx ≥ 0 (42)

2
∫ κ̄

κ

(
ג
−
τ (t, x)

)T
ג�2

+
τ (t, x)dx ≥ 0 (43)

where ג
−(t, x) = g(δ(t, x))− L−δ(t, x), ,t)+ג x) = L+δ(t, x)−

g(δ(t, x)), −ג
τ (t, x) = g(δ(t − τ(t), x)) − L−δ(t − τ(t), x), and

ג
+
τ (t, x) = L+δ(t − τ(t), x) − g(δ(t − τ(t), x)).

It is noted that δ(tk, x̄p) = δ(tk, x) − ∫ x
x̄p

)[∂δ(tk, γ )]/∂γ )dγ .
For matrix N > 0 ∈ R n×n, one has from system (9) that

0 = 2
m−1∑

p=0

∫ xp+1

xp

(
∂δ(t, x)

∂t
+ εδ(t, x)

)T

N

×
[

−∂δ(t, x)

∂t
+ D ∂δ2(t, x)

∂x2
− Cδ(t, x) + W1g(δ(t, x))

+ W2g(δ(t − τ(t), x)) + Kδ(tk, x)

− K
∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ + �(tk, x̄p)

]

dx. (44)

Using the Dirichlet boundary condition (5), integration by
parts, and (44), we obtain

2
m−1∑

p=0

∫ xp+1

xp

∂δT(t, x)

∂t
ND ∂δ2(t, x)

∂x2
dx

= 2
∫ κ̄

κ

∂δT(t, x)

∂t
ND ∂δ2(t, x)

∂x2
dx

= −2
∫ κ̄

κ

∂2δT(t, x)

∂x∂t
ND ∂δ(t, x)

∂x
dx. (45)

Similarly

2ε

m−1∑

p=0

∫ xp+1

xp

δT(t, x)ND ∂δ2(t, x)

∂x2
dx

= 2ε

∫ κ̄

κ

δT(t, x)ND ∂δ2(t, x)

∂x2
dx

= −2ε

∫ κ̄

κ

∂δT(t, x)

∂x
ND ∂δ(t, x)

∂x
dx. (46)

For any T1 > 0 ∈ R n×n, from Lemma 2, we have

−2
m−1∑

p=0

∫ xp+1

xp

�T (t)NK
∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ dx

≤
m−1∑

p=0

∫ xp+1

xp

�T (t)T1�(t)dx +
m−1∑

p=0

∫ xp+1

xp

⎡

⎣

(∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ

)T

(NK)TT −1
1 NK

∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ

⎤

⎦dx

=
∫ κ̄

κ

�T (t)T1�(t)dx +
m−1∑

p=0

(∫ x̄p

xp

+
∫ xp+1

x̄p

)

×
⎡

⎣

(∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ

)T

(NK)TT −1
1 NK

∫ x

x̄p

∂δ(tk, γ )

∂γ
dγ

⎤

⎦dx

≤
∫ κ̄

κ

�T (t)T1�(t)dx

+ h̃2
x

π2

∫ κ̄

κ

∂δ(tk, x)

∂x
(NK)TT −1

1 NK ∂δ(tk, x)

∂x
dx (47)

where �(t) = ([∂δ(t, x)]/∂t) + εδ(t, x).
Similarly, for T2 > 0 ∈ R n×n, we obtain that

2
m−1∑

p=0

∫ xp+1

xp

�T(t)N�(tk, x̄p)dx

≤
∫ κ̄

κ

�T(t)T2�(t)dx

+
∫ κ̄

κ

�
T(tk, x̄p)N TT −1

2 N�
(
tk, x̄p

)
dx. (48)

By Lemma 2, (46) implies that

2αV3(t) − 2ε

∫ κ̄

κ

∂δT(t, x)

∂x
ND ∂δ(t, x)

∂x
dx

= 2(α − ε)

∫ κ̄

κ

∂δT(t, x)

∂x
ND ∂δ(t, x)

∂x
dx

≤ 2(α − ε)π2

(
κ̄ − κ

)2

∫ κ̄

κ

δT(t, x)NDδ(t, x)dx. (49)

Applying the Schur complement to (15), we obtain

N TT −1
2 N ≤ ρIn. (50)

Then, from (48), (50), and ‖�(tk, x̄p)‖ ≤ θ , one obtains
∫ κ̄

κ

�
T(tk, x̄p

)
N TT −1

2 N�
(
tk, x̄p

)
dx ≤ ρθ2. (51)

Combining (30)–(51), we obtain for tk ≤ t < tk+1

V̇(t) − a sup
−τ≤s≤0

V(t + s) + 2αV(t)

≤
∫ κ̄

κ

ηT (t, x)�(1; hk, σ (t))η(t, x)dx + ρθ2

+ h̃2
x

π2

∫ κ̄

κ

∂δ(tk, x)

∂x
(NK)TT −1

1 NK ∂δ(tk, x)

∂x
dx

− aV(tk)

≤
∫ κ̄

κ

ηT (t, x)�(1; hk, σ (t))η(t, x)dx + ρθ2

+ h̃2
x

π2

∫ κ̄

κ

∂δ(tk, x)

∂x
(NK)TT −1

1 NK ∂δ(tk, x)

∂x
dx

− aV1(tk) − aV3(tk)

≤
∫ κ̄

κ

ηT (t, x)�∗(1; hk, σ (t))η(t, x)dx + ρθ2

+
∫ κ̄

κ

∂δ(tk, x)

∂x

[

−aND + h̃2
x

π2
(NK)TT −1

1 NK
]

∂δ(tk, x)

∂x
dx

=
∫ κ̄

κ

ηT (t, x)

[
h̄ − hk

h̄ − h

(
h − σ(t)

h
�∗(1; h, 0)

+ σ(t)

h
�∗(1; h, h)

)

+ hk − h

h̄ − h

(
h̄ − σ(t)

h̄
�∗(1; h̄, 0)
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+ σ(t)

h̄
�∗(1; h̄, h̄)

)]

η(t, x)dx + ρθ2

+
∫ κ̄

κ

∂δ(tk, x)

∂x

[

−aND + h̃2
x

π2
(NK)TT −1

1 NK
]

∂δ(tk, x)

∂x
dx.

(52)

Then, applying the Schur complement to (16)–(18), one
obtains from (52) that

V̇(t) − a sup
−τ≤s≤0

V(t + s) + 2αV(t) ≤ ρθ2

tk ≤ t < tk+1. (53)

Let τ = min{h/2, d∗}. By Lemma 3, for tk ≤ t < tk+1,
k = 0, 1, 2, . . ., (53) yields

V(t) ≤ e−2ξ(t−tk) sup
−τ≤s≤0

V(tk + s) + m̄ (54)

which implies

sup
tk−τ≤s≤tk

V(s) ≤ sup
tk−τ≤s≤tk

{

e−2ξ(s−tk−1)

× sup
tk−1−τ≤s1≤tk−1

V(s1) + m̄

}

= e−2ξ(tk−tk−1−τ) sup
tk−1−τ≤s1≤tk−1

V(s1) + m̄. (55)

Substituting (55) into (54) yields

V(t) ≤ e−2ξ(t−tk−1−τ) sup
tk−1−τ≤s1≤tk−1

V(s1)

+ m̄e−2ξ(t−tk) + m̄

≤ e−2ξ(t−tk−2−2τ) sup
tk−2−τ≤s1≤tk−2

V(s1)

+ m̄e−2ξ(t−tk−1−τ) + m̄e−2ξ(t−tk) + m̄

≤ . . .

≤ e−2ξ(t−t0−kτ) sup
t0−τ≤s1≤t0

V(s1)

+ m̄e−2ξ(t−t1−(k−1)τ ) + · · · + m̄e−2ξ(t−tk−1−τ)

+ m̄e−2ξ(t−tk) + m̄

≤ e−2ξ(t−t0−kτ) sup
t0−τ≤s1≤t0

V(s1)

+ m̄e−2ξ(k−1)(h−τ) + · · · + m̄e−2ξ(h−τ) + m̄ + m̄

≤ e−2ξ(t−t0−kτ) sup
t0−τ≤s1≤t0

V(s1)

+ m̄

1 − e−2ξ(h−τ)
+ m̄

≤ e−ξ(t−t0) sup
t0−τ≤s≤t0

V(s) + m̄

(

1 + 1

1 − e−ξh

)

. (56)

As H ≥ m∗In, we have from (29)

V(t) ≥ m∗‖δ(t, x)‖2. (57)

From (56) and (57), one has

‖δ(t, x)‖2 ≤ e−ξ(t−t0)
supt0−τ≤s≤t0 V(s)

m∗

+ m̄

m∗

(

1 + 1

1 − e−ξh

)

(58)

implying that the error signal δ(t, x) converges to

S =
{

δ(t, x)|‖δ(t, x)‖2 ≤ m̄

m∗

(

1 + 1

1 − e−ξh

)}

. (59)

Thus, by Definition 1, systems (1) and (4) are quasisyn-
chronous in the mean-square sense.
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