
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice,
after which this version may no longer be accessible.

Extremum Seeking Control with an Adaptive Gain Based
On Gradient Estimation Error
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Abstract

This paper presents an extremum-seeking control (esc) algorithm with an adaptive step-size that
adjusts the aggressiveness of the controller based on the quality of the gradient estimate. The adaptive
step-size ensures that the integral-action produced by the gradient descent does not destabilize the closed-
loop system. To quantify the quality of the gradient estimate, we present a batch least-squares (bls)
estimator with a novel weighting and show that it produces bounded estimation errors, where the
uncertainty is due to the curvature of the unknown cost function. The adaptive step-size then maximizes
the decrease of the combined plant and controller Lyapunov function for the worst-case estimation error.
We prove that our esc controller is input-to-state stable with respect to the dither signal. Finally, we
demonstrate our esc controller through five numerical examples; one illustrative, one practical, and
three benchmarks.

1 Introduction

Extremum seeking control is a century-old [1] form of model-free adaptive control for the real-time opti-
mization of dynamic systems. The objective of extremum-seeking control (esc) is to drive the plant to an
equilibrium that optimizes an unknown cost function. In this paper, we extend the proportional-integral
extremum-seeking controller (pi-esc) from [2–4] using an adaptive step-size that adjusts the aggressiveness
of the controller based on the quality of the gradient estimate.

Most esc controllers can be interpreted as gradient descent algorithms, wherein the controller follows
a descent direction to the optimal. From the perspective of dynamic systems, gradient descent is integral-
action. For instance, the standard gradient descent [2–7] wherein the updated set-point is the previous
set-point minus a step-size times the gradient, has the dynamics of a discrete-time integrator. In classical
esc, the set-point is the continuous-time integral of the estimated gradients [8, 9]. Whether in discrete-
time or continuous-time, it is a fundamental result from control-theory that integral-action can lead to
instability. This issue is further complicated for non-linear systems. esc controllers employ a variety of
strategies to preserve stability. For instance, the inspiration for this paper [2–4] used a pi-esc controller
to preserved stability. In this paper, we introduce a integral gain matrix that ensured stability under
the idealistic condition where the gradient is perfectly estimated. This integral gain represents the most
aggressive step-size for the gradient descent that will not destabilize the plant. Our adaptive step-size
attenuates this idealistic integral gain to preserve stability when the gradient estimate is imperfect.
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Typically, strategies for promoting stability requires slowing the integral-action of the gradient descent,
which can result in a slower convergence to the optimal. To accelerate convergence, other mechanisms are
often added to the esc algorithm. For example, dither adaptation has been explored in [2, 10], where the
dither signal is made sufficiently small near the optimal solution so as to constrict the size of the uncertainty
ball around the equilibrium state. Using the magnitude of the gradient for dither amplitude adaptation has
been proposed in [11], and extended to dither adaptation using a super-twisting algorithm and higher-order
sliding modes in [12]. The problem of removing excitation signals in a phasor-based ESC that incorporates
pi control in the feedback path is discussed in [2]. The authors in [13] proposed a mechanism for reducing
the dither amplitude in a traditional perturbation-based ESC strategy and provided a stability analysis.
Methods for fast ESC convergence with high-frequency dither signals for systems with unknown dynamics
is proposed in [14], and with unknown Hessians in [15]. Dither-free methods have also been explored
in [16], and event-triggered mechanisms for fast convergence in [17]. In contrast, this paper focuses on
accelerating convergence by using an adaptive step-size in the integral-action of the gradient descent.
While dither perturbation has gained widespread attention, directly adapting the esc controller gain is
relatively uncommon, with a few exceptions, namely [18–20].

One of the main challenges of esc is that the gradient of the unknown cost function must be estimated
from data gathered while the system is in operation. Misestimating the gradient can exacerbate the
stability issues introduced by the integral-action, especially when the gradient is over-estimated. This
issue can be addressed by analyzing the esc controller and gradient estimator in a common framework.
For instance, esc controllers often use an recursive least-squares (rls) estimator to estimate the gradient
of the cost function [2–5, 7]. This approach is attractive since the gradient estimator has state dynamics
that can be analyzed in a common Lyapunov framework with the plant and esc controller dynamics. The
disadvantage of this approach is that it often results in conservatively slowing integral-action to allow the
estimator to converge. In contrast, our esc controller employs a batch least-squares (bls) estimator with
a novel weighting. The bls estimator can be viewed as an operator that maps batches of collected data
to gradient estimates. Thus, we do not need to consider its convergence rate in our analysis. Instead,
we show that the novel weightings used in our bls estimator produce bounded estimation errors. The
adaptive step-size uses these bounds to maximize the decrease of the joint plant and controller Lyapunov
function for the worst-case gradient estimation error. The potential advantage of this approach is that
we can use more a aggressive integral-action on average without risking instability. This advantage is
empirically demonstrated through our benchmark simulations. Another advantage of this approach is that
it will facilitate future work based on more general gradient estimators, such as moving horizon estimators
or set-based estimators.

For our esc algorithm, persistently exciting data is necessary, but not sufficient, to accurately estimate
the gradient of the cost. For accurate estimates, the data gathered must also be sufficiently close to
equilibrium. To quantify the distance from equilibrium, we assume that our plant is instrumented to
provide addition measurements beyond the cost, which is the only measurement used in most esc problem
formulations. Furthermore, we assume that the cost is a static function of these measurements. This is
an admittedly strong assumption for esc, but one that is consistent with many industrial systems which
are heavily instrumented. Exploiting these additional sensor measurements to improve the convergence
is a shrewd strategy. We show that accurate estimates of the gradient requires persistently exciting and
sufficiently small perturbations of the input. Thus, the dither based acceleration methods described above
can potentially be combined with our adaptive gain to further improve convergence.

The remainder of this paper is organized as follows. In Section 2, we define our esc problem formulation.
In Section 3, we present our esc controller and prove its convergence. Finally, in Section 4 we demonstrate
our esc controller on five numerical example; one illustrative, one practical, and three benchmark.
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Notation:

For a vector v ∈ Rn and square matrix M ∈ Rn×n, ‖v‖M =
√
v>Mv is the weighted 2-norm where the

subscript is omitted for the identity matrix ‖v‖ =
√
v>v. For a square matrix M ∈ Rn×n,

¯
λ(M) and λ̄(M)

denote its smallest and largest eigenvalues respectively and ‖M‖ = sup{‖Mx‖ : ‖x‖ ≤ 1} is the induced
2-norm. A function α : [0,∞) → [0,∞) is class-K if α(0) = 0 and it is strictly increasing. A function
α : [0,∞) → [0,∞) is class-K∞ if it is class-K and lima→∞ α(a) = ∞. A function β : [0,∞)2 → [0,∞)
is class-KL if β(·, t) is class-K ∀t > 0 and β(r, ·) is continuous and strictly decreasing ∀r > 0. A system
xt+1 = f(xt, dt) is input-to-state stable if ‖xt‖ ≤ β(‖x0‖, t) + γ(supt ‖dt‖) where β ∈ KL and γ ∈ K. A
function f is Cn if the derivatives derivatives f (1), . . . , f (n) exist and are continuous.

2 ESC Problem Statement

Consider the following discrete-time nonlinear system

xt+1 = f
(
xt, ut

)
(1a)

yt = g
(
xt, ut

)
(1b)

where xt ∈ Rnx is the state, ut ∈ Rnr is the control input, and yt ∈ Rny are measured output other than
cost. We make the following assumptions about the plant (1).

Assumption 1 (Plant).

(a) The plant is controllable, observable, and Lipschitz continuous. Each input u corresponds a unique
input-to-state stable (iss) equilibrium state π(u) where π is Lipschitz continuous.

(b) The output yt tracks yt → r̄ constant inputs ut = r̄.

Assumption 1 is admittedly a strong assumption, but one that is consistent with many industrial
applications where esc is applied to a closed-loop system with a well-designed controller and heavy instru-
mentation. When satisfied, this assumption can be used to improve the performance of esc controllers.
Assumption 1a means that the closed-loop system (1) is robustly stable. Thus, bounded perturbation of
the input ut cause bounded perturbation of the output yt, allowing for safe exploration without risking
instability. Assumption 1a is consistent with the assumptions made in other esc literature e.g. [2–4].

Assumption 1b amounts to assuming that the steady-state map of the system is identity g(π(u), u) = I.
This assumption is made for notational simplicity. The steady-state cost `(u) = J (g(π(u), u)) with respect
to the input u depends on the steady-state map g(π(·), ·). Without loss of generality, we can transform
the inputs u = π(r) to produce a plant (1) whose steady-state map g(g−1(·)) = I is identity where g
is invertible since both h and π are invertible. This simplifies the notation (but not the analysis) since
∇rJ (g(π(r))) = ∇yJ instead of ∇u` = ∇yJ∇uh+∇yJ∇xh∇π.

The objective of the esc is to find a operating condition ut = r̄? such that the plant (1) optimizes an
unknown steady-state cost J (y). The optimal equilibrium is defined as

(ȳ?, ū?, x̄?) = arg min J (ȳ) (2a)

s.t. x̄ = f(x̄, ū) (2b)

ȳ = g(x̄, ū). (2c)

We make the following assumptions about the cost J ∈ C2.

Assumption 2 (Cost).
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(a) The cost J ∈ C2 has bounded curvature
¯
H � ∇2J � H̄.

(b) The cost J ∈ C2 is bounded by class-K∞ functions κ1(‖y−y?‖) ≤ J (y) ≤ κ2(‖y−y?‖) and its gradient
∇J of the cost satisfies ‖∇J (y)‖ ≥ κ3(‖y − y?‖) for some class-K∞ function κ3.

Assumption 2a will be used to bound the estimation errors of our gradient estimator. This assumption
holds if and only if the cost gradient ∇J ∈ C1 Lipschitz continuous i.e.

¯
H = −hI and H̄ = hI implies

‖∇J (y1)−∇J (y2)‖ ≤ h‖y1−y2‖. However, our esc algorithm can exploit more nuanced curvature bounds

¯
H, H̄, if available, to improve the convergence rate. Note that the bounds

¯
H and H̄ are not required to

be positive definite matrices. Thus, we are not assuming that the cost J is convex. Indeed, for two of our
numerical examples, the cost will be non-convex.

Assumption 2b means that driving the cost gradient to zero ∇J → 0 results in the output converging
to the optimal yt → y?. This assumption will be used to prove the stability of the optimal equilibrium (2).
If the cost J is convex (i.e. 0 �

¯
H � ∇2J ) then Assumption 2a implies that Assumption 2b holds locally.

However, this assumption can hold for non-convex costs J , like those we will consider in our numerical
examples.

3 Adaptive Gradient ESC Algorithm

Our extremum-seeking control (esc) is given by

rt+1 = rt +

{
−αtKθ̂t if αt ≥ α
0 otherwise

(3a)

ut = rt + dt (3b)

where the state rt of the controller is the current estimate of the optimal reference r̄? and the input ut is
the reference rt plus a dither signal dt. The step-size αt and controller gain K will be described below. For
αt ≥

¯
α, the esc controller (3) is a discrete-time integral controller rt+1 = rt − αtKθ̂t.

The gradient θt = ∇J (rt) of the cost function J (rt) at the current reference set-point rt is estimated
by the following finite-horizon batch least-squares (bls) estimator

Λ−1
t =

1

N

t−N∑
k=t−1

wk∆yk∆y
>
k (4a)

θ̂t =
Λt
N

t−N∑
k=t−1

wk∆yk

(
∆Jk+∆y>k Ĥ

(
et− 1

2∆yk
))

(4b)

where ∆yk = yt − yk and ∆Jk = J (yt) − J (yk) are changes in the measurements of the output and
cost, respectively, and the batch horizon N ≥ ny is at least ny. The existence of the inverse Λt of the
information matrix (4a) requires that the output yt of the plant (1) is persistently exciting, which is
achieved using the dither dt in the controller (3). The correction term ∆y>k Ĥ(et + 1

2∆yk) compensates

for the tracking error et = yt − rt and transients ∆yk 6= 0 where Ĥ = 1
2(H̄ +

¯
H) is the median curvature

∇2J of the cost J . Without the measurements of the outputs yt, the esc controller (3) would need to
be detuned to conservatively allow the plant (1) to settle near the equilibrium π(rt). If only a Lipschitz
bound h on gradient ∇J is known, then the correction term disappears ∆y>k Ĥ(et+

1
2∆yk) = 0 since Ĥ = 0

when
¯
H = −hI and H̄ = hI. For a convex cost with known Lipschitz bound h, the correction term is

h
2 ∆y>k (et + 1

2∆yk). The novel weighting wk is given by

wk =
1

1
2‖∆yk‖‖∆yk‖H̃

(
‖et‖H̃ + 1

2‖∆yk‖H̃
) (4c)
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where H̃ = H̄ −
¯
H bounds the range of curvature ∇2J of the unknown cost J . When the tracking errors

‖et‖ � 1 and output transients ‖∆yk‖ � 1 are large, the weighting is small wk � 1 indicating that
the data-point {∆Jk,∆yk} will not provide reliable information about the steady-state gradient ∇J (rt).
When only a Lipschitz bound h on the gradient ∇J is known, the weightings (4c) simplify

wk =
1

h2‖∆yk‖2
(
2‖et‖+ ‖∆yk‖

) .
We will show that this weighting guarantees that the gradient estimation errors θ̃t = θ̂t − ∇J (rt) are
bounded.

Our main contribution is the adaptive step-size

αt = max

0, 1−
∥∥Λ

1
2
t Kθ̂t

∥∥
‖θ̂t‖2K

 (5)

which dictates both the mode and the aggressiveness of the controller (3) based on the quality of the
gradient estimate θ̂t. If the step-size (5) is small αt < α, then the controller (3) enters the so called
exploration mode where the state rt of the controller (3) remains constant while the dither signal dt probes
the plant (1) to improve the gradient estimate. If αt ≥

¯
α then the controller (3) enters the so called

exploitation mode where it descends the estimated gradient θ̂t with K = K> � 0. Furthermore, the
aggressiveness of this descent is dictated by the step-size (5). The max operator ensures that the step-size
is non-negative and well-defined. If ‖θ̂t‖2K = 0, then either we have perfectly misestimated the gradient

θ̃ = ∇J or perfectly estimated a zero gradient θ̂ = ∇J = 0 (i.e. we are at optimal). In either case, the
step-size (5) is zero since the controller should not step.

To better understand the intuition behind the adaptive step-size (5), consider the case where the
controller gain K and estimator covariance Λt are balanced i.e. K ≈ kI and Λ ≈ σ2I. Then, we can
approximate the adaptive step-size (5) as

αt = max

0, 1− ‖Λ
1
2
t ‖‖Kθ̂t‖
‖θ̂‖‖Kθ̂t‖

 ≈ 1− σ

µ
.

where σ/µ is the noise-to-signal ratio of the gradient estimate and µ = ‖θ̂‖2K is the size of the descent
direction. If the noise-to-signal ratio is small σ/µ � 1, then αt ≈ 1, allowing the esc controller (3) to
aggressively exploit the high-quality gradient estimate θ̂t. Conversely, if the noise-to-signal ratio is large
σ/µ ≈ 1 then the reduced step-size αt � 1 slows the gradient descent. Thus, the adaptive step-size (5)
provides a reactive separation of time-scales between the controller (3) and estimator (4).

The positive definite controller gain K = K> � 0 of the esc controller (3) must satisfy the matrix
inequality

K −K
(
H̄ + γI

)
K � 0 (6)

for some scalar γ. In Corollary 1 we will describe how to tuning of the controller gain (6) for a linear
plant (1). If the plant (1) has trivial dynamics, then the gain (6) is K = 1

2H̄, which is the ideal choice for
the (non-dynamic) optimization problem (2). For a dynamic plant, the gain (6) incorporates information
about both the plant (1) and optimization problem (2) to improve convergence and prevent instabilty.

The following theorem proves that the esc controller (3) converges to the reference r̄? that drives the
plant (1) to a neighborhood of the optimal equilibrium (2).
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Theorem 1. Let Assumptions 1 and 2 hold. Let the dither dt be persistently exciting and bounded ‖dt‖ ≤ δ.
Let K satisfy (6). Then the optimal equilibrium (2) is input-to-state stable for the closed-loop system (1)
and (3)-(5).

Theorem 1 says that the esc controller (3) drives the plant (1) to a neighborhood of the optimal
equilibrium (2) where the size of this neighborhood depends on the amplitude δ of the dither dt. In
practice, a vanishing dither [2, 10] can be used to provide convergence to the optimal, rather than only a
neighborhood.

3.1 Proof of Theorem 1

In this section, we prove Theorem 1. First, we analyze the esc controller (3) under the idealistic condition
where the bls estimator (4) is perfect θ̂t = ∇J (rt) and thus the step-size (5) is maximal αt = 1. We will
then examine how the adaptive step-size αt can be used to make the esc controller (3) robust to imperfect
gradient estimates θ̂t 6= ∇J (rt). Finally, we will show that our bls estimator (4) satisfies our conditions
for stability.

Proposition 1. Let Assumptions 1 and 2 hold. Let K satisfy (6). Then the optimal equilibrium (2) is
input-to-state stable (iss) for the closed-loop system (1) and (3) where θ̂t = ∇J (rt) and αt = 1.

Proof. Define r̃t = rt − r̄? and x̃t = xt − π(rt). We will prove input-to-state stability using a candidate
Lyapunov function of the form

V (x̃, r̃) = Vx(x̃) + Vr(r̃) (7)

where Vx and Vr are candidate Lyapunov functions for the plant (1) and controller (3), respectively.
Since each constant equilibrium x̄+ = x̄ = π(r̄) of the plant (1) is iss by Assumption 1, there exists an

iss Lyapunov function Vx that satisfies

¯
p
(
‖x̃‖
)
≤ Vx

(
x̃
)
≤ p̄

(
‖x̃‖
)

(8a)

Vx
(
f(x, ū)− x̄+

)
− Vx

(
x̃
)
≤ −q

(
‖x̃‖
)

+ σ(‖dt‖) (8b)

according to the converse Lyapunov function theorem [21] where
¯
p, p̄, q ∈ K∞ and σ ∈ K. Here, the input

ut = r̄ + dt is dithered about the set-point r̄. When the target equilibrium is varying x̄+ 6= x̄, then the
Lyapunov function (8) satisfies

∆Vx(x̃) =Vx(x̃+)− Vx(x+ − x̄) + Vx(x+ − x̄)− Vx(x̃)︸ ︷︷ ︸
≤−q(‖x̃‖)

.

where the first-term is the increase of the Lyapunov function due to the changing set-point and the second-
term decrease due to stability. We can assume without loss of generality that Vx is smooth [22], so that
the first term above can be bounded by a quadratic

∆Vx(x̃) ≤ ∇V (x̃)>∆x̄+ ρ
2∆x̄>∆x̄

where ∆x̄ = x̄+ − x̄ is the change in the equilibrium state and ρI � ∇2Vx is an upper-bound on the
curvature of Vx. By Young’s inequality ∇V >∆x̄ ≤ 1

2γ0
∇V >x ∇Vx + γ0

2 ∆x̄>∆x̄, we have

∆Vx(x̃) ≤ −q +
1

2γ0
∇V >x P−1∇Vx +

ρ+ γ0

2
∆x̄>P∆x̄ (9)
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where q0
x = q − 1

2γ0
∇V >x ∇Vx � 0 for an appropriate scaling of γ0 > 0. Since π is Lipschitz continuous

‖∆x̄‖ ≤ `π‖∆r‖, we obtain
∆Vx(x̃) ≤ −q0

x(‖x̃‖) + 1
2γθ̂

>K2θ̂

where γ = (ρ+ γ0)`2π and ∆r = Kθ̂.
A natural choice for the controller (3) Lyapunov function Vr is the cost function

Vr(r̃) = J (r̃ + r̄?)− J (r̄?) (10)

where Vr(0) = 0 by construction. By Assumption 2, the cost J is bounded above and below by class-K∞
functions. By Taylor’s theorem1 and the controller dynamics (3), we have

∆Vr = Vr(r̃
+)− Vr(r̃) ≤ ∇J (r)>∆r + 1

2∆r>H̄∆r

= −θ̂>Kθ̂ + 1
2 θ̂
>KH̄Kθ̂

where θ̂ = ∇J and ∆r = Kθ̂ for αt = 1. Thus, the combined Lyapunov function (7) satisfies

∆V ≤ −q0
x(‖x̃‖)− θ̂>Kθ̂ + 1

2 θ̂
>K(γI + H̄)Kθ̂

≤ −q0
x(‖x̃‖)− 1

2 θ̂
>Kθ̂

where K − 1
2K
(
γI + H̄

)
K � 1

2K by (6). By Assumption 2, the state r̃ of the controller (3) is bounded
by the gradient κ3(‖r̃‖) ≤ ‖θ‖. Therefore, the combined Lyapunov function (7) is bounded by class-K∞
functions and satisfies

∆V (x̃, r̃) ≤ −q0
x(‖x̃‖)− q0

r (‖r̃‖) + σ(‖dt‖)
where q0

x = q − 1
2γ0
∇V >x ∇Vx and q0

r (r̃) =
¯
λ(K)κ3(‖r̃‖) are class-K∞ functions and σ ∈ K. Thus, by

Proposition 2.3 in [23] the optimal equilibrium (2) is iss.

The Lyapunov function (7) defined in the proof of Proposition 1 will be used to prove Theorem 1. The
proof of Proposition 1 uses similar arguments to the proof of Theorem 4.1 from [3]. However, our proof
highlights the issue that without an appropriate controller gain (6), the integral-action of the gradient
descent can destabilize the plant (1), even when the gradient is perfectly estimated θ̂ = ∇J . As a quick
aside, the following corollary shows how the derivation of the controller gain (6) for linear plants.

Corollary 1. For a linear plant (1), Proposition 1 holds if the esc controller gain K satisfies

K −K
(
H̄+B>(I−A)−>PQ−1P (I−A)>B

)
K � 0. (11)

Proof. For a linear plant (1), we can use a quadratic Vx(x̃) = 1
2 x̃
>Px̃ plant Lyapunov function (8) where

P satisfies the Lyapunov equation A>PA−P = −Q for some Q � 0. We can then use a matrix Γ, instead
of a scalar γ0, in Young’s inequality (9) to obtain

∆Vx(x̃) = −x̃>Qx̃+ 1
2 x̃
>PΓPx̃+ 1

2∆x̄>(P + Γ−1)∆x̄>

for some Γ = Γ> � 0 where ∇Vx = Px̃ and ∇2Vx = P . Following the argument of the proof of Proposi-
tion 1, we require −Q+ PΓP � 0 for stability. Or equivalently Γ � P−1QP−1. Thus,

∆Vx(x̃) � 1
2∆x̄>(P + PQ−1P )∆x̄.

Finally, note that for a linear plant (1) the change in equilibrium state x̄ satisfies ∆x̄ = (I − A)−1B∆r =
(I −A)−1BKθ̂. The remainder of the stability proof is identical to the proof of Proposition 1.

1Taylor’s theorem, not a Taylor approximation.
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The linear tuning in Corollary 1 can provide some insight for tuning the controller (3) gain (6) for a
nonlinear plants (1), which is often challenging.

Next, we examine the robustness of the esc controller (3) to imperfect gradient estimates θ̂t 6= ∇J (rt).
We will consider gradient estimation errors θ̃t := θ̂t−∇J (rt) that are slightly smaller ‖θ̃‖K ≤ (1−

¯
α)‖θ̂‖K

than the estimated gradient θ̂t

Θ̃max
t =

{
θ̃ ∈ Rny : ‖θ̃‖K ≤ (1−

¯
α)‖θ̂t‖K

}
(12)

where 0 <
¯
α� 1. The following corollary shows that the optimal equilibrium (2) remains iss for gradient

estimation errors θ̃t = θ̂t −∇J (rt) that satisfy the bound θ̃t ∈ Θ̃t ⊆ Θ̃max
t .

Corollary 2. Let Assumptions 1 and 2 hold. Let the set Θ̃t of gradient estimation errors θ̃t = θ̂t−∇Jt ∈ Θ̃t

satisfy the bound Θ̃t ⊆ Θ̃max
t . Let K satisfy (6) and the step-size αt satisfy

α?t = max

{
0, 1−max

θ̃∈Θ̃t

θ̃>Kθ̂t

‖θ̂t‖2K

}
. (13)

Then the optimal equilibrium (2) is iss for the closed-loop system (1) and (3)

∆V (x̃, r̃) ≤ −q1
x(‖x̃‖)− q2

r (‖r̃‖) + σ(‖dt‖) (14)

where q1
x, q

2
r ∈ K∞ and σ ∈ K.

Proof. For imperfect gradient estimates θ̂ 6= ∇J , the Lyapunov function (7) from Proposition 1 satisfies

∆V ≤ −q0
x − αt∇J >Kθ̂ + 1

2α
2
t θ̂
>Kθ̂ + σ(‖dt‖) (15)

where the step-size αt ≥ 0 is a design variable we can choose to promote stability while the worst-case
gradient estimation error θ̃t ∈ Θ̃t will try to prevent stability. Since the worst-case estimation error θ̃t ∈ Θ̃t

will depend on our choice of step-size αt, we have the following two-player zero-sum game

min
αt≥0

max
θ̃t∈Θ̃t

− q0
x − αt(θ̂ − θ̃)>Kθ̂ + 1

2α
2
t θ̂
>Kθ̂ + σ(‖dt‖) (16)

where ∇J = θ̂− θ̃. Here, the adversary has the advantageous position of selecting the worst-case gradient
estimation error θ̃t ∈ Θ̃t based on our choice of step-size αt ≥ 0. However, for this particular game (16)
the optimal strategy θ̃?t (αt) for the gradient estimation error happens to be independent of the step-size
since

θ̃?t = arg max
θ̃t∈Θ̃t

αtθ̂
>
t Kθ̃

where the non-negative step-size αt ≥ 0 only scales the linear cost θ̂>K, but does not change its direction.
The optimal strategy for the step-size α?t is given by the following scalar quadratic program

α?t = arg min
αt≥0

− q0
x − αt(θ̂ − θ̃?(αt))>Kθ̂ + 1

2α
2
t θ̂
>Kθ̂

= arg min
αt≥0

αt
(
θ̂>Kθ̃? − ‖θ̂‖2K

)
+ 1

2α
2
t ‖θ̂‖2K

where θ̃?(αt) = maxθ̃∈Θ̃t
θ̃>Kθ̂t is independent of αt. The step-size (13) is the explicit optimal solution of

this parametric quadratic program where θ̃?t is the parameter. Thus, (13) is the game-theoretic optimal
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step-size αt for bounded gradient estimation errors θ̃t ∈ Θ̃t. The resulting change (15) of the Lyapunov
function (7) satisfies

∆V = ∆Vx + ∆Vr ≤ −q0
x − (α?t )

2‖θ̂‖2K + σ(‖dt‖).

To prove iss, we will show that (α?t )
2‖θ̂‖2K is bounded by a class-K∞ function q1

r (‖r̃‖) of the controller (3)
state r̃. Since Θ̃t ⊆ Θ̃max

t , we have

α?t ≥ 1−max
θ̃∈Θ̃t

θ̃>Kθ̂t

‖θ̂t‖2K
≥ 1−max

θ̃∈Θ̃t

‖θ̃t‖K‖θ̂t‖K
‖θ̂t‖2K

=
¯
α

where the first inequality follows from the step-size (13), the second inequality is the Cauchy-Schwarz
inequality, and the last inequality follows from the definition (12) of the set Θ̃max

t . Thus,

(α?t )
2‖θ̂‖2K ≥ ¯

α2‖θ̂‖2K

where
¯
α > 0. Next, we need to bound the norm ‖θ̂‖2K of the estimated gradient θ̂t by the norm ‖θ‖2K of

the actual gradient θt = ∇J (rt). Since θt = θ̂t − θ̃t, we have

‖θ‖K = ‖θ̂ − θ̃‖K ≤ ‖θ̂‖K + ‖θ̃‖K
≤ ‖θ̂‖K + (1−

¯
α)‖θ̂‖K ≤ 2‖θ̂‖K

where the first inequality is the triangle inequality and the second inequality follows from the definition (12)
of the set Θ̃max

t . Rearranging terms and squaring yields
¯
α2‖θ̂‖2K ≥ 1

4 ¯
α2‖θ‖2K . Finally, recall from the proof

of Proposition 1 that
‖θ‖2K ≥ ¯

λ(K)κ3(‖r̃‖),
where κ3(‖r̃‖) ∈ K∞. Therefore, we conclude that (14) holds where q1

x(‖x̃‖) = q0
x(‖x̃‖) ∈ K∞ and

q2
r (‖r̃‖) = 1

4 ¯
α2

¯
λ(K)κ3(‖r̃‖) ∈ K∞.

Corollary 2 shows that the adaptive step-size (13) makes our esc controller (3) robust to bounded (12)
gradient estimation errors θ̃t = θ̂t − ∇Jt ∈ Θ̃t. The adaptive step-size (13) ensures that the Lyapunov
function (7) decreases (14) for the worst-case gradient estimation errors θ̃t ∈ Θ̃t. When the bounds Θ̃t

on the gradient estimation errors θ̃t ∈ Θ̃t are tight, the step-size (13) is large and the controller (3) is
aggressive. Interestingly, the worst-case gradient estimation error θ̃?t does not try to alter the descent-
direction Kθ̂, but rather amplifies the descent-direction θ̂ = 1

¯
αθ. This can cause the integral-action of the

esc controller (3) to overshoot the optimal, potentially leading to unstable oscillation.
Later in Lemma 1, we will derive the specific bounds Θ̃bls

t on the gradient estimation errors produce
by the bls estimator (4). We will also connect the game-theoretic step-size (13) with the step-size (5) used
in the esc controller (3) in Corollary 4.

The set (12) is the largest set Θ̃max
t of gradient estimation errors θ̃ for which the esc controller (3) can

decrease the Lyapunov function (7). Thus, the controller remains in the exploration mode i.e. α?t ≥ ¯
α.

When the bounds Θ̃t on the estimation errors are too large Θ̃t 6⊆ Θ̃max
t , the esc controller (3) enters the

exploration mode i.e. α?t = 0. The following trivial corollary shows that optimal equilibrium (2) remains
stable (but not iss nor asymptotically stable) when the esc controller (3) is in exploration mode α?t = 0.

9



Corollary 3. Let Assumptions 1 and 2 hold. Let K satisfy (6) and the step-size satisfy α?t = 0. Then the
plant (1) is iss with respect to the dither signal dt

∆Vx(x̃) ≤ −q2
x(‖x̃‖) + σ(‖dt‖), (17a)

and the controller (3) is stable

∆Vr(r̃) = 0, (17b)

where q2
x ∈ K∞ and σ ∈ K.

Proof. Since the controller (3) state rt+1 = rt is constant in the exploration mode, the controller Lyapunov
function is constant (17b). The decrease condition (17a) for the plant Lyapunov function follows from the
iss assumption (8).

Corollary 3 shows that the divergence from the optimal equilibrium (2) is bounded for bounded dithers
dt. This allows the dither dt to safely probe the system (1) to gather exciting data and reduce the gradient
estimation errors Θ̃t. However, it does not provide convergence towards the optimal equilibrium (2). For
convergence, we need the esc controller (3) to interminably enter the exploitation mode α?t ≥ ¯

α. This
requires that the bounds Θ̃bls

t on the gradient estimation errors produce by the bls estimator (4) are
sufficient small (12). The following lemma establishes bounds Θ̃bls

t on the gradient estimation errors
produce by the bls estimator (4).

Lemma 1. Let Assumptions 1 and 2 hold. The estimation errors θ̃t = θ̂t − ∇Jt produced by the bls
estimator (4) are contained in the set

Θ̃bls
t =

{
θ̃ :
∥∥Λ−1

t θ̃
∥∥2 ≤ 1

}
. (18)

Proof. To derive the set-bound (18) on the gradient estimation error θ̃t, we will express the gradient θ = ∇J
as a linear regression ∆Jk = ∆y>k θ + ωk where the noise ωk is set bounded, rather than stochastic.

According to Taylor’s theorem2, the cost J satisfies

∆J (yk) = ∆y>k ∇J (yt) + 1
2∆y>k ∇2J (z1)∆yk (19)

where the unknown curvature H1 = ∇2J (z1) is evaluated at an unknown point z1 = µ1yt + (1 − µ1)yk
for some µ1 ∈ [0, 1]. The desired gradient ∇J (rt) evaluated at the current reference rt is related to the
gradient ∇J (yt) evaluated at the current output yt by the mean-value theorem

θt = ∇J (rt) = ∇J (yt)−∇2J (z2)>(rt − yt) (20)

where et = rt − yt is the tracking error and the unknown curvature H2 = ∇2J (z2) is again evaluated at
an unknown point z2 = µ2yt + (1 − µ2)rt for some µ2 ∈ [0, 1]. Combining the non-approximations (19)
and (20), yields

∆Jk = ∆y>k θt + 1
2∆y>k H1∆yk︸ ︷︷ ︸

ω1

− e>t H2∆yk︸ ︷︷ ︸
ω2

(21)

where θt = ∇J (rt), ∆Jk = J (yk)− J (yt) and ∆yk = yk − yt. The non-approximation (21) says that the
cost J can be written as a linear regression ∆Jk = ∆y>k θ+ωk where the unknown error term ω = ω1−ω2

2Note that we use Taylor’s theorem, which is exact, not a Taylor approximation, which is an approximation.
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accounts for the nonlinearity. We will show that the error term ω is bounded since the curvature ∇2J of
the cost J is bounded

¯
H � ∇2J � H̄.

From the definition of positive definite matrices, the quadratic-form ω1 = 1
2∆y>k H1∆yk is contained in

the line interval

Ω1
k =

{
ω1 ∈ R : 1

2∆y>k ¯
H∆yk ≤ ω1 ≤ 1

2∆y>k H̄∆yk

}
= 1

2‖∆yk‖2Ĥ + 1
4‖∆yk‖2H̃

[
− 1, 1

]
where Ĥ = 1

2(H̄ +
¯
H) is the median curvature and H̃ = H̄ −

¯
H is the range of curvature. Deriving

the bounds Ω2
k on the nonlinearity ω2 = e>t H2∆yk is more complicated since it is not a quadratic-form.

Since the linear function f(H) = e>t H∆yk is continuous, the image Ω2
k = f(H) of the connected set

H = {H :
¯
H � H � H̄} is connected. Furthermore, since ω2 ∈ R is a scalar, this set Ω2

k is a line interval,
specifically

Ω2
k =

{
ω2 : min

¯
H�H�H̄

1
2Tr(CH) ≤ ω2 ≤ max

¯
H�H�H̄

1
2Tr(CH)

}
(22)

where
C = ∆yke

>
t + et∆y

>
k

is the symmetric cost matrix. In other words, we can find the bounds on ω2 by solving two semi-definite
programs (22) for the lower and upper bounds on the line interval. According to Theorem 2.2 from [24],
these semi-definite programs (22) have a closed-from solution, specifically

min

¯
H�H�H̄

1
2Tr(CH) = 1

2Tr−
(
H̃

1
2CH̃

1
2
)

+ 1
2Tr
(
C

¯
H
)

where Tr− is the trace of the projection of a matrix into the negative semi-definite cone i.e. the sum of its
negative eigenvalues. The rank-2 matrix H̃

1
2CH̃

1
2 has exactly one negative eigenvalue

λ− = e>t H̃∆yk − ‖∆yk‖H̃‖et‖H̃
. Thus,

min

¯
H�H�H̄

1
2Tr(CH) = 1

2∆y>k H̃et− 1
2‖∆yk‖H̃‖et‖H̃+e>t ¯

H∆yk

= ∆y>k Ĥet− 1
2‖∆yk‖H̃‖et‖H̃ .

Similarly, we can obtain the upper-bound

ω2 ≤ ∆y>k Ĥet + ‖∆yk‖H̃‖et‖H̃ .

Thus,

Ω2
k = ∆y>k Ĥet + 1

2‖∆yk‖H̃‖et‖H̃
[
− 1, 1

]
Therefore, the total error ω = ω1 − ω2 is contained in the line interval

Ωk = −∆y>k Ĥ
(
et − 1

2∆yk
)

+
1

wk‖∆y‖
[
− 1, 1

]
.
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where the weighting wk was defined in (4c). Thus, cost (21) can be rewritten

∆Jk + ∆y>k Ĥ
(
et − 1

2∆yk
)

= ∆y>k θt +
1

wk‖∆yk‖
νk (23)

where νk ∈ [−1, 1] is the normalized noise. Substituting (23) into the bls (4) yields

θ̂t = Λt

(
1

N

t−N∑
k=t−1

wk∆yk∆y
>
k

)
︸ ︷︷ ︸

Λ−1
t

θt + Λt
1

N

t−N∑
k=t−1

∆yk
‖∆yk‖

νk.

Thus, by definition of the estimation error θ̃t = θ̂t − θ1, the bound (18) holds since∥∥Λ−1
t θ̃t

∥∥ =

∥∥∥∥ 1

N

∑t−N

k=t−1

∆yk
‖∆yk‖

νk

∥∥∥∥ ≤ 1

N

∑t−N

k=t−1

∣∣νk∣∣ ≤ 1

where the first inequality is the triangle inequality and the second inequality follows from |νk| ≤ 1 since
νk ∈ [−1, 1] ⊂ R.

Lemma 1 describes a (possibly degenerate) ellipsoidal set Θ̃bls
t that bounds the gradient estimation

errors produce by the bls estimator (4). The following lemma shows that for persistently exciting and
local data {Jk, yk}tt=k, the ellipsoid (18) is non-degenerate and eventually satisfies the bounds Θ̃bls

t ⊆ Θ̃max
t ,

allowing the esc controller (3) to return to the exploitation mode.

Lemma 2. Let Assumptions 1 and 2 hold. Let ∇J (rt) 6= 0. Let the dither dt be persistently exciting
and bounded ‖dt‖ ≤ δ. Then there exists a finite time T < ∞ and non-zero dither amplitude δ > 0 such
that (18) satisfies Θ̃bls

t+T ⊆ Θ̃max
t+T .

Proof. For notational simplicity, we will drop the time indices.
First, we will transform the desired condition Θ̃bls ⊆ Θ̃max into a more readily verifiable form. From

the definition (12) of Θ̃max, the condition Θ̃bls ⊆ Θ̃max holds if and only if ‖θ̃‖K ≤ (1 −
¯
α)‖θ̂‖K for all

θ̃ ∈ Θ̃bls. Substituting θ̂ = θ + θ̃ and expanding the norm ‖θ̂‖2K = ‖θ + θ̃‖2K , we have the following
equivalent condition

¯
α(2−

¯
α)‖θ̃‖2K − 2(1−

¯
α)2θ>Kθ̃ − (1−

¯
α)2‖θ‖2K ≤ 0

for all θ̃ ∈ Θ̃bls where 1− (1−
¯
α)2 =

¯
α(2−

¯
α). Using the Cauchy-Schwarz inequality −θ>Kθ̃ ≤ ‖θ‖K‖θ̃‖K ,

we obtain the following conservative condition

¯
α(2−

¯
α)‖θ̃‖2K + 2(1−

¯
α)2‖θ‖K‖θ̃‖K − (1−

¯
α)2‖θ‖2K ≤ 0

for all θ̃ ∈ Θ̃bls. Since this quadratic equation is convex
¯
α(2 −

¯
α) > 0, it is positive between its roots,

which can be obtain from the quadratic formula

−1−
¯
α

¯
α
‖θ‖K ≤ ‖θ̃‖K ≤

1−
¯
α

2−
¯
α
‖θ‖K

for all θ̃ ∈ Θ̃bls. Since
¯
α ∈ (0, 1) and ‖θ̃‖K ≥ 0, the lower-bound is redundant. Thus, Θ̃bls ⊆ Θ̃max if

‖θ̃‖K ≤ 1−
¯
α

2−
¯
α‖θ‖K for all θ̃ ∈ Θ̃bls. For θ̃ ∈ Θ̃bls, the norm ‖θ̃‖K satisfies

‖θ̃‖K = ‖K 1
2 θ̃‖ ≤ ‖K 1

2 ‖‖θ̃‖ = ‖K 1
2 ‖‖ΛΛ−1θ̃‖

≤ ‖K 1
2 ‖‖Λ‖‖Λ−1θ̃‖ ≤ ‖K 1

2 ‖‖Λ‖

12



where ‖Λ−1θ̃‖ ≤ 1 by the definition (18) of the set Θ̃bls. Thus,

Θ̃bls ⊆ Θ̃max if ‖K 1
2 ‖‖Λ‖ ≤ 1−

¯
α

2−
¯
α
‖θ‖K

. Or equivalently, Θ̃bls ⊆ Θ̃max when the information matrix (4a) is sufficiently large

Λ−1 � 2−
¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
I (24)

where ‖θ‖K = ‖∇J ‖K 6= 0 by the hypothesis of this lemma. In other words, the esc controller leaves
the exploration mode when there is enough (24) information to reliably estimate the gradient. Next, we
prove that the information matrix (4a) is sufficiently large (24) after a finite period of time T <∞ in the
exploration mode and non-zero dither amplitude δ > 0. Consider the following two conditions:

1. The weightings (4c) are sufficiently large

wk ≥
2−

¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
1

ρ‖∆yk‖2
(25)

2. The output transients ∆yk are persistently exciting (pe)

1

N

t∑
k=t−N

∆yk∆y
>
k

‖∆yk‖2
� ρI (26)

where ρ > 0 quantifies the excitement of the outputs ∆yk. If conditions (25) and (26) hold then the
information matrix (4a) is sufficiently large (24) to allow the controller (3) to enter the exploitation mode
since

Λ−1
t =

1

N

t−N∑
k=t−1

wk∆yk∆y
>
k

� 1

N

t−N∑
k=t−1

2−
¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
∆yk∆y

>
k

ρ‖∆yk‖2
� 2−

¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
I.

Thus, we next prove condition (25) holds after a finite-time T0 < ∞ and non-zero dither amplitude
δ > 0. According to Corollary 3, the equilibrium state x̄ = π(r̄) is iss where the reference is constant
rt = r̄ when the controller (3) is in the exploration mode. By the definition of iss, we have

‖xt − x̄‖ ≤ β(‖x0 − x̄‖, t) + γ(sup
t
‖dt‖)

where β ∈ KL and γ ∈ K. Thus, for any initial condition, there exists a finite-time T0 <∞ and non-zero
dither amplitude δ > 0 such that

‖xt − x̄‖ ≤ β(‖x0 − x̄‖, T0) + γ(δ) ≤ ρ

`g‖H̃‖
2−

¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
.

for all t ≥ T0 ∈ N and ‖dt‖ ≤ δ where `g is a Lipschitz bound on g. Since the plant (1) output map g is
Lipschitz continuous, we have the following bound on the tracking error et

‖et‖ = ‖yt − rt‖ = ‖g(xt)− g(x̄)‖ ≤ `g‖xt − x̄‖ (27a)

≤ ρ

‖H̃‖
2−

¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
. (27b)
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Likewise, we can obtain a bound on the output transients yk − yk−1

‖∆yk‖ = ‖g(xk)− g(x̄) + g(x̄)− g(xk−1)‖ (27c)

≤ 2ρ

‖H̃‖
2−

¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
.

Substituting the bounds (27) into the weightings (4c) produces

w−1
k =

1

2
‖∆yk‖‖∆yk‖H̃

(
‖et‖H̃ +

1

2
‖∆yk‖H̃

)
=

2−
¯
α

1−
¯
α

‖K 1
2 ‖

‖θ‖K
ρ‖∆yk‖2

Thus, condition (25) holds after finite-time T0 <∞ and for a non-zero dither amplitude δ > 0.
Next, we prove condition (26) holds for a pe dither dt. Since the plant (1) is controllable, a pe dither

dt will produce a pe state xt after a finite-period nc where nc is the controllability index. Likewise, since
the plant (1) is observable, the pe state will produce a pe output sequence ∆yk after a finite-period no
where no is the observability index. Thus, condition (26) holds for some ρ after a finite period nc + no.
Note that the pe parameter ρ does not depend on the dither amplitude δ since the data {∆yk}t+nc+no+N

k=t+nc+no

is normalized in (26).
Thus, we have proven that conditions (25) and (26) hold after a finite period T = max{T0, nc +no} for

a pe and sufficiently small ‖dt‖ ≤ δ dither dt. This means that the information matrix (4a) is sufficiently
large (24). Therefore, Θ̃bls ⊆ Θ̃max allowing the controller (3) to reenter the exploitation mode.

Lemma 2 shows that pe data {Jk, yk}tk=t−N is necessary, but not sufficient to accurately estimate
the cost gradient ∇J (rt). For an accurate estimates, the data must also be sufficiently local yt ≈ rt and
sufficiently close to equilibrium yt ≈ yt−1. For instance, data {Jk, yk}tk=t−N collected far ‖yk−rt‖ � 0 from
the set-point cannot be used to accurately estimate the gradient ∇J (rt) at rt since the cost is nonlinear

¯
H � ∇2J � H̄. Other esc controllers (e.g. [3, 8]) address this issue by reducing the bandwidth of the
esc controller. In contrast, our esc controller only reduces the bandwidth when it detects α?t = 0 that
the gradient cannot be reliable estimated. Thus, we say our esc controller has an adaptive separation of
time-scales since the adaptive step-size (5) throttles the esc controller (3) to allow the plant (1) settle
providing better data for the gradient estimator (4).

The final result necessary for the proof of Theorem 1 connects the game-theoretic step-size (13) used
in Corollary 3 with the step-size (5) used by the esc controller (3).

Corollary 4. Let Assumptions 1 and 2 hold. For the estimation error set (18), the optimal step-size (13)
has the closed-form (5).

Proof. For the estimation error set (18), the optimization problem (13) used to select the adaptive step-size
α?t can be reformulated as

max
θ̃∈Θ̃bls

t

θ̃>Kθ̂ = max
‖z‖2≤1

z>Λ
1
2
t Kθ̂t (28)

where z = Λ
−1/2
t θ̃ is a change-of-variables. The optimization problem (28) has a closed-form solution,

namely

z? = ±Λ
1
2
t Kθ̂t/‖Λ

1
2
t Kθ̂t‖

i.e. the unit vector ‖z?‖ ≤ 1 aligned with the cost Λ
1
2
t Kθ̂t. Substituting z? into (13) yields (5).
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Corollary 4 shows that the step-size (5) used by the esc controller (3) is closed-form solution of the
game-theoretic optimal step-size (13) for the particular bounds (18) on the gradient estimation errors of
the bls estimator (4).

Finally, we can prove Theorem 1.

Proof of Theorem 1. Since the esc controller (3) switches between the exploration and exploitation modes,
we will use switched systems theory to prove stability.

Let ti for i ∈ N denote the time-indices where the esc controller (3) switches modes. Without loss of
generality, assume that the system is in the exploration mode at even time-indices t2k for k ∈ N. From
Corollaries 2 and 3, the common Lyapunov function (7) satisfies

V (x̃2k+2, r̃2k+2)− V (x̃2k, r̃2k) (29)

≤ −q(‖x̃2k, r̃2k‖) + σs(‖d2k, . . . , d2k+1‖)

where x̃2k = x̃t2k and r̃2k = r̃t2k and q is obtained by summing qx and qr along the closed-loop trajectories

q(‖x̃2k, r̃2k‖)=

t2k+1∑
t=t2k

q1
x(‖x̃t‖)+

t2k+2∑
t=t2k+1

q2
x(‖x̃t‖)+q2

r (‖r̃t‖).

where q is a class-K∞ function of the states (x̃2k, r̃2k) at the 2k switching instance t2k. Likewise, the
summation

σs =

t2k+2∑
t=t2k

σ(‖dt‖)

is a class-K function of the dither dt between times t2k and t2k+2. Thus, by (29) and Proposition 2.3 in [23],
there exists β ∈ K∞ and γ ∈ K such that∥∥x̃2k, r̃2k

∥∥ ≤ β (∥∥x̃0, r̃0

∥∥|, 2k)+ γ(δ)

Therefore, the state (x, r) of the closed-loop system (1) and (3)-(5) converges to a neighborhood of the
optimal equilibrium (2) as the switching index k goes to infinity k → ∞. Thus, we need to prove that
switching index goes to infinity k → ∞ as time goes to infinity t → ∞ i.e. we do not become trapped in
the exploration mode.

According to Lemma 2, if k 6→ ∞ then t 6→ ∞ since t ≤ ∑sup k<∞
k=0 Tk < ∞ where Tk < ∞. Thus, by

the contrapositive k →∞ as t→∞. Therefore, the optimal equilibrium (2) of the closed-loop system (1)
and (3)-(5) is iss.

4 Numerical Examples

In this section, we demonstrate our esc controller through a series of numerical examples.

4.1 Illustrative Example

In this section, we demonstrate our esc controller for a simple linear system with an unknown quadratic
cost function. The purpose of this example is to illustrate our esc controller (3)-(5) using classical control
theory.

The plant (1) is an under-damped second-order linear system

ÿ + 2ζωnẏ + ω2
ny = ω2

nu (30)
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where ζ = 0.1 and ωn = 1.0. The cost J is a quadratic

J (y) = 1
2H(y − y?)2 (31)

where y? is the optimal and H ∈ R is the Hessian.

Σ −H Σ
αtK

1 − z
Σ Plant

y?t θt θ̂t rt ut yt

θ̃t dt

Figure 1: The feedback-loop created by descending the gradient H(y − y?) of the quadratic cost func-
tion (31).

First, we consider the ideal case where the gradient ∇J (y) = H(y − y?) has been perfectly estimated
θ̃t = 0. Since the gradient ∇J (y) = H(y − y?) of the quadratic cost (31) is a linear function of the
output y, we obtain the feedback-loop shown in Figure 1. Even though the gradient is perfectly estimated
θ̃t = 0 and the plant (30) is open-loop stable, the integral-action of the esc controller can destabilize the
closed-loop system, as shown by the root-locus in Figure 2a. In particular, the Newton-step controller gain
αtK = H−1, which provides one-step convergence to the optimal for static optimization, destabilizes this
dynamic optimization, as shown by root-locus in Figure 2a. In contrast, the proposed controller gain (6)
provides closed-loop stability for perfect gradient estimates.
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0.9300

(a) Cost
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Figure 2: Root-locus plots demonstrating that the integral-action of the esc controller (3) can destabilize
the linear plant (30). Note that these are discrete-time root-locus plots.
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Unfortunately, our instability issues re-emerge when we consider imperfect gradient estimates θ̂t 6= ∇Jt.
In particular, the worst-case gradient estimation error

θ̃?t =
1−

¯
α

¯
α ∇Jt ∈ Θ̃t = Θ̃max

t

amplifies the feedback caused by the gradient

θ̂t = ∇Jt + θ̃t =
1

¯
α
∇Jt =

H

¯
α

(y − y?)

where
¯
α� 1. This increases the loop-gain, leading to instability, as shown by the root-locus in Figure 2b.

Fortunately, our adaptive step-size (5) will compensate α?t =
¯
α for the expansion 1

¯
α of the loop-gain to

restore stability, as shown by the root-locus in Figure 2b.

(a) Cost (b) Step-Size

(c) Output (d) Error

Figure 3: Closed-loop (30) and (3)-(5) simulation results. Shaded regions indicate when the esc controller
is in the exploration mode.

Finally, we demonstrate our esc controller for the plant (30) and cost (31). The bls estimator (4)
has a batch horizon N = 5 and bounds

¯
H = 0 and H̄ = 10 on the actual gradient H = 5. A dither

dt = 0.001 sin(t) was used to provide persistency of excitation.
Simulations for the closed-loop system (30) and (3)-(5) are shown in Figure 3. As shown in Figure 3c,

the plant output converges yt → y? to the optimal y? = 10. Since the plant (30) is under-damped,
the output yt oscillates and the measured cost J (yt) converges non-monotonically to the optimal value.
However, the set-point cost J (rt) is monotonically decreasing as shown in Figure 3a. Figure 3b shows the
step-size (5). Initially, the step-size (5) is large since the gradient ∇J = H(y − y?) is large far from the
optimal |y−y?| � 0. Thus, an accurate gradient estimate is not required to confidently descend. When the
gradient becomes small, the controller often enters the exploration mode, indicated by the shaded regions
in Figure 3. As shown in Figure 3d, the periods when the esc controller is in the exploration mode αt = 0
correspond to periods when the plant is far from equilibrium ‖∆yt‖/‖∇J ‖ � 0.

4.2 Practical Example: Drone Leak Inspection

In this section, we apply our esc controller (3)-(5) to the problem of an autonomous drone searching for
the source of an airborne pollutant leak.

The plant dynamics (1) model the closed-loop planar motion of a quadrotor drone. We use a standard
model of the quadrotor dynamics e.g. [25]. For simplicity, we only consider the movement of the drone
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in the plane i.e. the vertical position and orientation dynamics are ignored. The quadrotor is equip with
gps that measures its planar location y ∈ R2 and an integrated controller that moves the drone to a
commanded location yt → r ∈ R2. Thus, the plant satisfies Assumption 1.

The objective of the esc controller (3)-(5) is to move the drone to the source of a pollutant leak. The
cost function J (y) optimized by the esc controller (3) is the location y dependent measured concentration
of pollutant in the air. Since our esc controller minimize the cost function, we will consider the nega-
tive pollutant concentration. The negative pollutant concentration is modeled using a Gaussian plume
model [26]

J (y) = − 1√
2πσ

exp
(
− 1

2(y − y?)>Σ†(y − y?)
)

(32a)

where y? = [200, 100]> meters is the planar location of the leak and Σ†(y− y?) is the pseudo-inverse of the
covariance of pollutant concentration [26]

Σ(y − y?) =

{
σ2(I − dd>) if d>(y − y?) ≥ 0

σ2
0I otherwise

(32b)

where v = 10 meters/second is the wind velocity (about 20 knots) and d = [cos(−π/4), sin(−π/4)]> is the
wind direction. The cost (32) says that the pollutant concentration has a Gaussian distribution in the
cross-wind direction (I − dd>)(y − y?). Note that the matrix (I − dd>) = (I − dd>)2 is idempotent. The
covariance σ = σ0 + d>(y − y?)/2 of this Gaussian grows linearly with the distance d>(y − y?) along the
wind-direction d from the source y?. In the anti-wind direction d>(y − y?) < 0, the covariance is constant
Σ = σ2

0I. Note that although the cost (32) is not convex, it locally satisfy Assumption 2.
Our discrete-time esc controller (3)-(5) is executed at a rate of 20 Hertz. The bls estimator (4)

estimates the gradient ∇J from the past 1 second of data, thus N = 20. The estimator uses the bounds

¯
H = −0.3I and H̄ = 0.15I on the curvature ∇2J , which is approximately 5× the actual curvature bounds.
The controller gain (6) is K = I. The dither dt ∼ N (0, 1) is a normal distributed random variable with
covariance of 1 meter.

Closed-loop simulation results are shown in Figures 4 and 5. Figure 4 shows the pollutant concentration
and the path of the drone. The drone starts outside of the pollutant plume and moves perpendicular to
the wind-direction into the plume stream. Once the drone enters the pollutant stream, is proceed against
the wind direction to the source of the pollutant.

Figure 5a shows the location set-point rt and concentration J (yt) measured at yt as a function of time
t. The drone converges rt → r? to the location r? = y? of the pollutant leak as shown by the dashed black
lines in Figure 5a. Likewise, the measured pollutant concentration J (yt) converges to the maximum. The
step-size (5) is shown in Figure 5b. Since the step-size (5) is zero αt = 0 approximately 90% of the time,
we only plot it for the time-instance t when it is non-zero αt 6= 0. Since the esc controller runs at 20 Hertz,
the step-size is non-zero αt 6= 0 on average 12 times per minute, meaning that the estimated location rt of
the leak source is persistently and frequently updated.

4.3 Benchmark Examples

In this section, we compare our esc controller with existing methods using three benchmark examples from
the literature.
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Figure 4: Pollutant concentration and drone path. Red indicates high concentration while blue indicates
low concentration. Pollutant is blown by the wind to form a plume. The esc controller drives the drone
into the plume and follows the plume of the source of the leak.
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Figure 5: (a) Reference location rt for the drone and the resulting pollutant concentration J (yt) over the
15 minute simulation. (b) Step-size αt used by the esc controller and the norms of the tracking error
et = rt − yt and drone transients ∆yt = yt − yt−1.

4.3.1 1-D Benchmark

In this section, we demonstrate our esc controller for the 1 state benchmark example from [16]. The plant
dynamics are

ẋ = −x+ u (33a)

y = x (33b)

The plant (33) is a stable linear system and therefore satisfies Assumption 1. The unknown cost function
is

J (y) = 3− 1√
1 + (y − 2)2

. (34)

Although the cost (34) is non-convex, it locally satisfies Assumption 2. Our esc controller (3) used the
gain K = 0.5 and a sample rate of 10 Hertz. The bls estimator (4) had an estimation horizon of N = 5
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and bounds
¯
H = −2 and H̄ = 2 on the curvature ∇2J of the cost. The dither dt = 0.001 sin(t) was used

to provide persistency of excitation.
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Figure 6: A comparison of the proposed esc controller with an esc controller from literature.

Simulation results are shown in Figure 6. Figure 6a compares the cost J (yt) profiles of our esc
controller with the esc controller from [16]. This figure shows that our esc controller converges to the
optimal in roughly half the time as the existing controller.

4.3.2 2-D Benchmark

In this section, we demonstrate our esc controller for the 2 state benchmark example from [20]. The plant
dynamics are

ẋ = R(x)u+ w (35a)

y = x (35b)

where R(x) ∈ R2×2 is a planar rotation matrix with angle x1 + x2 and w(t) = [sin(2t), cos(t)] is a periodic
disturbance. This nonlinear plant (35) does not satisfy Assumption 1 since it is not iss. Indeed, it is only
marginally stable for u = w = 0 and has no equilibrium states ẋ = 0 for u 6= 0 or w 6= 0. Thus, we
pre-stabilize the system using the controller

u = −R(x)>
(
F (x− r)− w

)
.

where the matrix F = −10I has Hurwitz eigenvalues so that the output will track y → r the reference
r = r̄. To make the problem more challenging and preserve the nonlinearity, we simulate the plant (35)
in continuous-time with the controller updated in discrete-time, i.e., we apply a zero-order hold for the
control input u(t) = u(tk) for t ∈ [tk, tk+1) which is computed for states x(tk) and disturbances w(tk)
sampled as discrete-times tk where ∆t = 50 milliseconds.

The unknown cost function is

J (y) =
∥∥y − 1

∥∥2
+ 2018. (36)

This strictly convex quadratic cost satisfies our Assumption 2.
The esc controller (3) used gain K = 0.5I and a sample-rate of 20 Hertz. The bls estimator (4) had

an estimation horizon of N = 5 and bounds
¯
H = 0I and H̄ = 10I on the curvature ∇2J of the cost.

No dither was used since the periodic disturbance w(t) already provide persistency of excitation. Between
sample periods ∆t = 0.05, the nonlinear plant (35) was simulated using MATLAB’s ode45 solver.

Simulation results are shown in Figure 7. Figure 7a shows that our esc controller has comparable
performance to the existing controller from [20]. This benchmark example demonstrates how the tracking
errors et = rt − yt affect our adaptive step-size (5). Due to the rotation matrix in the dynamics (35), the
plant takes looping paths between the reference set-points rt. This produces highly exciting, but highly
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Figure 7: A comparison of the proposed esc controller with an existing esc controller from literature.

non-local ‖rt−yt‖ � 0 data {Jt, yt}, which leads to poor estimates of the gradient ∇J (rt) at the set-point
rt. As a result, the step-size (5) is almost always zero αt = 0, allowing the plant (35) to settle yt ≈ rt near
the set-point rt before trusting the estimated gradient. Indeed, the step-size is non-zero αt 6= 0 at only 9
of the 501 simulated time instances, as shown in Figure 7b. Nonetheless, our esc controller converged to
the optimal with a comparable convergence rate to the specialized esc controller from [20].

4.3.3 3-D Benchmark

In this section, we demonstrate our esc controller for the 3 state benchmark example from [13]. The plant
dynamics are

ẋ1 = −x1 + u2
2 (37a)

ẋ2 = −x2 + u1 (37b)

ẋ3 = −x3 + u2x2. (37c)

Although the plant (1) does not satisfy our asymptotic tracking assumption, this can be rectified by
inverting the steady-state map of the plant using the transformation

u1 = r1/(1 +
√
r2) (38a)

u2 =
√
r2. (38b)

The plant (37) has an implicit constraint r2 ≥ 0, which we enforce by setting r2 = 0 if r2 < 0. This
plant (37) is only locally Lipschitz continuous. The unknown cost function is

J (y) = (x2 + x3)2 + 2(x1 + x2 − u1) = y2
1 + 2y2 (39)

where y1 = x2 + x3 and y2 = x1 + x2 − u1 are the measured outputs. Note that the cost (39) is convex,
but not strictly convex. Nonetheless, it satisfies Assumption 2.

For the esc controller (3) design, the plant (37) was converted to discrete-time using the forward Euler
method with a sample-time of ∆t = 0.25. The gain G and Lyapunov matrix P were computed using
parametric linear matrix inequalities [27] with u2 ∈ [−5, 5] as the parameter. The bls estimator (4) had
an estimation horizon of N = 5 and bounds

¯
H = 0I and H̄ = 10I on the curvature ∇2J of the cost. The

dither dt = 0.001[sin(t), sin(2t)]> was used to provide persistency of excitation.
Simulation results are shown in Figure 8. Between sample periods ∆t = 0.25, the nonlinear plant (37)

was simulated using MATLAB’s ode45 solver. Figure 8a shows that our esc controller converged to
the optimal equilibrium in approximately 30 seconds, which is approximate 40× faster than the existing
controller. Simulation results for the existing controller are not shown due to the disparity in time-scales.
Note that the cost J (yt) can temporarily drop below the optimal equilibrium cost since y2 = x1 +x2−u1 =
x1 − ẋ2 depends on the state velocity ẋ2 which is zero ẋ2 = 0 at equilibrium.
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Figure 8: A comparison of the proposed esc controller with an existing esc controller from literature.

Again, the step-size (5) is almost always zero αt as shown in Figure 7b. The step-size is non-zero
αt 6= 0 for only 4 of the simulated 120 time instances. In contrast to the previous benchmark example, in
this example the mostly zero step-size αt = 0 is due to the state velocity ẋ2 appearing in the cost. The
zero step-size αt = 0 allows the plant (37) to settle near an equilibrium yt ≈ yt−1 before exploiting the
estimated gradient.

5 Conclusions

This paper presented an esc controller (3) with an adaptive step-size (5) that adjusts the aggressiveness
of the controller based on the quality of the gradient estimate (4). We proved that the bls estimator (4)
with our novel weighting (4c) produced bounded (18) gradient estimation errors. The adaptive step-
size (5) maximizes the decrease of the Lyapunov function (7) for the worst-case estimation error (18) in
the exploitation mode. In the exploration mode, the controller allows the plant to settle improving the
gradient estimate. Since the controller (3) interminably re-enters the exploitation mode, we were able to
prove that the optimal equilibrium (2) is iss for the closed-loop system (1) and (3).
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