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Abstract—We introduce a novel framework to track multiple
objects in overhead camera videos for airport checkpoint security
scenarios where targets correspond to passengers and their
baggage items. We propose a Self-Supervised Learning (SSL)
technique to provide the model information about instance
segmentation uncertainty from overhead images. Our SSL ap-
proach improves object detection by employing a test-time data
augmentation and a regression-based, rotation-invariant pseudo-
label refinement technique. Our pseudo-label generation method
provides multiple geometrically-transformed images as inputs to
a Convolutional Neural Network (CNN), regresses the augmented
detections generated by the network to reduce localization errors,
and then clusters them using the mean-shift algorithm. The self-
supervised detector model is used in a single-camera tracking
algorithm to generate temporal identifiers for the targets. Our
method also incorporates a multi-view trajectory association
mechanism to maintain consistent temporal identifiers as pas-
sengers travel across camera views. An evaluation of detection,
tracking, and association performances on videos obtained from
multiple overhead cameras in a realistic airport checkpoint
environment demonstrates the effectiveness of the proposed
approach. Our results show that self-supervision improves object
detection accuracy by up to 42% without increasing the inference
time of the model. Our multi-camera association method achieves
up to 89% multi-object tracking accuracy with an average
computation time of less than 15 ms.

Index Terms—Self-supervised Learning, Detection, Tracking,
Tracklet Association, Multi-camera Tracking, Surveillance.

I. INTRODUCTION

AUTOMATED video surveillance requires the detection,
tracking, and recognition of objects of interest in a scene.

Accurate and precise surveillance in crowded scenes is one of
the most challenging computer vision applications. To address
the problem of visual surveillance in the domain of airport
checkpoint security, the Department of Homeland Security
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(DHS) ALERT (Awareness and Localization of Explosives-
Related Threats) center of excellence at Northeastern Univer-
sity initiated the CLASP (Correlating Luggage and Specific
Passengers) project. This initiative aims to help the Transporta-
tion Security Administration (TSA) detect security incidents,
such as theft of items and abandoned bags.

Current approaches for detecting and tracking passengers
and luggage in airport checkpoints divide the image area
within each camera’s field of view into regions of inter-
est where certain passenger behaviors are expected (e.g.,
passengers divest their items near the roller conveyor) [1],
[2]. While these approaches are effective within individual
regions of interest, they cannot detect and track passengers and
their belongings throughout an entire checkpoint. Moreover,
most recent detection algorithms [3]–[6] are unable to detect
multiple objects in realistic overhead camera scenarios due
to the unavailability of large-scale datasets obtained using
unconventional camera perspectives.

Fine-tuning pre-trained models using human annotated la-
bels is a common approach in computer vision methods.
However, this strategy hinders the applicability of state-of-
the-art algorithms in scenarios where images are obtained
from perspectives that are not commonly observed in existing
publicly available datasets. The dramatic variability of video
surveillance systems used in airport checkpoints would require
deployment-specific fine-tuning of models, and in some sce-
narios, even camera-specific adjustments. To overcome this
challenge, we leverage the fact that models pre-trained on
large-scale datasets can build upon their initial predictions to
adapt to new scenarios using SSL strategies. Our proposed
SSL framework obviates the tedious and expensive human
annotation procedure by automatically generating pseudo-
labels to update the model.

To generate pseudo-labels, we cluster multiple detections
obtained from geometrically transformed images using the
mean-shift algorithm [7]. Each cluster corresponds to the
detection of one object observed at different orientations on
several augmented input images. The cluster modes with
the corresponding bounding boxes, segmentation masks, and
confidence scores are used to update the model. Thus, our
model learns from rotation-invariant pseudo-labels and can
be integrated with a tracking-by-detection algorithm [8] to
generate accurate target tracklets from overhead perspectives.

Our SSL algorithm is inspired by the methods described in
[9]–[13]. However, unlike [9], instead of resorting to multi-task
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Fig. 1. Proposed SSL framework. The augmented proposal generation stage uses multiple rotated versions of the unlabeled input images to generate augmented
detections from an instance segmentation model and then remaps these predictions into their original coordinates. The clustering algorithm leverages the model’s
regression ability to reduce localization errors using the augmented predictions as region proposals. The regressed cluster modes are then used to generate
augmented pseudo-labels to update the model.

strategies to guide the learning process, we employ a multi-
inference approach similar in spirit to the self-consistency
method based on equivariant transformations proposed in
[10]. Our method differs from [10] in that, rather than using
the uncertainties from multiple model predictions to select
image patches for additional training, it aggregates multiple
inferences into accurate pseudo-labels that are used to refine
the model. Our method departs significantly from unsupervised
model adaptation [11] and knowledge distillation approaches
[14] in that we only use automatically generated labels and
avoid human annotations altogether during model update.

We also propose a Multi-Camera Tracklet Association
(MCTA) algorithm to maintain the temporal identifiers of pas-
sengers across cameras. We leverage the fact that our system
is comprised of overhead cameras with partially overlapping
fields of view to employ a simple but effective geometry-
based trajectory association method. Our algorithm compares
the projected centroids of target detections on neighboring
cameras using the homographies between their image planes.
We track passengers and bags across multiple views and
generate global tracks by combining pairwise associations
from the partially overlapping camera views.

We evaluate the detection and tracking performance of our
algorithms on videos from a simulated airport checkpoint and
demonstrate that our approach performs on par with a model
trained in an entirely supervised manner and substantially
outperforms the pre-trained detection model. Our multi-camera
evaluation shows that our MCTA method effectively handles
the problem of passenger identity hand-off across cameras.

In summary, the key contributions of this work are:
• A novel self-supervised object detection algorithm that

generates pseudo-labels based on instance segmentation
uncertainties.

• A new data augmentation and regression-based clustering
mechanism that substantially improves the quality of
pseudo-labels for self-supervised training.

• A new recursive tracklet association algorithm to address
the identity hand-off issue during transitions between

crowded overhead camera views.
• We provide an extensive evaluation of our methods on

a dataset collected using multiple overhead cameras in a
realistic airport checkpoint scenario.

• Our SSL models and the corresponding source code are
available at https://github.com/siddiquemu/SCT MCTA.

To our knowledge, this is the first approach to solve the
overhead multi-view association problem in a network of
cameras with partially overlapping fields of view using a self-
supervised detection strategy.

II. RELATED WORK

Multiple target tracking using camera networks is an active
research topic with several potential applications [15]–[18].
Most works on camera networks focus on the multi-camera
aspect of the problem and do not consider the challenges
associated with camera perspectives. Although generic object
tracking algorithms could be used in surveillance systems (e.g.
[19]–[21]), when object categories are known, trackers based
on specialized detectors are more accurate and less prone
to model drift [22], [23]. This observation has led to the
development of a variety of multiple target tracking algorithms
that specialize in tracking humans [24]–[34] or vehicles [35]–
[38]. However, in many scenarios, it is desirable to track
additional objects of known categories. In these cases, more
flexible detection algorithms are needed, but the effectiveness
of modern object detection models is highly dependent upon
the characteristics of the training datasets [3]–[5].

Previous works have used SSL techniques to improve visual
feature learning [39]–[41], reducing dependency on human an-
notations for training backbone models. However, transferring
knowledge from pre-trained backbones to downstream tasks is
a far less explored topic. Unlike our proposed approach, SSL
techniques for detection [9], [11] and semantic segmentation
[10] rely on annotations to initialize the model before iterative
learning can take place.

Data augmentation is an effective mechanism to improve
the robustness of CNNs in scenarios not available during

https://github.com/siddiquemu/SCT_MCTA
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Fig. 2. Visualization of our data augmentation approach. The first and second columns show the segmentation masks and detections at θ = 0◦ and θ = 186◦,
respectively. The third column shows the remapped detections in the set SC on the original image (using Alg. 1) with the best detections (blue) from Alg. 2.

training [14], [42], but little attention has been given so far
to approaches for combining the response of the network
to augmented samples. In multi-target tracking applications,
multiple detections mapped to a common coordinate system
can be interpreted as the probability of occupancy of the area
observed by the cameras [43]. Although it is possible to use
clustering techniques to map the modes of this distribution to
unique target detections, bounding box alignment errors pose
a challenge to the generation of high-quality pseudo-labels for
SSL. Hence, we propose a test-time regression technique that
leverages instance segmentation information for pseudo-label
generation.

A systematic solution to the data association problem
is another important component of multi-target tracking-by-
detection methods [44]–[57]. Single-camera trackers [8], [58]
use detectors trained on multiple datasets [59] to generate
bounding boxes and form track hypotheses for all the targets
in each frame. In this work, we employ a state-of-the-art
single-camera tracker [8] using a detector based on our self-
supervised models, which achieves unprecedented tracking
performance in previously unseen airport surveillance videos.

Finally, multi-camera tracking systems require sophisticated
trajectory association mechanisms to maintain target identities
across cameras [60]–[62]. Even within a single camera, occlu-
sions must be handled using similar strategies [63], [64]. Most
association approaches compute trajectory similarity scores
based on a combination of appearance and motion features
[60]–[64]. These features are learned using a large number of

continuous trajectories, which are difficult to obtain with typi-
cal ceiling-height overhead cameras due to their limited fields
of view. Some methods use camera calibration information to
project tracks onto a common plane and perform association
using occlusion modeling [32] or re-identification techniques
[33]–[37]. Dependency on camera calibration further limits
the applicability of these methods to security systems since
calibrating multiple cameras with partially overlapping fields
of view is a complex task [65]–[68].

III. PROPOSED MODEL

Our system consists of two main components: i) a detection
algorithm trained using SSL and ii) a multi-camera tracking-
by-detection mechanism. A single-camera tracking algorithm
uses SSL detections to generate tracklets for passengers and
baggage items. We then employ a novel multi-camera target
trajectory association algorithm to uniquely identify passen-
gers throughout the checkpoint.

A. Self-Supervised Learning

We use the PANet model [5] with a ResNet-50 backbone
[69], [70] as the baseline detector. Since the categories of
interest are persons and their belongings, we use a model
pre-trained on the COCO dataset [71], which includes object
classes related to these categories (i.e., person, handbag, back-
pack, and suitcase). Because the COCO dataset consists mostly
of images captured at roughly eye-level, detectors trained using
that dataset do not perform well on overhead perspectives.
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To address this limitation, our SSL framework updates the
baseline model using rotation-invariant pseudo-labels. As Fig.
1 shows, our SSL framework consists of three main steps:
i) augmented region proposals generation, ii) pseudo-label
generation and refinement through cluster regression, and iii)
iterative model update.

Algorithm 1 Augmented Proposals Generation
1: function AUGMENTEDPROPOSALS(I(t), r)
2: SC(t) = ∅, Θ = {i ·∆θ}ri=1

3: for θi ∈ Θ do
4: Ψθi(t) = Rθi(I(t))
5: DC

θi
(t) = DPANet(Ψθi(t))

6: SC
θi
(t) = R−θi(D

C
θi
(t))

7: SC(t) = SC(t) ∪ SC
θi
(t)

8: end for
9: return SC(t)

10: end function

1) Augmented Proposals Generation: Our data augmenta-
tion method, summarized in Alg. 1, uses the PANet model
to detect and segment multiple instances of objects of in-
terest. During the first iteration of SSL training, we retain
only the outputs of the pre-trained model for the person,
handbag, backpack, and suitcase classes. The person class
corresponds to passengers and detections of handbag, back-
pack, and suitcase items are treated as baggage items. In
subsequent iterations of SSL training, we modify the model
to generate only the object categories C ∈ {pax, bag}, where
pax corresponds to passengers and bag to baggage items. Let
DC(t) be the set of detections on image I(t) at time t. That
is, DC(t) = {d1, . . . , dnC

t
}, where dj ∈ R5 is the detection of

the j-th object and nC
t is the number of objects of class C in

frame I(t). Each detection dj consists of the coordinates and
dimensions of the target’s bounding box, bCj ∈ R4, as well as
its detection confidence score sj ∈ [0, 1].

We noticed that the detector performs better when objects
are observed at more commonly occurring angles (e.g., up-
right). Therefore, to reduce the negative effect of the overhead
perspective, we generate multiple rotated copies of the input
image Ψθi(t) = Rθi(I(t)) (line 4 in Alg. 1), where Rθi(·) is
the rotation operator, which rotates the image by an angle θi.
The angle of rotation θi varies between 0 and 2π at intervals
of ∆θ =

⌊
2π
r

⌋
, i.e., θi = ∆θ, . . . , 2π, where r determines

without regression with regression regressed pseudo-labels

Fig. 3. Regression on test-time augmented bounding boxes (middle) and
cluster modes (right) to generate pseudo-labels for SSL training.

Fig. 4. Probability of occupancy of passengers at one frame of our evaluation
datasets (Fig. 2).

the rotation resolution. At each rotation step, we compute
the detection set DC

θi
(t) for both classes C ∈ {pax, bag}

using a single call to the function DPANet(·) (line 5). We
then remap the resulting detections to the coordinate frame
of the original image by applying the inverse rotation to each
of the detections in DC

θi
(t) (line 6). To avoid localization

errors introduced by rotating axis-aligned bounding boxes, we
apply the rotation operation to the binary segmentation masks
produced by PANet and compute the corresponding bounding
boxes using the rotated masks. At the end of Alg. 1, the set
SC(t) = ∪r

i=1S
C
θi
(t) contains the detections at all the rotation

angles θi. Fig. 2 illustrates the detections at two rotation
angles and the result of mapping detections at 20 different
orientations back to the original coordinate system.

Algorithm 2 Cluster Regression
1: function CLUSTERREGRESSION(SC(t))
2: DC(t) = ∅
3: Refine the augmented detections using SC(t) as region

proposals for the DPANet model
4: OC(t) = mean− shift(SC(t))
5: for Q ∈ OC(t) do
6: Compute the cluster score η̄Q using Eq. 2
7: if η̄Q ≥ λ then
8: d = argmax

di∈Q
(si)

9: DC(t) = DC(t) ∪ {d}
10: end if
11: end for
12: return DC(t)
13: end function

2) Cluster Regression: Alg. 2 summarizes our approach to
combine the set of augmented detections SC(t) into a set
of refined target detections DC(t). To reduce discrepancies
among bounding boxes caused by segmentation errors, we
leverage the pre-trained model to regress the set of augmented
detections SC(t). As shown in Fig. 1, our cluster regression
method uses the backbone features [72] with the augmented
detections SC(t) as region proposals (instead of proposals
generated using the region proposal network [73]) to the
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Algorithm 3 Pseudo-Label Generation
1: function PSEUDOLABELS(DC(t), r)
2: PC(t) = ∅, Θ = {i ·∆θ}ri=1

3: for dj ∈ DC(t) do
4: for θi ∈ Θ do
5: Generate the augmented region proposals

di,j = Rθi(dj)
6: end for
7: Generate the pseudo-label (b̂i, m̂i, αi) using the

region proposals di,j

8: PC(t) = PC(t) ∪
{
(b̂i, m̂i, αi)

}
9: end for

10: return PC(t)
11: end function

downstream box and mask heads. To avoid disregarding low-
confidence detections that might correspond to relevant region
proposals, we do not apply non-maximum suppression to
the model predictions. Fig. 3 shows that cluster regression
significantly increases the accuracy of the bounding boxes
generated using the augmented input, and the corresponding
segmentation masks are consequently also more accurate.

a) Cluster Mode Detection: As Fig. 4 illustrates, detec-
tions and their corresponding confidence scores form a non-
parametric distribution of the image’s occupancy probability.
We use the mean-shift algorithm [43] to identify the modes
of that distribution and cluster detections corresponding to
common targets. We cluster detections according to their
bounding boxes bj using a multivariate Gaussian kernel [43]
with bandwidth hC . We use the sample variances of the
object bounding boxes at each frame to determine the kernel
bandwidth, i.e.,

hC = diag

 nC
t∑

j=1

(bCj − b̄Cj )(b
C
j − b̄Cj )

T

 , (1)

where b̄Cj is the sample mean of bCj and diag (·) is the diagonal
of the covariance matrix. The correlations among the elements
of bj are negligible and can be safely ignored. Each call to
the mean-shift algorithm (line 4 in Alg. 2) produces a set of
clusters OC(t) whose elements are sets of detections assigned
to the same target. We consider the detections of passengers
and baggage items separately. Hence, two separate invocations
of the mean-shift procedure are required to produce the sets
Opax(t) and Obag(t). The confidence score η̄Q of cluster
Q ∈ OC(t) is defined as the ratio between the total score
of detections within that cluster and the number of rotation
angles considered in the augmentation process, i.e.,

η̄Q =
1

r

∑
dj∈Q

sj . (2)

Lines 6-10 of Alg. 2 show that we discard clusters with scores
lower than a threshold λ to remove false positive detections.

3) Self-Supervised Model Update: Alg. 3 shows the proce-
dure to generate the pseudo-labels used to update the model.
Since our goal is to train the model using labels generated from
multiple perspectives, we rotate both the original image and

the corresponding predicted modes to generate pseudo-label
proposals at each orientation. That is, for each mode dj ∈
DC(t), we generate the pseudo-label mask m̂j by using the
rotated cluster modes di,j = Rθi(dj), i = 1, . . . , r as region
proposals for the segmentation head, using the same approach
described in Section III-A2. We then find the bounding box
b̂j corresponding to m̂j . The confidence α̂j of the resulting
pseudo-label is given by its corresponding cluster score. The
set of pseudo-labels PC(t) =

{
(b̂j , m̂j , α̂j) | dj ∈ DC(t)

}
thus contains accurate annotations even for targets that the
model is unable to detect at certain orientations.

a) Rotation-Invariant Loss: To update the model using
rotation-invariant pseudo-labels in a robust and efficient man-
ner, we propose a novel uncertainty-aware, multi-task loss
function given by

L =
∑
ĉ∈C

∑
(b̂j ,m̂j ,α̂j)∈PC(t)

α̂j(Lc(ĉ, c̃) + Lb(b̂j , b̃j)

+ Lm(m̂j , m̃j)) + Lrpn, (3)

where c̃, b̃j , and m̃j are the object class, bounding box,
and segmentation mask predicted by the network; Lc, Lb, and
Lm are the classification and bounding box regression losses
defined in [73] and the pixel-wise binary cross entropy mask
loss described in [3]; and Lrpn is the region proposal network
loss from [73]. In Eq. 3, the instance head losses are weighted
by their corresponding cluster scores. This strategy ensures
that instances with low cluster scores that might correspond to
incorrect pseudo-labels have little impact on the update of the
network parameters. As Alg. 4 indicates, a new set of pseudo-
labels is generated at each SSL iteration using the updated
model from the previous iteration.

Algorithm 4 Self-Supervised Detection Model Update
Input: Image sequence I(t), t = 1, . . . , T
Output: Updated detection model DPANet

1: repeat
2: for t = 1, . . . , T do
3: SC(t) = AUGMENTEDPROPOSALS(I(t))
4: DC(t) = CLUSTERREGRESSION(SC(t))
5: PC(t) = PSEUDOLABELS(DC(t))
6: end for
7: Fine-tune the DPANet model using the pseudo-labels{

PC(t)
}T

t=1
according to the loss function in Eq. 3

8: until Convergence criterion is met

B. Multi-View Passenger and Baggage Tracking

Our multi-camera tracking framework comprises two main
steps: i) a single-camera, multiple-target tracking-by-detection
algorithm, and ii) a multi-camera trajectory association mech-
anism. Our single-camera tracker uses the detections generated
by our SSL framework and a Single-Camera Trajectory Asso-
ciation (SCA) method to keep track of the identities of individ-
ual passengers and baggage items within the field of view of
each camera. Our MCTA strategy then projects the trajectories
of passengers observed in cameras with overlapping fields of
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view onto a common image plane. These trajectories are then
compared using the Fréchet distance and associated using a
recursive graph-based mechanism.

1) Single-camera Tracking: We use the Tracktor algorithm
[8] as our baseline single-camera tracker. The output of the
algorithm at each image frame is a set T C(t) = {ω1, . . . , ωnC

t
},

where ωj = [bj , lj ], with lj corresponding to a unique identi-
fier label for each passenger and baggage item in the frame.
These labels remain the same throughout the video sequence
and hence perform temporal association among detections.
The tracklet for the k-th object is thus given by the set of
detections over the entire video sequence whose temporal
identifier is lj = k, i.e., τk = ∪T

t=1

{
ωj | ωj ∈ T C(t), lj = k

}
.

Temporary occlusions between passengers may lead to the
fragmentation of trajectories within the field of view of a
camera. Tracktor’s simple re-identification strategy is unable
to accommodate the longer occlusions, appearance variations,
and somewhat erratic motion patterns commonly observed in
airport checkpoints. Thus, we incorporate an SCA mechanism
to resolve this issue. Our method associates new tracklets with
recently terminated tracklets such that the Euclidean distance
between the centroids of the last detection of the previous
tracklet and the first detection of the new tracklet is minimized.
That is, let τm and τn be two distinct tracklets, and bt

i

m,
bt

f

n be the first detection of τm and the last detection of τn,
respectively. Defining δe = ||btim − bt

f

n ||2, the association cost
between τm and τn is given by

Csc(τm, τn) =

{
δe if 0 < ti − tf ⩽ tth, δe < δmax

∞ otherwise,
(4)

where tth, δmax are the maximum temporal offset and max-
imum distance to consider two tracklets for association. We
then compute the optimal tracklet assignment using the Hun-
garian algorithm based on the costs Csc(τm, τn).

2) Multi-Camera Tracklet Association: Since passengers
may temporarily leave and later re-enter the fields of view
of individual cameras, their corresponding trajectories may
be fragmented into multiple segments. To associate tracklets
across camera views, we consider the fact that two tracklets
corresponding to the same target include temporally over-
lapping detections. Let the camera whose partial tracklets
we wish to complete be our primary camera, and let the
auxiliary camera be the one whose tracklets will be used to
complement the tracklets observed by the primary camera.
Further, let Tp and Ta be the sets of tracklets in the primary
and auxiliary cameras, respectively. As Alg. 5 shows, we use
the homography Hp,a to project detections from the auxiliary
camera onto the primary camera. However, due to projective
distortions, the corresponding bounding boxes in the two
cameras may not necessarily overlap. Hence, we compute
the optimal association cost using the Fréchet distance [74]
between the centroids of the detections in each tracklet as
follows

Cmc(τa, τp) =

{
f(τ̃p, τ̃a) if τ̃a ̸= ∅, τ̃p ̸= ∅, f < fmax

∞ otherwise,
(5)

Algorithm 5 Multi-Camera Tracklet Association Algorithm
Input: Set of tracklets from the primary camera Tp and the

auxiliary camera Ta, homography Hp,a mapping the aux-
iliary camera image plane to that of the primary camera

Output: Updated set of primary tracklet labels
1: Project the detections of tracklets in Ta onto the image

plane of the primary camera using Hp,a

2: Compute the association costs Cmc(τa, τp) ∀τp ∈ Tp,
∀τa ∈ Ta according to Eq. 5

3: Initialize the graph Gmc = (V,E), E = ∅, V = {τ |τ ∈
Tp ∪ Ta}

4: while minτp∈Tp,τa∈Ta
(Cmc(τa, τp)) < ∞ do

5: Associate tracklet segments using the Hungarian algo-
rithm based on the costs Cmc

6: Update the costs of the tracklets τ ∈ Ta and τ ′ ∈ Tp
for which τ ∩ τa /∈ ∅ and τ ′ ∩ τp /∈ ∅ to Cmc(τ, τp) =
Cmc(τa, τ

′) = ∞
7: E = E ∪ (τa, τp)
8: end while
9: for each τp ∈ Tp do

10: Np = DFS(τp,Gmc)
11: Update the labels of tracklets in Np using Eq. 6
12: E = E − {(τi, τj)|(τi, τj) ∈ Np}
13: end for

where τ̃p and τ̃a are the temporally overlapping segments of
tracklets τp ∈ Tp and τa ∈ Ta, f(τ̃p, τ̃a) is the Fréchet distance
of the centroids of the corresponding detections, and fmax is
the maximum distance threshold that allows tracklet pairs to
be considered for association.

We use the Hungarian algorithm again to determine optimal
tracklet associations according to the costs Cmc(τa, τp). How-
ever, since the trajectory of a passenger that re-enters the field
of view of a camera multiple times consists of a sequence of
tracklets, we iteratively update the association costs until no
further associations are possible. We keep track of indirectly
associated tracklets by constructing the reachability graph
Gmc = (V,E), which contains one edge for each pair of
associated tracklets. We then set the temporal identifiers of
all the tracklets in Tp associated with a common tracklet τa
to the first identifier among them. That is, the temporal label
of a tracklet τ is given by

lτ = min
(τi,τj)∈Np

(lτi), (6)

where lτi is the temporal label of tracklet τi, and Np is the
set of tracklets that can be reached from tracklet τp on Gmc,
which we obtain through Depth-First Search (DFS).

IV. RESULTS AND DISCUSSION

In this section, we first discuss the datasets that we used to
evaluate our algorithms. We then present an assessment of the
proposed SSL approach in terms of passenger and baggage
detection, followed by an evaluation of the single-camera
tracking and multi-view tracklet association algorithms. Our
evaluation is based on the Multi-Object Detection (MOD)
and Tracking (MOT) metrics [59], [75]. Additional results are
presented in the Supplementary Materials.
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Fig. 5. Document checking station and divestiture area at the Kostas Research
Institute simulated airport checkpoint.

A. Datasets

The video datasets used in this work were recorded at the
Kostas Research Institute (KRI) video analytics laboratory at
Northeastern University. As shown in Fig. 5, the laboratory
is configured to emulate a realistic airport checkpoint. It is
equipped with 14 standard IP surveillance cameras (Bosch
NDN-832-V03P) with 1920 × 1080 resolution and focal
lengths between 3 mm and 9 mm. The cameras are installed
approximately three meters from the floor with partially over-
lapping fields of view. Fig. 6 shows a panoramic perspective
of the fields of view of the cameras.

Several actors traverse the checkpoint with baggage items
while performing a variety of activities commonly observed
in real airports.1 These activities range from simple scenarios
in which just a few passengers pass through the checkpoint in
sequential order to crowded scenes in which multiple passen-
gers divest and retrieve their items in a more erratic manner.
We collected two separate video datasets: CLASP1, which
includes relatively simple scenarios, and CLASP2, which is
more complex. Fig. 7 shows sample frames of videos from
the two datasets. Of the 14 cameras in the laboratory, most
passenger interactions take place on cameras 9 and 11. Camera
9 monitors the divestiture area and camera 11 observes the
baggage retrieval area. Passengers place their belongings into
bins or directly on the conveyor belt in the divestiture area.
Then, after passing through the metal detector, they collect
their belongings in the baggage retrieval area.

As Table I shows, a total of 146 passengers carrying 126
baggage items leave and re-enter the fields of view of the
cameras several times. We manually annotate the videos with
uniquely identified axis-aligned bounding boxes. Given the

1The datasets are available upon request at alert-coe@northeastern.edu.
Northeastern University’s Institutional Review Board (IRB) and the Com-
pliance Assurance Program Office (CAPO) within the DHS Science and
Technology Directorate have reviewed the referenced human subjects research
protocol and related research documentation. No compliance issues or con-
cerns related to the use of human subjects in this protocol have been identified
through the review, and the DHS policy requirements for human subjects
research protocol review has been met.

TABLE I
DATASETS USED TO EVALUATE OUR ALGORITHMS. FOR EACH VIDEO

SEQUENCE, THE TABLE SHOWS THE NUMBER OF PASSENGERS, BAGGAGE
ITEMS, VIDEO FRAMES, ANNOTATED FRAMES, AND THE TOTAL NUMBER

OF ANNOTATED BOUNDING BOXES.

Dataset Video Pass- Bag- Video Annotated Bounding
seq. engers gage frames frames/rate [fps] boxes

CLASP1

A 12 10 6,030 288 (1) 995
B 12 10 6,180 564 (2) 1,720
C 8 9 6,030 491 (2) 853
D 12 8 6,030 523 (2) 1,197
E 9 9 4,719 1,648 (10) 4,254

CLASP2
F 20 20 12,910 179 (0.01) 737
G 38 31 10,390 1,346 (3) 4,826
H 35 29 11,200 198 (0.01) 900

Total – 146 126 63,489 5,237 15,482

large number of video frames available in the datasets, the an-
notation rate for the video sequences varies between 0.01 and
10 frames per second (fps). We randomly partition each dataset
into a training set containing 80% of the video frames and a
test set with the remaining 20%. For a fair comparison, the
Supervised Learning (SL) and SSL models are trained using
only the frames from the training set, but the SSL models are
fully self-supervised and do not use any manual annotations.
However, disregarding every video sequence that includes
annotated frames would substantially limit the amount of
data available for the computation of tracking performance
measures. Hence, to assess tracking performance, we consider
all the annotations listed in Table I. The only method that uses
the training set annotations is the SL approach. Although this
evaluation strategy favors that method, it also more accurately
reflects the generalization performance of the SSL approaches
to unseen data. Due to space limitations, the results presented
in this section were obtained using the aggregated CLASP1
and CLASP2 test sets. Dataset-specific results are given in the
Supplementary Materials.

B. Self-Supervised Learning Detection Performance

During training, we freeze the network weights up to the
region proposal network layer so that the pre-trained backbone
features are effectively used in the downstream task. We use
an initial learning rate of 5e−3, mini-batch size per image
N = 256, r = 20 different orientations, and a cluster
confidence threshold λ = 0.1. Similar to the baseline model,
we use stochastic gradient descent with a momentum of 0.9,
weight decay of 1e−4. At each SSL iteration, we fine-tune the
model for 20k iterations, reducing the learning rate by a factor
of 10 at every 5k iterations. In our evaluation, we use an IoU
threshold of 0.5, and a non-maximum suppression threshold
ηnms = 0.3 for all the models. The detection threshold for
region proposal generation is ηdet = 0.5.

Fig. 8 shows the Multi-Object Detection Accuracy (MODA)
of our model as a function of the number of SSL iterations. To
illustrate the impact of the cluster confidence score, we also
evaluate a model in which the samples are not weighed by their
scores (SSL-wo-α). Instead, this model uses a hard threshold
λ ≤ 0.4 to discard noisy detections during training. The figure
also shows the performance of the Multiple-Inference (MI)

alert-coe@northeastern.edu
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Fig. 6. Panoramic overview of the camera views at the Kostas Research Institute simulated airport checkpoint.

Fig. 7. Sample images from the datasets collected at the simulated airport
checkpoint (left: CLASP2 and right: CLASP1 in Table I). The images show
the divestiture area (right: camera 9) and item retrieval area (left: camera 11).
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Fig. 8. MODA measures for person (left) and baggage (right) classes during
SSL training.

strategy used to generate the pseudo-labels, which reflects
the quality of the pseudo-labels before SSL training. That is,
in the MI model, the pseudo-labels themselves are used as
model predictions. As the figure indicates, the SSL models
gradually approach the performance of the MI strategy. The
incorporation of cluster confidences not only increases the
speed of convergence of the models but also leads to noticeable
performance gains, particularly for baggage items.

Fig. 9 shows the precision-recall curves for passenger and
baggage detection using four detector models: pre-trained
PANet (baseline), PANet trained using SL, SSL-wo-α, and
SSL. Even though the SSL models are trained without manual
annotations, they perform on par with the SL model for pas-
sengers. For baggage items, the maximum average precision
for the baseline model is less than half of the performance of
the SSL models. As illustrated in Fig. 14, the performance
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Fig. 9. Precision-recall curves for person (left) and baggage (right) detection.
The legend shows the average precision of the models.

difference between the SL and SSL models is due to two
main issues: i) appearance similarities among bags and certain
garments/items placed inside security bins, and ii) baggage
items that can only be partially observed before being placed
on the conveyor belt.

Table VII demonstrates the benefits of incorporating clus-
ter uncertainties in the SSL loss function (column α) and
of the proposed cluster regression technique (column reg.).
The method that incorporates both cluster uncertainty and
regression is equivalent to the approach identified as SSL
in Figs. 8 and 9 whereas the method that does not include
cluster confidences corresponds to SSL-wo-α. The results
in the table correspond to the point that maximizes the F1

score of the curves in Fig. 9 at the best performing SSL
iteration. The top-performing method in Table VII and in
the remainder of this section is highlighted in boldface, the
second-best is underlined, and ties are broken according to
the MODA/MOTA results.

In comparison with the baseline model, our SSL algorithm
substantially increases the recall (Rcll) and precision (Prcn)
for passenger detection, which is a result of improvements in
true positive (TP), false positive (FP), and false negative (FN)
detections. The cluster confidence scores substantially reduce
the contribution of low-confidence pseudo-labels, especially
for baggage items, leading to a noticeable increase in the
number of true positives. Cluster regression corrects pseudo-
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Fig. 10. Sample results showing failure cases for baggage detection using the SSL model in the CLASP2 dataset. The magenta arrows indicate bag-like
object detections that are not annotated (false positives), the red arrows indicate annotated baggage items the model fails to detect (false negatives), the green
bounding boxes show passenger detections, and the red bounding boxes represent the manual annotations for both classes.

TABLE II
PASSENGER AND BAGGAGE DETECTION EVALUATION.

Model Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA
α reg. person bag person bag person bag person bag person bag person bag

Baseline ✗ ✗ 73.8 37.1 87.0 82.9 1560 426 228 85 552 724 62.8 29.3
SSL ✗ ✗ 93.8 73.8 92.3 82.5 1989 858 155 194 123 291 86.0 57.6
SSL ✓ ✗ 93.5 75.9 93.5 86.1 1985 863 134 144 127 286 87.1 62.9
SSL ✗ ✓ 93.6 73.1 96.2 92.5 1985 844 73 71 127 305 90.1 67.1
SSL ✓ ✓ 95.7 78.6 96.0 91.8 2025 903 79 83 87 246 91.8 71.5
SL ✗ ✗ 95.6 91.4 96.4 92.8 2022 1048 70 83 90 101 92.1 84.4

(a) (c)(b)

Fig. 11. Qualitative detection results on the CLASP2 dataset using (a) Baseline, (b) SSL, and (c) SL models (the SL model only predicts bounding boxes).

label errors caused by inaccurate bounding boxes generated
from poor segmentation results. As a result, the reduction
in false positives for both classes is even more pronounced
when cluster regression is incorporated. Overall, our SSL
framework shows a relative MODA score improvement of 46%
for passengers and 144% for baggage items with respect to the
baseline model.

Fig. 11 shows qualitative results for the models under con-
sideration. In comparison with the SL model, the SSL models
not only improve the accuracy of the predicted bounding boxes
but also generate improved segmentation masks since they are
trained using instance segmentation pseudo-labels.

C. Single-Camera Tracking

We compare the performance of our single-camera tracking
algorithm using the proposed SSL detectors with the pre-
trained baseline detector and the SL detector. We also evaluate
the impact of our SCA algorithm, described in Section III-B1,
where we use tth = 3 seconds and δmax = 200 in Eq. 4. To
preserve the entirely self-supervised nature of our pipeline,
we refrain from fine-tuning the re-identification module of
the baseline tracker, which is pre-trained on the MOT17 [59]
dataset. To dissociate the evaluation of the tracking method
from our MCTA approach, we use a modified version of the
annotations in Table I where a passenger that re-enters the
field of view of a camera receives a new identifier. Thus, the

number of unique ground truth passenger identifiers (column
GT in Table III) is much higher than those listed in Table I. We
evaluate our system’s ability to maintain consistent passenger
identifiers across multiple perspectives in Section IV-D.

As Table III shows, the SSL-wo-α and SSL approaches out-
perform the tracker using the baseline detector by a large mar-
gin. The notable improvements in identity-based F1 (IDF1),
recall (IDR), and precision (IDP) [76] as well as in standard
recall and precision are primarily a result of the reduction in
false positives and false negatives generated by the SSL model.
Self-supervision also improves the tracking-specific metrics
of mostly tracked (MT), mostly lost (ML), identity switches
(IDs), and fragmented (FM) trajectories [75]. As a result, our
method produces substantial gains in MOTA. Again, both SSL
models perform on par with the SL model for person tracking.
For baggage items, we see similar performance improvements,
but the challenges illustrated in Fig. 14 again preclude the
SSL models from reaching the performance of the SL strategy.
Finally, our SCA algorithm leads to further performance gains,
particularly in terms of IDs.

D. Multi-Camera Tracklet Association

We evaluate the performance of our MCTA algorithm using
the same experimental procedure described in the previous
section, with the exception that passengers are now assigned
unique identifiers as they leave and re-enter the fields of
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TABLE III
SINGLE-CAMERA TRACKING EVALUATION FOR PERSON AND BAGGAGE CLASSES.

Class Model α SCA GT ↑IDF1 ↑IDR ↑IDP ↑Rcll ↑Prcn ↓FP ↓FN ↑MT ↓ML ↓IDs ↓FM ↑MOTA ↑MOTP

Person

Baseline ✗ ✗ 391 84.5 83.3 86.1 91.2 94.6 750 753 283 42 93 152 84.0 85.5
SSL ✗ ✗ 391 87.8 87.2 88.3 95.1 96.4 350 554 319 31 80 123 90.1 85.2
SSL ✓ ✗ 391 88.4 87.9 88.9 95.6 96.6 354 438 326 27 86 122 90.7 85.2
SSL ✓ ✓ 391 88.5 88.1 88.9 95.6 96.5 358 435 326 26 76 123 90.8 85.2
SL ✗ ✗ 391 87.0 86.4 87.7 95.2 96.9 357 457 332 24 86 121 90.5 85.2

Bag

Baseline ✗ ✗ 255 67.5 57.0 86.4 61.1 92.3 431 1800 108 73 31 89 54.3 81.0
SSL ✗ ✗ 255 78.9 74.2 85.4 81.0 93.7 308 1014 159 38 71 105 72.9 80.4
SSL ✓ ✗ 255 81.3 78.2 85.5 84.4 92.3 401 822 169 28 68 97 75.1 80.4
SSL ✓ ✓ 255 84.3 81.1 88.5 84.4 92.3 401 822 169 28 48 97 75.6 80.4
SL ✗ ✗ 255 85.3 86.6 84.1 94.7 91.7 387 339 226 10 103 69 83.2 80.0

#1357
C11

(a) (b)

C05

C11

#2232
C11

#0627
C09

#1652
C09

Fig. 12. Sample results showing (a) cross-camera passenger association between cameras 5 and 11 using MCTA, and (b) tracking and association between
passengers and baggage items where the top and bottom rows show image sequences from cameras 9 and 11 respectively. We associate passenger tracklets
in cameras 9 and 11 by leveraging the associations between cameras 2 and 5 (passengers flow in Fig. 6: C9→C2→C5→C11). Baggage items are associated
using temporally constrained distance-based matching when each item receives a unique identifier PiBj, representing the j-th item from the i-th passenger.

TABLE IV
MCTA EVALUATION. THE COLUMN LABELED DIST. INDICATES WHETHER

WE EMPLOY THE HAUSDORFF (dh) OR FRÉCHET (df ) DISTANCE TO
EVALUATE TRACKLET SIMILARITY.

Dist. SL SSL-wo-α SSL MCTA ↑IDF1 ↑IDR ↑IDP ↓IDs ↑MOTA

-
✗ ✓ ✗ ✗ 82.1 83.2 81.0 157 88.2
✗ ✗ ✓ ✗ 82.0 83.1 80.9 170 88.5
✓ ✗ ✗ ✗ 81.5 82.8 80.4 170 88.0

dh

✗ ✓ ✗ ✓ 87.4 88.9 86.4 115 88.8
✗ ✗ ✓ ✓ 84.8 88.6 86.2 140 89.0
✓ ✗ ✗ ✓ 86.2 87.5 85.0 134 88.6

df

✗ ✓ ✗ ✓ 88.0 89.3 86.8 115 88.9
✗ ✗ ✓ ✓ 88.2 89.5 87.0 132 89.1
✓ ✗ ✗ ✓ 86.7 88.1 85.5 122 89.0

view of the cameras. Based on the overall flow of passengers
through our simulated checkpoint, cameras 9 and 11 are the
primary cameras for our tracklet association method (Alg. 5).
Cameras 2 and 5, the cameras immediately below them in Fig.
6, are the respective auxiliary cameras. For a fair comparison
among the detectors, we generate tracklets in the auxiliary
cameras using the corresponding SL or SSL model used in
the primary cameras (i.e., trained using only frames from the

primary camera). To provide a set of reference performance
measures, we first evaluate our tracking algorithms in the ab-
sence of a MCTA mechanism. We then assess the performance
of our association method when tracklet similarity is computed
using the Fréchet distance and the more traditional Hausdorff
distance [64] with fmax = 0.25 in Eq. 5.

Table VIII shows that tracklet association improves the
IDF1 measure by up to 6.2%. This is mainly a consequence
of the dramatic reduction in the number of identity switches.
Using the Fréchet distance to determine tracklet similarity pro-
vides consistent performance improvements in all the metrics
under consideration, especially for the SSL strategy. The more
modest gains in MOTA (up to 1.0%) demonstrate the need
for measures that focus specifically on the impact of identity
switches on tracking performance.

Fig. 12(a) illustrates the tracklet association procedure be-
tween cameras 5 and 11. As the passengers with identities
P2 and P3, whose trajectories are represented in green and
yellow, move from the field of view of camera 5 to camera
11, their tracklets are projected from the former camera to
the latter. The projected trajectories (red for P2 and pink for
P3) are successfully associated with the tracklets from camera
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11 based on the Fréchet distances among their temporally
overlapping segments. In the instant shown in the figure,
passenger P2 is re-entering the field of view of camera 5,
and the corresponding tracklet is also correctly associated with
that passenger’s tracklet in camera 11. Hence, the passenger’s
identity is successfully handed off between the cameras. Fig.
12(b) demonstrates a potential application of the proposed
system. Baggage items are associated with passengers when
they are divested in camera 9 and their identifiers can be
verified at retrieval time, which is observed in camera 11.

V. CONCLUSION

We propose a multistage tracking-by-detection framework
to overcome performance limitations of object detection and
tracking algorithms in overhead camera videos for which
limited training data is available. Our framework is composed
of an SSL mechanism to fine-tune object detection models to
specific camera views without the need for manual annotations
and an MCTA method that only requires the homographies
among neighboring cameras. Our experiments show that the
proposed framework can accurately detect and track pas-
sengers and baggage items across camera views in airport
checkpoint scenarios. Our framework is flexible and scalable.
It requires no training data, incurs no detection computational
overhead at inference time, and is independent of the number
of cameras in the network.

Our framework also allows seamless integration of ad-
ditional data augmentation strategies and of manually an-
notated data when it is available. Our experiments show
that these strategies further improve the selectivity of our
detector, particularly for baggage items. For simplicity, our
association methods are performed offline, i.e., after all the
tracklets have been generated. However, it would be simple to
implement online versions of the algorithms since the single-
view association method can be executed whenever a new
trajectory is initiated and each iteration of the MCTA algorithm
can be performed once a trajectory in an auxiliary camera is
terminated. The implementation of a real-time version of our
tracklet association method is part of our future work.
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Abstract—This document supplements our main paper with
additional experimental results on the CLASP1 and CLASP2
datasets. We extend our Self-Supervised Learning (SSL) ap-
proach into a Semi-Supervised Learning (Semi-SL) mechanism
to further improve target detection performance, especially for
baggage items. We also investigate the impact of additional data
augmentation strategies, rotation resolution, and the computa-
tional requirements of our proposed technique. These additional
evaluation results show that our algorithm outperforms the
baseline as well as state-of-the-art supervised and semi-supervised
approaches.

Index Terms—Detection, Tracking, Association, Homography,
Tracklet, Multi-camera, Surveillance.

VI. SINGLE CAMERA DETECTIONS

This section presents a breakdown on the performance of
our SSL detector for individual cameras in the CLASP1 and
CLASP2 datasets. It also evaluates the performance impact of
additional data augmentation strategies, number of rotation an-
gles used for data augmentation, and incorporation of labeled
data in a semi-supervised approach.

A. Self-Supervised Learning

Fig. 13 shows a detailed breakdown of the performance of
our SSL detection model for individual camera views in the
CLASP1 and CLASP2 datasets. The high recall, precision, and
MODA values indicate that our SSL approach detects most
passengers correctly in these video sequences. The average
precision (AP) for passenger detection is slightly higher for
camera 11 in both datasets. The main factor contributing to
this performance difference is that in camera 9, passengers
are only partially visible most of the time, whereas camera
11 has a better view of the region where the passengers
stand next to the conveyor belt. On the other hand, this also
contributes to the lower baggage detection performance in

*Manuscript received August 22, 2022; accepted November 11, 2022.
Date of publication December 14, 2022.

†This material is based upon work supported by the U.S. Department of
Homeland Security, Science and Technology Directorate, Office of University
Programs, under Award Number 2013-ST-061-E0001-04. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security.

‡Abubakar Siddique is with the Department of Electrical and
Computer Engineering, Marquette University, Milwaukee, USA, e-mail:
abubakar.siddique@marquette.edu

§Henry Medeiros is with the Department of Agricultural and Bi-
ological Engineering, University of Florida, Gainesville, USA, e-mail:
hmedeiros@ufl.edu

¶Digital Object Identifier (DOI): 10.1109/TSMC.2022.3225252

camera 11. That is, in camera 11, partially observed baggage
items being carried by passengers (see Fig. 14) are much
more common than in camera 9. As with passenger detection,
we observed similar baggage detection improvements in the
camera-specific performance comparisons. This performance
could be further improved by using additional unlabelled video
frames available in the CLASP1 and CLASP2 datasets to train
the SSL models.

B. Additional Data Augmentation Strategies

We investigate the impact of other data augmentation strate-
gies during SSL training, including color jittering and motion
blur along with multiple rotations. For color jittering, we
increase/decrease image brightness, contrast, saturation, and
hue by a factor sampled uniformly from the range [0,maxjit],
where maxjit is 0.4 for brightness, 0.5 for contrast, 0.2 for
saturation, and 0.05 for hue. To emulate motion blur, we use
Gaussian blur with kernel size uniformly sampled from the set
{5, . . . , 9} and standard deviation sampled from the interval
[0.1, 5]. We observe that applying color jittering and mo-
tion blur on the pseudo-label augmentation further improves
MODA scores by up to 2.9% and 4.8% for passengers and
baggage items, respectively. For a fair comparison, we reduced
the number of rotation angles used for augmentation such that
the total number of augmented images remains the same in
both scenarios. Maintaining the original number of rotations
would further increase performance gains.

TABLE V
PERFORMANCE IMPACT OF ADDITIONAL DATA AUGMENTATION

STRATEGIES IN THE SSL ITERATIONS.

Dataset Method ↑AP ↑ F1 ↑MODA
Rot. C-Jit. Mot.-Blur person bag person bag person bag

CLASP1 ✓ ✗ ✗ 89.2 43.4 92.0 59.7 83.9 41.6
✓ ✓ ✓ 91.5 48.3 92.3 64.5 84.3 46.4

CLASP2 ✓ ✗ ✗ 79.4 47.4 86.2 62.5 73.6 42.2
✓ ✓ ✓ 84.2 47.8 88.0 63.0 76.5 43.6

C. Impact of Rotation Resolution

Table VI shows the impact of rotation resolution r on the
generation of pseudo-labels. One SSL iteration with r = 20
improves the MODA scores by up to 3.1% for passengers and
5.6% for baggage items. The inference time for a single frame
increases linearly with the number of rotations, contributing
to longer SSL training iterations. If training time is a concern,
r = 10 offers a reasonable speed vs. performance trade-off. We
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Fig. 13. Passenger and baggage detection performance in cameras 9 and 11 for the CLASP1 (CL1) and CLASP2 (CL2) datasets. Here, P
stands for passenger and B for baggage. A description of the methods under consideration is given in Section IV.B of the main paper.

Fig. 14. Additional illustrative failure cases for baggage detection using the SSL model in the CLASP1 dataset (see Fig. 10 in the main paper for failures
in the more challenging CLASP2 dataset). The magenta arrows indicate bag-like object detections that are not annotated (false positives), the red arrows
indicate annotated baggage items the model fails to detect (false negatives), the green bounding boxes show passenger detections, and the red bounding boxes
represent manual annotations for both classes.

use r = 20 for all the SSL models to demonstrate the potential
performance of our framework. As Table VI indicates, further
increasing the value of r would likely lead to minor additional
performance gains.

TABLE VI
PERFORMANCE IMPACT OF THE NUMBER OF ROTATION ANGLES USED IN

THE SSL ITERATIONS.

Dataset r ↓Infer. Time ↑ F1 ↑MODA
(secs) person bag person bag

CLASP1

1 0.3 94.5 69.5 89.0 51.7
5 2.2 95.0 70.4 90.1 52.8
10 4.5 95.3 70.8 90.6 53.6
20 9.1 95.8 70.8 91.5 53.7

CLASP2

1 0.3 91.0 74.5 82.3 56.8
5 2.6 92.1 76.4 84.6 59.6
10 4.0 92.1 76.5 84.5 59.8
20 11.7 92.2 76.5 84.9 60.0

D. Semi-Supervised Learning
As Table VII indicates, the performance of our SSL algo-

rithm is limited by the initial accuracy of the baseline model.

Thus, we extend our method to a semi-supervised approach
where we use a certain amount of manual annotations to
initialize our model before initiating SSL training. For the
labeled frames, we employ the same data augmentation pro-
cedure used to generate augmented labels. Fig. 15 shows that
training the SSL model using 10% of the manual labels leads
to a performance comparable to the SL model, outperforming
SoftTeacher [77], a state-of-the-art Semi-SL technique. Our
method is particularly effective when small amounts of anno-
tations are used. For example, using only 1% of the manual
labels, our Semi-SL approach outperforms SoftTeacher by
104% and is only 1.6% behind the SL method (Table VII)
for baggage items. Furthermore, we observe a 5.7% MODA
improvement over the SL method when we use all the manual
annotations during training.

VII. SINGLE-CAMERA TRACKING

Fig. 16 shows the Single-Camera Tracking (SCT) perfor-
mance of our algorithm for passengers and baggage items in
the individual cameras of the CLASP1 and CLASP2 datasets.
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TABLE VII
PASSENGER AND BAGGAGE DETECTION EVALUATION MEASURES ON THE CLASP1 AND CLASP2 TEST SETS.

Dataset Model Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA
α reg. person bag person bag person bag person bag person bag person bag

CLASP1

Baseline ✗ ✗ 73.8 36.2 89.0 87.9 886 233 110 32 314 411 64.7 31.2
SSL ✗ ✗ 96.4 80.4 95.8 78.6 1157 518 51 141 43 126 92.2 58.5
SSL ✓ ✗ 96.9 70.4 94.2 90.9 1163 451 71 45 37 193 91.0 63.0
SSL ✗ ✓ 96.0 76.1 97.7 90.7 1152 490 27 50 48 154 93.8 68.3
SSL ✓ ✓ 96.8 78.6 97.3 90.2 1162 506 32 55 38 138 94.2 70.0
SL ✗ ✗ 96.7 89.4 98.1 91.4 1160 576 23 54 40 68 94.8 81.1

CLASP2

Baseline ✗ ✗ 73.9 38.0 85.1 78.0 674 192 118 53 238 313 61.0 27.5
SSL ✗ ✗ 91.2 67.3 88.9 86.5 832 340 104 53 80 165 79.8 56.8
SSL ✓ ✗ 90.1 81.6 92.9 81.3 822 412 63 95 90 93 83.2 62.8
SSL ✗ ✓ 91.3 70.1 94.8 94.4 833 354 46 21 79 151 86.5 65.9
SSL ✓ ✓ 94.6 78.6 94.8 93.4 863 397 47 28 49 108 89.5 73.1
SL ✗ ✗ 94.5 93.5 94.8 94.2 862 472 47 29 50 33 89.4 87.7

Fig. 15. Semi-SL model performance on CLASP2 using a semi-supervised
extension of our proposed SSL method versus SoftTeacher (ST) [77]. Here, P
and B stand for the passenger and baggage categories. The SSL model uses
no labeled data and the SL model is trained with 100% of the samples.

For passenger tracking, the SSL methods outperform the SL
approach in terms of IDF1, IDP, and IDR in all the scenarios
under consideration. In both datasets, the SL approach shows
slightly higher MT results for camera 9, largely due to
the partial passenger detection problem. Since CLASP1 has
lower object density, we observe more consistent performance
among different methods for both cameras in that dataset.
While all the methods perform better on the CLASP1 dataset,
the benefits of SSL training compared to the baseline detector
are particularly evident in the MT results on the CLASP2
dataset.

Regarding baggage items, although the SSL models lead to
a moderate increase in the number of IDs, these switches are
offset by substantial gains in MT. As a matter of fact, the SL
model shows a much more significant degradation in IDs for
the more complex CLASP2 dataset. This is particularly evident
for camera 9, and it explains the lower IDP obtained by the SL
method in that dataset. The most evident performance gains for
baggage tracking are observed in camera 11 on the CLASP2
dataset because the of the difficulty of partially visible baggage
items using the baseline model.

VIII. MULTI-CAMERA TRACKLET ASSOCIATION

Regarding our Multi-camera Tracklet Association (MCTA)
method, Table VIII shows that the Fréchet distance metric is
particularly useful in crowded scenarios. Although we obtain
comparable results using the Hausdorff distance on the easier
CLASP1 dataset, we achieve noticeable improvements in all
the evaluation criteria on CLASP2 using the Fréchet distance.

The single-camera trackers in the auxiliary cameras are trained
using frames from the primary cameras. Hence, in crowded
scenarios they sometimes fails to keep alive trajectories of
targets that are temporarily outside the field of view of the
primary camera. This is the main reason behind the overall
lower tracking performance on the CLASP2 dataset. Training
camera-specific detectors using our SSL framework would
mitigate this issue.

TABLE VIII
MCTA EVALUATION. THE COLUMN LABELED DIST. INDICATES WHETHER

WE EMPLOY THE HAUSDORFF (dh) OR FRÉCHET (df ) DISTANCE TO
EVALUATE TRACKLET SIMILARITY.

Data. Dist. SL SSL-wo-α SSL MCTA ↑IDF1 ↑IDR ↑IDP ↓IDs ↑MOTA

CLASP1

- ✗ ✓ ✗ ✗ 87.4 87.8 86.9 45 94.4
- ✗ ✗ ✓ ✗ 87.0 87.4 86.6 48 95.1
- ✓ ✗ ✗ ✗ 87.3 87.5 87.2 42 94.4

dh

✗ ✓ ✗ ✓ 94.0 94.5 93.5 21 94.9
✗ ✗ ✓ ✓ 92.7 93.1 92.2 30 95.5
✓ ✗ ✗ ✓ 93.0 93.1 92.8 25 94.8

df

✗ ✓ ✗ ✓ 93.8 94.3 93.3 22 94.9
✗ ✗ ✓ ✓ 92.8 93.3 92.4 27 95.6
✓ ✗ ✗ ✓ 93.4 93.6 93.3 23 94.8

CLASP2

- ✗ ✓ ✗ ✗ 76.9 78.7 75.1 112 82.0
- ✗ ✗ ✓ ✗ 77.0 78.8 75.3 122 81.9
- ✓ ✗ ✗ ✗ 75.8 78.2 73.6 128 81.6

dh

✗ ✓ ✗ ✓ 81.2 83.3 79.3 94 82.8
✗ ✗ ✓ ✓ 82.1 84.2 80.3 110 82.5
✓ ✗ ✗ ✓ 79.5 82.0 77.2 109 82.5

df

✗ ✓ ✗ ✓ 82.3 84.4 80.4 93 83.0
✗ ✗ ✓ ✓ 83.6 85.7 81.7 105 82.7
✓ ✗ ✗ ✓ 80.1 82.7 77.8 99 83.2

IX. COMPUTATIONAL COMPLEXITY

In this section, we analyze the theoretical computational
complexity of our SSL strategy and measure the computation
time and memory utilization of each step of our algorithm. All
our experiments were performed on a workstation equipped
with two RTX-2090Ti GPUs and an Intel® Xeon® Silver 4112
CPU @2.6GHz.

A. Self-Supervised Learning

The computational complexity of our approach increases
linearly with the number of rotation angles used for augmenta-
tion in the pseudo-label generation step. That is, for a baseline
detection algorithm with computational complexity Θ(f(I(t)),
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Fig. 16. Comparison of SCT performance of person and baggage classes in individual cameras of the CLASP1 and CLASP2 datasets using the Baseline,
SSL-wo-α, SSL, and SL detectors.

the complexity of our approach is Θ(r ·f(I(t)), where r is the
number of rotation angles. For example, for r = 20, the run-
time is 20 times that of a single iteration without augmentation.
However, these operations are parallelizable as long as the
hardware resources support the simultaneous processing of
multiple frames. With our unoptimized implementation, the
total time to complete one SSL iteration is approximately
six hours for both model training and pseudo-label genera-
tion. However, we have observed that hardware resources are
severely underutilized, which indicates substantial room for
reduction in overall computation time.

B. Inference Performance

Table IX shows the computation time of the proposed
tracking-by-detection algorithm, employing a PANet detector
with a ResNet-50 backbone. The SCT uses the detector re-
sults and a ResNet-50-based Re-Identification (Re-ID) model
trained on MOT17 to re-label tracklets lost due to short-term
occlusions. Hence, the computation time and memory utiliza-
tion for the SCT are similar to those for the detector model.
Since we are processing single images individually instead
of image batches, the inference time for the detector and the
SCT are far from optimal. Preliminary experiments indicate
that processing batches of 10 images simultaneously leads to
an approximate six-fold reduction in detector inference time
without exceeding the memory capacity of the GPUs. Reusing
the backbone features from the detector in the Re-ID model
should also lead to a dramatic reduction in SCT time, since
feature generation is the most computationally demanding
element of the tracking algorithm.

The execution time of the proposed MCTA algorithm
depends on the average length of the overlapping tracklet
segments in each camera pair. In the CLASP1 dataset, which

contains fewer and shorter tracklets, the algorithm can be
executed in real time. In CLASP2, it can run at approximately

TABLE IX
COMPUTATION TIME OF THE PROPOSED TRACKING-BY-DETECTION

FRAMEWORK.

Data Model Infer. Time (ms) Memory (MB)

CLASP1
Detector 333.3 1,850

SCT 142.8 1,748
MCTA 25.6 9.1

CLASP2
Detector 333.3 1,850

SCT 166.6 1,750
MCTA 83.3 22.7

12 fps. However, the current implementation of the proposed
system uses the full life-span of a tracklet to compute the
Fréchet association distance in the MCTA algorithm. It is pos-
sible to substantially reduce computation time by limiting the
length of single-camera tracklets compared by the algorithm.
Table X shows that if we limit the length of the tracklets to 240
frames (or eight seconds), it is possible to achieve real-time
performance for both datasets without degrading the accuracy
of the algorithm.

TABLE X
COMPUTATION TIME OF THE PROPOSED MCTA.

Data. Dist. Metric Max. Size Infer. Time (ms) Memory (MB) MOTA

CLASP1
Hausdorff – 0.52 4.5 94.5

240 0.50 4.5 94.5

Fréchet – 25.6 9.1 94.6
240 8.20 4.3 94.6

CLASP2
Hausdorff – 0.64 16.3 78.4

240 0.61 16.3 78.4

Fréchet – 83.3 22.7 78.5
240 19.6 16.3 78.7


