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Abstract—In this work, a novel distributed search-planning
framework is proposed, where a dynamically varying team of
autonomous agents cooperate in order to search multiple objects
of interest in 3D. It is assumed that the agents can enter and
exit the mission space at any point in time, and as a result the
number of agents that actively participate in the mission varies
over time. The proposed distributed search-planning framework
takes into account the agent dynamical and sensing model,
and the dynamically varying number of agents, and utilizes
model predictive control (MPC) to generate cooperative search
trajectories over a finite rolling planning horizon. This enables
the agents to adapt their decisions on-line while considering
the plans of their peers, maximizing their search planning
performance, and reducing the duplication of work.

Index Terms—Multi-Agent systems, Distributed model predic-
tive control, Trajectory planning, Distributed coverage.

I. INTRODUCTION

IN emergency response situations the immediate deploy-
ment of the response team is imperative for saving people’s

lives. In such situations the ability to plan and organize
predictable, precise, and efficient cooperative searches of the
affected area is of the highest importance in order to locate
people in danger. In general, an emergency response mission
can be divided into two main tasks [1] i.e., assessment, and
search-and-rescue. In the assessment task, the rescue team
first assesses the damages and hazards of the affected region
and then determines the areas that need to be searched for
locating survivors or people in need. During the assessment
task the rescue team organizes and plans the search mission.
Subsequently, the purpose of the search-and-rescue task is
to perform organized, complete and efficient searches of the
affected area in order to locate survivors and provide rescue.

We envision that a team of distributed autonomous mobile
agents (i.e., unmanned aerial vehicles (UAVs) or drones),
capable of conducting optimized and coherent search-planning
in 3D, can significantly enhance the capabilities and success
rate of the rescue team in emergency response situations. The
assessment task is captured in this work through a mission
pre-planning step in which the affected area that needs to be
searched, once identified, is decomposed into a number of
artificial cells according to the UAV’s sensing capabilities and
required search-effort. Then we propose a distributed search-
planning framework in which multiple autonomous agents
cooperate in order to efficiently search the affected area.
In our previous works [2], [3] we have presented a novel
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planning framework for the problem of 3D search planning
with a single autonomous agent. Therefore, the motivation of
this article is to design a multi-agent distributed 3D search-
planning framework with improved performance and more
capabilities compared to the single agent case.

In this work, we propose a distributed search-planning
framework, based on model predictive control (MPC) [4], for
the problem of cooperative searching in 3D environments with
a dynamically varying number of agents. In particular, in this
work, it is assumed that the agents can enter and exit the
mission space (i.e., to recharge their depleted batteries) at any
point in time, and as a result the number of active agents that
participate in the mission changes over time. This necessitates
the need for efficient planning and cooperation amongst the
team of agents, so that they can adapt their plans and make
decisions on-line in order to better accommodate the collective
objective of the team.

More specifically, the objective is for a dynamically varying
team of agents to cooperate in order to efficiently search
multiple objects of interest in 3D (i.e., the total surface area of
each object of interest must be searched) with certain detection
probability. The agents are equipped with a camera-based
sensing system with finite field-of-view (FoV), which they use
to scan the surface of the objects of interest while maintaining
the required detection probability (specified at the beginning of
the mission). Therefore, the agents cooperate in order to scan
the total surface area of each object of interest, searching for
survivors while trying to minimize the duplication of work. To
achieve this, it is assumed that the agents can opportunistically
communicate and exchanging their search-maps and their
future intentions whenever they are in communication range
with each other. The proposed approach does not require any
form of coordination between the agents, thus enabling them
to plan their decisions autonomously and in parallel with each
other, while optimizing the collective objective of the team.
Overall, the contributions of this work are as follows:

• We propose a novel distributed search planning frame-
work, based on model predictive control (MPC), which
enables a dynamically varying number of autonomous
agents to cooperatively search in 3D multiple objects of
interest, without requiring any form of coordination.

• We derive a mixed integer quadratic programming
(MIQP) mathematical formulation for the distributed 3D
search planning problem which can be solved efficiently
with widely available optimization tools.

• Finally, the performance of the proposed approach is
demonstrated through a series of qualitative and quan-
titative synthetic experiments.

The rest of the paper is organized as follows. Section II
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summarizes the related work on search-planning and coverage
control with multiple agents. Section III develops the system
model and Section IV discusses the mission pre-planning step
which takes place prior to search-planning. Then, Section V
discusses the details of the proposed distributed multi-agent
3D search planning framework, Sec. VI evaluates the proposed
framework and finally Sec. VII concludes the paper.

II. RELATED WORK

In the recent years, we have witnessed an unprecedented
interest in UAV-based applications and automation technolo-
gies [5]–[13], with particular interest in planning techniques.
In this work the problem of trajectory planning with the
objective of searching an area of interest with multiple agents
is investigated. An interesting work on this topic is shown
in [14], where the authors proposed a centralized formulation
for the problem of multi-agent search-planning which they
solve using mixed-integer linear programming (MILP). The
work in [15] proposes a two-stage centralized-assignment,
decentralized-covering algorithm in which the area of interest
is first divided into non-overlapping regions in a centralized
fashion, and then assigned to the UAV agents. Each UAV
agent then runs a local covering algorithm to search its
assigned area. In a similar fashion, the work in [16], proposes
a hierarchical cooperative planning framework for finding a
target in a 2D environment. In [16] the area of interest is first
decomposed and prioritized into subregions and then allocated
to the UAV agents. Each UAV agent then uses a local receding
horizon controller (RHC) for searching its allocated area. In
[17] a centralized market-based multi-robot task allocation
algorithm is proposed for assigning regions of interest to
mobile agents. The idea of distributed task allocation for
multi-agent search operations is illustrated in [18]. Multi-
agent search-planning is also investigated in [19], where the
authors evaluate various discrete search-planning algorithms.
The problem of distributed search-planning is investigated in
[20], with the goal of searching and localizing a stationary
ground target with a team of UAVs. The authors propose a
distributed control framework for maximizing the probability
of target detection with a team of UAVs over a finite planning
horizon. This method however, requires coordination between
the agents and works in a sequential fashion.

In [21] a distributed trajectory planning approach is pro-
posed based on linear model predictive control (MPC), where
multiple UAVs are guided with the goal of forming a commu-
nication network around multiple targets. More recently, the
authors in [22] proposed a decentralized MPC approach for
multi-UAV trajectory planning for obstacle avoidance, whereas
in [23] a consensus algorithm for distributed cooperative
formation trajectory planning is proposed based on artificial
potential fields and consensus theory. In [24] a sampling-
based chance-constrained 2D trajectory planning approach is
proposed for multiple UAV agents with probabilistic geo-
fencing constraints, whereas in [25] a particle-swarm opti-
mization (PSO) approach is proposed for distributed collision-
free trajectory planning with a team of UAVs operating in
stochastic environments. More recently, the authors in [26]
have proposed a deep reinforcement learning based 3D area
coverage approach with a swarm of UAV agents, whereas in
[27] a multi-robot coverage approach is proposed based on

spatial graph neural networks. Moreover, in [28] the authors
investigate the problem of full coverage search with multiple
agents in cluttered environments, and finally, the work in [29]
proposes a distributed sweep coverage algorithm for multi-
agent systems in uncertain environments.

In comparison with the related works above, in this work
we propose a distributed search-planning approach which
does not require the commonly used two-stage procedure of
centralized-assignment and decentralized coverage. Instead, in
the proposed approach the agents cooperatively decide in a
rolling-horizon fashion which regions of interest to visit and
how to visit them, generating search-plans online, thus tackling
the overall search-planning problem in a distributed fashion.
In addition, in contrast with the aforementioned literature,
in this work we consider a dynamically varying number of
agents which a) exhibit limited sensing and communication
capabilities, and b) are prone to random battery failures.

Other related works on this topic include the problem of
adaptive and role-based collaboration in multi-agent systems
which is investigated in [30], [31]. The authors propose a
mathematical model (i.e., E-CARGO) which can be used
to describe in a rigorous mathematical way, relationships
and interactions within a typical multi-agent system; thus
enabling the design and implementation of efficient algorithms
for various real-world problems of multi-agent systems [31].
Moreover, the work in [32] presents a factor graph opti-
mization framework to tackle the problems of estimation and
optimal control jointly, whereas the work in [33] poses the
problem of continuous-time motion-planning as a probabilistic
inference problem with Gaussian processes, and then proposes
efficient gradient-based optimization planners (GPMP). More
recently, the problem of online motion planning is investigated
in [34] with joint sampling and trajectory optimization over
factor graphs. Factor-graph based motion planning techniques
(e.g., [32], [34]) are mostly concerned with the determina-
tion of a single obstacle-free trajectory between the starting
and goal locations. In contrast, in this work we propose
a rolling-horizon distributed search-planning approach which
allows a dynamically varying number of autonomous agents
(governed by dynamical, sensing, communication, and battery
constraints) to decide their control inputs, and generate coop-
erative trajectories in order to search in 3D multiple objects
of interest. Finally, the proposed approach is formulated as a
convex MIQP which can be solved optimally using existing
optimization solvers, whereas graph-based motion planning
methods (e.g., [33]) often rely on iterative gradient-based
optimization methods which they do not offer any global
optimality guarantees.

III. SYSTEM MODEL

A. Agent Dynamics
A team M = {1, . . . , |M|} of autonomous mobile agents

(i.e., UAVs), is deployed inside a bounded surveillance region
A. Each agent j ∈ M evolves in 3D space according to the
following discrete-time linear dynamical model:

xjt+1 = Φxjt + Γujt − Γug, ∀j ∈M (1)

where xjt = [xj , ẋj ]>t ∈ R6 denotes the agent’s state at time
t which consists of position xjt = [px, py, pz]t ∈ A ⊂ R3

and velocity ẋjt = [νx, νy, νz]t ∈ R3 components in 3D
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cartesian coordinates. The agent can be controlled by apply-
ing an amount of force ujt ∈ R3 in each dimension, thus
ujt = [ux, uy, uz]>t denotes the applied force vector at t and
the constant ug = [0, 0,mjg]> denotes the force of gravity
where g = 9.81m/s2 is the Earth’s gravitational acceleration
and mj is the agent mass. The matrices Φ and Γ are given
by:

Φ =

[
I3×3 ∆T · I3×3

03×3 φ · I3×3

]
, Γ =

[
03×3

γ · I3×3

]
(2)

where ∆T is the sampling interval, I3×3 is the identity matrix
of dimension 3× 3 and 03×3 is the zero matrix of dimension
3×3. The parameters φ and γ are further given by φ = (1−η)
and γ = ∆T

mj , and the parameter η ∈ [0, 1] is used to model
the air resistance.

B. Agent Battery and Communication model
Each agent j ∈ M exhibits a nominal flight time of T j

time-steps which depends on the agent’s onboard battery life-
time. However, the agent’s onboard battery health deteriorates
due to irreversible physical and chemical changes that take
place with usage and aging, which makes the nominal flight
time inaccurate due to imprecise battery state-of-charge cycle
calculations. For this reason agent’s j battery can be depleted
during a mission at some time t ≤ T j with probability pjb(t).
When this happens, the agent needs to exit the mission space
and return to its ground station (relying on backup power)
located at Gj ∈ R3 for recharging. We model the battery
depletion event of agent’s j battery at time t, as a Bernoulli
random variable Bj ∈ {0, 1} with conditional probability
distribution given by:

Pr(Bj = 1|t) = pjb(t) =
1

1 + αj1e
−βj1(t−αj1)

(3)

where the parameters αj1 and βj1 control the severity of the
battery’s aging. Due to the random battery depletion events
that occur during the mission, only a subset M̃t ⊆ M
of agents actively participate in the search-planning task at
any given time instance t. Moreover, we assume that the
recharging time tR is distributed uniformly in the interval
[T start
R , T stop

R ], i.e., tR ∼ U(T start
R , T stop

R ) for all agents. Thus,
after tR time-steps of recharging, the agents can enter again
the mission space, and continue their mission. To achieve some
form of cooperation, the set of agents that participate in the
mission M̃t ⊆ M, exchange information whenever they are
in communication range. An agent j ∈ M̃t can communicate
and receive information from the group of neighboring agents
N j
t = {i 6= j ∈ M̃t :

∥∥∥Hxit −Hxjt∥∥∥
2
≤ CR} where H

is a matrix which extracts the position coordinates from the
agent’s state vector i.e., Hxt = xt = [px, py, pz]

>
t and CR is

the communication range which we assume in this work to be
the same for all agents.

C. Agent Sensing Model
Each agent is equipped with a camera system which is used

for acquiring snapshots of the objects of interest. Assuming
that the camera field-of-view (FoV) angles in the horizontal
and vertical axis are equal, the projection of the camera FoV
on a planar surface is given by a square with side length r

as r(d) = 2d tan
(
ϕ
2

)
, where d denotes the distance in meters

between the location of the agent and the surface of the object
that needs to be searched, and ϕ is the angle opening of the
FoV according to the camera specifications. Before taking a
snapshot of the object of interest the agent first aligns its
camera with respect to the surface in such a way so that
the optical axis of the camera (i.e., the viewing direction) is
parallel to the normal vector of the face. An object of interest is
searched when its total surface area is included in the agents’s
acquired images. The acquired images are then processed by
a computer vision module to detect people. The quality of
the acquired images depends on the distance between the
agent and the object of interest. Therefore, the probability
of detecting people pd(d) in the acquired images depends on
the distance d between the agent and the object of interest
according to:

pd(d) =

{
0 , if d ≤ dmin

max(0, 1− d−dmin
dmax−dmin

) , if d > dmin
(4)

where dmin and dmax are the minimum and maximum camera
working distance for detecting people in the acquired frames.
Although in this work we are utilizing a simplified detection
probability model to demonstrate the proposed search planning
framework, more realistic sensor detection models [35], [36]
can be incorporated without requiring any changes in the
problem formulation.

D. Objects of Interest and Obstacles Model
The objects of interest that need to be searched and the

obstacles in the environment that need to be avoided by the
agents are represented in this work by rectangular cuboids of
various sizes (referred to hereafter as cuboids). A rectangular
cuboid is a convex hexahedron in three dimensional space
which exhibits six rectangular faces (i.e., where each pair of
adjacent faces meets in a right angle).

A point x ∈ R3 belongs to the cuboid C (i.e., x ∈ C) if the
linear system of inequalities Ax ≤ B is satisfied, where A is
a 6 × 3 matrix, with each row corresponding to the outward
normal vector αi = [αi,x, αi,y, αi,z] of the plane which
contains the ith face of the cuboid and B = [b1, . . . , b6]>

is a 6 × 1 column vector, where each element bi is obtained
by the dot product between αi and a known point on plane i.
For the rest of the paper, we will use the matrices A and B
to denote the system of linear inequalities Ax ≤ B associated
with the rectangular cuboid C.

IV. MISSION PRE-PLANNING

The amount of search-effort which is required in order to
successfully search an object of interest, during an emergency
response mission, is generally determined during the mission
assessment phase [1] which is conducted at the mission
control, prior to the search mission. During the assessment
phase, the rescue team assesses the situation at hand (e.g.,
potential hazards, missing people, importance of the object,
etc.) and specifies the amount of search-effort required for
conducting an efficient and effective search. In this work, the
search-effort is captured by the detection probability (i.e., Eqn.
(4)) issued at the central station, before the mission begins.
A high detection probability allows for detailed and accurate
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snapshots of the object of interest. However, the size of the
FoV inversely decreases with the amount of detail captured in
the acquired images, and as such more snapshots are needed
to cover the whole surface of the object with a high detection
probability.

In order to allow the UAV agent to search the total surface
area of the object of interest with the specified detection
probability, the area around the object is decomposed into
multiple cuboids as illustrated in Fig. 1. In essence, once
the distance d between the agent and the object of interest
is determined according to the specified detection probability
pd(d), the agent’s FoV footprint r× r is computed according
to the agent’s sensing model, as illustrated by step 2 in Fig. 1.
Subsequently, each face of the object of interest is decomposed
into cells of size r × r, forming a 3D grid, as illustrated
by step 3 in the figure. For each cell, an artificial cuboid
is generated and placed at distance d from the center of the
cell as depicted in Fig. 1. Then, by guiding the UAV agent
through all the generated cuboids, we make sure that the total
surface area of each face is searched according to the specified
detection probability. This is because, once the agent resides
within a particular cuboid, the projected camera FoV on the
face’s surface captures the area of the corresponding cell as
illustrated in Fig. 1. The area decomposition process discussed
above, allows us to transform the 3D search problem into an
optimal control problem i.e., finding the UAV control inputs,
such that the agent is guided through all the generated cuboids
in an optimal way.

V. MULTI-AGENT 3D SEARCH PLANNING

In this section we develop a rolling-horizon distributed
model predictive control (DMPC) algorithm [4], [37] for the
cooperative guidance of a team of UAV agents with the
purpose of searching in 3D multiple objects of interest while
avoiding collisions with the obstacles in the environment. Our
DMPC formulation, does not require any explicit coordination
between the UAV agents and thus allows the agents to operate
independently and in parallel with each other. In the proposed
approach the agents can enter and exit the mission space
according to the condition of their batteries and opportunis-
tically cooperate with each other by exchanging information
whenever they are in communication range, optimizing their
future search plans. In particular, the agents in communication
range exchange a) state information i.e., their current location,
b) their search-maps, c) their future search plans and finally
d) their flight time. Based on the exchanged information the
agents seek to optimize their future plans in order to minimize
the duplication of work and improve the search efficiency.

A. Centralized Control
Let us assume that the mission control has issued the re-

quired detection probability and that the mission pre-planning
step discussed in Sec. IV is completed, i.e., the faces of the
object of interest that need to be searched are covered with a
total of N artificial cuboids Cn, n ∈ [1, .., N ].

We assume that a centralized station is in place, where all
the necessary information is being transmitted, and which in
turn decides the control actions for each agent by solving
the 3D search planning problem jointly among all agents.
The centralized formulation of the multi-agent 3D search
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planning problem is shown in problem (P1), where we seek
to obtain the optimal joint control inputs for all agents i.e.,
ujt|t, . . . , u

j
t+T−1|t,∀j ∈M over a rolling planning horizon of

length T time-steps, by solving an open-loop optimal control
problem, with the goal of guiding the agents to visit all cuboids
while ensuring that the work is not duplicated i.e., a cuboid
is not searched by more than one agent. Once the sequence
of joint control inputs is found, the first control inputs ujt|t,∀j
in the sequence are executed by the agents and the procedure
described above is repeated for the subsequent time-steps.

Problem (P1) : Centralized MPC

min
Ut,Y

Jcentralized(Xt,Ut,Y) (5a)

subject to j ∈ {1, .., |M|}, τ ∈ [0, . . . , T − 1]:
xjt+τ+1|t = Φxjt+τ |t + Γujt+τ |t − Γug ∀τ, j (5b)

xjt|t = xjt|t−1 ∀j (5c)

Hxjt+τ+1|t /∈ Cψ ∀τ, ψ, j (5d)

xjt+τ+1|t ∈ X ∀τ, j (5e)

|ujt+τ+1|t| ≤ umax ∀τ, j (5f)

An,lHx
j
t+τ+1|t + (M −Bn,l)bjτ,n,l ≤M ∀τ, n, l (5g)

Lb̃jτ,n −
L∑
l=1

bjτ,n,l ≤ 0 ∀τ, n (5h)

b̂jn ≤
∑
τ

b̃jτ,n ∀n (5i)

yjn ≤ b̂jn + V jt (n) +
∑

i6=j∈M

[
V it (n) + P it (n)

]
∀n, j (5j)

yjn, b
j
τ,n,l, b̃

j
τ,n, b̂

j
n, V

j
t (n), P jt (n) ∈ {0, 1} ∀n, j (5k)

1) Objective Function: In problem (P1) we are interested
in optimizing a system-wide objective function i.e., Eqn.
(5a) over the planning horizon of length T time-steps for
the joint controls over all j ∈ M agents. In (P1), the
bold capital letters indicate quantities over all agents thus
Xt = {X1

t , .., X
|M|
t } is the combined state for all |M| agents

with Xj
t = {xjt+τ+1|t},∀τ ∈ [0, .., T − 1], where the notation

xt+τ+1|t is used here to denote the future (i.e., planned) agent
state at time t+τ+1 based on the current time-step t. Similarly,
Ut = {U1

t , .., U
|M|
t } denotes the agent joint mobility controls

inputs with U jt = {ujt+τ |t},∀τ and finally Y = {Y 1, .., Y |M|}
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are binary variables indicating whether a specific artificial
cuboid Cn has been visited or will be visited in the future
by some agent j with Y j = {yj1, .., yjn}, n ∈ [1, .., N ].

In essence our goal is to find the agent joint control inputs
ujt+τ |t,∀τ, j which will maximize the number of cuboids that
will be visited during the planning horizon. The objective
function can thus be defined as min

Ut,Y
Jcentralized(Xt,Ut,Y) =

min
Ut,Y

w1

M∑
j=1

‖Hxjt+τ?+1|t − x?j‖22+ (6)

w2

M∑
j=1

T−1∑
τ=1

‖ujt+τ |t − u
j
t+τ−1|t‖22 − w3

M∑
j=1

N∑
n=1

yjn

where wi > 0 are tuning weights, τ? ∈ [0, .., T − 1], and
x?j is the centroid of the nearest unvisited cuboid to agent’s
j current location. This is computed as x?j = c(Cn?j ) where
n?j is given by: n?j = arg min

n∈Ñjt
‖Hxjt+τ?+1|t − c(Cn)‖2, with

Ñ j
t denoting agent’s j set of all unvisited cuboids and the

operator c(Cn) returns the centroid of cuboid Cn. Therefore,
the first term in Eqn. (6) guides all agents towards their nearest
unvisited cuboids. The second term minimizes the deviations
between consecutive control inputs over all agents in order to
produce smooth trajectories which the UAV agents can follow
and finally, the last term maximizes the number of cuboids to
be visited by the team of agents over the planning horizon,
indicated by the binary variable yjn which is defined as: yjn =
1 =⇒ ∃τ ∈ [0, .., T − 1] : Hxjt+τ+1|t ∈ Cn

2) Constraints: Eqn. (5b) and Eqn. (5c) are due to the agent
dynamical model assuming a known initial state xjt|t. Then,
Eqn. (5d) defines the obstacle avoidance constraints of agent
j with all obstacles Cψ, ψ ∈ [1, ..,Ψ] in the environment where
Ψ denotes the total number of obstacles present and Cψ, ψ ∈
[1, ..,Ψ] denotes the cuboid representation of obstacle ψ. We
can now say that agent j avoids a collision with an obstacle
ψ ∈ Ψ when: Hxjt+τ+1|t /∈ Cψ, ∀ψ ∈ Ψ,∀τ ∈ {0, . . . , T−1},
which can be implemented with the following constraints:

Aψ,l(Hx
j
t+τ+1|t) > Bψ,l −Mzjτ,ψ,l ∀τ, ψ, l (7a)

L∑
l=1

zjτ,ψ,l ≤ L− 1 ∀τ, ψ (7b)

In Eqn. (7a), Aψ,l and Bψ,l define the coefficients of the equa-
tion of the plane which contains the lth face of the obstacle.
When the system of linear inequalities Aψ,l(Hx

j
t+τ+1|t) <

Bψ,l,∀l ∈ [1, .., L] is true then the agent is contained
within the obstacle, which signifies that a collision has oc-
curred. Thus a collision is avoided when ∃l ∈ {1, . . . , L} :
Aψ,lHx

j
t+τ+1|t > Bψ,l. This is achieved a) with the binary

variable zjτ,ψ,l which counts the number of times the inequality
Aψ,lHx

j
t+τ+1|t > Bψ,l is violated for agent j, regarding the

face l of obstacle ψ and b) with the constraint in Eqn. (7b)
which makes sure that the number of violations is less than
L− 1 where L = 6 is the total number of faces that compose
the obstacle. In Eqn. (7a), M denotes a large positive constant,
also known as big-M [38], which is selected in such a way so
that the constraint shown in Eqn. (7a) is satisfied at all times
when zjτ,ψ,l = 1.

The Eqn. (5e) constrains the agent’s state within the
bounded set X , and the constraint in Eqn. (5f) limits the
values of the control input within the range [−umax,+umax]
as shown. The constraints in Eqn. (5g)-(5i) determine whether
agent j resides inside cuboid Cn at time τ (relative to the
horizon) via the binary variables bjτ,n,l, b̃

j
τ,n and b̂jn. Thus, the

constraints in Eqn. (5g)-(5i) allow the agent to search in 3D
an object of interest by passing through all artificial cuboids
that have been generated for this object. The nth cuboid Cn
is visited by the agent when the system of linear inequalities
An,lHx

j
t+τ+1|t < Bn,l,∀l holds for every face l. Thus the

binary variable bjτ,n,l indicates whether this inequality is true
at time-step τ , cuboid n and face l. When this happens bjτ,n,l
becomes 1, otherwise bjτ,n,l = 0 and the constraint in Eqn. (5g)
is valid with the use of a large positive constant M as shown.
Then the constraint in Eqn. (5h) uses the binary variable b̃jτ,n
to count the number of times bjτ,n,l takes a value of one, and
becomes active when

∑L
l=1 b

j
τ,n,l = 6 which signifies that

agent j resides inside the nth cuboid at time-step τ . Finally,
the constraint in Eqn. (5i) with the use of the binary variable b̂jn
makes sure that the agent has no incentive in visiting the same
cuboid multiple times during the current planning horizon.

Ideally, in this centralized multi-agent formulation we would
like to have the following properties: a) a cuboid Cn that
has been visited by some agent i in the past, is not visited
again by another agent j in the future and, b) if agent i plans
to visit cuboid Cn in the future, then agent j 6= i refrains
from including cuboid Cn in its future plans, thus avoiding
duplication of work. Properties a) and b) are accomplished
by the constraint in Eqn. (5j). More specifically, each agent
j stores all visited cuboids in its local database V jt ∈ {0, 1},
referred to as search-map hereafter, and uses this search-map
in order to avoid visiting cuboids that it has visited in the past,
thus avoiding the duplication of work. Therefore, V jt (n) = 1
only when the cuboid Cn has been visited by the agent at
time prior to t. In all other cases V jt (n) = 0. The binary
variable b̂jn indicates whether cuboid n has been planned to
be visited by agent j during the next planning horizon i.e.,
b̂jn = 1, iff Hxjt+τ+1|t ∈ Cn, τ ∈ [0, . . . , T − 1]. Therefore,
the inequality yjn ≤ b̂jn + V jt (n) provides no incentive for the
agent to visit cuboids that have been visited in the past. In
Eqn. (5j), the future plans of all other agents i 6= j ∈ M are
denoted as P it (n) and defined as: P it (n) = 1 =⇒ ∃ τ ∈
[0, . . . , T − 1] : Hxit+τ+1|t ∈ Cn, otherwise P it (n) = 0.
As shown in (P1) by Eqn. (5j) the past and future plans of
all other agents i 6= j ∈ M denoted by V it (n) and P it (n)
respectively are taken into account when deriving agent’s j
plan by maximizing the binary variable yjn. There are four
possible ways for activating yjn: a) the cuboid Cn has been
planned to be visited by agent j during the next planning
horizon, which is indicated by b̂jn, b) the cuboid has already
been searched by agent j as indicated by V jt (n), c) the cuboid
Cn is included in the future plans of some agent i 6= j
indicated by P it (n) and finally, (d) another agent i 6= j
has already searched cuboid Cn in the past as indicated by
V it (n). Duplication of work occurs when more than one of
{b̂jn, V jt (n), V it (n), P it (n)},∀i 6= j ∈ M becomes active for
a specific cuboid Cn. However, even though the constraint
in Eqn. (5j) remains valid when more than one activations



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, (EARLY ACCESS) DOI: 10.1109/TSMC.2023.3240023 6

occurs, the less-than or equal sign effectively discourages such
scenarios since the value of yjn cannot exceed the maximum
value of 1, and all the involved variables are binary. The
centralized multi-agent formulation presented in problem (P1)
with the availability of all the necessary information, optimally
solves the joint multi-agent search planning problem, while
avoiding the duplication of work by jointly considering the
past and future plans of all agents.

B. Distributed Control
A closer look at the centralized problem (i.e., P1), reveals

the existence of coupled constraints as shown in Eqn. (5j).
Consequently, the centralized formulation requires at each
time-step information (i.e., search maps and future plans)
from all agents in order to produce the joint search plans
by optimizing the objective shown in Eqn. (6). This is pos-
sible in the centralized version of the problem since all the
information is available at the time of planning and moreover
the problem is solved jointly among all agents on a central
system. This ensures that the agents cooperate to minimize
duplication of work. Although, the centralized version of the
problem achieves optimality, it has several drawbacks: a) the
computational complexity increases with the number of agents,
b) it relies on the availability of information from all agents at
every time-step and finally c) it does not accounts for failures
on the central station where the planning process takes place.

The aforementioned drawbacks of the centralized system
are alleviated in this work with the design of a distributed
system [4], however this comes at the cost of optimality. More
specifically, in the proposed distributed control approach we
drop the coupled constraints of Eqn. (5j), and the behavior
of the centralized system is approximated as follows: At each
time-step t, agent j will compute a local search plan without
considering the intentions of other agents, unless N j

t 6= ∅ i.e.,
agent j receives the search plans of other agents i ∈ N j

t inside
its limited communication range. Subsequently, cooperative
search plans are generated in the scenario where two or more
agents cooperate via communication, and exchange their future
intentions. For this reason the constraints of Eqn. (5j) are
only approximated in the proposed distributed system as it
is explained next in more detail. Nevertheless, the proposed
distributed system offers an appealing tradeoff between opti-
mality and computational complexity, as shown later in the
evaluation.

Finally, the proposed distributed search planning framework
is based on the following required key properties: First,
the agents operate autonomously and in parallel with each
other without the need for deliberative coordination. The
term coordination in this work refers to the ability of each
agent to decide its own control inputs independently from
other agents, and without relying on any specific execution
order amongst the cooperative agents (e.g., sequential decision
making/control procedures [20], [39]). In this work we would
like to make sure that the mission will not be interrupted and it
will be completed in the event where one or more agents need
to exit the mission space. Constant communication between
the agents should not be a requirement, rather the agents can
opportunistically communicate and exchange information only
when they are within communication range. Finally, the agents
should cooperate and work towards improving the system-
wide (i.e., collective) objective (i.e., searching all the objects
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Fig. 2. Overview of the proposed search planning framework.

of interest) while at the same time trying to minimize the
duplication of work.

In the distributed formulation of the problem we consider
a team M of agents where each agent j ∈M evolves inside
a bounded surveillance area A, according to the dynamics
in Eqn. (1). Each agent j exhibits a nominal flight time T j
and with probability pjb(t) the agent’s battery is depleted at
time t ≤ T j . When a battery depletion event occurs i.e.,
Bj = 1 the agent must exit the mission and return to its
base station Gj ∈ R3 for recharging as discussed in Sec.
III-B. The subset of active agents (not recharging agents) at
time t is thus denoted as M̃t ⊆ M. Each agent exhibits a
communication range CR for communicating and exchanging
information with nearby agents. More specifically, agent j
receives the following information from all the neighboring
agents i ∈ N j

t at time t: a) agent’s i current state xit|t, b)
agent’s i search-map V it (n), c) agent’s i flight time tiF l and
finally d) its future plan P̂ it (n). An overview of the proposed
cooperative search planning framework is illustrated in Fig. 2.
We should point out here, that the future plan P̂ it (n) of some
agent i which is received by agent j at time t is not the most
recent plan of agent i, since at the time of the communication
agent i has not yet generated its future plan for time t.
Because the agents are synchronized, operate in parallel,
and without coordination, at the time of communication the
agents are not receiving the latest plans of their peers i.e.,
P̂ it (n) = P it−1(n). We are going to refer to P̂ it (n) as the
hypothetical plan of agent i at time t from the point of view
of agent j. Furthermore, P̂ it (n) ∈ {0, 1},∀n and is defined as
P̂ it (n) = 1, if ∃τ ∈ [0, .., T − 1] : Hxit+τ |t−1 ∈ Cn. Hereafter,
we will use the notation τP̂ it (n) to refer to the relative time τ
in the planning horizon for which cuboid n is planned to be
visited i.e., P̂ it (n) = 1 by agent i. We can now describe the
proposed distributed search planning formulation.

1) Objective function: The objective function of the cen-
tralized problem in Eqn. (6) can be decomposed into several
local objectives per agent as:

∑|M̃t|
j=1 J

j
local(X

j
t , U

j
t , Y

j), so
that each active agent j can independently optimize its local
objective function J jlocal(X

j
t , U

j
t , Y

j) while at the same time
the collective effort of the agents optimizes the system wide
objective similarly to the centralized problem as discussed
in Sec. V-A. The objective function of each agent becomes
J jlocal(X

j
t , U

j
t , Y

j):

BjtJ jrecharge(X
j
t ) + (1− Bjt )J jsearch(Xj

t , U
j
t , Y

j) (8)

where Bjt ∈ {0, 1} indicates a battery depletion event which
occurs with probability pjb(t) and at which point the agent
must return to its base station Gj ∈ R3 for recharging by
minimizing J jrecharge(X

j
t ) = ‖Hxjt+τ+1|t−Gj‖22. On the other
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hand when Bjt = 0, the agent j optimizes its search planning
objective J jsearch(Xj

t , U
j
t , Y

j) which is given by:

J jsearch(Xj
t , U

j
t , Y

j) = w1‖Hxjt+τ?+1|t − x?j‖22 + (9)

w2

T−1∑
τ=1

‖ujt+τ |t − u
j
t+τ−1|t‖22 − w3

N∑
n=1

rj(n)yjn

where the first term guides the agent towards the unvisited
cuboids, the second term minimizes the deviations between
consecutive control inputs and finally the third term aims to
maximize the number of cuboids that will be visited in the
future as explained in Sec. V-A. Specifically, x?j = c(Cn?j )
determines the centroid of the nearest cuboid with respect to
agent j, with n?j given by:

n?j =


arg min
n∈Ñj

‖Hxjt+τ?+1|t − c(Cn)‖2, if N j
t = ∅

arg min
Aj

∑
i∈{j∪N jt }

∑
n∈Ñjt

Ωji,nA
j
i,n, o.w. (10)

In particular, when agent j is not in communication range with
other agents i.e., N j

t = ∅, then agent j moves greedily towards
its nearest cuboid as shown above. However, when N j

t 6= ∅,
agent j receives the location of all other agents i.e., Hxit|t, i ∈
N j
t , and hypothesizes what their next target (i.e., cuboid to

be visited) will be. In other words agent j adjusts its next
target according to the hypothesized actions of the agents in
its neighborhood. To do so, agent j solves a local assignment
problem where the objective is to find the cuboids that are
likely to be visited next by the agents in the set N j

t ∪ j. For
this reason the cost matrix Ωji,n is constructed locally at agent
j, and populated with the distances between agent’s i location
Hxit|t and every unvisited cuboid n ∈ Ñ j

t (Ñ j
t denotes the

unvisited cuboids in agent’s j search-map). Then the objective
is to find an assignment matrix Aj , which assigns the agents
to the unvisited cuboids, where Aji,n ∈ {0, 1}, and the sum
of each row and column of Aj does not exceeds the value of
one. Once a solution is found agent j keeps its assigned cuboid
(i.e., extracts n?j from Aj) and discards all other results.

Finally, in the last term (i.e.,
∑
n r

j(n)yjn), yjn is a binary
decision variable which is activated whenever one of the
following is true: a) cuboid n has been visited by agent j
in the past, b) cuboid n has been planned to be visited by
agent j in the current planning horizon or c) some agent
i 6= j has visited cuboid n in the past and this informa-
tion has already been communicated to agent j. The term
rj(n) ∈ {0, 1} is a reward term which is used to include or
exclude cuboid n from the planning process as we will explain
next. Essentially, the notation rj(n)yjn indicates here whether
the decision variable yjn will be included in the optimization.
Since there is no coordination between the agents, and because
the agents operate in parallel it is highly likely that one or
more agents (especially nearby agents) generate plans for
the same cuboids. In addition, each agent j with probability
pjb(t) will exit the mission space due to a depleted battery
event. As a consequence, cuboids that have been planned to
be visited by agent j will be left unvisited in such events.
Thus, the agents need to account for the above scenarios in an
effort to increase the overall search planning performance and
reduce the duplication of work. Let us assume that agent j has
received at time t the hypothetical future plans of all nearby

agents i 6= j ∈ N j
t denoted as P̂ it (n),∀n ∈ N where N is the

total number of cuboids in the environment. Alongside P̂ it (n)
the agent has also received τP̂ it (n), and flight time tiF l for
each agent i ∈ N j

t .
With this information, agent j first computes the probability

that a particular cuboid Cn will not be visited by any agent
that has made plans for it, due to the occurrence of battery
depletion events. More specifically let Wj

t ⊆ N j
t to denote

the subset of agents which have included cuboid n in their
plans transmitted to agent j i.e., P̂ lt (n) = 1,∀l ∈ Wj

t and let
τP̂ lt (n) to denote the relative time τ in the planning horizon
for which agent l ∈ Wj

t is planning to visit cuboid Cn. Agent
j computes the probability that agent l ∈ Wj

t will experience
a battery depletion event before reaching cuboid Cn as:

plF (n) = plb(t
l
F l + τP̂ lt (n)− 1) (11)

where tlF l + τP̂ lt (n) − 1 is the hypothesized arrival time of
agent l at cuboid Cn. Subsequently, the probability of the event
for which all agents l ∈ Wj

t fail to reach cuboid Cn due to
depleted batteries and agent j does not runs out of battery
during its planning horizon, is computed as:

p̂jF (n) =
(

1− pjb(t+ T )
) |Wj

t |∏
l=1

plF (n) (12)

The probability in Eqn. (12) is computed by agent j with
information received from its communication neighborhood
and allows the agent to determine whether a particular cuboid
needs to be included in its future plans, given the hypothe-
sized battery depletion events of other agents. The value of
p̂jF (n) ∈ [0, 1] indicates the probability with which agent j
should include cuboid n in its future plans.

As we have already mentioned, the plans received by agent
j from other agents inside its communication neighborhood
are not necessarily up-to-date and could have been changed.
For this reason agent j takes into account the plans of other
agents only with certain probability. More specifically, the
expected number of agents l ∈ Wj

t that will reach cuboid
n during the next planning horizon can be computed as:
m̂(n) =

∑|Wj |
l=1 (1−plF (n)). Based on the expected number of

agents m̂(n) that agent j hypothesizes that will reach cuboid
n in the future, agent j includes cuboid n in its future plans
with probability which is given by:

p̂jC(m̂(n)) =

{
1− 1

1+αj2e
−βj2(m̂(n)−αj2)

, if pjb(t+ T ) > 0.5

0, o.w
(13)

where βj2 and αj2 are design parameters. In essence, Eqn.
(13) expresses the probability that a particular cuboid n will
be included in agent’s j plan conditioned on the expected
number of agents that also plan to visit the same cuboid. This
probability decreases with the expected number of agents that
plan to visit a particular cuboid i.e., agent j probabilistically
refrains from visiting cuboid n when a large number of agents
are expected to visit n as well. The reward rj(n) shown in
Eqn. (9) can now be defined as:

rj(n) =

{
1, with probability max{p̂jF (n), p̂jC(m̂(n))}
0, otherwise

(14)
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Eqn. (14) is activated when ∀ l ∈ Wj
t : P̂ lt (n) = 1. On the

other hand, when no agent l ∈ Wj
t has included cuboid n in

its plans then rj(n) = 1. Additionally, when N j
t = ∅ then

rj(n) = 1,∀n.
To summarize each agent j ∈ M̃t solves the distributed

MPC problem shown in (P2) by optimizing their local objec-
tive function i.e., Eqn. (8) with respect to their own control
inputs U jt and binary variables Y j . In problem (P2) we assume
that there are q ∈ Q objects of interest that need to be searched
by the team of agents, and that each object of interest is
searched when all Cqn, n ∈ [1, .., Nq] cuboids are visited by
at least one agent. Moreover, the agents must avoid collisions
with all ψ ∈ Ψ obstacles in the environment, including the
objects of interest.

Problem (P2) : Distributed MPC

min
Ujt ,Y

j

J jlocal(X
j
t , U

j
t , Y

j) (15a)

subject to τ ∈ [0, . . . , T − 1]:
xjt+τ+1|t = Φxjt+τ |t + Γujt+τ |t − Γug ∀τ (15b)

xjt|t = xjt|t−1 (15c)

xjt+τ+1|t ∈ X ∀τ (15d)

|ujt+τ+1|t| ≤ umax ∀τ (15e)

Aq,n,lHx
j
t+τ+1|t +

(M −Bq,n,l)bjτ,q,n,l ≤M ∀τ, q, n, l (15f)

Lb̃jτ,q,n −
L∑
l=1

bjτ,q,n,l ≤ 0 ∀τ, q, n (15g)

b̂jq,n ≤
∑
τ

b̃jτ,q,n ∀q, n (15h)

V jt (q, n) = V jt (q, n) +
∑

i 6=j∈N jt

V it (q, n) ∀q, n (15i)

yjq,n ≤ b̂jq,n + V jt (q, n) ∀q, n (15j)

Aψ,lHx
j
t+τ+1|t > Bψ,l −Mzjτ,ψ,l ∀τ, ψ, l (15k)

L∑
l=1

zjτ,ψ,l ≤ L− 1 ∀τ, ψ (15l)

2) Constraints: In problem (P2) each agent j constructs
its future trajectory xjt+τ+1|t over the rolling horizon τ ∈
[0, . . . , T−1] of length T . The constraints in Eqn. (15b) - (15e)
are due to the agent dynamical model. Then, the constraints
in Eqn. (15f) - (15g) check whether the nth cuboid (i.e., Cqn),
of the object of interest q, has been planned to be visited at
time t + τ + 1|t by the agent. To do this, we use the binary
variables bjτ,q,n,l and b̃jτ,q,n where l ∈ [1, .., L] denotes the
cuboid faces. The constraint in Eqn. (15h) discourages agent j
to include in its plans cuboid n of the object of interest q more
than once during the planning horizon. Then the constraint
in Eqn. (15i) updates agent’s j search-map V jt (q, n) with
information received from other agents i ∈ N j

t . When agent
j has no agents inside its communication range N j

t = ∅ then
V jt (q, n) is not updated with information from other agents.
Subsequently, the constraint in Eqn. (15j) is used to give no

incentive for agent j to visit cuboid n of the object of interest
q, if n has been visited in the past (by agent j or any other
agent which has exchanged information with agent j at some
point in time). The constraints in Eqn. (15k) - (15l) define
collision avoidance constraints with the obstacles ψ ∈ Ψ.

VI. EVALUATION

The experimental setup used for the evaluation of the pro-
posed system is as follows: The agent dynamics are expressed
by Eqn. (1) with ∆T = 1s, agent mass m = 3.35kg and air
resistance coefficient η = 0.2. The applied control input is
bounded as |ut| ≤ 35N , the agent velocity is bounded within
|ẋ| ≤ 15m/s, and the agent’s position is bounded within the
physical limits of the surveillance areaA. The agent FoV angle
φ is set at 60deg. Simulations were conducted on an 3.5GHz
dual core CPU running the Gurobi V9 MIQP solver.

A. Mission Pre-planning
First we demonstrate the mission-preplanning step which is

depicted in Fig. 3(a)-(c). As we have discussed in Sec. IV,
in the mission pre-planning step, the mission control at the
central station specifies the amount of search-effort required
for efficiently searching an object of interest, which in this
work is captured by the detection probability. In this scenario
we assume that the profile of the detection probability is given
by Eqn. (4) with dmin = 17m and dmax = 90m as shown in
Fig. 3(a). Subsequently, Fig. 3(b) shows an example of the area
decomposition step for 3 different detection probabilities i.e.,
p1
d(d1), p2

d(d2) and p3
d(d3), where p1

d(d1) = 1 is the maximum
detection probability, p2

d(d2) = 0.88 and p3
d(d3) = 0.53

indicated by the green, blue and red colors, respectively. Once
the central station issues the required detection probability, the
distance (i.e., d1, d2 or d3) that the UAV agent must maintain
with the object of interest is determined from Eqn. (4) and the
FoV footprint is computed according to the agent’s sensing
model. In the illustrated scenario, p1

d(d1), p2
d(d2) and p3

d(d3)
is achieved at distances d1 = 17m, d2 = 26m and d3 = 52m,
respectively. The agent’s FoV area for d1 is approximately
20m×20m, whereas for d2 and d3 the FoV sizes are 30m×30m
and 60m× 60m, respectively.

Let us now assume that a large structure or building, with
dimensions 60m×60m×60m as shown in Fig. 3(b), is on fire
and thus all its lateral faces must be searched to determine if
there are trapped people inside. Each one of the faces of the
object of interest is decomposed into multiple cells according
to the agent’s FoV footprint, forming a grid as shown in
the figure. For p1

d(d1) each face is decomposed into 9 cells
shown in green color, for p2

d(d2) each face is decomposed
into 4 cells shown with blue color and finally for p3

d(d3)
the agent’s FoV area captures the whole face of the object
of interest as shown with red color in Fig. 3(b) and thus
one cell contains the entire face. Finally, depending on the
required detection probability, for each cell, an artificial cuboid
is generated and placed in front of the cell’s center, at the
distance which the agent’s FoV area matches the area of the
cell. This is depicted in 2D and 3D view in Fig. 3(c), where the
green, blue and red cuboids are associated with the detection
probabilities p1

d(d1), p2
d(d2), and p3

d(d3) respectively and are
placed at distances d1 = 17m, d2 = 26m, and d3 = 52m
respectively.
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Fig. 3. The figure illustrates: (a)-(c) the mission-preplanning step, (d)-(e) the generated 3D search plan for a single UAV agent.

To summarize, the UAV agent is required to pass from a
total of 36 cuboids (i.e., 9 cuboids per face) in order to search
the 4 faces (shown in Fig. 3(b)) of the object of interest with
a detection probability of p1

d(d1) = 1. On the other hand,
when the detection probability is set to p2

d(d2) = 0.88 the
agent needs to pass from 16 artificial cuboids and finally with
a detection probability of p3

d(d3) = 0.53 only 4 cuboids need
to be visited.

Once the mission-preplanning step is completed, the 3D
search planning problem is transformed into an optimal control
problem where the objective is to guide the UAV agents
through all the generated artificial cuboids. Figure 3(d)(e)
shows the output of the rolling-horizon model predictive
control formulation for a single agent, obtained from problem
(P1) (problems (P1) and (P2) are equivalent in this case and
produce the same result). The objective here is to search the
object of interest discussed in the previous paragraph with
the maximum detection probability i.e., p1

d(d1) = 1. In this
setting, the agent needs to visit a total of 36 cuboids around
the object of interest shown in green color in Fig. 3(d)(e).
The agent’s home depot is shown with a light green box
and its initial state is x0 = [160, 200, 5, 0, 0, 0]. The size of
the surveillance region is 300m× 300m× 80m, the planning
horizon T is set at 10 time-steps, the weights w1, w2, and w3

of the objective function in Eqn. (6) are set to 0.0001, 0.0001,
and 0.3 respectively and finally τ? = 3.

Figure 3(d) shows the agent’s trajectory at time-step 11.
The agent’s executed trajectory is denoted with red diamonds
and the agent’s predicted trajectory i.e., xt+τ+1|t, t = 11, τ ∈
[0, .., 9] is marked with red circles. As shown in the figure, the
agent maximizes the number of cuboids to be visited within
its planning horizon. Figure 3(e) on the other hand, shows the
final trajectory of the agent which took place over 75 time-
steps. As it is shown the agent visits all the generated cuboids,
forming a spiral trajectory.

B. Distributed 3D Search Planning
Next we analyze the performance of the proposed dis-

tributed 3D search planning approach. We begin our evalu-
ation, with an illustrative scenario shown in Fig. 4, where 4
agents are tasked to search 2 objects of interest with sizes
60m × 60m × 60m each. In this scenario the surveillance
region has a size of 250m × 400m × 80m and the agents

(a) (b)

Fig. 4. Distributed Search Planning with 4 cooperative UAV agents.

are required to search the objects of interest with a detection
probability of p2

d(d2) = 0.88, which results in the generation
of 4 cuboids per face as shown in Fig. 4(a). In order to
search the 4 faces of each object of interest, as depicted
in the figure, the agents need to visit 32 cuboids in total
(colored in cyan). The 4 agents shown in purple, red, green
and blue depart from their home depots as shown in the figure
and execute the distributed MPC program shown in (P2) to
produce the search trajectories illustrated in Fig. 4(b). We
should mention that for this experiment, the parameters αj1
and βj1 of Eqn. (3) have been set to 100 and 0.3 respectively
for all agents. Similarly, the parameters αj2 and, βj2 of Eqn.
(13) have been set to 2 and 0.5 respectively for all agents and
the communication range CR was set to 100m. All the other
parameters remain unchanged. The initial states of the agents
are x1

0 = [166, 235, 5, 0, 0, 0], x2
0 = [185, 235, 5, 0, 0, 0],

x3
0 = [165, 215, 5, 0, 0, 0], and x4

0 = [185, 215, 5, 0, 0, 0] and
the planning horizon is T = 10 time-steps. As it is shown in
the figure, the agents work cooperatively to search the objects
of interest in a distributed fashion. In particular we observe that
the agents are divided into two teams i.e., the green-purple
team and the blue-red team, with each team searching one
object of interest. In this scenario all 32 cuboids are visited
by the agents in 48 time-steps.

The next experiment aims to demonstrate the cooperative
behavior of the system in the presence of obstacles. This exper-
iment is depicted in Fig. 5, where 2 cooperative UAV agents,
denoted with red and blue color, operate inside a surveillance
region with dimensions 500m×400m×80m. The agents initial
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ξ2

Fig. 5. Searching with 2 cooperative UAV agents in the presence of obstacles.

state are x1
0 = [85, 215, 5, 0, 0, 0] and x2

0 = [485, 215, 5, 0, 0, 0]
for the red and blue agents respectively. The agents collaborate
in order to search a single object of interest (by visiting a total
of 16 artificial cuboids) located between two obstacles ψ1 and
ψ2 as as depicted in Fig. 5(a). The height of obstacle ψ1 is
set at 80m (equal to the maximum height of the surveillance
region), and the height of obstacle ξ2 is 30m. As shown in the
figure, each agent manages to search 2 of the object’s faces,
and thus in total 4 faces are searched (i.e., all 16 cuboids are
visited by the agents as shown). More importantly, the agents
avoid the obstacles in the environment in their effort to reach
the object of interest.

The next series of experiments aims to investigate the impact
of: a) the number of agents |M|, b) the communication range
CR, and finally c) the parameters α1 and β1 of the agent’s
battery profile i.e., Eqn. (3), on the mission completion time
i.e., the amount of time required for searching all objects of
interest. For this experiment we have used the environmental
set-up shown in Fig. 4, with two objects of interest of sizes
60m× 60m× 60m each, inside the surveillance region of size
400m×400m×80m and with a detection probability of pd =
0.88, which results in the generation of 32 artificial cuboids in
total. In this test we have experiment with various parameter
configurations as follows: the total number of available agents
|M| varies in the set {3, 5, 7, 9, 11}, the communication range
CR takes values in the set {50m, 100m, 250m} and two
different battery profiles settings have been used i.e., with the
parameter α1 in the range α1 = [20, 40] for battery profile
1 and α1 = [70, 90] for battery profile 2. The parameter
β1 is kept fixed at β1 = 0.3. The agent recharging time
tR is sampled uniformly from the interval [5, 10]. We have
conducted 50 Monte Carlo (MC) trials for each parameter
combination, where we randomly initialize the agents inside
the surveillance region and we let the system (i.e., problem
(P2)) to run, logging the mission completion time and the
number of active agents per time-step. The averaged results
for the different configurations are illustrated in Fig. 6. More
specifically, Fig. 6(a) shows the average mission completion
time for different agent team sizes and various communication
ranges for battery profile 1. For this experiment, the battery
profile parameter α1, for each agent is sampled uniformly
within the interval [20, 40]. On the other hand, in Fig. 6(b) the
same configuration scenario is simulated for battery profile 2,
in which α1 is sampled uniformly within the interval [70, 90].
The conditional probability distributions of the two battery
profiles are shown in Fig. 6(c) with black and red colors, for
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Fig. 6. The figure shows the search planning performance for different
parameter configurations of the proposed approach.

profile 1 and 2, respectively. As we can observe from Fig. 6(a)
and Fig. 6(b), the average mission time decreases as the num-
ber of agents increases. Additionally, these results also show
the impact of the communication range on the performance
of the system. As the communication range increases, the
cooperation between the agents also increases which results
in improved mission execution times. Interestingly, we can
observe that a large communication range primarily benefits
small teams, for which the agents are sparse and scattered
within the surveillance region. Fig. 6(b), shows a similar
behavior for battery profile 2. However, in this scenario the
battery depletion events are not as frequent, compared to
the battery depletion events obtained with battery profile 1.
As a result, the average number of active agents per time-
step, participating in the mission is larger, which improves
the mission execution times as shown. Figure 6(d), shows
the average number of active agents per time-step for the
two different battery profiles. As it is shown, the frequent
battery depletion events caused with battery profile 1, makes
the number of agents that participate in the mission to fluctuate
significantly, which can potentially decrease the system’s per-
formance. Nevertheless, the results show the flexibility of the
proposed distributed search planning approach to cope with a
dynamically varying number of agents.

The next experiment, aims to demonstrate more clearly the
effect of the battery profile and the communication range,
on the performance of the system. In this experiment, we
used the setup shown in Fig. 4, with 4 agents initialized
at x1

0 = [166, 235, 5, 0, 0, 0], x2
0 = [185, 235, 5, 0, 0, 0],

x3
0 = [165, 215, 5, 0, 0, 0], and x4

0 = [185, 215, 5, 0, 0, 0],
and with the objects of interest as shown in the figure. The
agent recharging time tR is sampled uniformly within the
interval [1, 5] and the rest of the parameters remain unchanged.
We run the system with the following configurations a)
(CR = 50m, α1 = 10), b) (CR = 50m, α1 = 20), c)
(CR = 250m, α1 = 10) and, d) (CR = 250m, α1 = 20),
and we monitor the percentage of visited cuboids over time
as shown in Fig. 7(a). Figure 7(b) shows the number of
active agents in each time-step, for the four configurations.
As it is shown in Fig. 7(a) with the red and blue solid
lines, the system’s performance increases dramatically with
the reduction of battery depletion events. This is also evident
by the number of active agents shown in Fig. 7(b). When
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Fig. 7. The figure shows the percentage of visited cuboids over time
and the number of active agents in each time-step, for different parameter
configurations, for a search planning scenario with 4 agents.

α1 = 10, the agents enter and exit the mission space very
frequently as shown by red solid and dotted lines, which causes
delays in the mission execution time. Here it is also evident the
importance of the communication range on the performance
of the system. The increased communication range i.e., dotted
lines, significantly improves the mission execution times, as
shown in the figure.

The next experiment compares the performance of the
proposed distributed search planning approach, with the cen-
tralized formulation of the problem discussed in Sec. V-A,
and with the distributed planning framework presented in [39]
which requires coordination between the agents. Specifically,
in [39] the agents execute their plans in a sequential fashion
one after the other. In order to evaluate the 3 approaches
discussed above we have used the following simulation setup:
We have generated a surveillance region of size 300m×300m×
80m, with one object of interest of size 60m × 60m × 60m,
centered at (x, y) = (175, 130), with 16 artificial cuboids.
The agents have a communication range of 430m, and no
battery depletion events occur during searching. We conduct
the experiment with αj1 = 100, βj1 = 0.3, αj2 = 1.5,
βj2 = 1, and all other parameters as set as previously. We
have conducted 50 MC trials, where 3 and 5 agents are
uniformly spawned inside the surveillance region. Fig. 8 shows
the average mission completion time (i.e. the time required so
that all cuboids are searched) for the 3 approaches. For the
case of 3 agents, Fig. 8, shows an average mission completion
time of 24.4 seconds for the proposed distributed approach
without coordination, approximately 21.8 seconds for the
distributed framework with coordination, and 20.9 seconds for
the centralized approach. Similar results have been obtained
for the case of 5 agents, as shown in Fig. 8. In summary, the
centralized approach outperforms both distributed approaches
in terms of mission completion time, and the coordination
between the agents seems to provide a slight advantage over
the proposed approach. However, both competing techniques
require constant communication amongst the agents in or-
der to produce plans. The centralized approach requires at
each time-step all information to be transmitted to a central
station. Similarly, the distributed approach with coordination
is not flexible in terms of communication since it requires
information exchange among all pairs of agents at each time-
step, which also prohibits this technique from operating at
high frequencies for large number of agents. In addition, the
centralized approach does not scales well with the number
of agents as shown in the next section, and the distributed
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Fig. 8. Performance comparison of the proposed distributed search planning
approach with competing techniques.

TABLE I
COMPUTATIONAL COMPLEXITY

Avg. Execution Time (sec)
# Agents Horizon Length Centralized Distributed

3 3 0.8969 0.0022
5 3 2.1220 0.0025
3 7 11.5956 0.0756
5 7 56.3984 0.0787

approach with coordination is not robust to agent failures as
opposed to the proposed approach. Consequently, the perfor-
mance of the proposed distributed search planning framework
seems reasonable for a system which does not require any
form of coordination between the agents. Additionally, in the
proposed framework the agents can enter and exit the mission
space at random times and can communicate opportunistically,
properties which fit with the application scenario studied in
this work.

C. Computational Complexity

The main factors that drive its computational complexity of
the problem (P1) are a) the length of the planning horizon T ,
b) the number of agents |M| which are involved in searching
and c) the number of cuboids N that need to be searched. This
is also evident by the number of binary variables required by
the mixed integer quadratic program (MIQP) as shown in Eqn.
(5k). On the other hand, the computational complexity of the
distributed search planning approach shown in Problem (P2),
only grows with the length of the planning horizon T and,
with the number of cuboids N that need to be searched.

In this test we have run the centralized and distributed
formulation of the proposed approach for 3 and 7 agents,
with planning horizon lengths of 3 and 7 time-steps. For each
(Number of Agents, Horizon Length) combination 20 trials
were conducted, with the agents being randomly initialized
inside a square area of size 20m by 20m, located between
two objects of interest as shown in Fig. 4. In this experiment
the number of cuboids N that need to be searched was kept
constant with N = 32. The rest of the parameters were
set according to the first paragraph of Sec. VI-B. Table I
summarizes the results of this experiment in terms of the
execution time (i.e., the time required by the solver to find
the optimal solution). In particular, Table I shows the average
execution time for each combination of the parameters for
the centralized and distributed controllers. The results verify
our previous discussion and show that the computational
complexity of the centralized formulation does not scale well
with the number of agents, as compared to the proposed
distributed approach.
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VII. CONCLUSION

We have proposed, a novel distributed search-planning
framework, where a dynamically varying number of au-
tonomous agents cooperate in order to search multiple objects
of interest in 3D. The proposed distributed model predictive
control (MPC) approach allows the generation of cooperative
search trajectories over a finite planning horizon and enables
the agents to operate without coordination, optimizing their
plans on-line for maximizing the collective search planning
performance.
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