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Abstract—Growing interest in autonomous driving (AD) and
intelligent vehicles (IVs) is fueled by their promise for en-
hanced safety, efficiency, and economic benefits. While previous
surveys have captured progress in this field, a comprehensive
and forward-looking summary is needed. Our work fills this
gap through three distinct articles. The first part, a ”Survey
of Surveys” (SoS), outlines the history, surveys, ethics, and
future directions of AD and IV technologies. The second part,
“’Milestones in Autonomous Driving and Intelligent Vehicles Part
I: Control, Computing System Design, Communication, HD Map,
Testing, and Human Behaviors” delves into the development of
control, computing system, communication, HD map, testing,
and human behaviors in IVs. This part, the third part, reviews
perception and planning in the context of IVs. Aiming to provide
a comprehensive overview of the latest advancements in AD
and IVs, this work caters to both newcomers and seasoned
researchers. By integrating the SoS and Part I, we offer unique
insights and strive to serve as a bridge between past achievements
and future possibilities in this dynamic field.

Index Terms—Autonomous Driving, Intelligent Vehicles, Per-
ception, Planning, Control, System Design, Communication, HD
Map, Testing, Human Behaviors, Survey of Surveys.

I. INTRODUCTION

UTONOMOUS driving (AD) and intelligent vehicles

(IVs) have recently attracted significant attention from
academia as well as industry because of a range of potential
benefits. Surveys on AD and IVs occupy an essential position
in gathering research achievements, generalizing entire tech-
nology development, and forecasting future trends. However, a
large majority of surveys only focus on specific tasks and lack
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systematic summaries and research directions in the future.
As a result, they may have a negative impact on conducting
research for abecedarians. Our work consists of 3 independent
articles including a Survey of Surveys (SoS) and two
surveys on crucial technologies of AD and IVs. Here is the
third part (Part II of the survey) to systematically review the
development of perception and planning. Combining with the
SoS and the second part (Part I of the survey on control,
system design, communication, High Definition map (HD
map), testing, and human behaviors in IVs) [2], we expect
that our work can be considered as a bridge between past and
future for AD and IVs.

According to the different tasks in AD, we divide them into
8 sub-sections, perception, planning, control, system design,
communication, HD map, testing, and human behaviors in
IVs as Fig. m In Part I, we briefly introduce the function of
each task and the intelligent levels for AD. Here, we describe
classical applications in different AD scenes including urban
roads, park logistics, warehouses, ports, intelligent mines,
agriculture, wildlife rescue and tunnel search. It is more
common for citizens to realize the AD in urban roads such
as private IVs, AD taxis and buses. IVs in parts and ports
require controllers to follow specific rules and achieve high
efficiency. Warehouses and mines are classic closed scenes
in indoor and outdoor environments. Modified IVs or called
professional intelligent robots can be employed in wild to
replace the human harbour in agricultural operations, wildlife
rescue, tunnel search, etc. Indeed, AD and IVs could conduct
a number of tasks in different scenes and play a crucial role
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Fig. 2. The relationship of sub-tasks in perception, planning and the
relationship of perception, planning and control

in our daily life.

In this paper, we consider 2 sub-sections as independent
chapters, and each of them includes task definition, functional
divisions, novel ideas, and a detailed introduction to milestones
of AD and IVs, and the relationship of perception, planning
and control can be seen in Fig. 2] The most important thing is
that the research of them have rapidly developed for a decade
and now entered a bottleneck period. We wish this article could
be considered as a comprehensive summary for abecedarians
and bring novel and diverse insights for researchers to make
breakthroughs. We summarize three contributions of this arti-
cle:

1. We provide a more systematic, comprehensive, and
novel survey of crucial technology development with mile-
stones on AD and IVs.

2. We introduce a number of deployment details, test-
ing methods and unique insights throughout each technology
section.

3. We conduct a systematic study that attempts to be a
bridge between past and future on AD and Vs, and this article
is the third part of our whole research (Part II for the survey).

II. PERCEPTION

Perception is a fundamental module for AD. This module
provides surrounding environmental information to the ego-
vehicle. As can be seen in Fig. [3| perception is divided
into localization, object detection, scene understanding, target
prediction, and tracking.

A. Localization

Localization is the technology for the driving platform
to obtain its own position and attitude. It is an important
prerequisite for the planning and control [3]. Currently, lo-
calization strategies are divided into four categories: Global
Navigation Satellite System (GNSS) and Inertial Measurement
Unit (IMU), visual Simultaneously Localization and Mapping
(SLAM), LiDAR SLAM, and fusion-based SLAM [4].

1) GNSS and IMU: The GNSS [5] is a space-based radio
navigation and localization system that can provide users
with three-dimensional (3D) coordinates, velocity, and time
information on the earth’s surface. The IMU [6] is commonly
composed of three-axis accelerometers and gyroscopes (ad-
ditional three-axis magnetometers for 9 Degree of Freedom
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Fig. 3. The structure of perception methodology

(DOF) IMUs). By updating the localization information in low
frequency from GNSS with dynamic states from IMUs, the
platform could obtain the localization info in a high update
frequency. Although the fusing the GNSS and IMU method
is all-weather, the satellite signals will be interfered with by
urban buildings [7]].

2) Visual SLAM: Visual SLAM adopts the change of
frames from cameras to estimate the ego-vehicle motion and
this type of algorithms is divided into three categories by sen-
sors: the monocular, multiply views, and depth. Specifically,
visual SLAM algorithms only require images as inputs that
means the cost of the localization system is relatively cheap
[8]. However, they are dependent on abundant features and
slight variation of illumination. In addition, optimization is
a crucial module for visual localization system which updates
each frame estimation after considering the global information
and optimization methods include filter-based and graph-based
9.

There are two typical categories of visual SLAM from
the perspective of feature extraction, key points [10H13] and
optical flow methods [14H17]]. Key points methods utilize
points extraction approaches like SIFT, SURF, ORB, and
descriptors to detect the same characteristics at different
images and then compute relative motion among the frames.
As points extraction approaches can extract crucial points
stably and accurately, key points visual SLAM systems can
offer significant benefits in structured roads and urban areas.
However, the system may suffer difficulties when operating
on an unstructured road or facing a flat white wall. Besides,
earlier algorithms could not run in real-time and ignored most
of the pixel information in the image. Optical flow methods
assume that the photometric is invariant among the frames
and attempt to estimate the camera motion by minimizing
the photometric error on the images. This kind of method
has several advantages as follows: 1) low computing overhead
and high real-time performance; 2) weak dependence on key
points; 3) considering whole pixels in the frames. However,
due to the photometric assumption, it is sensitive for optical
flow methods to the luminosity change between two images.
visual SLAM systems also could be categorized into filter-
based and optimization-based strategies from the optimization
perspective, however, graph-based optimization methods have
made a number of breakthroughs in accuracy and efficiency.
Thus, researchers will continue to focus on the latter point in
the future.
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3) LiDAR SLAM: Compared with the visual SLAM meth-
ods, LiDAR SLAM systems detect surrounding environments
actively with accurate 3D information because of the LIDARs
properties. Similar to visual systems, the LIDAR SLAM also
could be categorized into 2D such as Gmapping, Cartographer,
Karto, and 3D [18H21] methods by sensors or filter-based
like Gmapping and optimization-based by the process of
optimization. Gmapping adopts the particle filter approach and
separates the localization and mapping processes. During the
optimization, each particle is responsible for maintaining a
map. LOAM [18] operates two parallel algorithms, one is
to calculate the motion transformation between frames in a
low frequency through point cloud matching methods, and the
other attempts to construct a map and correct the odometry
in a high frequency. Segmap [21]] utilizes deep neural net-
works to extract semantic feature information, which could
reduce the computational resource consumption, and solve the
data compression problem in real-time for indoor intelligent
robotics and IVs. SUMA [20] transfers the point clouds into
2D space and adopts an extended RGB-D SLAM structure
to generate a local map. Besides, it maintains and updates
the surfel map by Iterative Closest Point (ICP) matching
method for point clouds. LiDAR SLAM systems have the
advantages of high accuracy, achieving a dense map, and weak
dependency on lightness. However, no semantic information
and environmental disturbance are two main challenges for
LiDAR SLAM systems. In addition, researchers have to spend
lots of time and effort to maintain and repair LiDARSs installed
on the IVs.

4) Fusion-based SLAM: In order to avoid the problems
with failures in single sensor or low robustness, fusing
multiple modalities data methods have been introduced by
researchers including visual-inertial [22-H24]], LiDAR-inertial
[25-28]], visual-LiDAR inertial [29-31]] and other fusion, such
as adding sonars [32] or radars [33]], SLAM approaches. We
found that fusion methods usually introduce IMU data with
higher updating frequency to SLAM systems. Loose fusion
methods [18, 29]] treat the external observation data from
cameras or LIDARs and the internal motion data from IMUs
as two independent modules, while the tight fusion approaches
[24] 126) 130, 31] design a unit optimization module to solve
and fuse multiple modalities data. Former methods could be
considered as extended visual or LIDAR SLAM systems and
are friendly for researchers to deploy on testing platforms and
IVs. However, to increase the Robustness and adaptability, the
tight fusion strategies provide appropriate solutions including
introducing bundle adjustment into the visual odometry system
[30] and adopting association optimization [31]]. In summary,
fusion-based SLAM methods solve several difficulties for a
single sensor but still introduce a few challenges for jointing
systems such as calibration, synchronization, and complex
processing. The advantages and disadvantages of different
methods for localization are shown in TABLE [IL

B. Object Detection

The purpose of object detection is to detect the static and
dynamic targets in the field of view of the sensors. The results
of some detection tasks can be seen in Fig. [

TABLE I
THE ADVANTAGES AND DISADVANTAGES OF DIFFERENT LOCALIZATION
METHODS
Method  Advantages Disadvantages
1.All-weather 1.Site requirements
GNSS 2.Easy configuration 2.GPS update frequency
3.Non external sensors  3.High-cost (high accuracy)
1.Lightness effect
. 1.Economy o
Visual . - 2.Similar feature
2.Rich semantic info
3.Low accuracy
1. Hich accurac 1.Non semantic info
LiDAR g ¥ 2.Environmental disturbance
2.Dense map .
3.High-cost
. 1.Complexity
Fusion 1. High accuracy 2.Calibration

2.Robustness 3.Synchronization

1) Lane Detection: Lane Detection is to recognize the lane
in the views of sensors, to assist driving. For universal process,
it involves three sections, including image pre-processing, lane
detection, and tracking. The purpose of image pre-processing,
such as Region of Interest (Rol) extraction, inverse perspective
mapping, and segmentation, is to reduce the computing cost
and eliminate noise. The methods of lane detection and
tracking can be divided into the Computer Vision based (CV-
based) method and the learning-based method [34]].

CV-based methods in lane detection are broadly utilized
nowadays, primarily because of their light computing cost
and easy reproduction. A morphological top-hat transform is
utilized to eliminate the irrelevant objects in the field [35].
After that, the Hough transform is applied to extract the edge
pixel of the image and construct the straight lines. However,
the disadvantage is that it is hard to detect the curve lines, so a
number of researchers have introduced some effective methods
on the Hough transform [35]. Some other lines estimation
approaches involve the Gaussian Mixture Models (GMM)
[36], Random Sample Consensus (RANSAC) [37], Kalman
filter [38] in complex scenes.

Learning-based methods can be deployed on abundant
scenes but they need a great deal of data to train the network
with plenty of parameters. [39] attempts to design novel
multiple sub-headers structures to improve the lane detection
performance. To our knowledge, lane detection is integrated
into the Advanced Driver Assistance Systems (ADAS) to keep
the lane or follow the former vehicle, and researchers pay
more attention to 3D lanes [40]], lanes in closed areas, and
unstructured roads.

2) Driving Region Detection: Driving region detection in-
creases the obstacle information compared to lane detection,
which offers the base information for obstacle avoidance
function and path planning tasks. We also categorize this task
into the CV-based and learning-based approaches.

Driving region detection can be converted to lane detection
when the road surface is not obscured by obstacles. Otherwise,
it can be seen as a combination of lane detection and 2D target
detection. When considering driving region detection as an
independent task, it needs to distinguish the road pixel from
targets and non-driving regions. The color histogram can meet
the requirement and some researchers develop methods on
color [41] and efficiency [42] to tackle the poor performance
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Fig. 4. The crucial tasks in the object detection for AD. The top-left, top-
right, bottom-left, bottom-right figure represents the lane detection, drivable
region, traffic sign detection and 3D object detection.

on color varying and low effect of it. Region growth methods
are more robust than the color histogram methods.

The learning-based methods in driving region detection
are similar to image segmentation. For machine learning
algorithms, features such as the RGB color, Walsh Hadamard,
Histogram of Oriented Gradients (HOG), Local Binary Pattern
(LBP), Haar, and LUV channel, can be extracted by the feature
extractors and the classification header, such as Support Vector
Machine (SVM), Conditional Random Field (CRF), to obtain
the final results. The deep neural network can replace the
feature extractors and some improvements, such as employing
the large visual regions convolutional kernels [44], connection
by multiple layers [45]], to achieve competitive performance.
We found that learning-based driving region detection results
are usually one of the branches of the scene understanding task
and researchers attempt to tackle a few challenges including
2D-3D transformation, complex driving regions, etc.

3) Traffic Sign Detection: Traffic signs contain plenty of
crucial traffic information, such as road conditions, speed lim-
itations, driving behavior restrictions, and other information.
We also divide it into CV-based approaches and learning-based
approaches.

For CV-based detection approaches, the conditions for the
approximate color composition of traffic signs in a specific
region (in a certain country or city) are similar. In the relatively
simple original image, better results can be obtained by thresh-
old separation of specific colors, which can be obtained by
adopting the color space distribution, segmentation head, and
the SVM classifier [46]. Some research develops the methods
by introducing extra color channels, such as the normal RGB
model, the dynamic color threshold, the probability model,
and edge information. However, these approaches are hard to
solve the problem caused by illumination, fading, occlusion,
and bad weather. Some researchers tried to utilize the though
transform on the triangle [47], circular traffic signs [48] or a
coding gradient detection method [49], to handle occlusion and
conjunction. The shape-based detection method can solve the
problem of in-stable results caused by color change, but it has

little capability to overcome the problem caused by occlusion
and deformation.

The traffic sign recognition algorithm based on machine
learning usually uses the sliding window method to traverse
the given traffic sign image. [50] proposed a variant histogram
feature of gradient direction, and trained a single classifier
to detect traffic signs through an extreme learning machine.
With the continuous research of deep learning algorithms,
more and more scholars use deep learning algorithms to detect
traffic signs. Readers can regard this classification method
as handling feature extraction, including pre-processing and
classification [51]. To extract deeper information, the deeper
encoder, integrated Space Pyramid Pooling (SPP) layer, cas-
caded RCNN network, depth separable convolution, and clip-
ping strategy are introduced to achieve the detection accuracy
and high inference speed [52]. The deep learning method has
a satisfactory tolerance for the variation of the color and shape
of signs, however, this type of method requires vast amounts
of data and manual annotation. Besides, detection networks
should have the capability of recognizing different regions
with diffident signs and detecting signs over a long distance.

4) Visual-based 3D Object Detection: Visual-based 3D ob-
ject detection refers to the process of acquiring 3D information
(location, dimension, and rotation) about all targets in the
field from the image. We divided it into monocular-based and
stereo-based detection.

4.1) Monocular 3D Object Detection: Monocular 3D object
detection is widely developed and the accuracy has been
improving in recent years. Directly associating classification
and regression methods, inheriting from 2D object detection
networks like [33]], have straightforward structures but perform
unsatisfied due to the ill-posed problem of recovering 3D
attributions from a single image. There are two main kinds
of strategies to solve the shortcoming. 1) Some [54, 53]
introduce the geometric connections between 3D and projected
2D candidates. For example, GS3D [56] decouples the objects
into several parts to analyze the surface attributes and instance
relationships. Monopair [54] and Monet3D [55] consider the
relationships between the target and its two nearest neighbors.
2) Besides regressing the 3D bounding candidates, networks
also take into account the local or full depth map [57 58]
from stereo vision or LiDAR data during the training stage.
CaDDN [57] provides a fully differentiable end-to-end ap-
proach for combining depth estimation and object detection
tasks. DDMP3D [58]] utilizes the feature representation of
context and depth estimation heads to achieve competitive
performance. In addition, [59] introduces successive frames
as inputs, which attempts to update the 3D results by associ-
ating detection and tracking. Although these methods have no
obvious advantages in accuracy, extensive academic research
and low cost make them attractive.

4.2) Stereo 3D Object Detection: Stereo 3D object detection
approaches[[60H63] are inspired by the parallax analysis from
binocular vision. The precise depth value can be reckoned
with through the distance between the binocular centers and
the associated pair of pixels. Disp-RCNN [63]], OC-Stereo
[61]] add segmentation modules paired images from stereo
cameras to induce accurate association. YOLOStereo3D [62]
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provides a lightweight model, outperforms a great number of
stereo methods based on the complicated disparity convolution
operations, and significantly reduces the length of training and
testing time. In sum, stereo-based methods could avoid the ill-
posed problem of monocular images and are convenient for
manufacturers to deploy and maintain in IVs, but accurate
measurement on the baseline, the time cost of binocular
matching, and the requirement of image preprocessing pose
challenges to researchers.

5) LiDAR-based 3D Object Detection: LiDAR-based 3D
object detection methods recognize targets 3D properties from
point clouds data captured by LiDARs. We categorized it into
voxel-wise and point-wise detection.

5.1) Voxel-wise Object Detection: Voxel-wise object detec-
tion methods represent the point cloud features in the Birds
Eyes View (BEV) and the BEV map is divided into s series of
independent voxels manually. The structural design of this type
of detection network evolves from point cloud segmentation
frameworks, such as PointNet [64] and PointNet++ [65]],
which fit the detection task at the input or output side, and
its overall architecture needs to balance performance and effi-
ciency. Taking the classic VoxelNet [66] and PointPillar [67] as
examples, VoxelNet normalizes the voxels after mapping point
clouds, and subsequently applies local feature extraction using
several Voxel Feature Encoding (VFE) layers to each non-
empty voxel. The voxel-wise features are further abstracted
by 3D convolutional middle layers (increasing the receptive
field and learning the geometric spatial representation), and
finally, the object is detected and classified using a Region
Proposal Network (RPN) with position regression.

5.2) Point-wise Object Detection: Point-wise object detec-
tion such as [68 |69]], are inspired by PointNet, a classical net-
work for indoor 6D pose estimation with point clouds. Point-
RCNN [68] is a two-stage point cloud detection framework
including candidates generation with semantic segmentation
analysis at the first stage and the position revision during the
second stage. VoteNet [70] extends 2D detection structures to
the 3D framework to establish a generic detection framework
for point clouds. It basically follows the PointNet++ to reduce
the information loss in point cloud transformation. VoteNet
also introduces a novel voting mechanism inspired by the
Hough transform to locate the targets’ centers instead of point
on the surface, compared with other 3D networks. It should
be noticed that the number of discarded points and modality
distinction due to the distance in point clouds detection should
be significantly considered for researchers.

6) Fusion-based 3D Object Detection: LiDARs, radars,
and cameras are widely deployed in IVs for perception tasks
and combination of these types of sensors could make the
vehicles robust and able to detect targets full-time. However,
this does not mean that fusion-based methods will outperform
the approaches with a single sensor. There are two main
reasons for the disadvantage of fusion-based methods. 1) It
is challenging for the network to fill the modalities gap from
various sensors; 2) The system error and measurement errors
such as from calibration and synchronization are hard to
eliminate and they would be propagated and amplified in the
networks. Most researchers propose solutions to handle these

TABLE 11
THE PERFORMANCE OF 3D OBJECT DETECTION METHODS IN KITTI
Method Sensors Moderate(%) Easy(%) Hard(%)
VPFNet[71] Cam+LiD 83.21 91.02 78.20
DVF[72]] Cam+LiD 82.45 89.40 77.56
CLOCs[ 73] Cam+LiD 82.28 89.16 77.23
F-ConvNet([74] Cam+LiD 76.39 87.36 66.69
Point-RCNNI68]| LiDAR 75.64 86.96 70.70
PointPillars[67]] LiDAR 74.31 82.58 68.99
F-PointNet[75] Cam+LiD 69.79 82.19 60.59
AVOD[76] Cam+LiD 66.47 76.39 60.23
MV3D[77] Cam+LiD 63.63 74.97 54.00
Disp-RCNN[63] Stereo 43.27 67.02 36.43
YOLOStereo3D[62] Stereo 41.25 65.68 30.42
OC-Stereo[61] Stereo 37.60 55.15 30.25
Stereo-RCNN[60] Stereo 30.23 47.58 23.72
MonoDETR[78] Mono 16.26 24.52 13.93
MonoDTR[79] Mono 15.39 21.99 12.73
CaDDN[57] Mono 13.41 19.17 11.46
DDMP-3D[58] Mono 12.78 19.71 9.80
GS3D[56] Mono 2.90 4.47 247

difficulties and achieve some competitive outcomes. In this
section, we categorize the fusion-based objection detection
task based on the types of sensors.

6.1) Camera and LiDAR: Cameras and LiDARs are two
crucial sensors for AD and researcher firstly focus on fusion
parallel methods, which extract point clouds and images
information at the same time. MV3D [77] and AVOD [76]
utilize the shared 3D anchors on the point cloud and the
corresponding images. ContFuse [80] and MMF [81]] adopt
tightly-coupled fusion approaches with a consecutive fusion
layer. 3D-CVF [82] introduces a cross-view spatial feature
fusion method to fuse the images and point clouds. In addition,
EPNet [83] focuses on the point cloud system and projects the
images on it with point-based strategy on the geometric space.

Compared with parallel approaches, sequential methods are
readable and deployable because of no need to introduce
association structures to reduce the gaps. F-PointNet [75]]
and F-ConvNet [74] attempt to reduce the searching areas
by generating 3D bounding boxes within 2D candidates.
PointPainting [84] outputs semantic information and projects
each point on the corresponding point to improve 3D object
detection accuracy. CLOCs [73] fuses the data after the
independent extractors and achieve a competitive result on
KITTI [85]]. DVF [72] adopts the 2D truth as guidance and
then extract 3D properties by the point clouds.

6.2) Camera and Radar: Combining the images and data
from Radars can effectively reduce the cost and maintain
accuracy. [86] projects radar detection results to the image
space and utilize them to boost the object detection accuracy
for distant objects. CRF-Net [87] develops the method with a
vertical presentation.

6.3) LiDAR and Radar: This type of fusion focuses on
extremely harsh weather conditions and distinct targets. Radar-
Net [88] fuses radar and LiDAR data via a novel-based early
fusion approach. It leverages the radar’s long sensing range via
an attention-based fusion. MVDNet [89] generates proposals
from two sensors and then fuses region-wise features between
multi-modal sensor streams to improve final detection results.
ST-MVDNet [90] develops the structure by enforcing output
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consistency between a Teacher network and a Student network,
and introducing missing modalities to tackle the degeneration
problem when one type of data is missing.

6.4) Camera, LiDAR and Radar: In this fusion type, re-
searchers attempt to design a robust perception system in
different weather conditions. [91] obtains object detection
outputs with a PointNet [64] architecture by projecting the
images onto the point cloud directly. Parallel to the previous
frame, the point cloud from the radar is processed to predict
velocity which is then associated with the final detection
output. RVF-Net [92] fuses all of the data on the input
procedure and achieves satisfying results on the nuScenes [93]
data set.

6.5) Others: Ultrasonic radar judges the distance of obsta-
cles through the time of sound transmission in the air, and
the accuracy can achieve a centimeter scale within 5 meters.
This sensor is mostly used in autonomous parking scenes. An
infrared camera with an infrared lamp can capture the infrared
spectral characteristics to achieve the effect of night vision
imaging. Besides, research on event cameras is one of the
hot topics nowadays. Event cameras process data based on
pipeline timestamps, rather than processing individual pixels
in a frame plane. Because the data has the nature of time
sequence, the traditional network structure can not process
the data, so how to fuse with other sensors will be one of
the research points in the future.

The performance of 3D object detection methods with
various combination of different sensor types in KITTI [85]
is shown in TABLE [l Here, KITTI divides whole data into
three evaluation scenes (easy, moderate and hard) through the
frame’s complexity and computes 3D-AP, an extended method
from 2D-AP [94] on these three scenes. We summarize: 1)
Adopting fusion strategies could achieve competing results
for 3D object detection tasks mainly because of introducing
more initial information. But this type of method requires
researchers to eliminate or reduce modal differences. 2) Due to
the characteristics of sensors, limited resolutions of cameras,
and the definition of the reference system in KITTI, the
performance of visual-based methods is weaker than LiDAR-
based. However, visual-based methods attract a number of re-
searchers because of their maintainability, economy, and easy
deployment. 3) The self-attention mechanism (Transformer
structure) and BEV method [71} [78l [79] could improve the
accuracy of cross-modality fusion, feature extraction, etc. In
addition, to address data hungry and model robustness, current
research studies train and test models on additional data such
as unScenes[93], Waymo[93].

C. Scene Understanding

We define scene understanding in our paper as the multiple
outputs for each pixel or point instead of each target. This
section, we divide it into three sub-sections, segmentation,
depth, and flow estimation. We only focus on academic
research and applications in AD areas.

1) Segmentation in Autonomous Driving: The target of
semantic segmentation is to partition a scene into several
meaningful parts, usually by labeling each pixel in the image

TABLE III
RESULTS ON CITYSCAPE FOR PANOPTIC SEGMENTATION AND KITTI FOR
DEPTH ESTIMATION

Method PQ(%) SQ(%) RQ(%)
Axial-D[109]]] 62.7 82.2 75.3
TASC[110] 60.7 81.0 73.8
Method SILog(log(m))  sqErrorRel(%) iRMSE(1/km)
BANet[111] 0.1155 2.31 12.17
VNL[112] 0.1265 2.46 13.02
SDNet[113]] 0.1468 3.90 15.96
MultiDepth[[114] 0.1605 3.89 18.21

with semantics (semantic segmentation), by simultaneously
detecting objects and distinguishing each pixel from each
object (instance segmentation), or by combining semantic
and instance segmentation (panoptic segmentation) [96]. The
segmentation is one of the crucial tasks in computer vision and
researchers evaluate their models on ADE20K [97], Pascal-
VOC [94], CityScape [98], etc. However, in AD scenarios, the
classic 3D CV area, it is hard to complete the perception task
independently. It is usually involved in lane detection, driving
region detection, visual interface module, or combined with
point clouds to provide semantic information. We will briefly
introduce the general background based on segmentation, and
then highlight segmentation research on AD.

1.1) Semantic Segmentation: Fully Convolutional Network
(FCN) [99] is a popular structure for semantic segmenta-
tion which adopts convolutional layers to recover the size
of output maps. Some work extends FCN by introducing
an improved encoder-decoder [[100], the dilated convolutions
[101], CRFs [102], atrous spatial pyramid pooling(ASPP)
[103]. In addition, the above approaches attend to fixed, square
context regions because of the pooling and dilation convolution
operations. The relational context method [104] extracts the
relationship between pixels. [105] pursues high resolution by
channel concatenation and skip connection, especially in the
medical field. In the field of AD, the semantic segmentation
networks may be familiar with the common structures, and
researchers should pay more attention to the special categories,
and occlusion, and evaluate their models on data sets of road
scenarios [98]]. To achieve SOTA results on data sets, the
researcher introduces the multiple scale attention mechanism
[106], boundary-aware segmentation module [107]. Besides,
some research focuses on the targets’ attributes on roads
like considering the intrinsic relevance among the cross-class
objects [108] or semi-supervised segmentation mechanism
because of the lack of labeled data on AD scenarios.

1.2) Instance Segmentation: Instance segmentation is to
predict a mask and its corresponding category for each object
instance. Early method [115] designs an architecture to real-
ize both object detection and segmentation missions. Mask-
RCNN [115] extends Faster-RCNN to identify each pixel’s
category with binary segmentation and pools image features
from Region of Interest (Rol) following a Region Proposal
Network (RPN). Some researchers develop the base structure
by introducing a coefficients network [[L16], the IoU score for
each mask, and shape priors to refine predictions. Similar with
the 2D object detection methods, [117] replaces the detectors
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with the one-stage structures. [118]] attempts to avoid the effect
of detection and achieve remarkable performances. To achieve
competitive segmentation results on AD datasets, researchers
focus on the geometric information on 3D space [119]], bound-
ary recognition [120]], combining the semantic segmentation
(panoptic segmentation) [121] or intruding multiple frames
(video-base) [122].

1.3) Panoptic Segmentation: Panoptic segmentation is pro-
posed to unify pixel-level and instance-level semantic segmen-
tation [[123]], and [124] designs a different branch to regress
the semantic and instance segmentation results. Panoptic-FCN
[125] aims to represent and predict foreground things and
background stuff in a unified fully convolutional pipeline.
Panoptic SegFormer [126] introduces a concise and effective
framework for panoptic segmentation with transformers. For
AD scenarios, TASC [110] proposes a new differentiable
approach to reduce the gap between the two sub-tasks during
training. Axial-DeepLab [109] builds a stand-alone attention
model with a global receptive field and a position-sensitive
attention layer to capture the positional information with low
computational cost. Besides, researchers address the multiple
scales on roads by introducing a novel crop-aware bounding
box regression loss and a sample approach [127]], and capture
the targets’ boundary by a combinatorial optimization strategy.
These methods achieve competitive results on the task of
CityScape [98]] or Mapillary Vistas [[128].

2) Depth Estimation in Autonomous Driving: This type of
task is to present the depth information on the camera plane,
which is an effective way to enhance the visual-based 3D
object detection and a potential bridge to connect the LiDAR
and camera.

The depth completion task is a sub-problem of depth estima-
tion [129]. In the sparse-to-dense depth completion problem,
researchers infer the dense depth map of a 3D scene from a
sparse depth map by computational methods or multiple data
from sensors. The main difficulties include: 1) the irregularly
spaced pattern in the sparse depth, 2) the fusion methods
for multiple sensor modalities (optional), and 3) the lack of
dense pixel-level ground truth for some data and the real world
(optional).

Depth estimation is the task of measuring the distance of
each pixel relative to the camera. The depth value is extracted
from either monocular or stereo images with supervised (the
dense map obtained by depth completion) [130]], unsupervised
[131], LiDAR guidance [[132] or stereo computing [[133]]. Some
approaches [[134} [135]] introduce the CRF module, multi-tasks
structure, global extractor, and the piece-wise planarity priors
to achieve competitive performances in popular benchmarks
such as KITTI [85] and NYUv2 [136]. Models are typically
evaluated according to an RMS metric [85]].

For outdoor monocular depth estimation, DORN [137]]
adopts a multi-scale network structure to capture the contextual
information. MultiDepth [114] makes use of depth interval
classification as an auxiliary task. HGR [138] proposes a
hierarchical guidance and regularization learning framework
to estimate the depth. SDNet [113] improves the results
by utilizing a dual independent estimation head involving
depth and semantics. VNL [112] designs a novel structure

that includes local planar guidance layers at multiple stages.
[139] uses the geometric constraints of normal directions
determined by randomly sampled three points to improve the
depth prediction accuracy. BANet [111] introduces bidirec-
tional attention modules which adopt the feed-forward feature
maps and incorporate the global information to eliminate
ambiguity. The Unsupervised method [140] attracts plenty of
researchers because it could reduce the requirements on the
labeled data and eliminate the over-fit problem. In addition,
the pure monocular depth estimation only obtains the relative
depth value because of the ill-posed problem, and the stereo
guidance methods could obtain the absolute depth value. [141]]
introduces the Transformer structures to achieve competitive
results. The stereo depth estimation methods can be found in
the stereo disparity estimation task.

3) Flow Estimation in Autonomous Driving: Similar to
the segmentation and depth estimation tasks, flow estimation
focuses on the image plane and it presents the pixel movement
during a data frame. It attracts interest nowadays and its
research can be used in event camera methods.

3.1) Optical Flow Estimation: Optical flow refers to the
pixels’ movement in the imaging system including two di-
rections, the horizontal and vertical. Similar to unsupervised
video-based depth estimation, the pixel motion [142] can
be deduced by minimizing differences between the target
and source images. SPyNet [143] proposes a lightweight
framework that adopts classical spatial-pyramid formulation
for optical flow estimation. In addition, it attempts to estimate
large-displacement movement and accurate sub-pixel flow.
PWC-Net [144] includes three sub-nets, the feature pyramid
extractor, warping layer, and cost volume layer, to improve the
quality of optical flow.

3.2) Scene Flow Estimation: Scene flow estimation indicates
a 3-dimensional movement field which can be treated as the
extension of optical flow. Therefore, it is the combination of
optical flow and depth estimation in 3D scenarios. Monocular
images are seldom utilized in the holistic training step for
scene flow, and the structure takes the binocular videos as input
to regress disparity to restore the scale. DRISF [145] treats the
inference step of Gaussian Newton (GN) as a Recurrent Neural
Network (RNN) which means it can be trained in an end-to-
end method. FD-Net [1460] further extends the unsupervised
depth estimation and disentangles the full flow into object flow
(targets pixels) and rigid flow (background pixels) to assess the
characteristics respectively, which is able to avoid the warping
ambiguity due to the occlusion and truncation. Competitive
Collaboration (CC) [147] sets the scene flow estimation as a
game with three players. Two of them compete for the resource
and the last one acts as a moderator. GeoNet [148]] consists of
two modules, a monocular depth with the 6 DoF ego-motion
estimation, and a residual network to learn the object’s optical
flow.

The performance of panoptic segmentation and depth es-
timation on CityScape and KITTI is shown in TABLE
PQ, SQ, RQ refer the panoptic segmentation, segmentation
quality, and recognition quality respectively in [123], and for
depth estimation, SILog (Scale invariant logarithmic error),
sqErrorRel (Relative squared error), and iRMSE (Root mean
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squared error of the inverse depth) are classical metrics in
KITTI. Similar to detection, researchers introduce the self-
attention mechanism, extra training data and novel network
units to develop the accuracy in scene understanding tasks.
And we mention that above tasks do not directly provide
outputs to the downstream tasks such as planning and control
in AD. In the actual tasks, semantic segmentation, depth
estimation and optical flow estimation will be combined with
each other to provide richer pixel semantic information, so as
to improve the accuracy of cross-modality data fusion, spatial
detection and tracking for moving targets.

D. Prediction

In order to safely and efficiently navigate in complex traffic
scenarios, an AD framework should be able to predict the
way in which the other traffic agents (such as vehicles and
pedestrians) will behave in the near future. Prediction can be
defined as probable results according to past perceptions. Let
X} be a vector with the spatial coordinates of agents i at
observation time ¢, with ¢ € {X{, X3,... X} }.

1) Model-based Approaches: These methods predict the
behaviors of agents, such as changing lanes, turning left, and
so on. One of the simplest methods to predict the probability
distribution of vehicle behavior is the autonomous multiple
models (AMM) algorithm. This algorithm computes the max-
imum probability trajectory of each agent.

2) Data-driven Approaches: These methods are mainly
composed of the neural network. After training on the percep-
tion dataset, the model makes a prediction of the next behavior.
DESIRE [149] proposes an encoder-decoder framework that
innovatively incorporates the scenario context and the interac-
tions between traffic agents. SIMP [150] discretizes the output
space, calculates the distribution of the vehicle’s destination,
and predicts an estimated time of arrival and a spatial offset.
FaF [151]] pioneers the unification of detection and short-
term motion forecasting based on LiDAR point clouds. The
prediction module is sometimes separated from the perception,
mainly because the downstream planning module receives both
the perception and the prediction results. Future research on
prediction will focus on the formulation of generalized rules,
the universality of scenarios and the simplicity of modules.

E. Tracking

The tracking problem begins with a sequence of vehicle-
mounted sensor data. Depending on if neural network is
embedded in the tracking framework, we divide them into the
traditional method and the neural network method.

1) Tradition Method: The Kalman filter[|152] is a famous
algorithm, particularly with regard to tracking agents. Because
of the low computational cost, the Kalman-based method [[153]]
has quick response time even on low-spec hardware in simple
scenarios.

The tracking problem also can be shown as a graph search
problem [154]. Compared with Kalman-based methods, The
most important advantage of graph-based approach is that it is
better for the multi-tracking problems. [[155] exploits graph-
based methods using the min-cost approach to solve tracking
problems.

Global Route
End-to-end Planning

Planning State Grid Identification

Local Planning
Sequential Planning
Primitive Generation

Fig. 5. The structure of planning methodology

2) Neural Network Method: Neural networks have the
advantage of being able to learn important and robust features
given training data that is relevant and with sufficient quantity.

CNN is widely used in agents tracking. [156] handles multi-
agent tracking using combinations of values from convolu-
tional layers. [157] proposes appropriate filters for informa-
tion drawn from shallow convolutional layers, achieving the
same level of robustness compared with deeper layers or a
combination of multiple layers.

RNN also provides a smart method to solve temporal
coherence problem in tracking task. [158] uses an LSTM-
based classifier to track agents across multiple frames in time.
Compared with CNN method, the LSTM-based approach is
better suited to remove and reinsert candidate observations
particularly when objects leave or reenter the visible area of
the scene. Joint perception and tracking can achieve the SOTA
results in these two tasks. In reality, stable tracking can reduce
the requirements of the system for real-time detection and
can also correct the detection results. At present, the strategy
of joint task learning has been favored by more and more
researchers.

III. PLANNING

The planning module is responsible for finding a local
trajectory for the low-level controller of the ego vehicle to
track.

The planning module is responsible for finding a local
trajectory for the low-level controller of the ego vehicle to
track. Herein, “local” means that the resultant trajectory is
short in its spatial or temporal range; otherwise the ego
vehicle cannot react to risks beyond the sensor ranges. The
planning module typically contains three functions, namely
global route planning, local behavior planning, and local
trajectory planning [159]. Global route planning provides a
road-level path from the start point to the destination on a
global map; local behavior planning decides a driving action
type (e.g., car-following, nudge, side pass, yield, and overtake)
for the next several seconds while local trajectory planning
generates a short-term trajectory based on the decided behavior
type. This section reviews the techniques related to the three
functions in the planning module as Fig. [5]

A. Global Route Planning

Global route planning is responsible for finding the best
road-level path in a road network, which is presented as a
directed graph containing millions of edges and nodes. A route
planner searches in the directed graph to find the minimal-cost
sequence that links the starting and destination nodes. Herein,
the cost is defined based on the query time, preprocessing
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Fig. 6. The route section for local behavior planning

complexity, memory occupancy, and/or solution robustness
considered.

The development history of global route planning tech-
niques is much longer than that of autonomous vehicle tech-
niques because global route planning also serves manually
driven vehicles. As indicated by [160], the existing global
route planning methods are classified as goal-directed meth-
ods, separator-based methods, hierarchical methods, bounded-
hop methods, and their combinations.

B. Local Behavior/Trajectory Planning

Local behavior planning and local trajectory planning func-
tions work together to output a local trajectory along the
identified global route as shown in Fig. [] Since the resultant
trajectory is local, the two functions have to be implemented
in a receding-horizon way unless the global destination is not
far away [161]. It deserves to emphasize that the output of the
two functions should be a trajectory rather than a path [162],
otherwise extra efforts are needed for the ego vehicle to evade
the moving obstacles in the environment.

Broadly speaking, the two functions would work in two
different ways. One is the end-to-end way, i.e., to develop an
integrated system that receives the raw data from the on-board
sensors and outputs a local trajectory directly. The other way is
to implement the local behavior planning and local trajectory
planning functions sequentially.

1) End-to-end Methods: Compared with the sequential-
planning solution reviewed in the next subsection, an end-
to-end solution nominally deals with vehicle-environment in-
teractions more efficiently because there is not an external
gap between the perception and planning modules[163[]. The
input of an end-to-end system is the large amount of raw data
obtained by the on-board sensors whereas the output is a local
trajectory. Since the relationship between the input and output
is too intricate to be summarized as complete rules [164],
machine learning methods are commonly used, most of which
are classified as imitation-learning-based and reinforcement-
learning-based methods [165].

An imitation-learning-based method builds a neuro network
based on training samples [[166, [167]]. Challenges lie in how to
collect massive training samples that are consistent and how
to guarantee learning efficiency (e.g., free from overfitting).
Reinforcement-learning-based methods obtain knowledge by
trial-and-error operations, thus they rely less on the quality
and quantity of external training samples [[168].

End-to-end methods are still not mature, thus most of
them are trained/tested in simulations rather than real-world
scenarios . Recent research efforts focus on how to enhance
learning interpretability, security, and efficiency.

2) Sequential-planning-based Methods: As opposed to the
aforementioned end-to-end solution, applying local behavior
planning and trajectory planning functions sequentially has
been a common and conventional choice in the past decade.
However, the boundary between local behavior planning and
trajectory planning is rather blurred [159]], e.g., some behavior
planners do more than just identify the behavior type. For the
convenience of understanding, this paper does not distinguish
between the two functions strictly and the related methods are
simply regarded as trajectory planning methods.

Nominally, trajectory planning is done by solving an optimal
control problem (OCP), which minimizes a predefined cost
function with multiple types of hard constraints satisfied [169].
The solution to the OCP is presented as time-continuous
control and state profiles, wherein the desired trajectory is
reflected by (part of) the state profiles. Since the analytical
solution to such an OCP is generally not available, two types
of operations are needed to construct a trajectory.

Concretely, the first type of operation is to identify a
sequence of state grids while the second type is to generate
primitives between adjacent state grids.

2.1) State Grid Identification: State grid identification can
be done by search, selection, optimization, or potential mini-
mization. Search-based methods abstract the continuous state
space related to the aforementioned OCP into a graph and
find a link of states there. Prevalent search-based methods
include A* search [170] and dynamic programming (DP)
[171]]. Selection-based methods decide the state grids in the
next one or several steps by seeking the candidate with the
optimal cost/reward function value. Greedy selection [172]]
and Markov decision process (MDP) series methods typically
[173] fall into this category. An optimization-based method
discretizes the original OCP into a mathematical program
(MP), the solution of which are high-resolution state grids
[[1774} [175]. MP solvers are further classified as gradient-based
and non-gradient-based ones; gradient-based solvers typically
solve nonlinear programs [169, [175], quadratic programs
[[1'76} [177], quadratically constrained quadratic programs [178]
or mix-integer programs [179]; non-gradient-based solvers
are typically represented by metaheuristics [[180]. Potential-
minimization-based methods adjust the state grid positions
by simulating the process they are repelled or attracted by
forces or in a heuristic potential field. Prevalent methods in this
category include the elastic band (EB) series [181], artificial
potential field methods [162], and force-balance model [182].

The capability of each state grid identification method
is different. For example, gradient-optimization-based and
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potential-minimization-based methods are generally more flex-
ible and stable than typical search-/selection-based methods
[183], but search-/selection-based methods are more efficient
to explore the entire state space globally [181) 184} [185].
Different methods could be combined jointly as a coarse-to-
fine strategy, as has been implemented by many studies such
as [169, [175] 176l [178].

2.2 Primitive Generation: Primitive generationis commonly
done by closed-form rules, simulation, interpolation, and op-
timization. Closed-form rules refer to methods that gener-
ate primitives by analytical methods with closed-form solu-
tions. Typical methods include the Dubins/Reeds-Shepp curves
[L86], polynomials [172], and theoretical optimal control
methods [187]]. Simulation-based methods generate trajec-
tory/path primitives by forward simulation, which runs fast
because it has no degree of freedom [188]. Interpolation-
based methods are represented by splines or parameterized
polynomials. Optimization-based methods solve a small-scale
OCP numerically to connect two state grids [189].

State grid identification and primitive generation are two
necessary operations to construct a trajectory. Both operations
may be organized in various ways. For example, [188]] inte-
grates both operations in an iterative loop; [189]] builds a graph
of primitives offline before online state grid identification;
[176] identifies the state grids before generating connective
primitives.

If a planner only finds a path rather than a trajectory, then a
time course should be attached to the planned path as a post-
processing step [190]. This strategy, denoted as path velocity
decomposition (PVD), has been commonly used because it
converts a 3D problem into two 2D ones, which largely
facilitates the solution process. Conversely, non-PVD methods
directly plan trajectories, which has the underlying merit to
improve the solution optimality [171} [191} [192].

Recent studies in this research domain include how to
develop specific planners that fit specific scenarios/tasks par-
ticularly [161], and how to plan safe trajectories with imperfect
upstream/downstream modules [193].

IV. CONCLUSION

This article is the third part of our work (Part II for the
technology survey). In this paper, we provide a review of
wide introductions on research development with milestones
of perception and planning in AD and IVs. In addition, we
provide a few experiment results and unique opinions for these
two tasks. In combination with the other two parts, we expect
that our whole work will bring novel and diverse insights to
researchers and abecedarians, and serve as a bridge between
past and future.
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