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Abstract—Cloud virtualization technology, ingrained with
physical resource sharing, prompts cybersecurity threats on
users’ virtual machines (VM)s due to the presence of inevitable
vulnerabilities on the offsite servers. Contrary to the existing
works which concentrated on reducing resource sharing and
encryption/decryption of data before transfer for improving
cybersecurity which raises computational cost overhead, the
proposed model operates diversely for efficiently serving the
same purpose. This paper proposes a novel Multiple Risks
Analysis based VM Threat Prediction Model (MR-TPM) to
secure computational data and minimize adversary breaches by
proactively estimating the VMs threats. It considers multiple
cybersecurity risk factors associated with the configuration and
management of VMs, along with analysis of users’ behaviour. All
these threat factors are quantified for the generation of respective
risk score values and fed as input into a machine learning based
classifier to estimate the probability of threat for each VM. The
performance of MR-TPM is evaluated using benchmark Google
Cluster and OpenNebula VM threat traces. The experimental
results demonstrate that the proposed model efficiently computes
the cybersecurity risks and learns the VM threat patterns from
historical and live data samples. The deployment of MR-TPM
with existing VM allocation policies reduces cybersecurity threats
up to 88.9%.

Index Terms—Hypervisor vulnerability, Network-cascading,
Risk analysis, Side-channel, Unauthorized data access.

1. INTRODUCTION

CYBERCRIMES are gobbling up the utility of the cloud
services for the beneficiaries, including Cloud Service

Providers (CSP)s as well as the end users. According to the
estimation of Norton Security, in 2023, cybercriminals will be
breaching 33 billion records per year [1]. Also, it has been
reported that the misconfiguration and mismanagement asso-
ciated with the virtualization technology at the cloud platform
are the topmost causes of leakage of terabytes of sensitive data
of millions of cloud users across the world [2]. Though the
CSPs employ sharing of physical resources among multiple
users in the view of maximizing the revenues [3]–[7] the
discrepancies and unpatched susceptibilities developed during
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virtualization, produce misconfigured VMs and hypervisors,
expediting the occurrence of cyberattacks. A malicious user
may initiate a number of VMs and exploit the misconfigured or
vulnerable VMs in multiple ways to impose a threat on a target
VM [8], [9]. Moreover, the vulnerability of hypervisor due
to misconfigured virtualization, devastates the cybersecurity
by acquiescing all the coresident VMs to be compromised
effortlessly [10]. The mismanagement during physical re-
source distribution yields co-residency of vulnerable VMs and
malicious user VM appealing security threats such as leakage
of user’s confidential data, hampering of data, unauthorized
access via insecure interfaces, hijacking of accounts, etc. [11]–
[15]. Therefore, the key challenge for the CSP is: How to
minimize the cybersecurity threats due to misconfiguration and
mismanagement of shared resources on a cloud platform?

A. Related Work

The considerable works presented for preserving cyberse-
curity of computational data via VM allocation have focused
on both defensive strategies as well as preventive strategies.
The defensive strategies include minimization of resource
sharing by reducing the number of users per server [11], [16],
raising the difficulties for achieving co-residency [17], [18],
and eliminating side-channel based cyberthreats [19]. While
some other researchers have provided preventive strategies
merely by periodic migration of VMs [20], [21]. Levitin et
al. [22] have presented a method to resist co-residence data
theft attacks and improve service reliability by incorporating
threshold voting-based N-version programming (NVP). Wu et
al. [23] presented a secure and efficient outsourced K-means
clustering (SEOKC) scheme for cloud data protection by
applying a fully homomorphic encryption with the ciphertext
packing technique to attain parallel computation without any
excess cost. This scheme preserves data privacy by furnishing
database security, privacy of clustering results, and hidden data
access patterns. Zhang et al. [24] presented a double-blind
anonymous evaluation-based trust model which allows suitable
matching between anonymous users and service providers and
employed node checking to detect malicious behaviour. A
Previously-Selected-Servers-First (PSSF) policy was proposed
in [11] for minimization of exposure of benign VMs to
malicious ones. Every server maintained a record of a list
of users whose VMs were ever hosted on it. The previously
assigned servers that have ever hosted VMs of an old user are
considered first for allocation of their new VMs. If no such
server exists, then a server with more resource capacity among
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the remaining servers, is considered for VM placement. Miao
et al. [25] improved PSSF by adding a rule that a new VM
should be co-located with the user VM to whom it is already
co-resident. A hierarchical correlation model for analyzing and
estimating reliability, performance, and power consumption of
a cloud service is proposed in [26] to locate common causes
of co-located multilple VM failures sharing multicore CPUs.

SEA-LB [16] allocates VMs considering minimum power
consumption and side-channel attacks with maximum resource
utilization by applying modified genetic algorithm approach.
The security is provided by minimizing the number of shared
servers at the cost of resource utilization. Saxena et al. [15]
presented a security embedded resource allocation (SEDRA)
model in which the performance of network traffic and inter-
VM links are considered to detect and mitigate VM threats by
utilizing a random tree classifier. Han et al. [17] proposed
a two-player game-based defence mechanism against side-
channel attack, where the potential differences between the
attackers’ and legal users’ behaviour were examined by using
clustering and semi-supervised learning techniques for the
classification of users. As a result, the attacker’s efficiency
of achieving co-residency with a target VM raised drastically,
thus denying an attack on computational data executing within
a VM. A data security risk analysis based VM placement is
discussed in [27], where a secure and multi-objective VM al-
location is formulated and solved by applying an evolutionary
optimization. A Vickrey Clarke-Groves bidding mechanism
based defence system was presented in [28] to maximise the
difficulty for the adversary to locate the target VM.

B. Our Contributions
In the light of the aforementioned approaches, it is revealed

that rigorous control over VM-centered cybercrimes is still in
the infancy stage which marks the need to proactively estimate
the intensity of VM threats in real-time. Since, machine
learning algorithms are capable of extracting and learning
useful patterns from known malicious activities rapidly by
profiling devices such as VMs and servers, and understanding
regular activities, it can intelligently identify previously un-
known forms of malware and help protect VMs from potential
attacks. Owing to the effective machine-learning capabilities
of Extreme Gradient Boosting (XGB) approach including han-
dling missing values, parallelization, distributed computing,
and cache optimization, we have devised an XGB inspired
VM threat prediction model. Correspondingly, a Multiple
Risks Analysis based VM Threat Prediction Model (MR-
TPM) is proposed that predicts cyberthreats associated with
VMs misconfiguration and their insecure allocation at the
cloud platform. To the best of the authors’ knowledge, such a
proactive VM threat prediction model by considering multiple
security risk factors for alleviation of cyberthreats, is presented
for the first time. The key contributions are fourfold:

• A novel concept of multiple risks analysis based cy-
bersecurity pertaining to VMs, is proposed to maximize
the security of computational data executing on VMs.
Also, the ill-effects of misconfiguration and insecure VM
management are minimized by considering the intended
multiple risk factors.

• Quantification and assessment of all the considered secu-
rity threat factors for the periodic training of the newly
developed artificial intelligence (AI) driven VM threat
prediction model is introduced.

• Implementation and evaluation of the proposed model
using real VM threat traces reveals that MR-TPM predicts
threats with precise accuracy and helps to mitigate them
before the occurrence.

• Deployment of the proposed model with existing VM
placement policies demonstrates its compatability and
applicability in improving the security of user data during
execution by exploiting and analysing multiple VM risks
for threat prediction. Additionally, its workload prediction
component helps to optimize resource utilization, power
consumption substantially by minimizing the number of
active servers.

A bird eye view of the proposed model is shown in
Fig. 1, where multiple types of VM security attack factors
({R1, R2, ..., Rn} ∈ R) are gathered, quantified, and analysed
to periodically train a machine learning based VM threat
estimator for accurate prediction of future threats on VMs.
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Fig. 1: A bird eye view of MR-TPM

Organization: The paper is structured as follows: Section
II discusses the problem formulation. A detailed elabora-
tion of proposed MR-TPM is conferred in Section III. The
multiple cyberthreat factors associated with VMs, including
user behaviour analysis, configuration-dependent factors, and
allocation-dependent factors, are entailed in Section IV, Sec-
tion V, and Section VI, respectively. The operational design
and complexity of MR-TPM is presented in Section VII. The
performance evaluation followed by conclusive remarks and
the future scope of the proposed work are presented in Section
VIII and Section IX, respectively. Table I shows the list of
symbols with explanatory terms used throughout the paper.

2. PROBLEM FORMULATION

A cloud datacenter environment is considered where mul-
tiple users requests for execution of their workloads or appli-
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TABLE I: Notations with explanatory terms

S: server, V : VM, U : user, P : number of servers, Q : number of VMs,
M : number of users, ω: mapping among server, VM, user
R: security risk factor, L:VM vulnerability, H: Hypervisor vulnerability
SHyp_scor : Server’s hypervisor own vulnerability, Ξ: Threat,
C: Co-residency effects, N : Network cascading effects,
W p: predicted workload, F: features used for prediction,
BL: Base Learners in XGB, Θ:unauthorized access, Rq: job request,
H‡: record of malicious actions, P(Ξ): probability of threat
RU : resource utilization, PW : power consumption, Mc : migration cost
CC: status of VM after migration, G:status of server after migration
D(Sk, Sj): distance between servers Sk and Sj

cations. The users can be categorised into legitimate (normal)
and malicious (threat-imposing) users. During workload ex-
ecution, the inter-dependent VMs need to communicate and
exchange information to complete the application execution.
However, some malicious user VMs may intrude this operation
and seek for the security loopholes to exploit various oppor-
tunities for launching successful threats to legitimate users’
VMs for stealing sensitive information via an unauthorized
access. The security of VMs is compromised by exploiting
either configuration discrepencies of VMs and associated host
servers or insecure allocation and mismanagement of VMs.
Accordingly, a problem configuring research assumptions and
design goals is formulated in the following subsections.

A. Assumptions

The assumptions addressing conditions for VM threats
and the capabilities of malicious user VMs during workload
distribution and execution are as follows:

• Only CSP decides mapping between VMs and servers,
and it may or may not have the knowledge of legitimate
and malicious VMs.

• Each active VM belongs to one user only. However, the
user can have multiple number of VMs over time.

• Malicious user may run one or multiple VMs to exploit
means of security escape for imposing a threat on target
VM(s). The VM threats can be executed in three ways:
one-to-one (one specific malicious VM attacks one target
VM), one-to-many (one specific malicious VM attacks
multiple target VMs in networking), and many-to-many
(group of malicious VMs attack many target VMs).

• VM(s) are migrated either to handle over/under-load on
the source server or to protect them from malicious
activity only. Otherwise, the VM is assumed to run on
the same server until the user terminates it.

B. Problem statement and Design Goals

Specifically, the problem is to develop a VM threat pre-
diction model which is trained with data samples consid-
ering n probable risk factors addressing security loopholes
that estimates VM(s) security threats proactively to improve
cybersecurity during cloud workload processing. Based on
the aforementioned problem assumptions and statement, the
design goals of the proposed model are as follows:

• To develop a machine learning-driven model that will de-
termine VM threats prior to occurrence in real-time. This

model must not effect the efficiency of VM management
and it must be adaptable and compatable for operation
with any VM allocation policies.

• To generate a knowledge database for training of the
corresponding VM threat predictor by identifying and
computing risk score values for all the probable security
factors associated with VM(s).

• To accurately detect security threats on legitimate VM(s)
due to presence of malicious VM and vulnerabilities of
VM(s) configuration and management.

3. PROPOSED VM THREAT PREDICTION MODEL

Consider a cluster of P servers {S1, S2, ..., SP } ∈ S hosts
Q VMs {V1, V2, ..., VQ} ∈ V of M users {U1, U2, ..., UM} ∈
U. Let S1 hosts x VMs such that {V 1

1 , V
1
2 , ..., V

1
x } ∈

V1; S2 and SP host y VMs {V 2
1 , V

2
2 , ..., V

2
y } ∈ V2

and z VMs {V P
1 , V P

2 , ..., V P
z } ∈ VP, respectively, where

{V1,V2, ...,VP } ∈ V and {x ∪ y ∪ z} ⊆ Q. A map-
ping ω|ω :U × V 7→ S assigns VMs of each user on a
specific server such as ωk

ji = 1 iff jth VM of kth user
is deployed on ith server. The comprehensive description
of the essential blocks and intrinsic information flow of
MR-TPM is depicted in Fig 2. The proposed cyberthreat
prediction model records and analyses multiple security
risk factors {R1, R2, R3, R4, R5} ∈ R associated with a
VM configuration, such as VM vulnerability {L1, L2, ..., LQ},
server Hypervisor vulnerability {H1, H2, ...,HP }; and VM
allocation, including Side-channel effect {C1, C2, ..., CQ}
and Network cascading effect {N1, N2, ..., NQ}; User be-
haviour {U∗

1 , U
∗
2 , ..., U

∗
M}; and previous records of VM threats

{Ξ1,Ξ2, ...,Ξn}. During time-interval {ta, tb} ∈ t, all the
security risk factors and threat information are collected and
categorized into four classes:

• User behaviour analysis {U∗
1 , U

∗
2 , ..., U

∗
M} (Section 4)

• VM Configuration-dependent factors for computation of
the scores of VM vulnerability {L1, L2, ..., LQ} and
server hypervisor vulnerability scores {H1, H2, ...,HP }
(Section 5)

• VM Allocation-dependent factors for assessment of side-
channel effects {C1, C2, ..., CQ} and network cascading
effects {N1, N2, ..., NQ} (Section 6)

• Records of live threats or malicious actions on VMs for
updation of VM threat database

Definition 1. VM cyberthreat prediction: The mechanism
intended for computation and analysis of various security
escapes and unpatched discrepancies associated with a VM
along with proactive threat estimation, is designated as VM
cyberthreat prediction.

MR-TPM proactively estimates the workload informa-
tion {W p

1 ,W
p
2 , ...,W

p
Q ∈ W} by utilizing a neural net-

work based workload predictor (Pr), which is periodi-
cally trained with the latest and historic resource utilization
{RU1, RU2, ..., RUQ} by VMs {V1, V2, ..., VQ} to determine
active VMs {V̂1, V̂2, ..., V̂Q∗ , Q∗ ⊆ Q} having predicted
workload (W p) > 0. The prior knowledge of active VMs is
utilized for analysis of the placement of VMs during the next
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Fig. 2: Multiple Risks Analysis based VM Threat Prediction Model (MR-TPM)

time interval {ta+1, tb+1} ∈ t. The consecutive processes of
feature selection (FS) and threat prediction (TP) is performed
for active VMs based on the predicted workload informa-
tion {W p

1 ,W
p
2 , ...,W

p
Q} for VMs {V1, V2, ..., VQ} of users

{U1, U2, ..., UM} during time-interval {ta+1, tb+1}. The his-
torical database of VM threats is utilized for feature selection,
followed by training of online VM threat predictor TP, which
is periodically re-trained with the latest data samples for online
VM threat prediction {Ξp

1,Ξ
p
2, ...,Ξ

p
Q∗}. Among all the col-

lected and analysed features {L,H,C,N,V,S,U,U∗,W p, ω
etc.} ⊆ F, only useful features are filtered (i.e., F∗) by
applying Recursive Feature Elimination (RFE) to train threat
predictor TP to estimate VM threats {Ξp

1,Ξ
p
2, ...,Ξ

p
Q∗} with

improved accuracy and reduced computation time. The data
samples containing selected features {F∗

1,F
∗
2, ...,F

∗
s} ∈ F∗

are split into training samples {F̄∗∗
1 , F̄∗∗

2 , ..., F̄∗∗
s∗} ∈ F̄∗∗ and

testing samples {F∗∗
1 ,F∗∗

2 , ...,F∗∗
t∗∗} ∈ F∗∗ subject to the

constraints: (i) F∗ = F̄∗∗ ∪ F∗∗ (ii) F̄∗∗ ∩ F∗∗ = ∅ (iii)

{s∗, s∗∗} ⊆ s where s is total number of data samples. A
mapping {Ω|Ω : F̄∗∗×TP⇒ TP∗} trains threat predictor TP
with F̄∗∗ to generate Trained Predictor (TP∗) during training
phase while {Ω∗|Ω∗ : F∗∗ × TP∗ ⇒ TP∗∗} evaluates TP∗

with unseen test data F∗∗ to generate Tested Predictor (TP∗∗)
for online VM threat prediction.

The proposed VM threat predictor utilizes an Extreme-
Gradient Boosting (XGB) based machine learning algorithm
to learn and develop the precise correlations among extracted
patterns for accurate prediction of cyberthreats: {Ξp

1, Ξp
2, ...,

Ξp
Q∗}. Let a threat predictor (TP) is composed of l base

learners (i.e., decision trees) BL∗ = {BL∗
1,BL

∗
2, ...,BL

∗
l }

and predicts output O∗ = {O∗
1,O

∗
2, ...,O

∗
l } using Eq. (1),

where Fi ⊆ F∗ such that F represents the input vector
of size s∗. During each iteration, decision trees are trained
incrementally to reduce prediction errors and the amount of
error reduction is computed as gain or loss term using Eq.
(2). The expressions L(O∗,O∗∗

t−1 + BL∗
t (Fi)) and Ψ(BL∗

t )
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are loss term and a regularization term, respectively. Taylor
expansion is applied to compute the exact loss for different
possible base learners, which updates Eq. (2) to Eq. (3); where
gi = ∂O∗∗

t−1
L(O∗,O∗∗

t−1), and hi = ∂2
O∗∗

t−1
L(O∗,O∗∗

t−1) are first
and second order derivatives of loss function in the gradient,
respectively. The term Ψ(BL∗

t ) is computed using Eq. (4),
where γ and λ are L1 and L2 regularisation coefficients,
respectively, w is internal split tree weight and K is the
number of leaves in the tree.

O∗ =

l∑
z=1

BL∗
z(Fi) ∀i ∈ {1, 2, ..., s∗} (1)

Lt =

s∗∑
i=1

L(O∗,O∗∗
t−1 +BL

∗
t (Fi)) + Ψ(BL∗

t ) (2)

Lt =

s∗∑
i=1

[giBL
∗
t (Fi) +

1

2
hiBL

∗
t (Fi)] + Ψ(BL∗

t ) (3)

Ψ(BL∗
t ) = γK +

1

2
λ||w||2 (4)

During each time-interval {ta, tb} ∈ t, a < b, live selected
features F̂∗∗ are given as input to the above discussed threat
predictor TP∗∗ to estimate the status of threat Ξ for VMs
{V̂1, V̂2, ..., V̂

∗
Q} in the next time-interval {ta+1, tb+1} ∈ t, a <

b. Accordingly, the process of VM-threat handling is per-
formed for the VMs with predicted threat-status (V̂ Ξ

i > 0 :
i ∈ [1, 2, ...Q∗∗], Q∗∗ ⊆ Q∗ ⊆ Q) by shifting them to a
server where the possibility of threat is least (V̂ Ξ

i = 0). A
detailed description of VM security risk factors is provided in
the subsequent sections.

4. USER BEHAVIOUR ANALYSIS

Users {U1, U2, ..., UM} submit job requests
{Rq1, Rq2, ..., RqM} during time-interval {ta, tb} at the
cloud platform as depicted in Fig. 3, where the users are
classified into Trusted, Non-trusted and Unknown users. The
kth user Uk behaviour is defined in accordance with the
actions of its VMs as follows: Trusted: The user behaviour is
trusted when the VMs of known user Uk (having historical
records of VM resource usage), execute assigned load
efficiently without interrupting and interfering with other
co-located VMs via an unauthorised access, irrespective of
the presence of any vulnerabilities of software or hardware.
Non-trusted: A user Uk is non-trusted in case of the users VM
attempt any kind of cybercrime or malicious activity such
as unauthorized data access, data hijacking, data phishing,
etc. by leveraging the susceptibilities of cloud virtualization
technology. Unknown: The new user for which there are
no records of any previous VM usage, is considered as
unknown user. User behaviour analysis deals with the process
of critical monitoring, recording, and examining the traces of
their previous VM usage and the inter-relationships among
co-resident VMs of different users periodically to interpret
or investigate the occurrence of cyberthreats in the presence
of intended vulnerabilities of cloud environments. The class
of user and the selected VM placement policy are passed to
the load balancer, which makes VM management decisions.

Accordingly, the VMs are deployed on different servers to
compute the users’ data {Rq1, Rq2, ..., RqM}. Concurrently,
the VM usage traces or type of data access information is
collected and passed to ‘VM usage database’ for examination
of the user behaviour.

Definition 2. VM usage database (DB): The historical repos-
itory of data values concerning VM usage related attributes
such as its ephemeral user ID, CPU, memory, and bandwidth
usage, inter-communication links with other VMs, types of
authorized access, etc., constitute VM usage database which
is utilized for multiple risks computation, training of resource
usage predictor, and VM threat predictor.

User's VM usage
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VM allocation
and migration 
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User requests

Unknown
User behaviour
classification
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Trusted

Server P (SP)

V1 V2 Vz
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Random-Fit etc.
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deployment of VMs

User-wise VM usage traces 

Filteration of 
user information

storage into user
record database

 

Server 1 (S1)

V1 V2 Vx

Cloud Platform

Fig. 3: User classification

The new VM of kth user (Uk) is allocated according to
the analysis of Uk behaviour by applying Eq. (5), where
Θk represents malicious actions for e.g., unauthorized access
executed by Uk.

Uk =


Trusted(0), If(Θk = 0)

Non− trusted(1), If(Θk > 0)

Unknown(−1), otherwise
(5)

Theorem 1. The behaviour of user U∗
k having VM V k∗

i hosted
on server Sj is bounded by Θ such that for a given time-period
{ta, tb} and VM usage database (DB ̸= ϕ), if Θ∗

k = 1, U∗
k is

non-trusted; otherwise, it is trusted.

Proof. Let Θij,k⇒i∗j,k∗ represents a data access by a user U∗
k

owning VM V k∗

i∗ to kth user Uk VM V k
i during time {ta, tb},

is formulated in Eq. (6):∫ tb

ta

Θij,k⇒i∗j,k∗dt =

∫ tb

ta

(ωk
ij × ωk∗

i∗j)× ⊎v
ij,k⇒i∗j,k∗dt (6)

where, ⊎v
ij,k⇒i∗j,k∗ represents inter-VM relationship between

V k
i and V k∗

i∗ , ∀{i, i∗} ∈ Q, j ∈ P . It is a Boolean value, 1 for
unauthorised data access (i.e., non-trusty relation) and 0 for
trusty relation. Assume LA (stated in Eq. (7)) specifies set
of authorized inter-VM links for ith VM of k∗th user. The
inter-VM relationship (⊎v

ij,k→i∗j,k∗ ) between V k
i and V k∗

i∗

placed on jth server is evaluated in Eq. (8) which corresponds
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to the inter-VM links LAij,k⇒i∗j,k∗ between them.

LAVi,k∗ ∈ {LAVi,k∗

1 ,LA
Vi,k∗

2 , ...,LA
Vi,k∗
n } (7)

⊎v
ij,k→i∗j,k∗ =

{
1, If LAij,k→i∗j,k∗ ⊈ LAvi,k

0, otherwise
(8)

Hence, when the user U∗
k has attempted an unauthorised

access, the inter-VM relationship parameter ⊎v
ij,k→i∗j,k∗ is

equal to 1 and applying Eq. (8) in Eq. (6), Θ∗
k = 1 for U∗

k is
non-trusted, and trusted, otherwise.

Corollary 1. The user U∗
k behaviour is also reflected by the

relationship ⊎S
ij,k→Sj

between user U∗
k and server Sj which

is ‘non-trusty’ for malicious records (H‡
j) greater than 0,

otherwise, it is trusty.

Proof. Let an unauthorized data access Θij,k∗⇒Sj from ith

VM of k∗th user to server Sj during time {ta, tb} is for-
mulated in Eq. (9). The term ⊎S

ij,k∗ = {0, 1} signifies a
relationship between Sj and U∗

k , such that it is equals to a
Boolean value, 1 for an unauthorized data access via malicious
hypervisor, and 0 otherwise.∫ tb

ta

Θij,k⇒Sjdt =

∫ tb

ta

ωij,k × ⊎S
ij,k→Sj

dt ∀{i} ∈ Q, j ∈ P

(9)

Suppose the relation (⊎S
ij,k→Sj

) between user Uk and server
Sj is analysed using Eq. (10), where H‡

j represents malicious
actions records computed using Eq. (11).

⊎S
ij,k→Sj

=

{
1, If(H‡

j > 0 ∧Hj > HThr)

0, otherwise
(10)

H‡
j =

∑
ωk
ij × ωk∗

i∗j ×Θij,k⇒i∗j,k∗ (11)

If user Uk∗
is non-trusty, then Θij,k⇒i∗j,k∗ = 1 (as proved in

Theorem 1). Accordingly, the value of the term H‡
j is also

1. Putting H‡
j= 1 in Eq. (10) when Hj > HThr, the value

of ⊎S
ij,k→Sj

becomes 1. Hence, H‡
j > 0 for a non-trusty

behaviour of user Uk∗
.

Further, the total threat information or unauthorized data
access Θk for the duration {ta, tb} by Uk is compiled by
applying Eq. (12):∫ tb

ta

Θkdt =

∫ tb

ta

(Θij,k⇒i∗j,k∗ +Θij,k⇒Sj
)dt (12)

The Random Forest Classifier (RFC) classifies users
U1, U2, ..., UM on the basis of their future behaviour by utiliz-
ing the learning capability of different base learners or decision
trees and knowledge driven via extracted correlated patterns
from their historical information, where Eq. (5) is evaluated
periodically for duration {ta, tb} ∈ t. RFC is composed of n∗

base learner estimators that produce n∗ outcomes and apply
majority voting to predict absolute behaviour of user Uk.

5. CONFIGURATION-DEPENDENT FACTORS

The vulnerabilities of virtualisation technology and VM
security loopholes which are governed by the susceptibilities
related to the creation and installation of VMs, including
sharing of a common physical machine, hypervisor or guest
OS installation, are confined to configuration-dependent risks.
MR-TPM considers two configuration dependent security risk
factors (R2, R3), including VM vulnerability (L) [29] and
Hypervisor vulnerability (H) [30]. A malicious user (UMal :
UMal ⊆ U) launches multiple applications (Ap, Aq , ..., At)
to compromise the target benign VM (V Ben : V Ben ⊆ V)
by achieving co-residency and exploiting VM and hypervisor
vulnerabilities, as shown in Fig. 4. The application Ap of
UMal exploits the hypervisor vulnerability of server S1 (i.e.,
H1 > HThr) and compromises multiple VMs. At server Sp,
the applications As and At of UMal utilize the vulnerability
of VM V2 (i.e., L2 > LThr) to launch the attack and
hamper computational data on it. The parameters HThr and
LThr specify threshold values of hypervisor vulnerability and
VM vulnerability, respectively. At server S2, both kinds of
vulnerabilities are absent, i.e., the threshold values of VM
vulnerability as well as hypervisor vulnerability are lesser than
their respective threshold values, and all the VMs deployed on
it are secured (V Ξ = 0).

The vulnerable VMs are deprived of standard security
features with respect to the operating system, applications
like e-mail, web-browsing, and network protocols, and are
prone to loose administrative control. Besides this, vulnerable
hypervisors of servers leads to hyperjacking where UMal can
easily gain unauthorized access of hypervisor to compromise
all the hosted VMs and the applications running on them. It is
typically launched against Type 2-Hypervisors running over a
host operating system. A mapping {ϖ|ϖ : Am×UMal×Vi ⇒
V Mal
i } defines malicious VMs such that an ith VM (Vi)

becomes malicious, if it hosts mth application (Am) of UMal.
The probability of threat (P(Ξi)) for ith VM over time-interval
{ta, tb} can be defined using Eq. (13),

P(Ξi) =


1, If(Li > LThr && ωk

ji ∩ ωk∗

ji∗ = Sj)

1, If(Hj > HThr && ωk
ji ∩ ωk∗

ji∗ = Sj)

0, otherwise
(13)

where ta < tb and ωk
ji ∩ ωk∗

ji∗ = Sj signifies co-location of
ith VM (Vi) of kth benign user (UBen|UBen ⊆ U) and i∗th

malicious VM (Vi∗ ⊆ V Mal) of k∗th malicious user UMal at
jth server (Sj).

A. VM vulnerability

The VMs vulnerability score list is generated using vulner-
ability scanner tools, such as Common Vulnerability Scoring
System (CVSS), Nessus and Qualys [30]. The CVSS measures
the severity of vulnerabilities of a hardware or software
and produces a score in the range [0, 10]. It quantifies the
vulnerability risk score (L) of ith VM in the range [0, 1] by
applying Eq. (14).

Li =
V Score
i

10
∀i ∈ [1, Q], V Score ∈ [1, 10] (14)
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B. Hypervisor vulnerability

The security risk of a hypervisor (H) depends on its own
vulnerability (SHyp_scor) as computed in Eq. (15) by applying
CVSS score system and the vulnerability of the VMs hosted
on it. The overall vulnerability score of hypervisor Hj is given
by Eq. (16), where max(Li × ωij) represents maximum VM
vulnerability score (L) among all VMs hosted on server Sj ,
∀i ∈ [1, Q], j ∈ [1, P ], ωij = 1 if Sj hosts Vi.

SHyp_scor
j =

SScore
j

10
∀SScore ∈ [1, 10] (15)∫ tb

ta

Hjdt =

∫ tb

ta

SHyp_scor
j (1 +max(Li × ωij))dt (16)

6. ALLOCATION-DEPENDENT FACTORS

The cybersecurity risk factors pertaining to the distribution
of physical resources and assignment of VMs on physical
servers subject to resource availability constraints, characterize
allocation-dependent risk factors. The VM security risks due to
the Side-channel effect and Network cascading effect depend
upon the placement of VMs of different users on available
servers (i.e., U × V ⇒ S). Two VMs Vi and Vj are inter-
dependent iff(Vi, Vj) ∈ LA, where LA implies Legal Access
subject to the constraints:

• Vi(LA)Vi ∀Vi
∈ LA,

• Vi(LA)Vj = Vj(LA)Vj ∀Vi,Vj
∈ LA,

• {Vi(LA)Vj ∪ Vj(LA)Vk} ⇒ Vi(LA)Vk,
• ∀Vi,Vj ,Vk

∈ LA
As depicted in Fig. 5, a malicious user UMal executes an
application at V1 hosted on the server (S1) having an effective
VM vulnerability, i.e., L1

1 > LThr, achieves co-residency with
one of the inter-dependent VMs ({V1, V2, ..., VZ} ∈ LA),
where Z is the number of inter-dependent VMs. The malicious
VM (V Mal

1 ) successfully launches side-channel threat on
vulnerable VM (V2) and the threat propagates to multiple VMs

crossing physical boundaries of network devices using network
cascading effect via inter-communication links among VMs:
{V1, V2, ..., VZ} ∈ LA. The probability of threat (P(Ξi)) for
ith VM over time-interval {ta, tb} is defined using Eq. (17),
where C∗

ii∗j = ωij×ωi∗j = {0, 1} is a Boolean variable which
specifies co-location between ith VM (Vi) and i∗ malicious
VM (V ∗

i ) at server (Sj).

P(Ξi) =


1, If((Li > LThr ∨Hj > HThr) ∧ C∗

ii∗j)

1, If(ΠZ
k=1(C

∗
ki∗j∗ × C∗

ikj × Lk) > LThr)

0, otherwise
(17)

A. Side-channel effect

Let a malicious VM V Mal
j and benign VM V Ben

i are hosted
on server Sk. If V Mal

j compromises any VM on server Sk,
then it can compromise other co-resident VMs eventually.
Hence, the survival of V Ben

i depends on its own vulnerability
score (Li) and its co-resident VMs vulnerability score. The
side-channel risk score (C) of V Ben

i during time-interval
{ta, tb} is calculated as stated in Eq. (18), where ωjk × ωik

represents co-location of ith and jth VM on kth server,
∀i, j ∈ [1, Q], k ∈ [1, P ].∫ tb

ta

Cidt =

∫ tb

ta

1−ΠQ
j=1(1− Lj × ωjk × ωik)dt (18)

B. Network cascading effect

The impact of cascading network connections among VMs
on cloud security establishes the network cascading effect.
It is computed in terms of network cascading score (N )
respective to VM Vi during time-interval {ta, tb} using Eq.
(19), where Vi and Vj are connected via legal access network
link and hosted on different servers Sk and Sk∗ such that
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∀i, j ∈ [1, Q], i ̸= j. If a malicious VM V Mal hosted on
server Sk∗ , is successful in compromising the VM Vj , then it
can compromise VM Vi and all other VMs that are connected
via common network by exploiting the network paths.∫ tb

ta

Nidt =

∫ tb

ta

1−ΠQ
j=1(1− Lj × ωik × ωjk∗)dt (19)

7. OPERATIONAL DESIGN AND COMPLEXITY

MR-TPM utilizes values of current state of multiple secu-
rity attack factors {R1, R2, R3, R4, R5} and three historical
databases namely (i) VMs’ resource utilization {RU1, RU2,
..., RUQ} ∈ RUdb, (ii) user-records {U1, U2, ..., UM} ∈ Udb

and (iii) VM threats traces {Ξ1, Ξ2, ..., Ξn} ∈ Thdb. The set
of users U1, U2, ..., UM , servers S1, S2, ..., SP and V1, V2, ...,
VQ are initialized followed by a mapping U×V⇒ S among
VMs, users and servers. The VMs are allocated to servers
using some suitable VM placement strategy, for example,
First-Fit Decreasing (FFD), Best-Fit, Greedy, Random-Fit etc.
Thereafter, for each consecutive time-intervals {ta, tb}, current
resource utilization of V1, V2, ..., VQ are passed as input
into a workload predictor [31] trained with RUdb to estimate
their resource utilization during next time-interval. The threat
status prediction is conducted for the VMs with predicted
workload estimation (W p > 0). To predict future threat status
of VM Vi, values of R1, R2, R3, R4 associated with Vi are
assessed by applying Eqs. (14)-(19). The assessment of R5 is
done by analysing the behaviour of co-resident users of Vi by
using RFC based user classifier trained with Udb. The current
score values of R1, R2, R3, R4, R5 are fed as input into threat
predictor (TP∗∗) trained and tested with Thdb, to predict the
future threat status (V̂ Ξ

i ) of Vi. Accordingly, the VMs with
V̂ Ξ
i > 0 are migrated to server where V̂ Ξ

i = 0 by applying
Eq. (20). The migration cost is computed using Eq. (21),

where D(Sk, Sj) is the distance or number of hops covered by
migrating VM Vmig from source (Sk) to destination server Sj ,
{j, k ∈ [1, P ]}, Vmig ∈ TPV , WW(Vmig) = V CPU

mig ×V Mem
mig

is the size of migrating VM, TPV is the list of VMs with
‘unsafe’ status or VMs on overloaded server (Sk). The first
term

∑
CCmig.jD(Sk, Sj) ∗WW(Vmig) signifies network

energy consumed during VM migration. The second term∑
GjBj specifies server state transition energy, where if ith

VM is placed at jth server after migration, then CCmig.j = 1,
otherwise 0. If jth server receives one or more VMs after
migration, then Gj = 1 else it is 0. Similarly, if Bj = 0, then
jth server is active before migration, otherwise, Bj = Etr

where Etr = 4260 Joules which is energy consumed in
switching a server from sleep to active state [32], [33].

Vi
mig_status =

{
1 If(V̂ Ξ

i > 0)

0 otherwise
(20)

Mc =
∑
CCmig.j(D(Sk, Sj) ∗WW(Vmig)) +

∑
GjBj

(21)

The operational summary for proposed work is depicted in
Algorithm 1. Step 1 initializes the list of VMs, servers, users

Algorithm 1: MR-TPM Operational Summary

1 Initialize: ListU, ListV, ListS, ω;
2 Allocate V1, V2, ..., VQ to S1, S2, ..., SP by defining a

mapping U×V⇒ S ;
3 for each time-interval {ta, tb} do
4 [V Pred

i ] ⇐ Workload Prediction(Vi)
∀i ∈ {1, 2, ...Q} ;

5 if (V Pred
i > 0) then

6 [V̂ Ξ
i > 0] ⇐ Threat Predictor (TP∗∗);

7 if V̂ Ξ
i == ‘unsafe’ then

8 Migrate Vi to server Sk such that V̂ Ξ
i ==

‘safe’;
9 Compute Mc by applying Eq. (21);

10 else
11 Keep Vi at same server until user

terminates it;
12 end
13 else
14 VM threat prediction is not required;
15 end
16 end

(owners of these VMs) producing a complexity of O(1). The
time complexity of step 2 depends on the type of chosen
VM placement policy. Steps 3-16 repeat for Y time intervals,
wherein the step 4 has complexity of O(W ) [31]. The com-
plexity of step 6 is T ⇐ O(thzlogn), where t is the number
of trees, h is the height of the trees, and z is the number
of non-missing entries in the training data. Prediction for a
new sample consumes time O(th). Therefore, the total time-
complexity of MR-TPM operational algorithm is O(YWT ).



9

8. PERFORMANCE EVALUATION

A. Experimental Set-up and Implementation

The simulation experiments are executed on a server ma-
chine assembled with two Intel® Xeon® Silver 4114 CPU with
40 core processor and 2.20 GHz clock speed in Cloud data
center simulation framework implemented in Python Jupyter
Notebook. The computation machine is deployed with 64-bit
Ubuntu 16.04 LTS, having main memory of 128 GB. The
datacenter environment is set up with three different types of
servers and four types of VMs configuration shown in Tables
II and III. The resource features like power consumption
(Pmax, Pmin), MIPS, RAM and memory are taken from real
server configuration; IBM [34] and Dell [35], where S1 is
‘ProLiantM110G5XEON3075’, S2 is ‘IBMX3250Xeonx3480’
and S3 is ‘IBM3550Xeonx5675’. Furthermore, the experimen-
tal VMs configurations are inspired from the VM instances of
the Amazon website [36].

TABLE II: Server Configuration

Server PE MIPS RAM(GB) Storage(GB) PWmax PWmin/PWidle

S1 2 2660 4 160 135 93.7
S2 4 3067 8 250 113 42.3
S3 12 3067 16 500 222 58.4

TABLE III: VM Configuration

VM type PE MIPS RAM(GB) Storage(GB)
vtype1 1 500 0.5 40
vtype2 2 1000 1 60
vtype3 3 1500 2 80
vtype4 4 2000 3 100

B. Datasets and Simulation parameters

MR-TPM is evaluated using two benchmark VM traces
from a publicly available real workload datasets: OpenNebula
Virtual Machine Profiling Dataset (ONeb) [37] and Google
Cluster Data (GCD) [38]. ONeb provides information gath-
ered by the monitoring system for six VMs over 63 Hours via
executing a set of probe programs provided by OpenNebula.
It reports VM threats respective to the server status, basic
performance indicators, as well as VM status, and resource
capacity consumption of server hosting these VMs. The exact
values of VM and hypervisor vulnerability scores are not
reported in the original VM threat database. Therefore, to
prepare VM threat database including attributes: {V _idvictimi ,
S_id, V _idMal, V CPU

i , V BW
i , V memory

i , Rscore
i , Li, Hi, Ci,

Ni, V status
i , ..., etc.}, the VMs of ONeb dataset that have

experienced attacks, are assigned vulnerability score higher
than the threshold value of VM threat (which is considered
0.5 for the experiments) and the rest of the risk scores are
computed using Eqs. (13)-(19). These VM threats information
is learned by the VM threat predictor for estimation of threats
on VMs before occurrence.

Also, we have utilized a realistic workload of Google
Cluster Data (GCD) 1, which provides resource usage per-
centage for each job in every five minutes over period of

1https://github.com/HiPro-IT/CPU-and-Memory-resource-usage-from-
Google-Cluster-Data

twenty-four hours. GCD contains capacity usage information
of resources CPU, memory, disk I/O request information of
672,300 jobs executed on 12,500 servers for the period of
29 days. The VM vulnerability (L) and server hypervisor
vulnerability (H) are generated in the range [0, 10] during
VMs and the server’s initialization. Accordingly, the VM
threat database reporting traces of attacks on GCD VMs,
including attributes {V _idvictimi , S_id, V _idMal, V CPU

i ,
V BW
i , V memory

i , Rscore
i , Li, Hi, Ci, Ni, V status

i , ..., etc.} is
generated and updated at runtime according to requirement of
the proposed model. These datasets do not report user database
and hence, we created a user database consisting of {Uid,
Attackthreshold, Uclass} and utilized it for user behaviour
analysis based on their previous VM usage. The number of
users is considered equals to 30% of the number of VMs
(i.e., 1200 VMs), who requested varying number and type
of VMs over time. Therefore, different number and types of
VMs are mapped with user at run-time and according to the
risk scores associated to different VMs, threat is defined. Each
user can hold VMs with a constraint that at any instance,
the total number of VMs requests must not exceed total
number of available VMs at the datacenter. The user database
is created and updated during runtime. All the experiments
are executed for 100 time-intervals of five minutes to analyse
the performance of proposed model dynamically, though this
period can be extended as per the availability of traces. The
security threats are generated depending upon the threshold
values for the four types of risks {Li, Hi, Ci, Ni} associated
with a VM and presence of the malicious V Mal. The presence
of some malicious user VM (V Mal) on a server and the risk
scores corresponding to ith VM (Vi) ‘greater than equal to’
their respective threshold values indicate the high probability
of security threat (i.e., V Ξ

i > 0).

C. VM Cyberthreat Prediction

The VM threat prediction is performed for the different
population of malicious user UMal, such as 5%, 20%, 50%
and 90%. The prediction accuracy achieved during training,
testing, and live phase for 5% and 50% UMal over period
of 500 minutes is shown in Fig. 6 for both the datasets.
It can be noticed that prediction accuracy is closer to 98%
for all three phases, which is slightly increasing for live
cyberthreat detection during each experiment because of the
capability of online-learning and re-training of MR-TPM with
the passage of time. To provide online training, we perform
read/write operation of live VM threats in threat database
file dynamically during period of 500 minutes. The Receiver
Operator Characteristics (ROC) curve obtained for different
experiments using both the datasets are depicted in Fig. 7.
ROC curves for the UMal = 5% is better than the ROC curves
obtained with UMal = 50% because of effective learning
of true threats in the presence of least number of malicious
users. It is observed that the proposed MR-TPM efficiently
predicts VM threats for the test as well as live data in all the
experiments for both datasets.

Fig. 8 analyses the Actual Threat (AT), Predicted Threat
(PT), and Unpredicted Threat (UT) for online VM threat
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prediction in the presence of 5%, and 50% UMal for both
datasets. It can be observed that most of the VM threats are
predicted correctly where UT is closer to zero and PT is closer
to AT, indicating that along with all true threats, some false
threats are also predicted. However, the difference between AT
and PT is reducing over the time with enhancement of learning
capability of VM threat predictor.

The values of precision, recall, F1 measure score, average of
mean square error (Avg.MSE), average of mean absolute er-
ror (Avg.MAE) observed for the different experimental cases
of both the datsets, including GCD and ONeb VM traces are
shown in Table IV and Table V which are consistently higher
than 0.95 for each case. The Avg.MSE and Avg.MAE
values are observed in the range of [0.0001 − 0.0008] and
[0.001 − 0.010], respectively, and the accuracy of prediction
is higher than 96% reaching up to 99.71% and 99.25% for
the GCD and ONeb, respectively. The reason for such an
accurate prediction is the incremental learning of MR-TPM
with historical and live VM threat databases in real-time. Fig.
9 shows the changes observed in the various risks scores {L,
H , N , C} of a randomly selected VM among the 1200 VMs
under simulation for a period of 500 minutes.

TABLE IV: Performance metrics for GCD VM traces

UMal time Performance metrics
(%) (min.) Precision Recall F1score Avg.MSE Avg.MAE Accuracy

5

100 0.97 0.99 0.98 0.00021 0.0034 98.87
200 0.99 0.99 1.00 0.00043 0.0294 98.96
300 1.00 0.99 0.96 0.00036 0.0052 99.42
400 0.99 0.97 1.00 0.00071 0.0073 98.87
500 1.00 0.99 0.99 0.00191 0.0099 99.71

20

100 1.00 0.98 0.98 0.00062 0.0094 97.07
200 0.99 0.99 0.99 0.00031 0.0044 98.66
300 1.00 1.00 1.00 0.00026 0.0025 99.67
400 0.99 0.97 1.00 0.00043 0.0069 99.17
500 0.99 0.98 0.99 0.00061 0.0084 99.96

50

100 0.97 0.99 0.98 0.00039 0.0041 98.16
200 0.98 0.96 0.99 0.00058 0.0064 97.43
300 1.00 1.00 1.00 0.00016 0.0015 99.69
400 0.99 0.98 0.98 0.00037 0.0049 98.25
500 0.99 0.99 0.99 0.00031 0.0034 98.17

90

100 1.00 0.99 1.00 0.00028 0.0041 98.76
200 0.98 0.96 0.99 0.00058 0.0064 99.74
300 1.00 0.99 1.00 0.00014 0.0020 98.69
400 0.99 0.98 0.96 0.00029 0.0039 99.25
500 1.00 0.99 0.99 0.00011 0.0014 99.97

TABLE V: Performance metrics for OpenNebula VM traces

UMal time Performance metrics
(%) (min.) Precision Recall F1score Avg.MSE Avg.MAE Accuracy

5

100 0.96 0.98 0.96 0.0007 0.0014 99.10
200 0.99 0.99 1.00 0.00023 0.0094 99.06
300 .99 0.99 0.98 0.00045 0.0005 99.10
400 1.00 0.97 0.99 0.00091 0.0023 99.07
500 0.99 0.98 1.00 0.00071 0.0006 99.11

20

100 0.99 0.97 0.97 0.00062 0.0004 98.16
200 1.00 0.99 1.00 0.00051 0.0024 97.96
300 1.00 1.00 0.99 0.00025 0.0015 98.17
400 1.00 0.99 1.00 0.00022 0.0029 99.17
500 0.99 0.98 1.00 0.00021 0.0014 99.01

50

100 0.98 0.99 0.99 0.00031 0.0031 98.82
200 0.98 0.96 0.99 0.00058 0.0045 98.03
300 1.00 1.00 1.00 0.00016 0.0021 99.04
400 0.98 1.00 0.99 0.00027 0.0030 99.25
500 1.00 0.99 0.98 0.00040 0.0032 98.85

90

100 0.99 1.00 1.00 0.00108 0.0064 97.91
200 0.99 0.98 1.00 0.00078 0.0042 98.23
300 0.99 0.97 0.99 0.00067 0.0038 98.99
400 0.99 0.99 0.98 0.00029 0.0029 99.06
500 0.99 0.99 1.00 0.00016 0.0016 99.17

D. Deployment and Comparison
To further analyse the efficiency of MR-TPM, it is deployed

with existing state-of-the-art VM placement (VMP) policies,

including Previously Selected Server First (PSSF) [11], Secure
and Energy Aware Load Balancing (SEA-LB) [16], Security
Embedded Dynamic Resource Allocation (SEDRA) [15] and
baseline VMP policies, including First-Fit Decreasing (FFD),
Best-Fit (BF), and Random- Fit (RF). All the results shown
in Section 8-C are derived with FFD VMP policy.

Table VI compares the average number of VM threats
realised without and with MR-TPM (results are shown for
the Live phase) integrated together with the above mentioned
VMP policies. It can be observed that up to 88.5%, 86.5%,
86.2%, 88.9%, 88.5% and 88.1% threats are reduced with
proposed approach over PSSF, SEA-LB, SEDRA, RF, BF and
FFD, respectively, for UMal% = 90 at T (min) = 500. The
resource utilization of datacenter can be obtained using Eqs.
(22), (23), where Z is the number of resources, ωji = {0, 1} is
mapping between server (Si) and VM (Vj). Though in formu-
lation, only CPU and Mem are considered, it is extendable
to any number of resources.

RUdc =

t2∫
t1

(
RUCPU

dc +RUMem
dc

|Z| ×
∑P

i=1 γi
)dt (22)

RUr
dc =

P∑
i=1

∑Q
j=1 ωji × V r

j

Sr
i

r ∈ CPU,Mem, etc. (23)

The resource utilization of different VMP integrated with MR-
TPM follows the trend: FFD ≥ SEA − LB ≥ SEDRA ≥
PSSF ≥ BF ≥ RF , as shown in Fig. 10a.

The power consumption for ith server can be formulated
as PWi and total power consumption PWdc during time-
interval {t1, t2} can be computed by applying Eq. (24), where
PWi

max, PWi
min and PWi

idle are maximum, minimum and
idle state power consumption of ith server.

PWdc =

t2∫
t1

P∑
i=1

[PWi
max − PWi

min]RU + PWi
idledt

(24)
Fig. 10b shows the comparison of power consumption which
is highest (i.e., 109.10 KW) for MR-TPM + PSSF and least
(69.29 KW) for MR-TPM + FFD. The average number of
active servers is compared in Fig. 10c , where MR-TPM +
FFD and MR-TPM + PSSF operates at the lowest (118) and
highest (774) number of active servers, respectively. Both the
power consumption as well as the number of active servers
follow the trend: FFD < BF < SEDRA < SEA− LB <
RF < PSSF . The reason for the resultant trend is that VMs
are tightly packed onto servers using FFD, while in the case
of others, sharing of servers is minimized for the purpose of
security at the cost of the larger number of active servers.

9. CONCLUSIONS AND FUTURE WORK

To provide a comprehensive solution for secure workload
distribution at cloud datacenter, a novel MR-TPM is proposed
which estimates the future threats on user VMs by analysing
multiple risk pathways, including VM and hypervisor vul-
nerabilities, co-residency, network cascading effects and user
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Fig. 6: Prediction Accuracy
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(d) ONeb with UMal = 90%

Fig. 7: ROC Curves
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Fig. 8: Number of threats (AT:Actual Threats, PT: Predicted Threats, UT: Unpredicted Threats)

TABLE VI: Comparison of number of threats without and with MR-TPM (Live phase) deployed with various VMP approaches

UMal T Percentage of VM security threats (Ξ)
(%) (min) PSSF [11] SEA-LB [16] SEDRA [15] RF BF FFD

W-TP TP W-TP TP W-TP TP W-TP TP W-TP TP W-TP TP

5

100 116 19 206 13 137 17 276 16 283 19 318 58
200 203 33 187 27 169 19 296 22 258 17 287 22
300 270 27 193 19 125 18 226 17 238 16 308 26
400 216 32 208 18 148 23 298 17 222 18 256 23
500 223 22 214 21 177 25 196 18 236 17 312 29

20

100 365 26 327 54 244 17 474 19 86.7 17.4 678 35
200 376 23 364 68 314 24 494 17 89.9 15.7 673 42
300 399 17 397 39 344 28 478 29 87.5 14.0 579 44
400 416 31 389 28 297 28 473 26 86.4 17.2 598 58
500 402 26 428 49 308 37 501 28 89.7 16.9 657 39

50

100 537 28 466 37 376 24 638 27 584 27 779 56
200 556 23 451 39 349 23 627 29 595 24 767 49
300 536 15 485 44 339 30 692 27 603 38 797 67
400 547 37 509 35 388 26 701 28 586 27 745 54
500 533 41 487 46 373 34 694 25 567 15 779 48

90

100 783 57 766 41 676 56 893 65 837 76 958 108
200 723 49 748 56 621 43 907 84 878 89 997 99
300 792 78 687 75 658 49 958 98 889 94 946 83
400 712 62 673 69 684 57 897 87 847 88 984 94
500 728 84 678 91 633 87 927 102 837 96 996 118
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Fig. 9: Variation of multiple risk values for a VM

behaviour. The proposed model is periodically trained and
retrained with historical and live threat data for accurate pre-
diction of threat on VMs. MRTPM deployed with existing VM
allocation policies minimizes multiple risks based VM threats
and related adversary breaches. The performance evaluation of
the proposed VM threat prediction model supports its efficacy
in improving cybersecurity and resource efficiency over the
compared approaches. In the future, MR-TPM can be extended
with transfer learning to enhance its capabilities of analysing
unknown/unseen security threats. Additionally, other possible
security risk factors can be quantified and included to improve
the prediction approach of cyberthreats further.
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