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PID Tracking Control under Multiple Description
Encoding Mechanisms

Di Zhao, Zidong Wang, Shuai Liu, Qing-Long Han and Guoliang Wei

Abstract—In this paper, a PID tracking control problem 2" > % 2°-% is positive definite
is studied for a class of linear discrete-time systems under Amax () The maximum eigenvalue of a symmetric
multiple description encoding mechanisms (MDEMs). The data matrix .4

transmissions on the sensor-to-controller channels are subject to

packet dropouts whose occurrences are random and governed by Amin (4 ) The minimum eigenvalue of a symmetric

two Bernoulli-distributed sequences of certain probability distri- matrix .2

butions. In order to improve the reliability of data transmission, E{-} The expectation operator

an MDEM is put forward, with which the data is encoded into The Kronecker product

two descriptions of identical importance before being transmitted (z) The remainder obtained on dividingby y
to the decoders through two individual communication channels. ‘v . . o ‘
The aim of this paper is to develop a PID tracking controller for L5 The quotient obtained on dividing by y

guaranteeing the ultimate boundedness of the resulting tracking

error, and the_ c_orrt_asponding controller gains are obtained by |
solving an optimization problem. Moreover, the effect of the pack-

the boundedness in resped o he desoding error, A simulaton” £\ S, & fundamental research topic in the control field
example is finally preserr:ted to showcase th% applicability of the the output tracking control problem ams t.o force the
proposed PID tracking control scheme. controlled output of the plant, via an appropriate control

scheme, to follow the desired reference signal as close as
possible. Up till now, output tracking has found a plethora

of successful applications in various domains which include,

but are not limited to, missile guidance, mobile robots, and

aerospace [13], [17], [18]. Accordingly, the tracking control

. INTRODUCTION

Index Terms—PID control, tracking control, multiple descrip-
tion encoding mechanism, randomly occurring packet dropout.

Abbreviations and Notations problem has spurred a surge of research effort leading to many
PID Proportional-integral-derivative excellent results published in the literature [30], [40], [42]. For
MDEM Multiple description encoding mechanism instance, the tracking control problem has been investigated,
ROPD Randomly occurring packet dropout respectively, for Takagi-Sugeno fuzzy systems [29], Boolean
EUBMS Exponentially ultimately bounded in control networks [47], and high-order nonlinear systems [26].
mean-square sense Since it was first proposed in the 1910s, the PID control
AUB Asymptotic upper bound strategy has been extensively applied in more than 90% of
RP The p-dimensional Euclidean space industrial control loops [1], [2]. To date, the PID controller
2|2 The Euclidean norm of: has been playing a major role in multifarious industrial control
2| oo The infinite norm ofz processes such as flight control, instrumentation, motor driver
0 The zero matrix and automotive vehicle [11]. Compared with the existing
I The identity matrix control methods (e.g. the conventional state feedback con-
2>y 2-% is positive semi-definite trol algorithm [36], [46]), the PID control method owns the

following significant superiorities: 1) the concise mechanism
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may cause data collision, network congestion and even pactet attempts here to design a PID tracking controller under
dropouts [19], [27], [32]. Such kinds of phenomena, if Nno0ROPD and MDEM. 2) In comparison to the existing encoding
addressed, would seriously jeopardize the system performasckemes, the MDEM implemented on the codeword trans-
[37], [41], [43]-[45], [48]. In this regard, appropriate datamission process is more prominent in eliminating/attenuating
transmission mechanisms have been exploited with aim a@dverse influences from ROPD onto decoding accuracy. 3)
modulate the signal transmission, thereby better utilizing tie theoretical framework is established to examine the joint
limited network resource and mitigating the adverse effeat$fects of the ROPD, the decoding errors and the disturbance
resulting from the network-induced phenomena [16], [21input on the tracking performance in a quantitative way.
[22], [35]. The rest of this paper is structured as follows. In Section II,
Among various transmission mechanisms, the MDEM héle considered tracking control problem under the MDEM
been widely applied in distributed storage systems, diveriseformulated. In Section 1ll, the PID tracking controller is
communication systems and image/audio/video encoding [8gveloped, and the boundedness of decoding error and track-
[5], [12], [14], [15], [23], [34]. Under MDEMSs, the data is ing error are respectively analyzed. Section IV, a numerical
encoded into multiple descriptions with identical importancexample is given to illustrate the usefulness of the proposed
and then the multiple description packets are transmitted RéD tracking control scheme, and a few concluding remarks
the decoder through parallel independent channels. Clea#ltg lastly made in Section V.
the more descriptions available to the decoder (i.e., the more
normally operating channels), the smaller decoding errors and, ||. PROBLEM FORMULATION AND PRELIMINARIES
subsequently, the higher decoding accuracy. Accordingly, tﬂe
utilization of the MDEMSs would help enhance the reliability -
of data transmission, and this is especially true when theConsider a class of discrete linear time-invariant systems
communication channels suffer from packet dropouts. Negharacterized by the following state-space model:
ertheless, despite its prac_tical importance, the MDEM-based 2(h + 1) =Az(h) + Bu(h) + Mu(h)
control problem has not gained much research attention yet, let
alone the case when output tracking control and PID control y(h) =Cx(h) @
are also addressed. Such a lack of adequate results is mainly z(h) =Ex(h)

due to the mathematical challenges caused by the co—existe\%%rex(h) € RP=, u(h) € R?*, y(h) € R?» andz(h) € RP:

of the packet dropout, the decoding errors as well as th&, aqent, respectively, the system state, the control input, the

referepce Input. . _ measurement output and the controlled outp(t) € V £
Motivated by the discussions made thus far, we are mofiy . ||y|| < »; v € RP+} denotes the exogenous disturbance

vated to tackle the PID tracking control problem for a class Qfith 4 > 0 being a known scalar; and, B, C, M and E are
linear discrete-time systems under MDEMs. In doing so, thrggown matrices with compatible dimensions.

foreseeable challenges emerge as follows: 1) how to develop

an effective PID tracking controller to ensure the ultimate ] o )

boundedness of tracking error? 2) how to elevate the reliabilf; Multiple Description Encoding Procedure

of codeword transmission in the presence of ROPDs? and 3)n practical engineering, data transmissions often face the
how to explicitly describe the decoding-error-induced effecfghenomenon of packet dropouts due to limited communication
on the tracking performance? As such, the primary purposeaapacity. To improve the efficiency of resource utilization, the
the current study is to make an endeavor to provide satisfactdDEM is used to alleviate the adverse effects induced by the

System Model

answers to these three questions. packet dropouts.
The primary contributions we are delivering can be outlined Encoder:
in threefold.1) To our knowledge, we make one of the first 15(h) =R,.5 (ys(h)) @
Js(h) :Nc,s(ys(h)
u(h) Decoder:
l | R (es(h)), when gy (h) = 1, ¢2(h) =

Plant PID

(1)) 1 0
4’@ Controller gs(h): (jS(Z )’ . WEen ¢1(h) _(1) (h) - 1
(o0 3,0 whena ) 1, (1) =
Sensor L2 SN I e T & Js(h — 1), when g, (h) =0, ¢2(h) =0
c, © _ R ©
';(;;jj"" whereR, () andR. (-) are two encoding function$?’(-)
w Reference|and®7(-) are two side decoding functions afy(-, -) is the
Tﬂ(h) central decoding function; (k) and,(h) are two individual
descriptions ofys(h) with y,(h) being thesth component of
Fig. 1: PID tracking control problem under multiple  y(h); ys(h) is the decoding value correspondingytd /) and
description encoding mechanism. s € 6{1,2,...,p,}. ¢.(h) (¢ = 1, 2) are two independent
Bernoulli sequences, which regulate the probabilistic nature of

ot

w0 »3 n

=
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the packet dropout phenomena in the course of the descriptio®enote the decoding error between the measuremgnt
transmissions, obey the following probability distributions: and the decoded valugh) asx,,(h) with m € 901 represent-
- - ing the number of received description packets. Accordingly,
Prob{¢.(h) =1} =¢1, Prob{¢i(h) =0} =1 - ¢ the decoded measurement outg(k) is modeled as:
Prob{¢z(h) = 1} =2, Prob{¢s(h) =0} =1 — ¢s.

Here, ¢,(h) = 1 means that theth channel works normally, g(h) =6o(h) (y(h) N Ho(h)) +ah) (y(h) + m(h))

and¢,(h) = 0 corresponds to the scenario of tht channel +&(h) (y(h) + ra(h))

undergoing the packet dropouts at time instant =y(h) + &o(h)ko(h) + &1 (h)k1(h) + &2(h)k2(R). (8)
Before presenting the encoder-decoder structure, let us

introduce three random variablgs (k) (m € M £ {0, 1, 2})

as follows: C. PID Tracking controller

Em(h) £ 6(p(h), m), ¢(h) £ ¢1(h) +¢a(h), (4)  The aim of this paper is to develop a tracking controller
) such that the controlled output of the system (1) tracks the
which satisfy 3 &, (h) = 1 and controlled output signal of the following system:

_z _ _ x(h+1) =Fx(h) + Gu(h)
E{é&(h)} =&, E{&(h)} =&, E{&(M))=&  (5) (1) —H(h) )

with 2 (h) =Ex(h)

_ _ _

fo=(1- (bl)_(l a <l5_2) . where x(h) € RPx and u(h) € RP+ are, respectively, the

& £01(1 = ¢2) + da(1 — ¢n) reference state and the reference input satisfyingh)| <

£o 21 o. f with 72 being a known positive scalag, (h) € RP» and
zy(h) € RP= are the measurement and controlled output of

Remark 1:According to (4) and Fig. 1¢(h) = 2 implies  the reference system; ard, G and H are constant matrices
that both channelsC;” and “C." work normally and the with F being Hurwitz.

central decoder D¢” is triggered to generate the decoded By setting fi(h) 2 [g‘T(h) yT(h)]T the following PID
X 1

Yalu?. ¢(h) = 1 implies that (_)nly one Ch??“e"“(fl",,‘?f tracking controller is constructed:
C5") works normally and the side decodddt,” or “Dgr” is

activated to execute the decoding procedufé.) = 0 implies h—1
that the packet dropouts occur in both channely™ and u(h) = Ph(h) + .7 Z h(p) + 2 (h(h) — h(h — 1))
“Cy” and, correspondingly, all the decoders fail to work. p=h—q
For presentation clarity, we set (10)
i) 2 [ h) gah) - gy, (W] with
h) 2 (k) 1a(h m"
t(h) 2 (k) 1a(h) wm(® #2[p, P], #2[L 1], 22[D, D]
A
9(h) = [51(h)  32(h) Ip, (R)]

L T and Py, Py, I, I, D,, D, being the controller gains to be
) [ (1a(1)) (1, ))} determined.
T i ; -

ARt (0 (B R (1o(B) --- RT h Remark 2:1t is worth noting that the traditional PID con-

) [ 1(@(h) R (s2(R)) e ))} troller utilizes all historical information in its integral term,
) = RS (ea(h), 71(h) RS (22(h), g2(h)) and this might lead to issues with algorithm convergence. To
e (2 (h),7 (h)) }T handle such issues, a time window of adjustable length is
Py NPy A Iby ' adopted in the integral term of the developed PID tracking
The scalar-valued encoder-decoder pair (2)-(3) can be cogantroller, based on which the underlying accumulation error

pacted into the following form: can be approximately tackled with reduced computational
burden.
u(h) =X (y(h)) (6) Defining the state tracking errarh) £ 2(h) — x(h) and
J(h) =Rc(y(R)) the controlled output tracking errat(h) £ z(h) — 2, (h), we
and have the tracking error system of the following form:
RE(u(h), 5(h)), whengi(h) =1, ¢a(h) =1 e(h+1) =Ae(h) + (A — F)x(h) + Bu(h)
i(h) = R (5(h)), when¢i(h) =0, ¢2(h) =1 + Mv(h) — Gu(h) . (11
R EOO) when gy () = 1, ¢3(h) = 0 22(h) =Ee(h)
g(h - 1)7 when ¢1 (h) =0, ¢2(h) =0

(7) By settingb(h) £ [¢7(h) XT(h)}T, we obtain the follow-
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ing augmented system: A. Design of Encoding Scheme
In this subsection, the data encoding procedure will be for-

b(h+1) :Ab(h):i— 39@ +Wol(h) malized in two steps. The first step (the index generation step)
+ T(Eo + Eo(h))éo(h) aims to convert the measurement output into the corresponding
+ T(él +E1(h))u(h) index by employing the uniform quantization method, and the
A~ (12) second step (the index assignment step) endeavors to assign
+ T (2 + Z2(h))ea(h) the generated indices to a certain mapping matrix based on
ze(h) =Eb(h) the nested index assignment principle.
p(j) =0, j=0,1,...,¢ Step 1. Index Generation
For a scalar uniform quantizei;(-) : R — R (s € &) of
where the following form:
ALo +B, S- [B%ﬂ . T2 [3%] e e 275
0 0 6,(ds) = — T, ds < =7y
2= [1\04 _GG] ,EE[E 0], 7= [‘3 A;F] —rs + 7(29515 1)T5, —rs+t; <ds < —r5+(tls+4)
B ~E [B(PI —5 Dz)C B(Py + Dg)(C + H)] the scaling parameterg;, rs and the positive integel;
N N correspond to, respectively, the signal to be processed, the
;EI+T F - S CELRG saturation value and the quantization level, where
a1 -5 -1 4+ a4 -1
%2 2 [Pm +D, L+D, I, - Iw} ts 2(91 1)Tsls ; ts 2937'315
T gs €L£: ={1,2,...,1}.

In the light of (14), the interval—rs, r5] is uniformly

C 0 T
% = [0 C+H]’ o(h) & [vT(h)  pT(h)] partitioned intol, subintervals, and théth subinterval of
—rs, 75| is defined as
o(h) = T (h—1) »T(h—2) T (h—q)]" | | _ . T

AT T T T [—7’5 +2(0 = D)rgly ", —rg + 2irgl, ] , i€ L.
to(h) = [k§ (h)  KG (h—1) kg (h—q)] _ , _

AT . T(n T In order to avoid the quantizefs(-) being saturated, an
w(h) = [“1 (h) sy (h—1) w1 (b — q)] adaptive parameter, is introduced into the signal pretreating
12(h) & [,QQT(}L) kE(h —1) k3'(h — q)]T process. Accordingly, the quantizer output is generated by

é0 =g ®50, §1 = | P ®51, éQ = I, ® & b4 (ys(h)) _ wsé(ys(h)). (15)
€o(h) 2&(h) — &, Eo(h) £ diag{éo(h), ..., o(h —q)} n th () ?(ﬂhs)/ bel 0 th
= a o= A dianl £ 7o n this sense, oncéy; > T, Ys ws belongs to the
& (h) :51 (h) & :l(h) A d?ag{a;:l(h), T gf(h Dt interval [—r,, 75]. Consequently, one can generate the index
a(h) =&2(h) — &, Ea(h) = diag{&2(h), ..., &(h—q)}.  py the following function:
Now, we are ready to highlight the purpose of this paper. Ss (és (?Js(h))) =ps(h), ps(h) € L. (16)

For linear time-invariant system (1), we are interested in L N ,
determining the parameters of the PID tracking controII(ftr f?)?lgaltse :?oemqlgz;l-ﬁg;) r:heartmtﬁéh) :agii(z};)ti;nosé (ﬁ;(rh()g)
(i.e., Py, Py, I, Iy, D,, Dy) such that the output tracking __ .~ q s
error dynamics:.(h) is EUBMS subject to the process noisesat'sfles

v(h), the reference inpyt(h) and the decoding errot,, (h) |ms(h)| < wlsrs. (17)
(m € 9M). More specifically, we would like to design a desired s

PID tracking controller such that there exist three constantsStep 2. Index Assignment _ .
6; >0 (i =1, 2, 3) satisfying For the generated indgx,(h), the index assignment func-

tion J4(-) : Nt — NT x N* is constructed as follows to
E{||z(R)||?} < 0765 + 63 (13) assignp;(h) into an a-dimensional mapping matridV («
being an even number) :
where0 < 6; < 1 denotes the decay rate afig denotes the ¥, (ps(h)) = (ﬁg(ps(h)), ﬁg(ps(h)))
AUB of ||z.(h)]?.

(Ts(h) + 1, 75(h) + 1), if vg(h) =1
(Ts(h) + 1, 75(h)), if vs(h) =0 andr,(h) is even
. MAIN RESULTS = (ru(h), 7e(h) +1),  if vy(h) = 0 and7,(h) is odd
In this section, we first analyze the boundedness of the| (7s(h) 42, 7s(h) + 1), if vs(h) =2 and7,(h) is even
decoding/tracking error and then provide an executable desig (Ts(h) +1, 75(h) + 2), if vs(h) =2 andr,(h) is O((j](_js)

algorithm to parameterize the controller gains.
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where Note that the index(h), which is exclusively determined
R 0s(h) 0s(h) by two descriptions,(h) andy,(h), carries essential informa-
Ts(h) = = LQﬁ m 1J = 3 1, tion of y,(h), thereby placing a crucial impact on the design
(h) (h) of decoding scheme. However, due to the probabilistic packet
vg(h) & = <2p55+ 1> = <@53 ). dropout when transmitting the descriptiongh) or js(h), it

is usually difficult to acquire the accurate location information
Here, ¥7(-) and ¥<(-) stand for, respectively, the row as-of p,(h) in the mapping matrix which, in turn, gives rise to
signment function and the column assignment function, aadditional challenges in the decoder design. To overcome such
15(h) and j5(h) denote, respectively, the row location ané challenge, an index estimator is constructed for the individual
the location of the cell containing,(h) in the mapping case of the descriptions received in the decoder side.

matrix W,. Evidently, by means of the index assignment Case I no packet dropout occurs. In this case, both the de-
function 9, (-), the single descriptiog,(h) is converted into scription packets, (k) and,(h) are successfully received by

the description paifus (1), 75(h)) with the central decoderD¢”, and the index estimation function
. . can be given as
Zs(h) = 195 (@s(h))v ]s(h> = 193 (@s(h)) @S(h) N yc( )
Based on the above discussion, the encoding functions [ 3:s(h) — |f zs(h) 7s(h)

R, s(-) and®,. (-) can be given as follows: 315(h) — if 25(h) = 75(h) + 1 ande(h) is odd
. . =< 3145(h), if 15(h) = 35(h) — 1 andus(h) is odd
Rrs (95 (1)) =0, (gs (OS (ys(h)))) 315(h if 25(h h) + 1 andu,(h) is even

(19) 15(h) — 4, 15(h) = 35(h) + 15(h)

(h) = (h) = 25(h) (h)

Res (3 (1)) =05 (cs (és(ysm)))). Balh) =1, 1 1u(h) =2.(h) = 1 andu, () Is even,

Here, v¢(-, -) denotes the index estimation function and the
index estimation error can be calculated as

3 6s(h) £ ps(h) — ps(h) = 0. (21)
21415 Case II: the packet dropout only occurs in chann€l;”. In
6171 9 this situation, only the description packe(h) is transmitted

to the decoder Py,”, and the index estimation function is
8110 |11 determined as

12|13 | 15 Os(h) 2 VL (95(h)) = 394(h) — 2. (22)

14 116 | 17 Case llI: the packet dropout only occurs in chann€éls
18 19 | 21 In this scenario, only the description packgth) is avallable
to the decoder Dr”, and the index estimation function is
20 | 22 defined by

~ A .
Fig. 2: Nested index assignment fer= 8 and3 = 1 in [33]. Ps(h) = v (15(h)) = Bus(h) = 2. (23)
For Case Il andCase llI, we know from (22)-(23) that the

index estimation error sat|sfy|ng
Remark 3:As shown in Fig. 2 and stated in [33], the indices

ps(h) (s € &) are assigned to the cells lying on the main [6s(R)[ < 2. (24)
diagonal and the neare3t diagonal of the mapping matrix Case IV: the packet dropout occurs in both channels "
W, according to the nested assignment principle. In this papand “C,”. Correspondingly, none of the description packets
for illustration convenience, we only discuss the scenario ®f accessible at the decoder side and, instead of estimating
B =1, where the indicegs(h) (s € &) are assigned to the ((h), the latest decoded measuremgiit — 1) is utilized to
cells located on the main diagonal and its nearest 2 diagongdsnpensate the value gth).
of the mapping matridW . Step 2. Decoder Rule Formulation

With the estimated indey. (k) in hand, the inverse quan-
tization function can now be developed as follows:

In this subsection, we endeavor to establish the decoding és(@s(h)) £ 4 M,
scheme through two steps. To begin with, an index estimation . ZS_ _
strategy is put forward to estimate the index(h) (s € &) Accordingly, the decoder functions can be determined by

B. Design of Decoding Scheme
(s€6). (25)

based on the received descriptions. Then, the decoding func- %c(z(h), j(h)) =5, (yc(zs(h) js(h)))

tion is developed according to the estimated indexh) ° ’

for the sake of obtaining the decoded value as accurately as R"(5(h)) =0s (yé (]S(h))) (26)
possible.

Step 1. Index Estimation R ((h)) =05 (V§ (Zs(h)))-
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C. Boundedness Analysis of Decoding Error which yields

In this subsection, we shall focus our attention on the Py
boundedness analysis of decoding ert(h). ko(R)] < Z (ﬁﬂ's(h))2. (35)
Theorem 1:For the encoding procedure (2) and the decod-
ing procedure (3), the decoding errefh) satisfies

s=1

[ ]
ka(h), for Case | (27a)
k(h) = ¢ k1(h), for Case Il andCase Il (27b) D. Boundedness Analysis of Tracking Error
ko(h), for Case IV (27¢) A sulfficient condition is derived in the following theorem
and for assessing the boundedness of tracking error in mean-square
sense.
Py ) Theorem 2:Let the controller gain matriceB,, Py, I, I,
|k2(R)|| < Z (ms(h)) (28a) D, and D, be given. Assume that there exist positive scalars
s=1 w1, wa, w3, Wy, ws and positive definite matricds, N (e =
Py 1,2, ..., q) such that the following inequality holds:
2
s (W) < 4| D (5ms(h) (28b) i
s=1 Ay = A[12] 73] <0 (36)
S A A
lro(h)l| < 4| Y () (28c) where
= Al 2diagf Al — N, —woT, —wsI, —wil, —wsI}
with 2 > 5 being a bounded positive scalar. 2] a

Proof: According to the individual situation of the de- ATEA S W TR TR TE

scription packets received at the decoder side, the boundedness , 3] » ;1 4 a ! [d]

of decoding error is analyzed as follows. AT SSUT, AP S -UtmllU Z; N
For Case | both the description packetg /) and,(h) are A (1] 2] (d] -

successfully transmitted to the decoder. In this case, keeping N diag{N', N, ..., N9

in mind the expressions of,(h) andwv,(h), we obtain Then, the output tracking error dynamies(h) is EUBMS.

Correspondingly, the AUB ofiz.(h)||? is given by

ps(h) =375 (h) + vs (h)a (29) ,
Y 2,.2
According to (18), (21), (25)-(26), it is not difficult to obtain 0y = ((h%g + 2504 + @s5)(q + 1) Z wls;”s
s=1 S
k2,5 (R)| < [ms(h)] (30)
+ wo (0% + 2) Amax (£ E)ps (37)
with k2 s(h) being thesth component ok (%). Furthermore, 2 H \[UN] (ps—1)
we have -
with
Py _
Ira (W) < 4| (o). (31) O3 2wy + & — &, AV 2 0u(0)
=1 G1 2w+ &6 -8, AN 2 L)
For Case Il and Case lll, only one description packet @5 Lws + & — &2, AN émin{/\[ff]’ AEN]}.

(zs(h) or y4(h)) is successfully transmitted to the decoder. N _ _
Accordingly, it can be concluded from (18), (21), (25)-(26)\n addition, the constanp; > 1 in (37) can be obtained

and (29) that according to
[i1,5(R)] < 5l (B)] (32) A (ps =1 = pswn) + A (05 = Pl =0 (38)
wherexy ,(h) is the sth component ofs: (k). Similarly, we Where
have AU 2 @), AN 2L (V).
Py . . .
E 2 Proof: Construct the following Lyapunov-like functional:
() < | 3 (5ma(m). (33) i

s=1 V(b(h)) = Vi (b(h)) + Va(b(h)) (39)

For Case IV, no description packet is transmitted to theyith
decoder. Without loss of generality, we assume that the upper AT
bound of |k s(h)| is greater tharb|ms(h)|. In other words, Vi(b(h)) 20" (h)Ub(R)
there exists a bounded positive scalar 5 such that

|"$0,S(h)| < h|7TS(h)|, (34) e=1/l=h—e¢
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The difference ofi (b(h)) is expressed as + wooT (R)o(R) + @3l (h)wo(h)
2 + @atf (h)ea (h) + @50 (h)a(h) (43)
W (o(h)) =D 4Vi(o(h)) (40) tere
1=1
with 9[111] * * * * *
~ 9[121] 9[122] * * * *
1Vi(b(h)) £E{V1(b(h + 1))|b(h)} — Vi (b(h)) . @[131] 6[132] 6[133] N N N
1Va(b(h)) £E{Va(b(h + 1))[|b(h)} — Va(b(R)). 0, = ol glizl glus gl N
Calculating?; V' (h) (i = 1, 2) and taking the mathematical ol ebd glbsl ght gl
expectation along the trajectory of (12), we have _@[161] @[162] @[163] @[164] @[165] @[166]_
E{8Vi(b(h q
{vi(b(n)) } ol SATUA-U +wU+ 3 Nl

=E {Vi(o(h +1)) = Vi(b(h)) } o

:E{ (Ab(h) + So(h) + Wo(h = N +S8TUS, e A WTyw I
ol __OT”T UT —wsl, OP 22277y — 1
O 2227 T T 1, @[121 2 5TUA

+
\‘{
—
[1

o
_|_
[1

o

=
~—
~

o

=

@

7%
E

+
X (Ab(h) +So(h) + Wolh) + T (Zo + Zo(h))o(h)

o 2wty A, o 2 wrys
+T(E) + Z1(h) i (h) + T (Ea + éz(h))@(h)) ol L2, 7T A 0l £ 2,77 s
- bT(h)Ub(h)} ol 22 TTyW, ol 2 2 7Ty A
£ [V (W)(ATUA ~ U +nD)p(h) + " (ST USo(h) ord 22, 77Us, o 2= 7TUWw
4o (M WVTUW — waT)o(h) + (L (W) E2TTUT — wil) or' 22,5 TUT, e 25,TUA
% 10(h) + T (ETTUT = wal)ur (h) + L (h) (2277 6[62 22,7TUS, 6[163] 2=, 7TUW
< UT — wsT)ia(h) + 207 (h)STU Ab(h) + 207 (R)WT oY 25,5, 77UT, oY 5= TTUT.

x UAb(R) + 207 (WYWTUSo(h) + 2L (R) 20T U Ap(h)  Furthermore, it follows easily from the Schur Complement
Lemma that®©; < 0 is ensured by condition (36), which

+ 28 (W20 TTUSo(h) + 28 (W) 2o TTUWo(h) mplies that
+ 25 (W= TPUA(h) + 2T (R)EL TTUSo(h)
+ 2 (WETTUWo(h) + 2.8 (h)Z, T U Ab(h) E{tV (M)}
+ 28 (W)E.TTUSo(h) + 25 (W)ETTUWo(h) B V(1) } +wao” (Wolh) +Gutp (R)io(h)
+ 20 (WEET UT1o(h) + 25 () EZe T UT o (h) “’4“( Jia(h) + stz (R)ez(h). 44
+ 28 (WEE TTUT 1 (h) — wiVa ((R)) Letting
+ w30" (R)o(h) + s (e (h) + @aef ()i (k) 05 (h) £wz0™ (R)o(h) +@a1g (h)io(h)
+ 05T (h)ia(h )} (41) + @] (h)a (h) + @53 (h)ea(h)
and and recalling the expressions afh), to(h), t1(h), to(h), we

have from (17), (27a)-(27c) and (28a)-(28c) that
E (51 (1)} i
=E{V2(o(h+ 1)) = Va(b(h)) } ’

—E {zq: < zh: bT (()N'1db(2) — hZ‘i bT(Z)N[E]b(£)> } (P23 + 2504 + @5) (g + 1) 2_; l;
e=1 \t=h+1l—c t=h—c (@ + %) 2 a (45)
- Z E {bT RYNb(R) —bT (h — e)No(h — e)} L (42 g
Denoting E {5V (b(h))} < —wiE{Vi(b(h))} + 65, (46)
S(h) & [bT(h) oT(h) oT(h) T(h) F(h) Lg(h)f For any positive scalap; > 1, it follows that
and substituting (41)-(42) into (40) lead to E{p*'V(b(h+ 1))} —E{piV ((h)}
]E{W( N =P TE {8V (5(h) } + o (o1 — DE{V (b(h)) }

=E {37 (h)©,3(h)} — wiE {V (b(h)) } <Pl (= wB{Vi (o) } + 65
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+ i (pr = DE{V (b(h

)}

<71 (p)PRE {[p(R)|2} + pit oL
h—1
+y2(o1) > PME{[b(e)]?} 47)
e=h—q

with

o) 2N (o1 =1~ prwn)
a(pr) 2N g(pr = 1).
Next, for any integerp, > ¢ + 1, by taking cumulative

summation for both sides of (47) frofnto p, — 1 with respect
to h, we have

PE{V (b(p2))} —E{V((0))}
(

<71(p1) i PE{[b(h)*} +

h=0
p2—1 h—1

+72001) D D AE{Ib(E))).

h=0 e=h—q

p1(l—

)93
L—p1

(48)

Calculating the last term on the right-hand side of (48)

yields
p2—1 h—1
>3 AE{Ib(e)]?}
h=0 e=h—q
—1 e+q p2—q—1 e+q p2—1 pa—1
SO0 3D SR Sl SR P E TS
e——qh 0 e=0 h=e+1 e=p2—q h=e+1
<q Z P E{]6()]*} + ¢ Z p€+q1E{||b(e)||2}
e=—gq
p2—1
+aq Y pE(b(e)]?}
€=p2—4q

p2—1
<api S E{[b(0)]1*} + gp{ ZPE{Hb % (49)
which, together with (48), gives
PPE{V (b(p2)) } —E{V((0)) }
p2—1
() Y- AE{Ibm]} + 2= 2
h=0
+y(p1) sup E{[p(0)]*} (50)
€[—q,0]
with
(1) En(p1) +22(p1)apls  valpr) = v2(p1)gpf.

Keeping in mindys (1) = —wl/\[f] < 0and lim ~3(p1) =
pP1—>00

400, it is easy to see that there exists a scatar> 1 such
thatys(ps) = 0, which indicates

PZEA{V (0(p2)) } —E{V(>(0))}

p3(l —
sup_ B([b(o)?} + 22
€l—q,0]

) Pl (51

8

In terms of the definition o/ (»(h)), we have

E{V (b(p2)) } = NTVE{|p(p2)]*} (52)

and
E{V(b(0

)} < ALUN]K sup E{|p(0))?}  (53)

6[_‘1) O]
with
/\[J_JN] = max{/\[f], /\[iv]},

which results in

E{[I>(p2)II*}

)\[JFUN] + v4(p3)
AN s

sup E{[lb(0)*}
L€[—q, 0]

p3(1 — ps?) o2
ATV gz (1 — py)

Based on the expression ef(h), we now conclude that

E{|lz(n)II*}

[EN] +7a(p3)
AN i

(54)

< Amax(ETE) sup  E{[(0)]1*}
Le[—q, 0]
p3(1 = p})
AN (1 — p3)
Subsequently, letting

Amax (ETE)0Y (55)

01 £p3*
AT 4 4 (ps)

A
02 = N

Amax(ETE) E{l>(0)117}

sup
Le[—q, 0]

A p3(1 - P’gL)

0 (n) £
AUN b (1 — ps)

Amax (ET )05

and calculating the limit oﬁg’] (h) with respect td approach-
es to+oo, one has

E{[lz(h)[I*} < 6762 + 63 (56)
where
Amax (ET )0
03 = lim 9[ ](h) = —[U](V] )05 ps
h—+oo /\7 (p3 _ 1)

According to (13) and (56), it is easy to draw the conclusion

that the output tracking error dynamics(h) is EUBMS,
which completes the proof. [ |

E. Design of PID Controller

In the following theorem, the PID controller parameters are

designed to minimize the AUB dfz.(h)||?.

Theorem 3:Let the positive scalaw; be given. Assume
that there exist positive scalars, ws, wy, ws, positive definite
matricesUyy), U, N (e = 1,2, ..., q) and matrices]y),
Yig, Yig, Py Py, I, I, D, D, such that the following
inequality holds:

A[ll] *

A =
2 A[22] A[23]

(57)
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where we obtain

Rlarg & 1 2 e e _
Ay E[A S W T2 T2 TE ~Yi U Y% < Upy = Yin - YA, (62)

AL 2diag{Upy; — Yiy) — Yiyy, —Up}, U £ diag{Up), Upy}

Putting
Y Y
T é B BTB —1 BT N T’ Yé |: [1] [2]:| o v
[B(B"B)~" (B")] Vi) Py =Y Pe, Py =Y Py
asd v 52 | 0) T2 [0 i 2 vy Py =Yink, Bo=Yink
0 0 B, =YD, P,=YyD, (63)
w e [YimM —YiG 7o (YA Yy(A-F)| .
=1 0 UG | ) Uy F into (60) and recalling (62), we know that (60) can be ensured
. (Y] T (Y] 1] by condition (57). Thus, according to (13), the output tracking
S {(Pw +0Dw )C (P + D>(<) N(C+ H)} error dynamicsz. (h) is EUBMS.
) o } } Paying attention to (56), it is easy to find that
T E{llz=(R)[I7}
g, &1pI] 4 pitl [ix] pitl Y] . Y] 1 (AT 4 y4(ps)
&[T+ D M+ D I i ] <o | IR\ L (E7E) sup E{b(0)])
— [UN]
q—1 p3 )\7 ée[_% 0]
5 A T T Y] & 151 Y] & fz o o o o w?@
9_[13;] D&]], Pi]—[o}, IL]—{O} +<(52W3+25w4+w5)(q4'1)z 5
9 o o 9 s=1 S
D P, I D
D[T]é{I],Pmé[X],Imé["],Dmé[X] Amax (ETE
@ 0 X 0 X 0 X 0 + wo (0% + 1?) W. (64)
A2 (ps — 1)

Then, the output tracking error dynamies(h) is EUBMS.
Additionally, the minimum of the AUB of||z.(h)||* can be Accordingly, we can obtain the minimum of the AUB of

obtained by solving the following minimization problem:  |z.(h)||*> by solving the minimization problem (58), which
Py 99 completes the proof. [ |
min  (h2@s + 2504 + 0s)(q + 1) Z ws;s + wa (0 + %) Remark 4:Hitherto, Theorem 1 discusses the boundedness
= I3 of decoding error(h). Subsequently, Theorem 2 analyzes the
subject to (57) (58) ultimate boundedness of the output tracking error dynamics

_ _ _ _ ~2z:(h) in the mean-square sense. Theorem 3 provides the
Correspondingly, the desired controller gain matrices are giveRplicit parameterization of the PID controller gains that fulfill

by the requirement of minimizing the AUB ofz.(h)||. It is
vl 1P revealed that the minimized upper bound|ef(h)||? is related
P, =Y 'Py, P =Yy'Py : : , ,
} y to important system parameters including the decoding error,
I, :Y[l_]lfz, I, = Y[l_]lfx the exogenous disturbance upper bounend the reference
D, =Y[1_]1f)z, D, = Yv[l—]lbx. (59) input upper bound:. In particular, whenv and i are fixed,

a larger decoding error would lead to a larger upper bound
Proof: Performing the congruence transformation to (3&)f ||z.(k)||? and, accordingly, a larger tracking error, which

by diagI, I, I, I, I, I, Upy} yields means a deterioration of the tracking performance.
] Remark 5:Up to now, we have endeavored to solve the
Ay = A *1<o (60) PID tracking control problem for a class of linear discrete-time
AE] A[33] systems subject to bounded disturbance input, bounded refer-

ence input and ROPD under the MDEM. Pertaining to the rich
literature on traditional PID control, the main results presented
A[32] 2 M S W T2, T 7’@2} in this paper own the_following specific chgracteristigs: 1) the

3] ag; o 5 gi addressed PID tracking control problem is novel since both
As" =diag{Yir Uy Yirp: ~Upgh, Uy = diag{Yiry, Ui} the ROPD and MDEM are taken into serious account; 2) the

where

ALy &2 Yy B%\¢ Fa Y[y B%- developed MDEM is suitable for enhancing the transmission
a ’ a 0 ’ o 0 reliability in the presence of ROPDs; and 3) the established
s Yix)B(Py + D.)C Y B(Py + Dy)(C + H) _theoret|cal framework e_nables the quahtatlve_assessment of the
0 0 : impact from the decoding error on the tracking accuracy.

Bearing in mind the fact that

_ F. Design of P-Type Controller
T Iy T
Yix) + Yy = YinUpy Yy = Uy

= — (Yo} = UnUy (Y = Upp)” <0, (61)

In this subsection, for comparison purposes, let us deal with
the special case of constructing a P-type tracking controller.
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The following P-type tracking controller is developed to V. NUMERICAL SIMULATION
guarantee that the controlled output of system (1) tracks theIn this section,

let us demonstrate the effectiveness and
controlled output of system (9):

superiority of the developed PID tracking controller via a
u(h) = 2 h(h) (65) numerical simulation.

R ) Consider a discrete linear time-invariant system of the form
where# £ [K, K,| andK,, K, are the controller gains (1) with the following parameters:

to be determined.
In line with (11) and (65), we formulate the following A= 1.01 0.1 B 0.156 M= 0.45
augmented system: 0.2 04|’ 0.42 |’ 0.82

(h + 1) =Aup)p(h) + Wo(h) + Tip (& + €o(h)) o (h) ¢=[to1 05], E=[L1 03].

+ Tip (&1 + & (R)) K1 (R) + Tip) (&2 + &(h))k2(h)  Additionally, the parameters of the reference system in the
(66) form of (9) are given as follows:

where 0.3 0.1 0.5 11"
A s [BK. F‘[oz 05}’ G_{O?J’ H‘{OEJ '
Ap) = + Bp), Tip) = { OI] s ' '
Throughout all simulations, we set the initial values of
By & B%C BKx(§+H>] . (1) and (9) asr(0) = [15 —2.5]" andx(0) = [0 0];
the exogenous disturbance a&) = 0.1sin(0.1h); and the
In the sequel, we calculate the P-type controller parametegserence input as
and present the minimal AUB dfz.(h)||? in the following

corollary whose proof is easily accessible from those of 0.1sin(0.1h), 0<h <150
Theorems 2-3. wu(h) = ¢ 0.05sin(0.5h), 200 < h < 400
Corollary 1: Let the positive scalaf; be given. Assume 0, otherwise

that there exist positive scalals, ws, w4, s, positive definite
matricesUpy), Ujg) and matrices(yy, Y, Yi3, Kz, K, such
that the following inequality holds:

Al g
Ay = 42 3| <0 (67) 1
sl 05
where
AE] édlag{_[} +(:}1[7, _LDQI’ _@31’ _@41’ _@51} 5 ;0 1‘00 1‘50 2‘00 ‘250 ‘300 ‘350 ‘400 ‘450 500

Time(h)

Af] £ [A[p] w f_olf[P] gllifP] gQ,ifP]]
A 2diag{Upy — Vi) ~ Vi), ~Upy}, U £ diag{Up, U}

- s [V 2 oa [YM  —YiyG '
72 [V Jz]} e [ ) Yir) .
0 Yy 0 Up)G | s
- - KJ[CT] - N 2 el
A[P] _JM[P] + %[P]7 7_[/P] é |: O :| ’ [T] é YT 9 5‘0 1‘00 1‘50 2‘00 ‘250 ‘300 ‘350 ‘400 :;:)) 500
Time(h)
g 2 | YA YA —F)| - pry o [Ke
I~ o UgF |7 °F 0 | Fig. 3: Trajectories of:(h) and x(h).
Bp & Prexte; K&T](C—FH)} KXl 2 {IN(X} '
i 0 0 ’ X 0 In the simulation, the parameters of scalar quantizer (14)

Then, the output tracking error dynamies(h) is EUBMS. &€ chosen a$ = 20 andr, = 17. Making use of above
Additionally, the minimum of the AUB of|z.(h)||? can be parameters, the PID controller gains are computed via The-
obtained by solving the following minimization problem: orem 3 and the obtained simulation results are demonstrated

in Figs. 3—4. To be specific, Fig. 3 shows the state evolutions

Py 2,2
. 20 . N wTy 2 o of the controlled system (1) and the reference system (9), and
min - (Rcs + 250 + 5) Zl 12 w27+ 1) Fig. 4 depicts the controlled output of the controlled system
subject to (67) (68) (1) and the reference system (9). These illustrated simulation

results obviously show that the controlled system achieves a
Correspondingly, the desired controller gain matrices are givéasired tracking performance, which implies that the addressed
by PID tracking controller is indeed effective.
~ 4~ ~ 1~ Additionally, in order to show the superiority of the de-
_y-1 _y-1
Ko _Y[I] Koy Ky= Y[l] Ky (69) veloped PID tracking controller, we compare the tracking
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Fig. 5: Trajectory ofz.(h) under PID and P-type controller.

TABLE I: The minimum upper bounds of output tracking
error and decoding error subject to differentfor ¢, = 0.01

. . . .
100 150 200 250
Time(k)

300 350 400 450 500

Minimum upper bounds

Minimum upper bounds

91 of output tracking error of decoding error
0.99 0.117 0.111
0.89 0.144 0.119
0.79 0.191 0.121
0.69 0.269 0.124
0.59 0.282 0.135
0.49 0.543 0.142
0.39 0.555 0.161
0.29 0.594 0.174
0.19 0.407 0.185
0.09 0.412 0.197

performances between the PID tracking controller and the PLl
type tracking controller. Fig. 5 sketches the trajectories of

11

TABLE II: The minimum upper bounds of output tracking
error and decoding error subject to differentfor ¢» = 0.99

Minimum upper bounds  Minimum upper bounds

91 of output tracking error of decoding error
0.91 0.027 0.041
0.81 0.039 0.056
0.71 0.048 0.068
0.61 0.054 0.071
0.51 0.059 0.076
0.41 0.072 0.088
0.31 0.077 0.094
0.21 0.086 0.098
0.11 0.098 1.102
0.01 0.111 0.105

the output tracking error under PID controller and P-type
controller, respectively. One observers explicitly from these
simulation results that the proposed PID controller performs
better in providing satisfactory tracking performance compared
to the P-type controller.

At last, we discuss the influences from ROPDs on tracking
performance and decoding accuracy. For different success rates
¢, and ¢, of description packet transmission, the minimum
upper bounds of both output tracking error and decoding
error are clearly outlined in Tables I-Il after repeating the
simulations100 times, where the minimum upper bounds of
both output tracking error and decoding error are increase
with the decrease ap; or ¢,. Accordingly, we can draw a
conclusion that, as the description packet transmission success
rates decrease, the tracking performance and decoding accu-
racy deteriorate.

V. CONCLUSIONS

In this paper, we have focused our attention on the PID
tracking control problem in the presence of bounded distur-
bances. A MDEM has been implemented to enhance the relia-
bility of the data transmission on the sensor-to-controller chan-
nels which are subject to ROPDs. A PID tracking controller
has been constructed whose parameters have been elegantly
designed by solving an optimization problem to minimize the
upper bounds on tracking error. Further evaluation of the effect
from the ROPDs on the decoding accuracy has been carried
out by looking into the boundedness of the decoding error.
Finally, a simulation example has been exploited to validate
the effectiveness of the designed PID tracking controller. It is
noted that one of the possible future research topics includes
the extension of the developed MDED-based control scheme
in this paper to more general complex networked systems (e.g.
the multi-agent systems [4], the sensor networks [38] and the
large-scale systems [20]).
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