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PID Tracking Control under Multiple Description
Encoding Mechanisms

Di Zhao, Zidong Wang, Shuai Liu, Qing-Long Han and Guoliang Wei

Abstract—In this paper, a PID tracking control problem
is studied for a class of linear discrete-time systems under
multiple description encoding mechanisms (MDEMs). The data
transmissions on the sensor-to-controller channels are subject to
packet dropouts whose occurrences are random and governed by
two Bernoulli-distributed sequences of certain probability distri-
butions. In order to improve the reliability of data transmission,
an MDEM is put forward, with which the data is encoded into
two descriptions of identical importance before being transmitted
to the decoders through two individual communication channels.
The aim of this paper is to develop a PID tracking controller for
guaranteeing the ultimate boundedness of the resulting tracking
error, and the corresponding controller gains are obtained by
solving an optimization problem. Moreover, the effect of the pack-
et dropouts on the decoding accuracy is explicated via assessing
the boundedness in respect to the decoding error. A simulation
example is finally presented to showcase the applicability of the
proposed PID tracking control scheme.

Index Terms—PID control, tracking control, multiple descrip-
tion encoding mechanism, randomly occurring packet dropout.

Abbreviations and Notations

PID Proportional-integral-derivative
MDEM Multiple description encoding mechanism
ROPD Randomly occurring packet dropout
EUBMS Exponentially ultimately bounded in

mean-square sense
AUB Asymptotic upper bound
R

p The p-dimensional Euclidean space
‖x‖2 The Euclidean norm ofx
‖x‖∞ The infinite norm ofx
0 The zero matrix
I The identity matrix
X > Y X -Y is positive semi-definite
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X > Y X -Y is positive definite
λmax(M ) The maximum eigenvalue of a symmetric

matrix M

λmin(M ) The minimum eigenvalue of a symmetric
matrix M

E{·} The expectation operator
⊗ The Kronecker product
〈x
y
〉 The remainder obtained on dividingx by y

⌊x
y
⌋ The quotient obtained on dividingx by y

I. I NTRODUCTION

AS a fundamental research topic in the control field,
the output tracking control problem aims to force the

controlled output of the plant, via an appropriate control
scheme, to follow the desired reference signal as close as
possible. Up till now, output tracking has found a plethora
of successful applications in various domains which include,
but are not limited to, missile guidance, mobile robots, and
aerospace [13], [17], [18]. Accordingly, the tracking control
problem has spurred a surge of research effort leading to many
excellent results published in the literature [30], [40], [42]. For
instance, the tracking control problem has been investigated,
respectively, for Takagi-Sugeno fuzzy systems [29], Boolean
control networks [47], and high-order nonlinear systems [26].

Since it was first proposed in the 1910s, the PID control
strategy has been extensively applied in more than 90% of
industrial control loops [1], [2]. To date, the PID controller
has been playing a major role in multifarious industrial control
processes such as flight control, instrumentation, motor driver
and automotive vehicle [11]. Compared with the existing
control methods (e.g. the conventional state feedback con-
trol algorithm [36], [46]), the PID control method owns the
following significant superiorities: 1) the concise mechanism
merits the easy-to-implement feature without having to rely on
advanced mathematical knowledge; 2) a large number of ef-
fective tuning methods are available as a result of the century-
long history of the PID control; and 3) the simultaneous
utilization of three actions (i.e. theP , I andD actions) makes
it possible to pursue superior control performance such as
transient behavior, steady-state property as well as robustness,
see e.g. [8], [25], [28], [31] and the references therein.

Along with the quick revolution of digital network technolo-
gies, the last few decades have seen an increasing popularity of
the network-based communication due to their advantages of
decreased hard-wiring, convenient installation, and cost-saving
in implementation [6], [7], [9], [10], [24], [39]. Nevertheless,
the inherently limited bandwidth of communication networks
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may cause data collision, network congestion and even packet
dropouts [19], [27], [32]. Such kinds of phenomena, if not
addressed, would seriously jeopardize the system performance
[37], [41], [43]–[45], [48]. In this regard, appropriate data
transmission mechanisms have been exploited with aim to
modulate the signal transmission, thereby better utilizing the
limited network resource and mitigating the adverse effects
resulting from the network-induced phenomena [16], [21],
[22], [35].

Among various transmission mechanisms, the MDEM has
been widely applied in distributed storage systems, diverse
communication systems and image/audio/video encoding [3],
[5], [12], [14], [15], [23], [34]. Under MDEMs, the data is
encoded into multiple descriptions with identical importance,
and then the multiple description packets are transmitted to
the decoder through parallel independent channels. Clearly,
the more descriptions available to the decoder (i.e., the more
normally operating channels), the smaller decoding errors and,
subsequently, the higher decoding accuracy. Accordingly, the
utilization of the MDEMs would help enhance the reliability
of data transmission, and this is especially true when the
communication channels suffer from packet dropouts. Nev-
ertheless, despite its practical importance, the MDEM-based
control problem has not gained much research attention yet, let
alone the case when output tracking control and PID control
are also addressed. Such a lack of adequate results is mainly
due to the mathematical challenges caused by the co-existence
of the packet dropout, the decoding errors as well as the
reference input.

Motivated by the discussions made thus far, we are moti-
vated to tackle the PID tracking control problem for a class of
linear discrete-time systems under MDEMs. In doing so, three
foreseeable challenges emerge as follows: 1) how to develop
an effective PID tracking controller to ensure the ultimate
boundedness of tracking error? 2) how to elevate the reliability
of codeword transmission in the presence of ROPDs? and 3)
how to explicitly describe the decoding-error-induced effects
on the tracking performance? As such, the primary purpose of
the current study is to make an endeavor to provide satisfactory
answers to these three questions.

The primary contributions we are delivering can be outlined
in threefold.1) To our knowledge, we make one of the first

Fig. 1: PID tracking control problem under multiple
description encoding mechanism.

few attempts here to design a PID tracking controller under
ROPD and MDEM. 2) In comparison to the existing encoding
schemes, the MDEM implemented on the codeword trans-
mission process is more prominent in eliminating/attenuating
adverse influences from ROPD onto decoding accuracy. 3)
A theoretical framework is established to examine the joint
effects of the ROPD, the decoding errors and the disturbance
input on the tracking performance in a quantitative way.

The rest of this paper is structured as follows. In Section II,
the considered tracking control problem under the MDEM
is formulated. In Section III, the PID tracking controller is
developed, and the boundedness of decoding error and track-
ing error are respectively analyzed. Section IV, a numerical
example is given to illustrate the usefulness of the proposed
PID tracking control scheme, and a few concluding remarks
are lastly made in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model

Consider a class of discrete linear time-invariant systems
characterized by the following state-space model:







x(h+ 1) =Ax(h) +Bu(h) +Mv(h)

y(h) =Cx(h)

z(h) =Ex(h)

(1)

wherex(h) ∈ R
px , u(h) ∈ R

pu , y(h) ∈ R
py andz(h) ∈ R

pz

represent, respectively, the system state, the control input, the
measurement output and the controlled output;v(h) ∈ V ,
{v : ‖v‖ 6 v̄; v ∈ R

pv} denotes the exogenous disturbance
with v̄ > 0 being a known scalar; andA, B, C, M andE are
known matrices with compatible dimensions.

B. Multiple Description Encoding Procedure

In practical engineering, data transmissions often face the
phenomenon of packet dropouts due to limited communication
capacity. To improve the efficiency of resource utilization, the
MDEM is used to alleviate the adverse effects induced by the
packet dropouts.

Encoder: {

ıs(h) =ℵr,s

(
ys(h)

)

s(h) =ℵc,s

(
ys(h)

) (2)

Decoder:

~ys(h)=







ℜl
s

(
ıs(h)

)
, whenφ1(h) = 1, φ2(h) = 0

ℜr
s

(
s(h)

)
, whenφ1(h) = 0, φ2(h) = 1

ℜc
s

(
ıs(h), s(h)

)
, whenφ1(h) = 1, φ2(h) = 1

~ys(h− 1), whenφ1(h) = 0, φ2(h) = 0
(3)

whereℵr,s(·) and ℵc,s(·) are two encoding functions;ℜl
s(·)

andℜr
s(·) are two side decoding functions andℜc

s(· , ·) is the
central decoding function;ıs(h) ands(h) are two individual
descriptions ofys(h) with ys(h) being thesth component of
y(h); ~ys(h) is the decoding value corresponding toys(h) and
s ∈ S{1, 2, . . . , py}. φι(h) (ι = 1, 2) are two independent
Bernoulli sequences, which regulate the probabilistic nature of
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the packet dropout phenomena in the course of the description
transmissions, obey the following probability distributions:

Prob{φ1(h) = 1} =φ̄1, Prob{φ1(h) = 0} = 1− φ̄1

Prob{φ2(h) = 1} =φ̄2, Prob{φ2(h) = 0} = 1− φ̄2.

Here,φι(h) = 1 means that theιth channel works normally,
andφι(h) = 0 corresponds to the scenario of theιth channel
undergoing the packet dropouts at time instanth.

Before presenting the encoder-decoder structure, let us
introduce three random variablesξm(h) (m ∈ M , {0, 1, 2})
as follows:

ξm(h) , δ
(
φ(h), m

)
, φ(h) , φ1(h) + φ2(h), (4)

which satisfy
2∑

m=0
ξm(h) = 1 and

E{ξ0(h)} = ξ̄0, E{ξ1(h)} = ξ̄1, E{ξ2(h)} = ξ̄2 (5)

with

ξ̄0 ,(1− φ̄1)(1− φ̄2)

ξ̄1 ,φ̄1(1− φ̄2) + φ̄2(1− φ̄1)

ξ̄2 ,φ̄1φ̄2.

Remark 1:According to (4) and Fig. 1,φ(h) = 2 implies
that both channels “C1” and “C2” work normally and the
central decoder “DC” is triggered to generate the decoded
value. φ(h) = 1 implies that only one channel (“C1” or
“C2”) works normally and the side decoder “DL” or “DR” is
activated to execute the decoding procedure.φ(h) = 0 implies
that the packet dropouts occur in both channels “C1” and
“C2” and, correspondingly, all the decoders fail to work.

For presentation clarity, we set

~y(h) ,
[
~y1(h) ~y2(h) · · · ~ypy

(h)
]T

ı(h) ,
[
ı1(h) ı2(h) · · · ıpy

(h)
]T

(h) ,
[
1(h) 2(h) · · · py

(h)
]T

ℜl
(
ı(h)

)
,
[

ℜl
1

(
ı1(h)

)
ℜl

2

(
ı2(h)

)
· · · ℜl

py

(
ıpy

(h)
)]T

ℜr
(
(h)

)
,
[

ℜr
1

(
1(h)

)
ℜr

2

(
2(h)

)
· · · ℜr

py

(
py

(h)
)]T

ℜc
(
ı(h), (h)

)
,
[
ℜc

1

(
ı1(h), 1(h)

)
ℜc

2

(
ı2(h), 2(h)

)

· · · ℜc
py

(
ıpy

(h), py
(h)
) ]T

.

The scalar-valued encoder-decoder pair (2)-(3) can be com-
pacted into the following form:

{

ı(h) =ℵr

(
y(h)

)

(h) =ℵc

(
y(h)

) (6)

and

~y(h) =







ℜc
(
ı(h), (h)

)
, whenφ1(h) = 1, φ2(h) = 1

ℜr
(
(h)

)
, whenφ1(h) = 0, φ2(h) = 1

ℜl
(
ı(h)

)
, whenφ1(h) = 1, φ2(h) = 0

~y(h− 1), whenφ1(h) = 0, φ2(h) = 0.
(7)

Denote the decoding error between the measurementy(h)
and the decoded value~y(h) asκm(h) with m ∈ M represent-
ing the number of received description packets. Accordingly,
the decoded measurement output~y(h) is modeled as:

~y(h) =ξ0(h)
(
y(h) + κ0(h)

)
+ ξ1(h)

(
y(h) + κ1(h)

)

+ ξ2(h)
(
y(h) + κ2(h)

)

=y(h) + ξ0(h)κ0(h) + ξ1(h)κ1(h) + ξ2(h)κ2(h). (8)

C. PID Tracking controller

The aim of this paper is to develop a tracking controller
such that the controlled output of the system (1) tracks the
controlled output signal of the following system:







χ(h+ 1) =Fχ(h) +Gµ(h)

yχ(h) =Hχ(h)

zχ(h) =Eχ(h)

(9)

where χ(h) ∈ R
pχ and µ(h) ∈ R

pµ are, respectively, the
reference state and the reference input satisfying‖µ(h)‖ 6
µ̄ with µ̄ being a known positive scalar;yχ(h) ∈ R

py and
zχ(h) ∈ R

pz are the measurement and controlled output of
the reference system; andF , G andH are constant matrices
with F being Hurwitz.

By setting ℏ(h) ,
[
~yT (h) yTχ (h)

]T
, the following PID

tracking controller is constructed:

u(h) = Pℏ(h) + I

h−1∑

p=h−q

ℏ(p) + D
(
ℏ(h)− ℏ(h− 1)

)

(10)

with

P ,
[
Px Pχ

]
, I ,

[
Ix Iχ

]
, D ,

[
Dx Dχ

]

andPx, Pχ, Ix, Iχ, Dx, Dχ being the controller gains to be
determined.

Remark 2: It is worth noting that the traditional PID con-
troller utilizes all historical information in its integral term,
and this might lead to issues with algorithm convergence. To
handle such issues, a time window of adjustable length is
adopted in the integral term of the developed PID tracking
controller, based on which the underlying accumulation error
can be approximately tackled with reduced computational
burden.

Defining the state tracking errorε(h) , x(h) − χ(h) and
the controlled output tracking errorzε(h) , z(h)− zχ(h), we
have the tracking error system of the following form:







ε(h+ 1) =Aε(h) + (A− F )χ(h) +Bu(h)

+Mv(h)−Gµ(h)

zε(h) =Eε(h)

. (11)

By setting♭(h) ,
[
εT (h) χT (h)

]T
, we obtain the follow-
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ing augmented system:






♭(h+ 1) =A♭(h) + S̺(h) +Wo(h)

+ T
(
Ξ̂0 + Ξ̃0(h)

)
ι0(h)

+ T
(
Ξ̂1 + Ξ̃1(h)

)
ι1(h)

+ T
(
Ξ̂2 + Ξ̃2(h)

)
ι2(h)

zε(h) =E♭(h)

♭(j) =0, j = 0, 1, . . . , q

(12)

where

A ,A + B, S ,

[
BR1C

0

]

, T ,

[
BR2

0

]

W ,

[
M −G
0 G

]

, E ,
[
E 0

]
, A ,

[
A A− F
0 F

]

B ,

[
B(Px +Dx)C B(Pχ +Dχ)(C +H)

0 0

]

R1 ,
[
I + D I · · · I

︸ ︷︷ ︸

q−1

]
, C , Iq ⊗ C0

R2 ,
[
Px +Dx Ix +Dx Ix · · · Ix

︸ ︷︷ ︸

q−1

]

C0 ,

[
C 0

0 C +H

]

, o(h) ,
[
vT (h) µT (h)

]T

̺(h) ,
[
♭T (h− 1) ♭T (h− 2) · · · ♭T (h− q)

]T

ι0(h) ,
[
κT
0 (h) κT

0 (h− 1) · · · κT
0 (h− q)

]T

ι1(h) ,
[
κT
1 (h) κT

1 (h− 1) · · · κT
1 (h− q)

]T

ι2(h) ,
[
κT
2 (h) κT

2 (h− 1) · · · κT
2 (h− q)

]T

Ξ̂0 ,Iq+1 ⊗ ξ̄0, Ξ̂1 , Iq+1 ⊗ ξ̄1, Ξ̂2 , Iq+1 ⊗ ξ̄2

ξ̃0(h) ,ξ0(h)− ξ̄0, Ξ̃0(h) , diag{ξ̃0(h), . . . , ξ̃0(h− q)}

ξ̃1(h) ,ξ1(h)− ξ̄1, Ξ̃1(h) , diag{ξ̃1(h), . . . , ξ̃1(h− q)}

ξ̃2(h) ,ξ2(h)− ξ̄2, Ξ̃2(h) , diag{ξ̃2(h), . . . , ξ̃2(h− q)}.

Now, we are ready to highlight the purpose of this paper.
For linear time-invariant system (1), we are interested in
determining the parameters of the PID tracking controller
(i.e., Px, Pχ, Ix, Iχ, Dx, Dχ) such that the output tracking
error dynamicszε(h) is EUBMS subject to the process noise
v(h), the reference inputµ(h) and the decoding errorκm(h)
(m ∈ M). More specifically, we would like to design a desired
PID tracking controller such that there exist three constants
θi > 0 (i = 1, 2, 3) satisfying

E{‖zε(h)‖
2} 6 θh1 θ2 + θ3 (13)

where0 6 θ1 < 1 denotes the decay rate andθ3 denotes the
AUB of ‖zε(h)‖2.

III. M AIN RESULTS

In this section, we first analyze the boundedness of the
decoding/tracking error and then provide an executable design
algorithm to parameterize the controller gains.

A. Design of Encoding Scheme

In this subsection, the data encoding procedure will be for-
malized in two steps. The first step (the index generation step)
aims to convert the measurement output into the corresponding
index by employing the uniform quantization method, and the
second step (the index assignment step) endeavors to assign
the generated indices to a certain mapping matrix based on
the nested index assignment principle.

Step 1. Index Generation
For a scalar uniform quantizeŕos(·) : R → R (s ∈ S) of

the following form:

ós(ds)=







rs, ds > rs

− rs, ds 6 −rs

− rs +
(2gs − 1)rs

ls
, −rs + t−s 6 ds 6 −rs + t+s

(14)
the scaling parametersds, rs and the positive integerls
correspond to, respectively, the signal to be processed, the
saturation value and the quantization level, where

t−s ,2(gs − 1)rsl
−1
s , t+s , 2gsrsl

−1
s

gs ∈Ls , {1, 2, . . . , ls}.

In the light of (14), the interval[−rs, rs] is uniformly
partitioned into ls subintervals, and theith subinterval of
[−rs, rs] is defined as

[
−rs + 2(i− 1)rsl

−1
s , −rs + 2irsl

−1
s

]
, i ∈ Ls.

In order to avoid the quantizeŕos(·) being saturated, an
adaptive parameter̟ s is introduced into the signal pretreating
process. Accordingly, the quantizer output is generated by

ós
(
ys(h)

)
= ̟só

(ys(h)

̟s

)
. (15)

In this sense, once|ys(h)| > rs, ys(h)/̟s belongs to the
interval [−rs, rs]. Consequently, one can generate the index
by the following function:

ςs

(

ós
(
ys(h)

))

= ℘s(h), ℘s(h) ∈ Ls. (16)

Denote the quantization errorπs(h) , ys(h) − ós
(
ys(h)

)
.

It follows from (14)-(15) that the quantization errorπs(h)
satisfies

|πs(h)| 6
̟srs
ls

. (17)

Step 2. Index Assignment
For the generated index℘s(h), the index assignment func-

tion ϑs(·) : N
+ → N

+ × N
+ is constructed as follows to

assign℘s(h) into anα-dimensional mapping matrixWs (α
being an even number) :
ϑs

(
℘s(h)

)
,
(

ϑr
s

(
℘s(h)

)
, ϑc

s

(
℘s(h)

))

=







(
τs(h) + 1, τs(h) + 1

)
, if υs(h) = 1

(
τs(h) + 1, τs(h)

)
, if υs(h) = 0 andτs(h) is even

(
τs(h), τs(h) + 1

)
, if υs(h) = 0 andτs(h) is odd

(
τs(h) + 2, τs(h) + 1

)
, if υs(h) = 2 andτs(h) is even

(
τs(h) + 1, τs(h) + 2

)
, if υs(h) = 2 andτs(h) is odd

(18)
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where

τs(h) , = ⌊
℘s(h)

2β + 1
⌋ = ⌊

℘s(h)

3
⌋,

υs(h) , = 〈
℘s(h)

2β + 1
〉 = 〈

℘s(h)

3
〉.

Here, ϑr
s(·) and ϑc

s(·) stand for, respectively, the row as-
signment function and the column assignment function, and
ıs(h) and s(h) denote, respectively, the row location and
the location of the cell containing℘s(h) in the mapping
matrix Ws. Evidently, by means of the index assignment
functionϑs(·), the single description℘s(h) is converted into
the description pair

(
ıs(h), s(h)

)
with

ıs(h) = ϑr
s

(
℘s(h)

)
, s(h) = ϑc

s

(
℘s(h)

)
.

Based on the above discussion, the encoding functions
ℵr,s(·) andℵc,s(·) can be given as follows:







ℵr,s

(
ys(h)

)
=ϑr

s

(

ςs

(

ós
(
ys(h)

))
)

ℵc,s

(
ys(h)

)
=ϑc

s

(

ςs

(

ós
(
ys(h)

))
)

.

(19)

Fig. 2: Nested index assignment forα = 8 andβ = 1 in [33].

Remark 3:As shown in Fig. 2 and stated in [33], the indices
℘s(h) (s ∈ S) are assigned to the cells lying on the main
diagonal and the nearest2β diagonal of the mapping matrix
Ws according to the nested assignment principle. In this paper,
for illustration convenience, we only discuss the scenario of
β = 1, where the indices℘s(h) (s ∈ S) are assigned to the
cells located on the main diagonal and its nearest 2 diagonals
of the mapping matrixWs.

B. Design of Decoding Scheme

In this subsection, we endeavor to establish the decoding
scheme through two steps. To begin with, an index estimation
strategy is put forward to estimate the index℘s(h) (s ∈ S)
based on the received descriptions. Then, the decoding func-
tion is developed according to the estimated index℘̂s(h)
for the sake of obtaining the decoded value as accurately as
possible.

Step 1. Index Estimation

Note that the index℘s(h), which is exclusively determined
by two descriptionsıs(h) ands(h), carries essential informa-
tion of ys(h), thereby placing a crucial impact on the design
of decoding scheme. However, due to the probabilistic packet
dropout when transmitting the descriptionsıs(h) or s(h), it
is usually difficult to acquire the accurate location information
of ℘s(h) in the mapping matrix which, in turn, gives rise to
additional challenges in the decoder design. To overcome such
a challenge, an index estimator is constructed for the individual
case of the descriptions received in the decoder side.

Case I: no packet dropout occurs. In this case, both the de-
scription packetsıs(h) ands(h) are successfully received by
the central decoder “DC”, and the index estimation function
can be given as
℘̂s(h) , νcs

(
ıs(h), s(h)

)

=







3ıs(h)− 2, if ıs(h) = s(h)

3ıs(h)− 3, if ıs(h) = s(h) + 1 and ıs(h) is odd

3ıs(h), if ıs(h) = s(h)− 1 and ıs(h) is odd

3ıs(h)− 4, if ıs(h) = s(h) + 1 and ıs(h) is even

3ıs(h)− 1, if ıs(h) = s(h)− 1 and ıs(h) is even.
(20)

Here, νcs(·, ·) denotes the index estimation function and the
index estimation error can be calculated as

℘̃s(h) , ℘̂s(h)− ℘s(h) = 0. (21)

Case II: the packet dropout only occurs in channel “C1”. In
this situation, only the description packets(h) is transmitted
to the decoder “DL”, and the index estimation function is
determined as

℘̂s(h) , νls
(
s(h)

)
= 3s(h)− 2. (22)

Case III: the packet dropout only occurs in channel “C2”.
In this scenario, only the description packetıs(h) is available
to the decoder “DR”, and the index estimation function is
defined by

℘̂s(h) , νrs
(
ıs(h)

)
= 3ıs(h)− 2. (23)

For Case II andCase III, we know from (22)-(23) that the
index estimation error satisfying

‖℘̃s(h)‖ 6 2. (24)

Case IV: the packet dropout occurs in both channels “C1”
and “C2”. Correspondingly, none of the description packets
is accessible at the decoder side and, instead of estimating
℘s(h), the latest decoded measurement~y(h− 1) is utilized to
compensate the value of~y(h).

Step 2. Decoder Rule Formulation
With the estimated index̂℘s(h) in hand, the inverse quan-

tization function can now be developed as follows:

òs
(
℘̂s(h)

)
, −rs +

(
2℘̂s(h)− 1

)
rs

ls
, (s ∈ S). (25)

Accordingly, the decoder functions can be determined by






ℜc
(
ı(h), (h)

)
=òs

(

νcs
(
ıs(h), s(h)

))

ℜr
(
(h)

)
=òs

(

νls
(
s(h)

))

ℜl
(
ı(h)

)
=òs

(

νrs
(
ıs(h)

))

.

(26)
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C. Boundedness Analysis of Decoding Error

In this subsection, we shall focus our attention on the
boundedness analysis of decoding errorκ(h).

Theorem 1:For the encoding procedure (2) and the decod-
ing procedure (3), the decoding errorκ(h) satisfies

κ(h) =







κ2(h), for Case I (27a)

κ1(h), for Case II andCase III (27b)

κ0(h), for Case IV (27c)

and






‖κ2(h)‖ 6

√
√
√
√

py∑

s=1

(
πs(h)

)2
(28a)

‖κ1(h)‖ 6

√
√
√
√

py∑

s=1

(
5πs(h)

)2
(28b)

‖κ0(h)‖ 6

√
√
√
√

py∑

s=1

(
~πs(h)

)2
(28c)

with ~ > 5 being a bounded positive scalar.
Proof: According to the individual situation of the de-

scription packets received at the decoder side, the boundedness
of decoding error is analyzed as follows.

For Case I, both the description packetsıs(h) ands(h) are
successfully transmitted to the decoder. In this case, keeping
in mind the expressions ofτs(h) andυs(h), we obtain

℘s(h) = 3τs(h) + υs(h), (29)

According to (18), (21), (25)-(26), it is not difficult to obtain

|κ2,s(h)| 6 |πs(h)| (30)

with κ2,s(h) being thesth component ofκ2(h). Furthermore,
we have

‖κ2(h)‖ 6

√
√
√
√

py∑

s=1

(
πs(h)

)2
. (31)

For Case II and Case III, only one description packet
(ıs(h) or s(h)) is successfully transmitted to the decoder.
Accordingly, it can be concluded from (18), (21), (25)-(26),
and (29) that

|κ1,s(h)| 6 5|πs(h)| (32)

whereκ1,s(h) is the sth component ofκ1(h). Similarly, we
have

‖κ1(h)‖ 6

√
√
√
√

py∑

s=1

(
5πs(h)

)2
. (33)

For Case IV, no description packet is transmitted to the
decoder. Without loss of generality, we assume that the upper
bound of |κ0,s(h)| is greater than5|πs(h)|. In other words,
there exists a bounded positive scalar~ > 5 such that

|κ0,s(h)| 6 ~|πs(h)|, (34)

which yields

‖κ0(h)‖ 6

√
√
√
√

py∑

s=1

(
~πs(h)

)2
. (35)

D. Boundedness Analysis of Tracking Error

A sufficient condition is derived in the following theorem
for assessing the boundedness of tracking error in mean-square
sense.

Theorem 2:Let the controller gain matricesPx, Pχ, Ix, Iχ,
Dx andDχ be given. Assume that there exist positive scalars
ω1, ω2, ω3, ω4, ω5 and positive definite matricesU , N [ǫ] (ǫ =
1, 2, . . . , q) such that the following inequality holds:

∆1 =

[

∆
[1]
1 ⋆

∆
[2]
1 ∆

[3]
1

]

< 0 (36)

where

∆
[1]
1 ,diag{∆[4]

1 , −N, −ω2I, −ω3I, −ω4I, −ω5I}

∆
[2]
1 ,

[

A S W T Ξ̂0 T Ξ̂1 T Ξ̂2

]

∆
[3]
1 ,− U−1, ∆

[4]
1 , −U + ω1U +

q
∑

ǫ=1

N [ǫ]

N ,diag{N [1], N [2], · · · , N [q]}.

Then, the output tracking error dynamicszε(h) is EUBMS.
Correspondingly, the AUB of‖zε(h)‖2 is given by

θ3 =

(

(~2ω̆3 + 25ω̆4 + ω̆5)(q + 1)

py∑

s=1

̟2
sr

2
s

l2s

+ ω2(v̄
2 + µ̄2)

)

λmax(E
T E)ρ3

λ
[UN ]
− (ρ3 − 1)

(37)

with

ω̆3 ,ω3 + ξ̄0 − ξ̄20 , λ
[U ]
− , λmin(U)

ω̆4 ,ω4 + ξ̄1 − ξ̄21 , λ
[N ]
− , λmin(N)

ω̆5 ,ω5 + ξ̄2 − ξ̄22 , λ
[UN ]
− , min{λ

[U ]
− , λ

[N ]
− }.

In addition, the constantρ3 > 1 in (37) can be obtained
according to

λ
[U ]
+ (ρ3 − 1− ρ3ω1) + λ

[N ]
+ (ρ3 − 1)q2ρq1 = 0 (38)

where

λ
[U ]
+ , λmax(U), λ

[N ]
+ , λmax(N).

Proof: Construct the following Lyapunov-like functional:

V
(
♭(h)

)
= V1

(
♭(h)

)
+ V2

(
♭(h)

)
(39)

with

V1

(
♭(h)

)
,♭T (h)U♭(h)

V2

(
♭(h)

)
,

q
∑

ǫ=1

h−1∑

ℓ=h−ǫ

♭T (ℓ)N [ǫ]♭(ℓ).
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The difference ofV
(
♭(h)

)
is expressed as

♮V
(
♭(h)

)
=

2∑

i=1

♮Vi

(
♭(h)

)
(40)

with

♮V1

(
♭(h)

)
,E{V1

(
♭(h+ 1)

)
|♭(h)} − V1

(
♭(h)

)

♮V2

(
♭(h)

)
,E{V2

(
♭(h+ 1)

)
|♭(h)} − V2

(
♭(h)

)
.

Calculating♮iV (h) (i = 1, 2) and taking the mathematical
expectation along the trajectory of (12), we have

E
{
♮V1

(
♭(h)

)}

=E
{
V1

(
♭(h+ 1)

)
− V1

(
♭(h)

)}

=E

{(

A♭(h) + S̺(h) +Wo(h) + T
(
Ξ̂0 + Ξ̃0(h)

)
ι0(h)

+ T
(
Ξ̂1 + Ξ̃1(h)

)
ι1(h) + T

(
Ξ̂2 + Ξ̃2(h)

)
ι2(h)

)T

U

×
(

A♭(h) + S̺(h) +Wo(h) + T
(
Ξ̂0 + Ξ̃0(h)

)
ι0(h)

+ T
(
Ξ̂1 + Ξ̃1(h)

)
ι1(h) + T

(
Ξ̂2 + Ξ̃2(h)

)
ι2(h)

)

− ♭T (h)U♭(h)
}

=E

{

♭T (h)(ATUA− U + ω1I)♭(h) + ̺T (h)STUS̺(h)

+ oT (h)(WTUW − ω2I)o(h) + ιT0 (h)(Ξ̂
2
0T

TUT − ω3I)

× ι0(h) + ιT1 (h)(Ξ̂
2
1T

TUT − ω4I)ι1(h) + ιT2 (h)(Ξ̂
2
2T

T

× UT − ω5I)ι2(h) + 2̺T (h)STUA♭(h) + 2oT (h)WT

× UA♭(h) + 2oT (h)WTUS̺(h) + 2ιT0 (h)Ξ̂0T
TUA♭(h)

+ 2ιT0 (h)Ξ̂0T
TUS̺(h) + 2ιT0 (h)Ξ̂0T

TUWo(h)

+ 2ιT1 (h)Ξ̂1T
TUA♭(h) + 2ιT1 (h)Ξ̂1T

TUS̺(h)

+ 2ιT1 (h)Ξ̂1T
TUWo(h) + 2ιT2 (h)Ξ̂2T

TUA♭(h)

+ 2ιT2 (h)Ξ̂2T
TUS̺(h) + 2ιT2 (h)Ξ̂2T

TUWo(h)

+ 2ιT1 (h)Ξ̂1Ξ̂0T
TUT ι0(h) + 2ιT2 (h)Ξ̂2Ξ̂0T

TUT ι0(h)

+ 2ιT2 (h)Ξ̂2Ξ̂1T
TUT ι1(h)− ω1V1

(
♭(h)

)

+ ω2o
T (h)o(h) + ω̆3ι

T
0 (h)ι0(h) + ω̆4ι

T
1 (h)ι1(h)

+ ω̆5ι
T
2 (h)ι2(h)

}

(41)

and

E
{
♮V2

(
♭(h)

)}

=E
{
V2

(
♭(h+ 1)

)
− V2

(
♭(h)

)}

=E

{
q
∑

ǫ=1

(
h∑

ℓ=h+1−ǫ

♭T (ℓ)N [ǫ]♭(ℓ)−

h−1∑

ℓ=h−ǫ

♭T (ℓ)N [ǫ]♭(ℓ)

)}

=

q
∑

ǫ=1

E

{

♭T (h)N [ǫ]♭(h) − ♭T (h− ǫ)N [ǫ]♭(h− ǫ)
}

. (42)

Denoting

ℑ(h) ,
[
♭T (h) ̺T (h) oT (h) ιT0 (h) ιT1 (h) ιT2 (h)

]T

and substituting (41)-(42) into (40) lead to

E
{
♮V
(
♭(h)

)}

=E
{
ℑT (h)Θ1ℑ(h)

}
− ω1E

{
V1

(
♭(h)

)}

+ ω2o
T (h)o(h) + ω̆3ι

T
0 (h)ι0(h)

+ ω̆4ι
T
1 (h)ι1(h) + ω̆5ι

T
2 (h)ι2(h) (43)

where

Θ1 ,













Θ
[11]
1 ⋆ ⋆ ⋆ ⋆ ⋆

Θ
[21]
1 Θ

[22]
1 ⋆ ⋆ ⋆ ⋆

Θ
[31]
1 Θ

[32]
1 Θ

[33]
1 ⋆ ⋆ ⋆

Θ
[41]
1 Θ

[42]
1 Θ

[43]
1 Θ

[44]
1 ⋆ ⋆

Θ
[51]
1 Θ

[52]
1 Θ

[53]
1 Θ

[54]
1 Θ

[55]
1 ⋆

Θ
[61]
1 Θ

[62]
1 Θ

[63]
1 Θ

[64]
1 Θ

[65]
1 Θ

[66]
1













Θ
[11]
1 ,ATUA− U + ω1U +

q
∑

ǫ=1

N [ǫ]

Θ
[22]
1 ,−N + STUS, Θ

[33]
1 , WTUW − ω2I

Θ
[44]
1 ,Ξ̂2

0T
TUT − ω3I, Θ

[55]
1 , Ξ̂2

1T
TUT − ω4I

Θ
[66]
1 ,Ξ̂2

2T
TUT − ω5I, Θ

[21]
1 , STUA

Θ
[31]
1 ,WTUA, Θ

[32]
1 , WTUS

Θ
[41]
1 ,Ξ̂0T

TUA, Θ
[42]
1 , Ξ̂0T

TUS

Θ
[43]
1 ,Ξ̂0T

TUW , Θ
[51]
1 , Ξ̂1T

TUA

Θ
[52]
1 ,Ξ̂1T

TUS, Θ
[53]
1 , Ξ̂1T

TUW

Θ
[54]
1 ,Ξ̂1Ξ̂0T

TUT , Θ
[61]
1 , Ξ̂2T

TUA

Θ
[62]
1 ,Ξ̂2T

TUS, Θ
[63]
1 , Ξ̂2T

TUW

Θ
[64]
1 ,Ξ̂2Ξ̂0T

TUT , Θ
[65]
1 , Ξ̂2Ξ̂1T

TUT .

Furthermore, it follows easily from the Schur Complement
Lemma thatΘ1 < 0 is ensured by condition (36), which
implies that

E
{
♮V
(
♭(h)

)}

<− ω1E
{
V1

(
♭(h)

)}
+ ω2o

T (h)o(h) + ω̆3ι
T
0 (h)ι0(h)

+ ω̆4ι
T
1 (h)ι1(h) + ω̆5ι

T
2 (h)ι2(h). (44)

Letting

θ
[1]
3 (h) ,ω2o

T (h)o(h) + ω̆3ι
T
0 (h)ι0(h)

+ ω̆4ι
T
1 (h)ι1(h) + ω̆5ι

T
2 (h)ι2(h)

and recalling the expressions ofo(h), ι0(h), ι1(h), ι0(h), we
have from (17), (27a)-(27c) and (28a)-(28c) that

θ
[1]
3 (h)

6(~2ω̆3 + 25ω̆4 + ω̆5)(q + 1)

py∑

s=1

̟2
sr

2
s

l2s

+ ω2(v̄
2 + µ̄2) , θ

[2]
3 (45)

and

E
{
♮V
(
♭(h)

)}
< −ω1E

{
V1

(
♭(h)

)}
+ θ

[2]
3 . (46)

For any positive scalarρ1 > 1, it follows that

E
{
ρh+1
1 V

(
♭(h+ 1)

)}
− E

{
ρh1V

(
♭(h)

)}

=ρh+1
1 E

{
♮V
(
♭(h)

)}
+ ρh1 (ρ1 − 1)E

{
V
(
♭(h)

)}

<ρh+1
1

(

− ω1E
{
V1

(
♭(h)

)}
+ θ

[2]
3

)
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+ ρh1 (ρ1 − 1)E
{
V
(
♭(h)

)}

6γ1(ρ1)ρ
h
1E
{
‖♭(h)‖2

}
+ ρh+1

1 θ
[2]
3

+ γ2(ρ1)

h−1∑

ǫ=h−q

ρh1E{‖♭(ǫ)‖
2} (47)

with

γ1(ρ1) ,λ
[U ]
+ (ρ1 − 1− ρ1ω1)

γ2(ρ1) ,λ
[N ]
+ q(ρ1 − 1).

Next, for any integerρ2 > q + 1, by taking cumulative
summation for both sides of (47) from0 to ρ2−1 with respect
to h, we have

ρρ2

1 E
{
V
(
♭(ρ2)

)}
− E

{
V
(
♭(0)

)}

<γ1(ρ1)

ρ2−1
∑

h=0

ρh1E
{
‖♭(h)‖2

}
+

ρ1(1− ρρ2

1 )

1− ρ1
θ
[2]
3

+ γ2(ρ1)

ρ2−1
∑

h=0

h−1∑

ǫ=h−q

ρh1E{‖♭(ǫ)‖
2}. (48)

Calculating the last term on the right-hand side of (48)
yields

ρ2−1
∑

h=0

h−1∑

ǫ=h−q

ρh1E{‖♭(ǫ)‖
2}

6

(
−1∑

ǫ=−q

ǫ+q
∑

h=0

+

ρ2−q−1
∑

ǫ=0

ǫ+q
∑

h=ǫ+1

+

ρ2−1
∑

ǫ=ρ2−q

ρ2−1
∑

h=ǫ+1

)

ρh1E{‖♭(ǫ)‖
2}

6q

−1∑

ǫ=−q

ρǫ+q
1 E{‖♭(ǫ)‖2}+ q

ρ2−q−1
∑

ǫ=0

ρǫ+q
1 E{‖♭(ǫ)‖2}

+ q

ρ2−1
∑

ǫ=ρ2−q

ρǫ+q
1 E{‖♭(ǫ)‖2}

6qρq1 sup
ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}+ qρq1

ρ2−1
∑

ǫ=0

ρǫ1E{‖♭(ǫ)‖
2}, (49)

which, together with (48), gives

ρρ2

1 E
{
V
(
♭(ρ2)

)}
− E

{
V
(
♭(0)

)}

<γ3(ρ1)

ρ2−1
∑

h=0

ρh1E
{
‖♭(h)‖2

}
+

ρ1(1− ρρ2

1 )

1− ρ1
θ
[2]
3

+ γ4(ρ1) sup
ℓ∈[−q, 0]

E{‖♭(ℓ)‖2} (50)

with

γ3(ρ1) ,γ1(ρ1) + γ2(ρ1)qρ
q
1, γ4(ρ1) , γ2(ρ1)qρ

q
1.

Keeping in mindγ3(1) = −ω1λ
[U ]
+ < 0 and lim

ρ1→∞
γ3(ρ1) =

+∞, it is easy to see that there exists a scalarρ3 > 1 such
that γ3(ρ3) = 0, which indicates

ρρ2

3 E
{
V
(
♭(ρ2)

)}
− E

{
V
(
♭(0)

)}

<γ4(ρ3) sup
ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}+
ρ3(1 − ρρ2

3 )

1− ρ3
θ
[2]
3 . (51)

In terms of the definition ofV
(
♭(h)

)
, we have

E
{
V
(
♭(ρ2)

)}
> λ

[UN ]
− E{‖♭(ρ2)‖

2} (52)

and

E
{
V
(
♭(0)

)}
6 λ

[UN ]
+ sup

ℓ∈[−q, 0]

E{‖♭(ℓ)‖2} (53)

with

λ
[UN ]
+ , max{λ

[U ]
+ , λ

[N ]
+ },

which results in

E{‖♭(ρ2)‖
2}

<
λ
[UN ]
+ + γ4(ρ3)

λ
[UN ]
− ρρ2

3

sup
ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}

+
ρ3(1 − ρρ2

3 )

λ
[UN ]
− ρρ2

3 (1 − ρ3)
θ
[2]
3 . (54)

Based on the expression ofzε(h), we now conclude that

E{‖zε(h)‖
2}

<
λ
[UN ]
+ + γ4(ρ3)

λ
[UN ]
− ρh3

λmax(E
T E) sup

ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}

+
ρ3(1− ρh3 )

λ
[UN ]
− ρh3 (1− ρ3)

λmax(E
T E)θ

[2]
3 . (55)

Subsequently, letting

θ1 ,ρ−1
3

θ2 ,
λ
[UN ]
+ + γ4(ρ3)

λ
[UN ]
−

λmax(E
T E) sup

ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}

θ
[3]
3 (h) ,

ρ3(1 − ρh3 )

λ
[UN ]
− ρh3 (1 − ρ3)

λmax(E
T E)θ

[2]
3

and calculating the limit ofθ[3]3 (h) with respect toh approach-
es to+∞, one has

E{‖zε(h)‖
2} < θh1 θ2 + θ3 (56)

where

θ3 , lim
h→+∞

θ
[3]
3 (h) =

λmax(E
T E)θ

[2]
3 ρ3

λ
[UN ]
− (ρ3 − 1)

.

According to (13) and (56), it is easy to draw the conclusion
that the output tracking error dynamicszε(h) is EUBMS,
which completes the proof.

E. Design of PID Controller

In the following theorem, the PID controller parameters are
designed to minimize the AUB of‖zε(h)‖2.

Theorem 3:Let the positive scalarω1 be given. Assume
that there exist positive scalarsω2, ω3, ω4, ω5, positive definite
matricesU[1], U[2], N [ǫ] (ǫ = 1, 2, . . . , q) and matricesY[1],
Y[2], Y[3], P̆x, P̆χ, Ĭx, Ĭχ, D̆x D̆χ such that the following
inequality holds:

∆2 =

[

∆
[1]
1 ⋆

∆
[2]
2 ∆

[3]
2

]

< 0 (57)
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where

∆
[2]
2 ,

[

Ă S̆ W̆ T̆ Ξ̂0 T̆ Ξ̂1 T̆ Ξ̂2

]

∆
[3]
2 ,diag{U[1] − Y[Υ] − Y T

[Υ],−U[2]}, U , diag{U[1], U[2]}

Υ ,[B(BTB)−1 (BT )⊥]T , Y ,

[
Y[1] Y[2]

0 Y[3]

]

Ă ,Ă + B̆, S̆ ,

[

R̆1C

0

]

, T̆ ,

[

R̆2

0

]

, Y[Υ] , YΥ

W̆ ,

[
Y[Υ]M −Y[Υ]G

0 U[2]G

]

, Ă ,

[
Y[Υ]A Y[Υ](A− F )
0 U[2]F

]

B̆ ,

[

(P
[Υ]
x +D

[Υ]
x )C (P

[Υ]
χ +D

[Υ]
χ )(C +H)

0 0

]

R̆1 ,
[
Ĭ + D̆ Ĭ · · · Ĭ

︸ ︷︷ ︸

q−1

]
, Ĭ ,

[

I
[Υ]
x I

[Υ]
χ

]

R̆2 ,
[
P [Υ]
x +D[Υ]

x I [Υ]
x +D[Υ]

x I [Υ]
x · · · I [Υ]

x
︸ ︷︷ ︸

q−1

]

D̆ ,
[

D
[Υ]
x D

[Υ]
χ

]

, P [Υ]
x ,

[

P̆x

0

]

, I [Υ]
x ,

[

Ĭx
0

]

D[Υ]
x ,

[

D̆x

0

]

, P [Υ]
χ ,

[

P̆χ

0

]

, I [Υ]
χ ,

[

Ĭχ
0

]

, D[Υ]
χ ,

[

D̆χ

0

]

.

Then, the output tracking error dynamicszε(h) is EUBMS.
Additionally, the minimum of the AUB of‖zε(h)‖2 can be
obtained by solving the following minimization problem:

min (~2ω̆3 + 25ω̆4 + ω̆5)(q + 1)

py∑

s=1

̟2
sr

2
s

l2s
+ ω2(v̄

2 + µ̄2)

subject to (57). (58)

Correspondingly, the desired controller gain matrices are given
by

Px =Y −1
[1] P̆x, Pχ = Y −1

[1] P̆χ

Ix =Y −1
[1] Ĭx, Iχ = Y −1

[1] Ĭχ

Dx =Y −1
[1] D̆x, Dχ = Y −1

[1] D̆χ. (59)

Proof: Performing the congruence transformation to (36)
by diag{I, I, I, I, I, I, U[Y ]} yields

∆3 =

[

∆
[1]
1 ⋆

∆
[2]
3 ∆

[3]
3

]

< 0 (60)

where

∆
[2]
3 ,

[

Á Ś W̆ T́ Ξ̂0 T́ Ξ̂1 T́ Ξ̂2

]

∆
[3]
3 ,diag{Y[Υ]U

−1
[1] Y

T
[Υ], −U[2]}, U[Y ] , diag{Y[Υ], U[2]}

Á ,Ă + B́, Ś ,

[
Y[Υ]BR1C

0

]

, T́ ,

[
Y[Υ]BR2

0

]

B́ ,

[
Y[Υ]B(Px +Dx)C Y[Υ]B(Pχ +Dχ)(C +H)

0 0

]

.

Bearing in mind the fact that

Y[Υ] + Y T
[Υ] − Y[Υ]U

−1
[1] Y

T
[Υ] − U[1]

=− (Y[Υ] − U[1])U
−1
[1] (Y[Υ] − U[1])

T 6 0, (61)

we obtain

−Y[Υ]U
−1
[1] Y

T
[Υ] 6 U[1] − Y[Υ] − Y T

[Υ]. (62)

Putting

P̆x =Y[1]Px, P̆χ = Y[1]Pχ

P̆x =Y[1]Ix, P̆χ = Y[1]Iχ

P̆x =Y[1]Dx, P̆χ = Y[1]Dχ (63)

into (60) and recalling (62), we know that (60) can be ensured
by condition (57). Thus, according to (13), the output tracking
error dynamicszε(h) is EUBMS.

Paying attention to (56), it is easy to find that

E{‖zε(h)‖
2}

<
1

ρh3

(

λ
[UN ]
+ + γ4(ρ3)

λ
[UN ]
−

λmax(E
T E) sup

ℓ∈[−q, 0]

E{‖♭(ℓ)‖2}

)

+

(

(~2ω̆3 + 25ω̆4 + ω̆5)(q + 1)

py∑

s=1

̟2
sr

2
s

l2s

+ ω2(v̄
2 + µ̄2)

)

λmax(E
T E)ρ3

λ
[UN ]
− (ρ3 − 1)

. (64)

Accordingly, we can obtain the minimum of the AUB of
‖zε(h)‖

2 by solving the minimization problem (58), which
completes the proof.

Remark 4:Hitherto, Theorem 1 discusses the boundedness
of decoding errorκ(h). Subsequently, Theorem 2 analyzes the
ultimate boundedness of the output tracking error dynamics
zε(h) in the mean-square sense. Theorem 3 provides the
explicit parameterization of the PID controller gains that fulfill
the requirement of minimizing the AUB of‖zε(h)‖2. It is
revealed that the minimized upper bound of‖zε(h)‖

2 is related
to important system parameters including the decoding error,
the exogenous disturbance upper boundv̄ and the reference
input upper bound̄µ. In particular, when̄v and µ̄ are fixed,
a larger decoding error would lead to a larger upper bound
of ‖zε(h)‖

2 and, accordingly, a larger tracking error, which
means a deterioration of the tracking performance.

Remark 5:Up to now, we have endeavored to solve the
PID tracking control problem for a class of linear discrete-time
systems subject to bounded disturbance input, bounded refer-
ence input and ROPD under the MDEM. Pertaining to the rich
literature on traditional PID control, the main results presented
in this paper own the following specific characteristics: 1) the
addressed PID tracking control problem is novel since both
the ROPD and MDEM are taken into serious account; 2) the
developed MDEM is suitable for enhancing the transmission
reliability in the presence of ROPDs; and 3) the established
theoretical framework enables the qualitative assessment of the
impact from the decoding error on the tracking accuracy.

F. Design of P-Type Controller

In this subsection, for comparison purposes, let us deal with
the special case of constructing a P-type tracking controller.
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The following P-type tracking controller is developed to
guarantee that the controlled output of system (1) tracks the
controlled output of system (9):

u(h) = K ℏ(h) (65)

whereK ,
[
Kx Kχ

]
andKx, Kχ are the controller gains

to be determined.
In line with (11) and (65), we formulate the following

augmented system:

♭(h+ 1) =A[P ]♭(h) +Wo(h) + T[P ]

(
ξ̄0 + ξ̃0(h)

)
κ0(h)

+ T[P ]

(
ξ̄1 + ξ̃1(h)

)
κ1(h) + T[P ]

(
ξ̄2 + ξ̃2(h)

)
κ2(h)
(66)

where

A[P ] ,A + B[P ], T[P ] ,

[
BKx

0

]

B[P ] ,

[
BKxC BKχ(C +H)

0 0

]

.

In the sequel, we calculate the P-type controller parameters
and present the minimal AUB of‖zε(h)‖2 in the following
corollary whose proof is easily accessible from those of
Theorems 2-3.

Corollary 1: Let the positive scalar̃ω1 be given. Assume
that there exist positive scalarsω̃2, ω̃3, ω̃4, ω̃5, positive definite
matricesŨ[1], Ũ[2] and matrices̃Y[1], Ỹ[2], Ỹ[3], K̃x, K̃χ such
that the following inequality holds:

∆4 =

[

∆
[1]
4 ⋆

∆
[2]
4 ∆

[3]
4

]

< 0 (67)

where

∆
[1]
4 ,diag{−Ũ + ω̃1Ũ , −ω̃2I, −ω̃3I, −ω̃4I, −ω̃5I}

∆
[2]
4 ,

[

Ã[P ] W̃ ξ̄0T̃[P ] ξ̄1T̃[P ] ξ̄2T̃[P ]

]

∆
[3]
4 ,diag{Ũ[1] − Ỹ[Υ] − Ỹ T

[Υ],−Ũ[2]}, Ũ , diag{Ũ[1], Ũ[2]}

Ỹ ,

[
Ỹ[1] Ỹ[2]

0 Ỹ[3]

]

, W̃ ,

[
Ỹ[Υ]M −Ỹ[Υ]G

0 Ũ[2]G

]

Ã[P ] ,Ã[P ] + B̃[P ], T̃[P ] ,

[

K
[Υ]
x

0

]

, Ỹ[Υ] , ỸΥ

Ã[P ] ,

[
Ỹ[Υ]A Ỹ[Υ](A− F )

0 Ũ[2]F

]

, K [Υ]
x ,

[

K̃x

0

]

B̃[P ] ,

[

K
[Υ]
x C K

[Υ]
χ (C +H)

0 0

]

, K [Υ]
χ ,

[

K̃χ

0

]

.

Then, the output tracking error dynamicszε(h) is EUBMS.
Additionally, the minimum of the AUB of‖zε(h)‖2 can be
obtained by solving the following minimization problem:

min (~2ω̆3 + 25ω̆4 + ω̆5)

py∑

s=1

̟2
sr

2
s

l2s
+ ω2(v̄

2 + µ̄2)

subject to (67). (68)

Correspondingly, the desired controller gain matrices are given
by

Kx =Ỹ −1
[1] K̃x, Kχ = Ỹ −1

[1] K̃χ. (69)

IV. N UMERICAL SIMULATION

In this section, let us demonstrate the effectiveness and
superiority of the developed PID tracking controller via a
numerical simulation.

Consider a discrete linear time-invariant system of the form
(1) with the following parameters:

A =

[
1.01 0.1
0.2 0.4

]

, B =

[
0.156
0.42

]

, M =

[
0.45
0.82

]

C =
[
1.01 0.5

]
, E =

[
1.1 0.3

]
.

Additionally, the parameters of the reference system in the
form of (9) are given as follows:

F =

[
0.3 0.1
0.2 0.5

]

, G =

[
0.5
0.3

]

, H =

[
1
0.5

]T

.

Throughout all simulations, we set the initial values of
(1) and (9) asx(0) =

[
1.5 −2.5

]T
and χ(0) =

[
0 0

]T
;

the exogenous disturbance asv(h) = 0.1 sin(0.1h); and the
reference input as

µ(h) =







0.1 sin(0.1h), 0 6 h 6 150

0.05 sin(0.5h), 200 6 h 6 400

0, otherwise.
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Time(h)
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0

0.5
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x1(h)
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0 50 100 150 200 250 300 350 400 450 500
Time(h)

-2.5

-2

-1.5

-1

-0.5

0

0.5

x2(h)
χ2(h)

Fig. 3: Trajectories ofx(h) and χ(h).

In the simulation, the parameters of scalar quantizer (14)
are chosen asl1 = 20 and r1 = 17. Making use of above
parameters, the PID controller gains are computed via The-
orem 3 and the obtained simulation results are demonstrated
in Figs. 3–4. To be specific, Fig. 3 shows the state evolutions
of the controlled system (1) and the reference system (9), and
Fig. 4 depicts the controlled output of the controlled system
(1) and the reference system (9). These illustrated simulation
results obviously show that the controlled system achieves a
desired tracking performance, which implies that the addressed
PID tracking controller is indeed effective.

Additionally, in order to show the superiority of the de-
veloped PID tracking controller, we compare the tracking
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Fig. 4: Trajectories ofz(h) and zχ(h).
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zε(h) under PID controller
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Fig. 5: Trajectory ofzε(h) under PID and P-type controller.

TABLE I: The minimum upper bounds of output tracking
error and decoding error subject to differentφ̄1 for φ̄2 = 0.01

φ̄1

Minimum upper bounds Minimum upper bounds

of output tracking error of decoding error

0.99 0.117 0.111

0.89 0.144 0.119

0.79 0.191 0.121

0.69 0.269 0.124

0.59 0.282 0.135

0.49 0.543 0.142

0.39 0.555 0.161

0.29 0.594 0.174

0.19 0.407 0.185

0.09 0.412 0.197

performances between the PID tracking controller and the P-
type tracking controller. Fig. 5 sketches the trajectories of

TABLE II: The minimum upper bounds of output tracking
error and decoding error subject to differentφ̄1 for φ̄2 = 0.99

φ̄1

Minimum upper bounds Minimum upper bounds

of output tracking error of decoding error

0.91 0.027 0.041

0.81 0.039 0.056

0.71 0.048 0.068

0.61 0.054 0.071

0.51 0.059 0.076

0.41 0.072 0.088

0.31 0.077 0.094

0.21 0.086 0.098

0.11 0.098 1.102

0.01 0.111 0.105

the output tracking error under PID controller and P-type
controller, respectively. One observers explicitly from these
simulation results that the proposed PID controller performs
better in providing satisfactory tracking performance compared
to the P-type controller.

At last, we discuss the influences from ROPDs on tracking
performance and decoding accuracy. For different success rates
φ̄1 and φ̄2 of description packet transmission, the minimum
upper bounds of both output tracking error and decoding
error are clearly outlined in Tables I-II after repeating the
simulations100 times, where the minimum upper bounds of
both output tracking error and decoding error are increase
with the decrease of̄φ1 or φ̄2. Accordingly, we can draw a
conclusion that, as the description packet transmission success
rates decrease, the tracking performance and decoding accu-
racy deteriorate.

V. CONCLUSIONS

In this paper, we have focused our attention on the PID
tracking control problem in the presence of bounded distur-
bances. A MDEM has been implemented to enhance the relia-
bility of the data transmission on the sensor-to-controller chan-
nels which are subject to ROPDs. A PID tracking controller
has been constructed whose parameters have been elegantly
designed by solving an optimization problem to minimize the
upper bounds on tracking error. Further evaluation of the effect
from the ROPDs on the decoding accuracy has been carried
out by looking into the boundedness of the decoding error.
Finally, a simulation example has been exploited to validate
the effectiveness of the designed PID tracking controller. It is
noted that one of the possible future research topics includes
the extension of the developed MDED-based control scheme
in this paper to more general complex networked systems (e.g.
the multi-agent systems [4], the sensor networks [38] and the
large-scale systems [20]).
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