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Optimal Bi-level Lottery Design for Multi-agent
Systems

Hunmin Kim, and Minghui Zhu

Abstract—Entities in multi-agent systems may seek conflicting
subobjectives, and this leads to competition between them. To
address performance degradation due to competition, we consider
a bi-level lottery where a social planner at the high level selects
a reward first and, sequentially, a set of players at the low
level jointly determine a Nash equilibrium given the reward.
The social planner is faced with efficiency losses where a Nash
equilibrium of the lottery game may not coincide with the social
optimum. We propose an optimal bi-level lottery design problem
as finding the least reward and perturbations such that the
induced Nash equilibrium produces the socially optimal payoff.
We formally characterize the price of anarchy and the behavior
of public goods and Nash equilibrium with respect to the reward
and perturbations. We relax the optimal bi-level lottery design
problem via a convex approximation and identify mild sufficient
conditions under which the approximation is exact.

I. INTRODUCTION

Advanced information and communications technologies
have been stimulating the rapid emergence of multi-agent
systems where many spatially distributed agents interact with
each other to accomplish complex missions. Substantial effort
has been spent on analysis, design, and control of multi-agent
systems [1, 2, 3, 4, 5]. In many practical scenarios, agents
are non-cooperative and seek for heterogeneous (or even
conflicting) subobjectives. This leads to competition over lim-
ited resources and degradation of system-wide performance.
Common practices to address the issue include mechanism
design or incentive design, which modify agents’ preferences
via side payment or pricing so that individual interests are
aligned with social welfare.

Mechanism design has been studied when the designer has
complete and incomplete information on agents’ types [6].
There are several classes of mechanism design with incomplete
information. An auction consists of multiple bidders who
submit bids according to their valuations of items being
auctioned, and an auctioneer who sequentially determines
item allocation and pricing. The most well-known auction
mechanism is Vickrey-Clarke-Groves (VCG) auction [7, 8, 9]
which is efficient and incentive compatible [10, 11]. Contract
theory [12] studies how the principal constructs a contract
in the presence of asymmetric information of the agent(s).
There are three major models; i.e., moral hazard [13] (the
agents have hidden information after the contract), adverse
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selection [14] (the agents have hidden information before
the contract), and signaling [15] (the agents provide some
confidential information). Mechanisms have been applied to
various areas, including smart grid [16], communication net-
works [17, 18], and transportation networks [19]. Moreover,
mechanism design has been extended to dynamic scenarios
where agents are incentivized to follow specified algorithms
and solve computation or control problems [20, 21, 22].

In mechanism design with complete information, the de-
signer does not experience a lack of knowledge of agents’
types. Therefore, the designer can deduce the agents’ re-
sponses to its policy choice. This class includes optimal taxa-
tion [23], game design [24, 25], incentive control [26, 27], and
lottery [28]. In optimal taxation, agents maximize their own
utility functions by choosing labor time and consumption, and
the designer chooses the optimal tax function to maximize the
overall utility. In game design, the designer chooses the utility
functions of agents to achieve specific control objectives, and
the agents maximize their utilities. Incentive control is an
incentive design in a dynamic environment where agents’
choices are affected by rewards or prices such that social
welfare can be optimized.

As one kind of mechanism design with complete infor-
mation, fixed prize lotteries have been applied to several
field experiments and proven to stimulate agents’ or players’
investments effectively. INSINC project in Singapore [29] is
an ongoing real-world implementation of a lottery scheme for
commuters who use public transportation to travel off-peak
hours. The lottery scheme successfully reduces around 7.5%
of peak time demand. A similar project named INSTANT [19]
is conducted in India and results in more than 20% of
commuter shifts. Research [30] uses the boarding passes of
local public transportation as lottery tickets, showing that the
lottery increases the provision of public goods and reduces free
riders. In [31, 32, 33], experiments are conducted to show
that lottery based incentives can effectively increase survey
response rates. Moreover, lottery based incentives have been
used in demand response in the smart grid [34, 35], mobile
crowdsensing for traffic congestion and air pollution [36], and
Internet congestion [37].

Substantial effort has been exerted to develop the funda-
mental theory of lotteries. Seminal paper [28] studies that
fixed prize lotteries alleviate the free-rider problem and nudge
higher levels of public good provisions as well as aggregate
payoff than voluntary contributions. A larger reward results
in a greater public good and aggregate payoff. The results
have been extended by many researchers. In [38], a multi-
prize lottery is studied considering risk preferences; i.e., risk-



3

neutral versus risk-averse. A sequential lottery is investigated
in [39] in which it can sell more tickets than a one-level lottery.
Paper [40] analyzes public good on player size, and extends
the results to a rival public good case; i.e., players benefit from
a portion of public goods.

Contributions. In the classic lottery schemes, the com-
petition among the players induces efficiency losses; i.e., a
Nash equilibrium of a lottery game may not coincide with its
social optimum. The social optimum is only achieved when
an infinite reward is given [28]. To address the issue, we
introduce perturbation parameter chosen by the social planner
and formulate an optimal bi-level lottery design problem where
a Nash equilibrium of a lottery game induces a socially
optimal payoff with the least reward and perturbations. On
top of this, we impose general convex inequality constraints
to encompass physical constraints and social planner’s interest.
We analyze the properties of low-level Nash equilibrium,
including the price of anarchy as well as the behavior of public
goods and Nash equilibrium with respect to the reward and
perturbations. By leveraging the above analytical results, we
derive a convex approximation of the optimal bi-level lottery
design problem and identify mild sufficient conditions under
which the approximation is exact. Our results are verified via
a case study on demand response in the smart grid.

This paper is enriched from preliminary version [41], and
includes a set of new results. In particular, this paper derives
new properties of Nash equilibrium and public goods as well
as more practical bounds on price of anarchy. Additionally,
this paper introduces a convex approximation of the optimal
lottery design problem and show that there is no approximation
error. Further, a case study on demand response is provided
to demonstrate the developed results.

Paper organization. In Section II, we discuss a classic
bi-level lottery scheme and its limitations. To alleviate the
fundamental limitation of efficiency losses, we introduce a new
perturbed bi-level lottery model and formulate the optimal bi-
level lottery design problem in Section III. In Section IV, we
analyze the properties of low-level Nash equilibrium. Based
on the properties, we relax the optimal bi-level lottery design
problem as a convex optimization problem in Section V.
Section VI presents a case study on demand response.

II. PRELIMINARIES

We introduce a classic bi-level lottery scheme in [28] and
outline its procedure in Section II-A to II-C. Section II-D
discusses its limitations and motivates our problem. Please
refer to [28] for comprehensive discussions.

A. Payoff model

Consider a social planner who holds a lottery and a set
of players V , {1, 2, · · · , N} who participate in the lottery.
Before holding the lottery, the social planner announces a
public good to be financed by the net profit of the lottery.
The public good provision consists of the net profit of the
lottery and benefits all the players, but the amount of benefits
may be different. Each player chooses a benefit function
corresponding to the announced public good. Then, the social

planner chooses a reward R from an action set R = (0,∞).
Given reward R, each player i invests si to the lottery from
an action set Si = [0, wi], and receives a portion of the
reward R proportional to its own investment over the total
investment, and also gets benefits from the public good, where
wi denotes the amount of investable wealth of player i. The
action profile s , {si}i∈V ∈ S can be expressed as {si, s−i}
where s−i denotes the action profile other than player i;
i.e., s−i , {sj}j∈V\{i}. Given reward R, payoff function
ui : S → R associated with i is described by:

ui(s,R) ,

{
si
s̄ R+ hi(s̄−R)− si, for s̄ ≥ R

0, otherwise
(1)

where s̄ ,
∑
i∈V si. Payoff function (1) indicates that the

lottery holds only when total investment s̄ exceeds or equals
to reward R; otherwise, the social planner cancels the lottery
and returns the investments to the players. The first term si

s̄ R
represents the portion of reward from the lottery and the rate
si
s̄ can be seen as the probability of winning if a raffle gives the

reward, and the players are risk-neutral; i.e., they consider the
expected reward si

s̄ R as the utility. The last term −si denotes
the cost of player i. The marginal benefit function hi : R≥0 →
R≥0 represents any benefit obtained from the pre-announced
public good and is a function of net profit s̄−R. It can also be
seen as the agent’s private valuation on excess utility, which
stimulates its investment.

In the classic lottery, there are two important assumptions.
The first one is that players experience diminishing marginal
utility from the provision of the public good, which is a classic
assumption in social economics [42, 43]. The other assumption
is that the public good is socially desirable; i.e., financing
non-zero public good increases network-wide payoffs. The
formalization of these assumptions is as:

Assumption 2.1: Function hi is twice differentiable, strictly
increasing, strictly concave, hi(0) = 0,

∑
i∈V

∂hi(0)
∂v > 1, and

limv→∞
∂hi(v)
∂v = 0.

In applications, hi has been seen as any side benefit which is
generated by the net-profit (or social benefits). For instance, in
demand response, hi denotes the level of (inverse) harzard [34]
and any side payment from the net-profit [35]. In internet
congestion, hi(·) = −L(·) where L(·) is a disutility due to
congestion [44].

B. Low-level decision making - Nash equilibrium

Given R and s−i, player i chooses si to maximize its own
payoff as follows:

max
si∈Si

ui(s,R).

The collection of local optimization problems induces a non-
cooperative game among the players and the game is param-
eterized by R. Nash equilibrium [45] defines the solution of
the game.

Definition 2.1: Given R, the action profile s∗(R) is a (pure)
Nash equilibrium if ui(s′i, s

∗
−i(R), R) ≤ ui(s∗(R), R) for ∀s′i

∈ Si,∀i ∈ V .
Note that Nash equilibrium s∗(R) highlights its dependency
on reward R.
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C. High-level decision making - Social optimum

The lottery is a bi-level decision making (or a hierarchical
optimization) problem where the social planner at the high
level selects reward first and, sequentially, the players at
the low level jointly determine a Nash equilibrium given
the reward. The social planner aims to choose reward R to
maximize the aggregate payoff of the players at the induced
Nash equilibrium:

max
R∈R

∑
i∈V

ui(s
∗(R), R)

s.t. g(s∗(R), R) ≤ 0
=

max
R∈R

∑
i∈V

hi(G(R))−G(R)

s.t. g(s∗(R), R) ≤ 0
(2)

where G(R) , s̄∗(R) − R is referred to as the public good
which is obtained by transforming the net profit s̄∗(R) − R
into G(R), on a one-for-one basis. The hierarchical nature of
the problem requires the social planner to predict the low-level
Nash equilibrium when making decisions at the high level.

Inequality constraint g(s∗(R), R) ≤ 0 expresses physical
constraints (e.g., safety constraint, and flow capacity) and
social planner’s interest (e.g., the amount of required invest-
ments) as shown in Section VI where g : S × R → Rm is a
vector of convex functions g`(s∗(R), R) for ` = 1, 2, · · · ,m.
The convex inequality constraint g(s∗(R), R) ≤ 0 is absent in
the classic bi-level lottery in [28].

Assumption 2.2: Function g`(s∗, R) is convex with respect
to its arguments s∗ and R for ` = 1, 2, · · · ,m.

The lottery design is an incentive design with complete
information. Given the marginal benefit function hi, the social
planner provides (R, c).

D. Limitations

When the constraint g(s∗(R), R) ≤ 0 is absent, Assump-
tion 2.1 ensures that there exists a unique socially optimal
public good (Proposition 2.1 in [28])

G∗ = arg max
G∈[0,∞)

∑
i∈V

hi(G)−G,

where G∗ > 0 is the solution of∑
i∈V

∂hi(G
∗)

∂G
= 1 (3)

due to strict concaveness of hi. The socially optimal public
good maximizes the aggregate payoff, and we define the
aggregate payoff

∑
i∈V hi(G

∗) − G∗ as the socially optimal
payoff. However, the socially optimal public good (as well as
socially optimal payoff) is achieved only when R→∞ (The-
orem 2 in [28]). An infinite reward is apparently impractical.
Moreover, existing works do not consider convex inequality
constraint g(s∗(R), R) ≤ 0 in the bi-level lottery, although it
is essential in many engineering applications. This paper aims
to design a new incentive design to address the limitations.

III. OPTIMAL BI-LEVEL LOTTERY DESIGN

This section introduces a new practical scheme to achieve
socially optimal payoff and satisfy convex inequality con-
straints. In particular, a perturbed lottery model is introduced
in Section III-A and lower-level decision-making is presented

in Section III-B. A new problem for the social planner is
introduced in Section III-C. We highlight the differences from
those in Section II.

A. Perturbed payoff model

Consider the perturbed payoff model for player i:

Ui(s,R, c) ,

{
si−ci
s̄−c̄ R+ hi(s̄−R)− si, for s̄ ≥ R

0, otherwise
(4)

where c , {ci}i∈V and c̄ ,
∑
i∈V ci, and ci is perturbation

parameter. In (4), (R, c) is chosen by the social planner from
a set R × C where C , C1 × · · · × CN , and Ci , [0,∞).
In the perturbed lottery, the social planner is able to choose
reward R and, at the same time, change the odds of winning
by perturbing the individual investments. In particular, pertur-
bation parameter ci introduces an offset to the odds of winning
but the aggregate portion remains one; i.e.,

∑
i∈V

si−ci
s̄−c̄ = 1.

The perturbation is announced along with reward R before
holding a lottery. The perturbed payoff model has been stud-
ied in [46, 47], where payoffs are functions of perturbed
investment si − ci where si is an effort made by player i,
and ci is an external perturbation. Likewise, perturbation c is
externally given by the social planner in the current paper, and
it perturbs the portions of the reward to be received by players.
The external perturbation can be interpreted as an intervention
of the social planner to achieve social optimum, and satisfy
convex constraint g(s∗(R, c), R) ≤ 0.

B. Low-level decision making - Nash equilibrium

Given R, c, and s−i, player i chooses si to maximize its
own payoff: maxsi∈Si Ui(s,R, c), where Si , [0,∞). Nash
equilibrium s∗(R, c) is dependent on R and c. If the reward
term s∗i (R,c)−ci

s̄∗(R,c)−c̄ R is negative, player i is assumed to pay a fine
s∗i (R,c)−ci
s̄∗(R,c)−c̄ R to the social planner.

C. High-level decision making - Social optimum

As problem (2), the social planner wants to maximize the
aggregate of perturbed payoffs as follows:

max
(R,c)∈R×C

∑
i∈V

Ui(s
∗(R, c), R, c)

s.t. g(s∗(R, c), R) ≤ 0

=
max

(R,c)∈R×C

∑
i∈V

hi(G(R, c))−G(R, c)

s.t. g(s∗(R, c), R) ≤ 0
(5)

where g : S × R → Rm remains identical to that in (2) and
the dependency of public good G(R, c) , s̄∗(R, c) − R on
R and c is emphasized. Since the objective function of (5) is
identical to that of (2), it is maximized when G(R, c) = G∗

as well as constraint g(s∗(R, c), R) ≤ 0 is absent. There
could be multiple optimal solutions for problem (5). So the
social planner aims to choose the minimal reward and pertur-
bation among the optimal solutions that satisfy the constraints
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g(s∗(R, c), R) ≤ 0. Considering this case, we formulate the
following bi-level optimization problem:

min
(R,c)∈R×C

R+ αc̄

s.t.
(R, c) ∈ arg max

∑
i∈V

Ui(s
∗(R, c), R, c)

s.t. g(s∗(R, c), R) ≤ 0
(6)

where constant α ≥ 0 represents a relative weight on the
perturbation c̄.

IV. ANALYSIS OF LOW-LEVEL NASH EQUILIBRIUM

We study the properties of Nash equilibrium of problem (5)
to solve problem (6). Theorem 4.1 summarizes important prop-
erties of the perturbed lottery at Nash equilibrium. In particu-
lar, (P1) shows the existence and uniqueness of Nash equilib-
rium and (P2) demonstrates that any (R, c) in the feasible set
F(5) of problem (5) satisfies s̄∗(R, c)−c̄ = G(R, c)+R−c̄ > 0
if there exists (R, c) such that G(R, c) = G∗. (P2) helps to
reduce the feasible set of interest.

Theorem 4.1: Suppose Assumption 2.1 holds. Consider any
pair (R, c) ∈ R × C. Then, the following properties hold at
Nash equilibrium.

(P1) Given any ci ≥ 0 for ∀i ∈ V and R > 0, there is a
unique Nash equilibrium s∗(R, c);

(P2) Given |V| 6= 1, any (R, c) such that G(R, c) = G∗

satisfies c̄ ≤ G(R, c) +R.

Proof: In the proof, we will drop the dependency of G,
s∗, Ui, and Va on R and c.

We first introduce the first order condition which must be
satisfied at a Nash equilibrium:

∂Ui(s
∗, R, c)

∂si
= R

s̄∗ − c̄− (s∗i − ci)
(s̄∗ − c̄)2

+
∂hi(s̄

∗ −R)

∂G

− 1 ≤ 0 (7)

for ∀i ∈ V . If player i is active; i.e., s∗i > 0, then equality
holds. If player i is inactive; i.e., si = 0, strict inequality holds.
To prove the first order condition by contradiction, assume that
∂Ui(s

∗,R,c)
∂si

= ε > 0. Then, by the Taylor series expansion,
there exists a constant δ > 0 such that

Ui(s
∗
i + εδ, s∗−i, R, c) > Ui(s

∗
i , s
∗
−i, R, c) + εδ.

This leads to a contradiction to the definition of Nash equilib-
rium. The remaining part can be proven similarly.

(P1) Since hi is strictly increasing and strictly concave, there
is ξL > 0 such that ∂hi(ξ)

∂G < 1 for all ξ ≥ ξL. Consider any R,
c and s−i. If si is sufficiently large, then Ui(s) < 0. So there is
Bi(R, c) > 0 such that s∗i (R, c) < Bi(R, c). Hence, s∗(R, c)
is identical to the maximizer of the game: maxsi Ui(s) s.t.
si ∈ [0, Bi(R, c)]. In this problem, the payoff functions are
concave and the decision variables lie in compact sets. Hence,
s∗(R, c) exists. The uniqueness of Nash equilibrium can be
proven by similar arguments of Lemma 3 in [28].

(P2) We show by contradiction. Assume s̄∗− c̄ = G+R−
c̄ < 0 and G = G∗. The aggregate of the first order conditions

of active players is∑
i∈Va

∂Ui(s
∗)

∂si
=
R(|Va| − 1)

R+G− c̄
+

∑
i∈V\Va(s∗i − ci)
(R+G− c̄)2

R

+
∑
i∈Va

∂hi(G)

∂G
− |Va| = 0.

Since ∂hi(G)
∂G > 0 and si = 0 for i ∈ V \ Va, we have

R(|Va| − 1)

R+G− c̄
−
∑
i∈V\Va ci

(R+G− c̄)2
R+

∑
i∈V

∂hi(G
∗)

∂G
− |Va|

= − (G− c̄)(|Va| − 1)

R+G− c̄
−
∑
i∈V\Va ci

(R+G− c̄)2
R ≥ 0 (8)

which never holds when |Va| 6= 1 because G−c̄ < R+G−c̄ <
0 and ci ≥ 0.

If |Va| = 1, then (8) holds when ci = 0 for ∀i ∈ V \ Va.
The first order condition of k ∈ Va is

∂Uk(s∗)

∂sk
= R

s̄∗ − c̄− (s∗k − ck)

(s̄∗ − c̄)2
+
∂hk(s̄∗ −R)

∂G
− 1

=
∂hk(s̄∗ −R)

∂G
− 1 = 0

where ck = c̄ is applied. Thus, ∂hk(G∗)
∂G = 1 and∑

i∈V
∂hi(G

∗)
∂G > 1. This contradicts the definition of G∗.

If the convex constraint g(s∗(R, c), R) ≤ 0 is absent in
problem (5), there always exists (R, c) such that G(R, c) = G∗

and thus (P2) holds (which will be shown later). In other
words, (P2) holds if the optimal value of problem (5) re-
mains

∑
i∈V hi(G

∗)−G∗ with/without the convex constraint
g(s∗(R, c), R) ≤ 0.

According to (P2), we only focus on the feasible set with
the constraint c̄ ≤ G(R, c)+R in problem (5). This constraint
makes us derive the following properties further while it does
not restrict the choice of (R, c). Theorem 4.2 summarizes the
derived properties, and these properties are essential to solve
bi-level optimization problem (6). Furthermore, the properties
reduce to those of unperturbed lottery in Section II when ci =
0. (P3) indicates that public good G(R, c) is bounded by c̄
and G∗, and it is increasing in (R, c) when all the players are
active. (P4) shows that all the players are active if reward R
is greater than a certain threshold, and there exists a lower
bound of s∗i (R, c), which is a strictly increasing function in
R. Moreover, in some cases, s∗i (R, c) is strictly increasing in
(R, c). (P5) quantifies the price of anarchy [48] which is the
ratio between the socially optimal payoff and the aggregate
payoff induced by the corresponding Nash equilibrium. The
lower and upper bounds of the price of anarchy reveal possible
efficiency losses due to selfishness of players, and they can be
quantified without explicitly calculating Nash equilibrium.

The following notations are used in Theorem 4.2. Function
sgn(·) is a sign function. The value RL(c) is the unique
solution of RL(c)

RL(c)+GU−c̄ = maxi∈V{1 − ∂hi(G
U )

∂G }, where
GU , max{G∗, c̄}. Define player i who invests non-zero
wealth s∗i (R, c) > 0 as an active player and define Va(R, c) ,
{i ∈ V|s∗i (R, c) > 0} as the set of all the active players. Lastly,
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if c̄ ≤ G∗, then

G(R, c) , H−1(
(|V̄a(R, c)| − 1)(GL − c̄)

R+GU − c̄
+ 1)

Ḡ(R, c) , H−1(
(N − 1)(GU − c̄)
R+GL − c̄

+ 1)

otherwise

Ḡ(R, c) , H−1(
(|V̄a(R, c)| − 1)(GL − c̄)

R+GL − c̄
+ 1)

G(R, c) , H−1(
(N − 1)(GU − c̄)
R+GU − c̄

+ 1)

where GL , min{G∗, c̄}, H(G) ,
∑
i∈V

∂hi(G)
dG and

V̄a(R, c) is the number of players who satisfy R
R+GU−c̄ +

∂hi(G
U )

∂G − 1 > 0. Note that H : R≥0 → Y is invertible on
codomain Y , (0, H(0)] because H is a strictly decreasing
and continuous.

Theorem 4.2: Suppose Assumption 2.1 holds. Consider any
pair (R, c) ∈ R × C such that c̄ ≤ G(R, c) + R. Then, the
following properties hold at Nash equilibrium.

(P3) It holds that c̄ ≤ G(R, c) ≤ G∗ or G∗ ≤ G(R, c) ≤
c̄. If |Va(R, c)| = N , then sgn(G∗ − c̄)dG(R,c)

dR ≥ 0,
and dG(R,c)

dci
> 0 where equality holds if and only if

c̄ = G∗;
(P4) If R > RL(c), then s∗i (R, c) ≥ ci + R

(
R

R+GU−c̄ +
∂hi(G

U )
∂G − 1

)
> 0 where the lower bound is strictly

increasing in R without bound. If |Va(R, c)| = N ,
there is some i ∈ V such that ds∗i (R,c)

dR > 0.
(P5) Price of anarchy PoA(R, c) ,

maxs∈S
∑

i∈V Ui(s)∑
i∈V Ui(s∗(R,c),R,c)

is characterized by∑
i∈V hi(G

∗)−G∗∑
i∈V hi(G(R, c))−G(R, c)

≤ PoA(R, c)

≤
∑
i∈V hi(G

∗)−G∗∑
i∈V hi(Ḡ(R, c))− Ḡ(R, c)

.

If c̄ = 0, it holds that PoA > 1 for any R <∞ and
limR→∞ PoA(R, 0) = 1.

Proof: In the proof, we will drop the dependency of G,
G, Ḡ, s∗, Ui, Va, RL and PoA on R and c.

(P3) Assume G ≤ c̄. The aggregate of the first order
conditions (7) is∑

i∈V

∂Ui(s
∗)

∂si
=
R(N − 1)

R+G− c̄
+
∑
i∈V

∂hi(G)

∂G
−N ≤ 0 (9)

and thus we have
∑
i∈V

∂hi(G)
∂G ≤ 1 =

∑
i∈V

∂hi(G
∗)

∂G . This
implies G∗ ≤ G ≤ c̄ due to strict concaveness of hi.

Now assume G ≥ c̄. The aggregate of the first order
conditions (7) of active players:∑

i∈Va

∂Ui(s
∗)

∂si
=
R(|Va| − 1)

R+G− c̄
+

∑
i∈V\Va(s∗i − ci)
(R+G− c̄)2

R

+
∑
i∈Va

∂hi(G)

∂G
− |Va| = 0.

Note that s∗i = 0 for i ∈ V \Va. By the fact that hi is a strictly

increasing function, it becomes∑
i∈V

∂hi(G)

∂G
≥ −R(|Va| − 1)

R+G− c̄
+ |Va|+

∑
i∈V\Va ci

(R+G− c̄)2
R

=
(|Va| − 1)(G− c̄)

R+G− c̄
+

∑
i∈V\Va ci

(R+G− c̄)2
R+ 1

=
(|Va| − 1)(G− c̄)

R+G− c̄
+

∑
i∈V\Va ci

(R+G− c̄)2
R+

∑
i∈V

∂hi(G
∗)

∂G
.

(10)

Because (|Va|−1)(G−c̄)
R+G−c̄ ≥ 0 and ci ≥ 0, (10) implies G ≤ G∗

by strict concaveness of hi. Thus, c̄ ≤ G ≤ G∗.

Now we consider the case with |Va| = N . Since all the
players are active the aggregate first order condition (9) holds
with equality where

∑
i∈V

∂Ui(s
∗)

∂si
can be regarded as an

implicit function of (s∗, R, c). We apply the implicit function
theorem (Theorem 1.3.1 in [49]) to (9)

−
∂(
∑
i∈V

∂Ui(s
∗)

∂si
)

∂G

dG

dR
=
∂(
∑
i∈V

∂Ui(s
∗)

∂si
)

∂R
and obtain
dG

dR
= − (G− c̄)(N − 1)

(R+G− c̄)2
∑
i∈V

∂2hi(G)
∂G2 −R(N − 1)

. (11)

Thus, dG
dR ≥ 0 if c̄ ≤ G ≤ G∗ and dG

dR ≤ 0 if G∗ ≤ G ≤ c̄. It
holds that dG

dR = 0 if and only if G = c̄.

We will show that G = c̄ if and only if c̄ = G∗. If c̄ = G∗,
then G = c̄ because c̄ ≤ G ≤ G∗. We now prove that if
G = c̄ then c̄ = G∗. Assume G = c̄, then aggregate first order
condition (9) yields∑

i∈V

∂Ui(s
∗)

∂si
=
∑
i∈V

∂hi(c̄)

∂G
− 1 = 0.

The unique solution is c̄ = G∗.

We proceed to prove dG
dci

> 0. By applying the implicit
function theorem to (9), we have

−
∂(
∑
i∈V

∂Ui(s
∗)

∂si
)

∂G

dG

dci
=
∂(
∑
i∈V

∂Ui(s
∗)

∂si
)

∂ci
and obtain
dG

dci
= − R(N − 1)

(R+G− c̄)2
∑
i∈V

∂2hi(G)
∂G2 −R(N − 1)

> 0.

(12)

(P4) By G ≤ max{G∗, c̄} , GU and concaveness of hi,
first order condition (7) yields

∂Ui(s
∗)

∂si
= R

s̄∗ − c̄− (s∗i − ci)
(s̄∗ − c̄)2

+
∂hi(s̄

∗ −R)

∂G
− 1

≥ R

s̄∗ − c̄
−R s∗i − ci

(s̄∗ − c̄)2
+
∂hi(G

U )

∂G
− 1. (13)

Assume s∗i < ci, then with R > RL,

∂Ui(s
∗)

∂si
>

RL
RL +GU − c̄

+
∂hi(G

U )

∂G
− 1 = 0.

This contradicts the first order condition, and thus s∗i ≥ ci.
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With GU ≥ c̄, (13) becomes

∂Ui(s
∗)

∂si
≥ R

R+GU − c̄
− s∗i − ci

R
+
∂hi(G

U )

∂G
− 1.

If s∗i < ci + R
(

R
R+GU−c̄ + ∂hi(G

U )
∂G − 1

)
, then ∂Ui(s

∗)
∂si

> 0,
a contradiction to the first order condition. Therefore s∗i ≥
ci+R

(
R

R+GU−c̄+ ∂hi(G
U )

∂G −1
)

and the lower bound is strictly
positive, because R > RL.

We now proceed to prove that the bound Li(R, c) , ci +

R
(

R
R+GU−c̄+ ∂hi(G

U )
∂G −1

)
is a strictly increasing in R without

bound. By taking derivative of the bound, we have

∂Li
∂R

=
R

R+GU − c̄
+
∂hi(G

U )

∂G
− 1 +R

GU − c̄
(R+GU − c̄)2

which is strictly greater than 0 since GU ≥ c̄ and R > RL.
Moreover, function Li keeps increasing without bound as R
increases because limR→∞

∂Li

∂R = ∂hi(G
U )

∂G > 0.
Now we will consider the case with |Va| = N . We will

show that there is at least one i such that ds∗i
dR > 0 holds.

Since all the players are active, the first order condition (7)
holds with equality ∂Ui(s

∗)
∂si

= 0 where ∂Ui(s
∗)

∂si
can be regarded

as an implicit function of (s∗, R, c). By the implicit function
theorem, relation

−


∂2U1(s∗)
∂s21

· · · ∂2U1(s∗)
∂s1∂sN

...
. . .

...
∂2UN (s∗)
∂sN∂s1

· · · ∂2UN (s∗)
∂s2N




ds∗1
dR
...

ds∗N
dR

 =


∂2U1(s∗)
∂s1∂R

...
∂2UN (s∗)
∂sN∂R


holds where
∂2Ui(s

∗)

∂s2
i

= −2R
s̄∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)3
+
∂2hi(s̄

∗ −R)

∂G2
< 0

∂2Ui(s
∗)

∂si∂sj
= −Rs̄

∗ − c̄− 2(s∗i − ci)
(s̄∗ − c̄)3

+
∂2hi(s̄

∗ −R)

∂G2

∂2Ui(s
∗)

∂si∂R
=
s̄∗ − c̄− (s∗i − ci)

(s̄∗ − c̄)2
− ∂2hi(s̄

∗ −R)

∂G2
> 0.

If we choose k = argmini∈V s
∗
i , it holds that ∂2Uk(s∗)

∂sk∂sj
≤ 0

because s∗k > ck. Therefore, the relation

−
∑
j∈V

∂2Uk(s∗)

∂sk∂sj

ds∗j
dR

=
∂2Uk(s∗)

∂sk∂R
> 0

implies that there is at least one j such that
ds∗j
dR > 0.

(P5) It holds that

(|Va| − 1)(G− c̄)
R+G− c̄

+
R
∑
i∈V\Va ci

(R+G− c̄)2
+ 1

≤
∑
i∈V

∂hi(G)

∂G
≤ (N − 1)(G− c̄)

R+G− c̄
+ 1 (14)

where the lower bound can be found from (10) and the upper
bound can be obtained from (9):∑
i∈V

∂hi(G)

∂G
≤ − R(N − 1)

R+G− c̄
+N =

(N − 1)(G− c̄)
R+G− c̄

+ 1.

If i ∈ V̄a, then i ∈ Va because it holds that s∗i ≥
ci + (G+R−c̄)2

R

(
R

R+G−c̄ + ∂hi(G)
∂G − 1

)
≥ ci + R

(
R

R+GU−c̄ +
∂hi(G

U )
∂G −1

)
by inequality (13). Given c̄ ≤ G∗, inequality (14)

implies that Ḡ ≤ G ≤ G because H is a strictly decreasing
function. It holds that G ≤ G∗ because G∗ = H−1(1) and
H−1 is also strictly decreasing. Since

∑
i∈V hi(G) − G is

strictly increasing in G ∈ [0, G∗] and has a maximum at
G = G∗, we have∑

i∈V
hi(Ḡ)− Ḡ ≤

∑
i∈V

Ui(s
∗) ≤

∑
i∈V

hi(G)−G. (15)

Dividing

max
s∈S

∑
i∈V

Ui(s) = max
s∈S

∑
i∈V

hi(s̄−R)− (s̄−R)

=
∑
i∈V

hi(G
∗)−G∗

by (15) yields the desired result. Now we proceed to prove
that PoA > 1 with any R < ∞ if c = 0, but it
holds that limR→∞ PoA(R, 0) = 1. It can be shown that
G = H−1( (|V̄a|−1)Ḡ

R+GU−c̄ + 1) < H−1(1) = G∗ where Ḡ 6= 0.

Therefore, 1 <
∑

i∈V hi(G
∗)−G∗∑

i∈V hi(G)−G ≤ PoA with any R <

∞. Moreover, as R → ∞, it holds that limR→∞ Ḡ =
limR→∞G = H−1(1) = G∗. Therefore, we can conclude
that, if c̄ ≤ G∗, then limR→∞ PoA = 1. The properties with
c̄ > G∗ can be proven similarly. We omit its details.

A pair (R, c) = (G∗, G∗) satisfies G(R, c) + R − c̄ =
G(R, c) ≥ 0 and, by (P3), it holds that G(R, c) = G∗.
Therefore, there always exists at least one pair (R, c) such that
G(R, c) = G∗ if the convex constraint g(s∗(R, c), R) ≤ 0 is
absent. (P3) shows that payoff (4) does not have discontinuity
because s̄∗(R, c) > c̄. Remind that PoA(R, c) = 1 if and
only if G(R, c) = G∗. So (P5) indicates that it is impossible
to achieve optimality G(R, c) = G∗ with a finite reward
when perturbations are not allowed; i.e., there is no finite
maximizer of problem (2). Price of anarchy is identical to
Price of stability [50] which represents the ratio between the
socially optimal payoff and the aggregate payoff induced by
the best Nash equilibrium because there exists a unique Nash
equilibrium by (P1).

Some properties of Theorems 4.1 and 4.2 reduce to those
in [28] where perturbations are absent. In particular, (P1)
reduces to Proposition 2 of [28], where an unperturbed lot-
tery has a unique Nash equilibrium. (P5) is consistent with
Theorem 2 in [28]; i.e., given any ε > 0, there exists R such
that PoA(R, 0) ≤ 1 + ε. The lower and upper bounds of price
of anarchy are newly derived in this paper and they can be
calculated without finding the Nash equilibrium. Additionally,
(P3) and (P4) are new and reveal the properties of public goods
and investment, respectively.

V. CONVEX APPROXIMATION OF HIGH-LEVEL SOCIAL
OPTIMUM

Problem (6) is a bi-level optimization problem. In general,
this class of problems is computationally challenging. In
particular, papers [51, 52, 53] show that bi-level linear pro-
grams are NP-hard. Given the computational hardness, certain
relaxations of problem (6) are needed in order to find com-
putationally efficient solvers. We will leverage Theorem 4.2
to show that the following problem is a convex reformulation
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for problem (6). We will also show that, under certain mild
conditions, the approximation gap is zero. Consider

min
(R,c)∈R×C

R+ αG∗

s.t. c̄ = G∗,

g(c1 +R
∂h1(G∗)

∂G
, · · · , cN +R

∂hN (G∗)

∂G
,R) ≤ 0. (16)

The problem (16) is convex. The objective function is affine,
constraint c̄ = G∗ is also affine. Constraint

g(c1 +R
∂h1(G∗)

∂G
, · · · , cN +R

∂hN (G∗)

∂G
,R) ≤ 0 (17)

is convex because a composition of convex function with affine
functions preserves convexity where g is a convex function
by Assumption 2.2 and ci + R∂hi(G

∗)
∂G is an affine function.

Feasible set R × C is convex because R = (0,∞), Ci =
[0, G∗] are convex sets. The following theorem shows that
problem (16) is a convex reformulation of problem (6) if there
exists a pair (R, c) such that G(R, c) = G∗.

Sets F(6), and F(16) denote the feasible sets of problems (6),
and (16) respectively. Likewise, we define p∗(6), and p∗(16) as the
optimal values of problems (6), and (16) respectively.

Theorem 5.1: Assume that there is (R, c) ∈ F(5) such that
G(R, c) = G∗. Under Assumptions 2.1, and 2.2, it holds that
F(16) = F(6) and p∗(16) = p∗(6).

Proof: Notice that there is (R, c) ∈ F(5) such that
G(R, c) = G∗, and this implies that we can only focus on
a feasible set with constraint G + R ≥ c̄ according to (P2);
i.e., all the analysis in Section IV is valid. In the proof, we
will drop the dependency of G, s∗, and Ui on R and c. The
proofs are divided into two claim statements.

Claim 1: F(16) is a subset of F(6).
Proof: Assume that F(16) is non-empty and we pick any

(R, c) ∈ F(16). We will show that such the pair (R, c) satisfies
all the constraints in (6); i.e., (R, c) ∈ F(6).

The constraint c̄ = G∗ implies that G∗ = c̄ = G
by (P3). Therefore, it holds that G = G∗ which implies
(R, c) ∈ arg max

∑
i∈V Ui(s

∗(R, c), R, c) in (6).
Using s̄∗ −R = G∗ = c̄, the first order condition yields
∂Ui(s

∗)

∂si
= R

s̄∗ − c̄− (s∗i − ci)
(s̄∗ − c̄)2

+
∂hi(s̄

∗ −R)

∂G
− 1

= −s
∗
i − ci
R

+
∂hi(G

∗)

∂G
≤ 0. (18)

This inequality implies that

s∗i ≥ ci +R
∂hi(G

∗)

∂G
> 0 (19)

because G∗ > 0 and R > 0. Since the players are active,
equality holds in the first order condition (18) as well as (19):

s∗i = ci +R
∂hi(G

∗)

∂G
. (20)

Therefore, constraint (17) implies

g(s∗, R) ≤ 0. (21)

Therefore, (R, c) ∈ F(6). The statement holds because we pick
arbitrary (R, c) ∈ F(16).

Claim 1 shows that F(16) ⊆ F(6). The objective function
of (16) is min(R,c)R + αG∗ = min(R,c)R + αc̄. Therefore,

solution p∗(16) is an overestimate of p∗(6). We now proceed to
prove that F(6) ⊆ F(16) and thus p∗(6) = p∗(16).

Claim 2: F(6) is a subset of F(16).

Proof: Assume that F(6) is non-empty and we pick any
(R, c) ∈ F(6). We will show that the pair satisfies all the
constraints in (16).

Recall that we assume that there exist (R, c) such that G =
G∗, and all the other constraints are satisfied. We now prove
c̄ = G∗ by contradiction. Assume that there exist pair (R, c)
such that G = G∗ but c̄ 6= G∗. By (14),

(|Va| − 1)(G∗ − c̄)
R+G∗ − c̄

+ 1 +
R
∑
i∈V\Va ci

(R+G∗ − c̄)2
≤
∑
i∈V

∂hi(G
∗)

∂G
,

which holds only if G∗ < c̄ ≤ R + G∗ or |Va| = 1. Let us
consider the first case. From (9), we have∑

i∈V

∂Ui(s
∗)

∂si
=

R(N − 1)

R+G∗ − c̄
+
∑
i∈V

∂hi(G
∗)

∂G
−N ≤ 0

which holds only if c̄ ≤ G∗, a contradiction. Therefore, it must
hold that |Va| = 1. First order condition (7) for i ∈ Va must
hold with equality. However, we have

∂Ui(s
∗)

∂si
= −R c̄− ci

(G∗ +R− c̄)2
+
∂hi(G

∗)

∂G
− 1

≤
∑
j∈V\i

∂hj(G
∗)

∂G
< 0

which contradicts to the first order condition, where we applied∑
i∈V

∂hi(G
∗)

∂G = 1. Therefore, c̄ = G∗. Note that if c̄ = G∗,
then G = G∗ by (P3).

First order condition with c̄ = G∗

∂Ui(s
∗)

∂si
= −s

∗
i

R
+
ci
R

+
∂hi(G

∗)

∂G
≤ 0

implies s∗i > 0, which holds for ∀i ∈ V; i.e., |Va| = N .

Using the first order condition (19), we can derive

s∗i = ci +R
∂hi(G

∗)

∂G
(22)

where equality holds because all the players are active. By
plugging (22) into constraint (21), we obtain (17). Therefore,
(R, c) ∈ F(16). The statement holds because we pick arbitrary
(R, c) ∈ F(6).

Claim 1 and Claim 2 imply that F(6) = F(16). The objective
functions are equivalent to each other because c̄ = G∗ for the
both feasible sets. Thus it holds that p∗(6) = p∗(16).

In Theorem 5.1, non-convex optimization problem (6) is
approximated by (or equivalent to) a convex optimization
problem (16), which can be efficiently solved [54]. In par-
ticular, with c̄ = G∗, we could obtain a constant public good
G(R, c) = G∗ by (P3) in Theorem 4.2, which sequentially
results in the replacement of potentially non-concave function
s∗i (R, c) with a linear function (20). This condition is a
sufficient and necessary condition for the social optimum.

Remark 5.1: The optimal bi-level lottery design may not
guarantee individual rationality; i.e., Ui(s∗, R, c) ≥ 0. How-
ever, as long as there exists (R, c) such that G(R, c) = G∗,
individual rationality can be readily ensured by adding the
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Fig. 1: IEEE 30-bus test system [55].

convex constraints g as follows:

gi(s
∗(R, c), R) = −(s∗i − ci +Rhi(G

∗)−Rs∗i ) ≤ 0

for ∀i ∈ V where hi(G∗) is a constant. By applying G∗ = c̄
into Ui(s

∗, R, c) ≥ 0 in (4), one can show that the above
condition is equivalent to Ui(s∗, R, c) ≥ 0 for ∀i ∈ V .

VI. CASE STUDY

We apply our perturbed lottery to demand response in the
smart grid. Demand response involves a load serving entity
(LSE) and a set of end-users. The LSE is the social planner
and wants to incentivize the end-users to shift their peak-
time demand to off-peak time. The end-users participate in
the lottery by shifting a portion of their shiftable demands.

Consider a power transmission network (G, E) where G and
E denote the set of buses and the set of transmission lines,
respectively. In particular, V ⊆ G, and P ⊆ G denote the set
of load buses with non-zero demand, and the set of generator
buses, respectively. Each line l ∈ E has power flow capacity
fmax
l ∈ R≥0 and fmax = [fmax

1 , · · · , fmax
|E| ]T .

With the perturbed lottery, each end-user has payoff func-
tion (4) where decision variable si denotes shifted demand in
monetary value. Function hi represents any impetus from the
public good; e.g., inverse of stability concern, utility discount,
additional rewards made by the LSE. The LSE solves prob-
lem (6), in which convex constraints g represent three physical
constraints; i.e., the end-users cannot shift more than the
demand, and the total adjusted demand after shifting cannot
exceed the total power generation, and the line capacities are
enforced:

L− s∗ ≥ 0,
∑
i∈V

(Li − s∗i ) ≤
∑
j∈P

Pj ,

− fmax ≤ HpP −Hl(L− s∗) ≤ fmax (23)

where L ∈ R|V|≥0 and P ∈ R|P|≥0 denote power demand and
power generation, respectively. Matrix H ∈ [−1, 1]|E|×|G|

is the injection shift factor matrix where (a, b) entry of H
represents the active power change on line a with respect to
change in power injection at bus b. In particular, matrices Hl ∈

Fig. 2: Optimal solution c∗i with R∗ = $3358 and the corre-
sponding Nash equilibrium s∗i . The bus numbering (horizontal
ordinate) can be found in Figure 1.

[−1, 1]|E|×|V| and Hp ∈ [−1, 1]|E|×|P| are the collections of
columns i ∈ V and i ∈ P of H , respectively. Since L, P , fmax

are constants at the given time, constraints (23) are convex
and thus satisfy Assumption 2.2. It is worth noticing that the
physical interconnections (23) are captured by the constraints
g(s∗(R), R) ≤ 0 in the social planner’s problem (2), not by
the payoff model.

We conduct case studies using IEEE 30-bus test system
shown in Figure 1 where |P| = 6, |V| = 20, and |E| = 41.
The system parameters are obtained from MATPOWER [56].
Money/power exchange rate $0.1/kWh is applied and 1 hour
time frame is considered; e.g., the generator at bus 1 generates
23.54MW×1h×$0.1/kWh = $2354. Each load bus’s power
demand increases 30% without changing power generations,
so demand shifts are inevitable.

We choose hi(s̄ − R) = (100 + i) log(s̄ − R + 1) for bus
i ∈ V; e.g., bus 30 ∈ V has h30(s̄−R) = 130 log(s̄−R+ 1).
One can see that function hi satisfies Assumption 2.1. The
logarithmic model of provision of public good hi is based on
Cobb-Douglas utility function [57]. Recent papers [58, 59, 60]
use such function to express the benefits from a public good.
We choose α = 1.

The socially optimal public good G∗ = $2317 of the
unperturbed lottery is calculated by (3). The socially optimal
payoff is obtained by

∑
i∈V hi(G

∗)−G∗ = $7142.
We solve problem (6) by CVX [61], and generate optimal

value $5675 with solution (R∗, c∗) presented in Figure 2. The
figure also presents the induced Nash equilibrium of the op-
timal lottery game. The aggregate payoff induces the socially
optimal public good s̄∗(R∗, c∗) − R∗ = $5675 − $3358 =
$2317 = G∗, and the socially optimal payoff

∑
i∈V hi(G

∗)−
G∗ = $15644. Convex program (16) generates a large reward
R∗ = $3358 to satisfy the physical constraints (23). Note
that c̄ = G∗ is a sufficient and necessary condition for the
optimality, according to Theorem 5.1. By Theorem 5.1, the
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Fig. 3: Power demand Li and adjusted demand Li−s∗i (R∗, c∗)
after shifting.

Fig. 4: Percentage of power flow used in each line. The line
numbering (horizontal ordinate) can be found in [55].

solution is identical to that of problem (6) and satisfies all
the physical constraints described in (23). Figure 3 visualizes
that the first constraint is satisfied where the shifted demand
never exceeds the power demand. The second constraint is
also satisfied because

∑
j∈P Pj =

∑
i∈V(Li − s∗i ) = $18921.

Figure 4 shows that power flow at each transmission line never
exceeds its capacity. As shown in this simulation, the optimal
bi-level lottery provides the optimal solution that maximizes
the aggregate utility, while guaranteeing convex constraints
imposed by the social planner.

VII. CONCLUSIONS

This paper studies an optimal bi-level lottery design problem
where a social planner aims to achieve the social optimum
through the least reward and perturbations. We approximate
the problem via a convex relaxation and identify mild sufficient
conditions under which the approximation is exact. The results
are verified via a case study on demand response in the smart
grid.
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