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Physics Informed Trajectory Inference of a Class of
Nonlinear Systems using a Closed-Loop Output

Error Technique
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Abstract�Trajectory inference is a hard problem when states
measurements are noisy and if there is no high-�delity model
available for estimation; this may arise into high-variance and
biased estimates results. This paper proposes a physics informed
trajectory inference of a class of nonlinear systems. The approach
combines the advantages of state and parameter estimation
algorithms to infer the trajectory that follows the nonlinear
system using online noisy state measurements. The algorithm is
composed of a parallel estimated model constructed in terms of
a low-pass �lter parameterization. The estimated model de�nes
a physics informed model that infers the trajectory of the real
nonlinear system with noise attenuation capabilities. The parame-
ters of the estimated model are updated by a closed-loop output
error identi�cation algorithm which uses the estimated states
instead of the noisy measurements to avoid biased estimation.
Stability and convergence of the proposed technique is assessed
using Lyapunov stability theory. Simulations studies are carried
out under different scenarios to verify the effectiveness of the
proposed inference algorithm.

Index Terms�Physics informed, inference, state parameteri-
zation, output error, nonlinear systems

I. INTRODUCTION

In recent years, physics informed models (PIMs) [1] have
become popular in several data driven algorithms for regres-
sion [2] and trajectory inference [3] of nonlinear systems.
The key idea is to incorporate a high-�delity model [4], [5]
in the learning step as a guidance for parameters’ updating,
stabilization, and robustness. PIMs are also known as model-
based algorithms [6] and can be used for other purposes
such as: control policies design [7], gain tuning [8], and state
observer models [9].

Physics informed neural networks (PINN) [1] are capable
to incorporate the physics informed model as a regularization
term to prevent large weights and fast convergence. However,
normalized parameters are required to guarantee stable results
of the PINN model which is a strong assumption for high
dimensional systems with many parameters. This issue can be
solved using series-parallel/parallel recurrent neural networks
(RNN) [10], [11] which assume that the nonlinear system can
be written as the sum of a multi-layer perceptron network
and a stable linear dynamics. The main issue of this kind
of networks is that weights convergence is not guaranteed
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and remain oscillating in bounded intervals and hence, this
kind of RNN structures do not serve as a physics informed
model. However, one of the main issues of any PIM is
the assumption of parameters’ knowledge. On the one hand,
knowledge of the parameters ensures high accurate results in
the regression/inference task. Conversely, biased parameters
reduce the accuracy results and, in the worst case, may lead
to instability of the complete network.

Kalman �lter [12], [13] and its variants can be regarded
as a kind of PIM which aim to infer the complete state
of a given system using measurements of its output and an
estimated model whose structure matches with the real system
model under the same parameters and the Gaussian distributed
noise assumption [14]�[16]. Despite this assumption provides
robustness against modelling error [17], [18], a bad prior
model could cause a fast divergence of the algorithm [19].
Novel techniques such has the EKFnet [20] combines neural
networks capabilities and Kalman �lter to estimate the best
process and measurement noise covariance pair from the real
measurement data. Nevertheless, this network may �t a large
modelling error which produces a posterior estimation with
high variance and hence, the accuracy of the estimated state
will be poor.

In view of the above, it is mandatory to estimate the param-
eters of the nonlinear system to construct the PIM [21]. There
exists an extensive literature for parameter identi�cation [22],
[23] based on least-squares (LS) and gradient-type rules and
their variants [24]�[27]. The key idea to guarantee parameter
estimates convergence is the ful�lment of a persistent of
excitation (PE) condition [28]. However, if the measurements
of the signals associated to the nonlinear system are noisy then
biased estimates are obtained [29]. Therefore, there exists a
trade-off between parameters and state estimation algorithms.
Whilst state estimation algorithms require accurate parameters
to infer the trajectory with high accuracy, the identi�cation
algorithm requires noise-free states measurements to avoid
biased parameters estimates.

Some recent studies use closed-loop input (CLIE) [30],
[31] and closed-loop output error (CLOE) techniques [32]�
[34] for parameter estimation of robot manipulators [35], [36].
The idea behind these techniques is similar to the series-
parallel/parallel RNN models where an estimated model of
the real system is constructed; whose parameters are updated
by an identi�cation algorithm based on a LS or gradient rules
of either the input error or output error of the estimated and
real system. However, the CLOE algorithm requires well-tuned
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�lters to obtain smooth states measurements, otherwise biased
estimates will be obtained [37]. Furthermore, the scope of
the CLIE algorithm is limited to linear systems and for a
small class of nonlinear Euler-Lagrange systems with constant
inertia matrix [38].

Inspired by the above comments, this paper reports a physics
informed algorithm that is able to infer the trajectory of
an unknown nonlinear system using a closed-loop output
error technique and online data. Here it is assumed that the
nonlinear system is already controlled and cannot be modi�ed;
in addition, we only have access to states measurements.
Nevertheless, some scenarios are considered where the control
gain and desired trajectory/destination are available.

In contrast to classical state estimation algorithms that
deals directly with the differential equation of the nonlinear
system model, the proposed approach works with a state
parameterization of the solution of the differential equation.
This parameterization helps to construct a physics informed
model that combines the advantages of state and parameter
estimation algorithms to obtain an accurate trajectory infer-
ence. The contributions of this work with respect to previous
developments for trajectory inference of nonlinear systems are
the following:

� A novel physics informed model based on a new pa-
rameterization of the solution of the nonlinear system
differential equation.

� Noise attenuation and parameter estimates convergence
are simultaneously guaranteed under the ful�lment of a
persistent of excitation (PE) condition.

� The algorithm can be easily extended for recurrent neural
networks schemes which provides of robustness and
stability in the weights’ calculations.

� If we have access to the control input design, then the
approach can be modi�ed into an identi�cation algorithm
that can guarantee parameter estimates convergence to
their real values under the ful�lment of a persistent of
excitation (PE) condition.

� The proposed physics informed algorithm is supported
by a rigorous stability proof, which proves that all the
signals in the nonlinear closed-loop system are bounded
under a non-zero approximation error.

The paper outline is as follows: Section II presents the
problem formulation. Section III de�nes the state parame-
terization for the class of nonlinear systems used in this
paper. Section IV presents the inference algorithm with tra-
jectory incorporation. Section V gives some extensions of
the proposed inference algorithm in recurrent neural networks
and identi�cation schemes. Section VI reports the simulation
studies using a four dimensional F-16 aircraft dynamics. The
conclusions are presented in Section VII.

Throughout this paper, N; R; R+; Rn; Rn�m denote
the spaces of natural numbers, real numbers, positive real
numbers, real n-vectors, and real n�m-matrices, respectively;
In 2 Rn�n denotes an identity matrix; �min(A) and �max(A)
denotes the minimum and maximum eigenvalues of matrix
A, respectively; 
 and vec(A) de�nes the Kronecker product
and the matrix stretch, the norms kAk =

p
�max(A>A) and

kxk stand for the induced matrix and vector Euclidean norms,
respectively; where x 2 Rn; A;B 2 Rn�n and n;m 2 N.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following continuous-time nonlinear system

_x = f(x) + g(x)u; x(t0) = x0;
z = x+ !; ! � N (0; R); (1)

where x 2 Rn denotes the state vector, u 2 Rm is the control
input, z 2 Rn is a linear measurement model, ! 2 Rn de�nes
noise drawn from a Gaussian distribution with mean zero and
covariance R = R> > 0 2 Rn�n, f(x) 2 Rn is the drift
dynamics, and g(x) 2 Rn�m is the input dynamics. This
kind of nonlinear systems are common in many mechanical,
electrical, and hydraulic systems where the input u is linear
with respect to g(x) [39].

Assumption 1: Noisy state measurements are available from
sensors. The control input structure and the desired trajectory
can be known or unknown. These scenarios are discussed in
future sections.

Assumption 2: The parameters of f(x) and g(x) are un-
known. However, the structures of f(x) and g(x) are known.

Assumption 2 is used to parameterize linearly the nonlinear
terms as a product of a matrix of basis functions �(x) com-
posed of known nonlinear terms and a vector � of unknown
parameters. For this purpose the next strong assumption is
required

Assumption 3: The functions f(x) and g(x) are locally
Lipschitz and can be approximated by a set of basis functions
as it is stated in the Weierstrass higher-order approximation
theorem [40].

Consider that we have a complete set of basis functions
f�(x); ’(x)g associated to the nonlinear system structure such
that f(x) and g(x) can be exactly represented by

f(x) = �>(x)�;
g(x)u = ’>(x; u)#; (2)

where � 2 Rp1 and # 2 Rp2 are matrices composed of
the unknown constant parameters; �(x) : Rn ! Rp1�n and
’(x; u) : Rn�Rm ! Rp2�n are basis functions of (1). Hence,
the nonlinear system (1) can be equivalently written as

_x = �>(x; u)�; (3)

where � =
�
�
#

�
2 Rp; �(x; u) =

�
�(x)
’(x; u)

�
2 Rp�n; p =

p1 + p2:
Assumption 4: The control input u 2 Rm stabilizes the

nonlinear system (1) and ensures tracking of the desired
reference xd 2 Rd.

Consider an estimated model of (1) of the form

_y = bf(y) + bg(y)v; y(t0) = x0;
w = y;

(4)

where y 2 Rn is the state of the estimated model, v 2 Rm is
the control input which has the same structure as the control
input u, w 2 Rn is the output of the reference model, bf(y) 2
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Let �� (x; u) = �(x� ; u� ). Notice that

kh(x� )k �
Z t

t0




e�(s�t)



 � k�� (x; u)k ds

�

0

@
tZ

t0

e2�(s�t)ds

1

A

1
2

0

@
tZ

t0

�� (x; u)�>
� (x; u)ds

1

A

1
2

:

The second integral can be written as a sum of N = t�t0
T �1

time-windows as
tZ

t0

�� (x; u)�>
� (x; u)ds =

NX

�=0

a+TZ

a

�� (x; u)�>
� (x; u)ds;

where a = t0+�T . Notice that the above integral is equivalent
to N times the PE condition (7). So, the low-pass �lter h(x� )
is bounded by

r
�0N
2�

� kh(x� )k �
r
�1N
2�

: (15)

The estimated model can also be written in terms of this
new parameterization as

y(t) = e��(t�t0)x� (t0) + h>(y)b� + �l(y) (16)

Hence, the identi�cation error veri�es

e = h>(x� )� � h>(y)b� + �[l(x� ) � l(y)]

= �h>(y)e� + "; (17)

where " = [h(x� ) � h(y)]>� + �[l(x� ) � l(y)] is a bounded
approximation error, i.e., 0 � k"k � �", which decreases as
y ! x� and �" is the upper bound of ". Whilst the parame-
terization (11) requires to compute the time-derivative of the
states x� , the parameterization (14) only needs measurements
of the states and the output of the low-pass �lters (14).

Theorem 1 establishes the uniform ultimate boundedness
(UUB) [42] of the identi�cation error e and boundedness of the
parameter estimates b� as long as the PE condition is ful�lled.

Theorem 1: Consider the identi�cation error (17). Assume
that the low-pass �lter h(y) in (14) is PE. If the parameter
estimates b� are updated as

_e� = _b� = �h(y)e (18)

where � 2 Rp�p is a positive de�nite gain matrix, then the
following statements are veri�ed

1) The identi�cation error e is UUB with a practical bound
given by � = ( �1

�0
+ 1)�".

2) The parametric error e� is UUB with a practical bound
given by � = 2�

�0N

q
�1N
2� �", and hence b� remain

bounded.
Proof: Consider the next Lyapunov function

V =
1
2

trfe�>��1 e�g: (19)

The time-derivative of (19) along the system trajectories
(18) is

_V = trfe�>��1 _e�g

= �trfe�>h(y)h>(y)e� � e�>h(y)"g

� ��2
min(h(y))ke�k2 + �max(h(y))k"kke�k

_V is negative de�nite if

ke�k >
�max(h(y))
�2

min(h(y))
k"k

ke�k >
2�
�0N

r
�1N
2�

�" � �:
(20)

The bound (20) connects the convergence-time with the
parametric error e�. On the one hand, large number of time-
windows N under the PE excitation condition ful�lment (7)
ensures the parametric error e� converges to a bounded set S�
of radius �, i.e., ke�k � � and hence the trajectories are UUB.

From the identi�cation error (17) we have that

kek � ke�kkh(y)k + k"k

�
�
�1

�0
+ 1

�
�"

(21)

The above result is consistent to the proposed parameteri-
zation since the identi�cation error e is directly related to the
error of the low-pass �lters h(�) and l(�). In addition, the term
�1
�0

gives the highest upper bound of the identi�cation error e.
The smallest upper bound is given by kek � 2�" since �0 � �1.
This completes the �rst part of the proof.

The update rule (18) can be expressed as

vec( _e�) = (In 
 �h(y))e: (22)

By using this notation, it is possible to express the update
rule (18) as the following linear time-variant (LTV) system

_�(t) = B(t)u(t)
�(t) = C(t)�(t); (23)

where B(t) = In 
 �h(y) 2 Rnp�n; C(t) = In 
 h>(y) 2
Rn�np; �(t) = vec(e�) 2 Rnp, and �(t) = e(t) � "(t).
The above LTV model matches with the update rule (18)
under the output feedback u(t) = �(t) + "(t). Since �, e,
and h(y) are bounded and h(y) is PE, then by the uniform
complete observability (UCO) lemma [41] we can conclude
that boundedness of e and � ensures boundedness of the
parametric error e� and consequently b� is also bounded.

The time-derivative of (19) can be written as

_V � ��2
min(h(y))ke�k2 + �max(h(y))k"kke�k

� �
�min(�)�0N

�
V +

r
�max(�)�1N

�
V �"

= ��V + �V 1=2

where � = �min(�)�0N
� and � =

q
�max(�)�1N

� �". Notice that
the equation is in fact a Bernoulli differential equation which
has the following solution

V (t) =
�
�
�

+
�p

V (t0) �
�
�

�
e� 1

2 �(t�t0)
�2

: (24)

The above result is consistent with the result of the �rst part
of the proof. On the one hand, if the approximation error "
is large, then the convergence time will be fast because the
radius � of the set S� is large. On the other hand, for small
approximation error " the algorithm requires more time to
converge into the bounded set S�. Furthermore, convergence


















