
VOL.***, NO.***, *** 2023 1

Modeling and Analyzing Logic Vulnerabilities of
E-commerce Systems at the Design Phase

WangYang Yu, Lu Liu, XiaoMing Wang, Ovidiu Bagdasar, and John Panneerselvam

Abstract—E-commerce systems have become tremendously
popular and important for modern business processes in the
world of digital economy. E-commerce business processes rely
on the distributed and concurrent interaction process among
web applications of participants, such as clients, merchants,
third-party payment platforms (TPPs) and bank systems. Such
complex business interactions bridge the gap of trustiness among
participants and introduce new security challenges in the form
of logical vulnerabilities, which are prevalent in the business
process at the application level. The most pressing challenge
is to guarantee security throughout the checkout process at
the conceptual design phase such that the logic errors can be
detected before the actual implementation. Maintenance and
repair of implemented e-commerce systems can be extremely
costly. To this end, this paper proposes a novel modeling and
analyzing methodology for multi-participants and multi-sessions
e-commerce interaction processes based on Colored Petri nets
(CPN). Firstly, we define a novel model that can efficiently
depict the key properties of e-commerce business interaction
processes. Secondly, several modeling principles are formulated
based on the design specification of e-commerce systems. Finally,
the concept of Transaction-Logical Consistency is defined to
analyze and verify the logical vulnerabilities of e-commerce
systems. Through a discussed case study, we demonstrate the
feasibility and applicability of the proposed methodology and
its efficiency in detecting problems those can potentially lead to
logical vulnerabilities.

Index Terms—E-commerce systems, Petri nets, Business inter-
action, Logical vulnerability.

I. INTRODUCTION

E -COMMERCE with multi-participants has rapidly e-
volved worldwide, and becomes increasingly popular

in the global economy. The prevalence of online network
and smart mobile devices contribute significantly to the rise
of e-commerce [1], [2]. E-commerce systems characterize

This paper is supported in part by the Open Research Fund of Anhui
Province Engineering Laboratory for Big Data Analysis and Early Warning
Technology of Coal Mine Safety, China under Grants CSBD2022-ZD05, by
the Fundamental Research Funds for the Central Universities under Grants
GK202205039, and by the Natural Science Foundation of Shaanxi Province
under Grants 2021JM-205. Corresponding Authors (Lu Liu and XiaoMing
Wang).

W. Yu and X. Wang are with the Key Laboratory of Modern Teaching
Technology, Ministry of Education, Xi’an 710062, China, with the School of
Computer Science, Shaanxi Normal University, Xi’an 710119, China, and also
with the Key Laboratory of Intelligent Computing and Service Technology for
Folk Song, Ministry of Culture and Tourism, Xi’an 710062, China (E-mail:
ywy191@snnu.edu.cn and wangxm@snnu.edu.cn).

L. Liu and J. Panneerselvam are with the School of Informatics, University
of Leicester, Leicester LE1 7RH, UK (E-mail: l.liu@leicester.ac.uk and
j.panneerselvam@leicester.ac.uk).

O. Bagdasar is with the School of Electronics, Computing and
Mathematics, University of Derby, Derby DE22 1GB, UK (E-mail:
o.bagdasar@derby.ac.uk).

Manuscript received ***, 2023; revised ***, 2023.

extreme design complexities, such that the dynamism of busi-
ness interactions among heterogeneous participants imposes
an increased level of practical challenges in implementing
a perfectly secure checkout process. Many web stores to-
day often utilize web Application Programming Interfaces
(APIs) of TPPs such as Google Checkout, AliPay and PayPal
for enabling their cashier services. As a result, today’s e-
commerce businesses have become increasingly hybrid, with
their program logic being distributed across multi-participants,
including the servers and their clients, along with various third
party API service providers [2], [3].

Despite the third party service providers bridging the gap
of trustiness between merchants and users, their involvement
complicates the logic flow in the checkout process. Even
a minor logic vulnerability can lead to serious impacts in
mission critical financial applications, thus logic vulnerabilities
pose serious threats to the security of e-commerce applications
[1], [4], [5]. In such a hybrid system, coordinating the involved
participants in a secure fashion is highly challenging, logic
flaws are pervasive in modern e-commerce systems [3], [6],
[7], [8], [9], [10]. Application and business logic refers to
application-specific functionality and behaviors in concurrent
business interactions. A logic vulnerability typically exists
when a user abuses legitimate application-specific function-
ality against developers’ intentions [11]. Developers are usu-
ally unaware of the need to implement sufficient server-side
authorization checks to the received request parameters. As a
result, vulnerable servers are exposed to malicious users who
can potentially alternate the control and data flows through
concurrent interactions. The success of such attacks mainly
relies on logical errors or lack of server-side validations [12].
Integrity and logic validation mechanism errors are usually
the keys for a successful attack. Logic vulnerabilities of e-
commerce systems allow malicious users to purchase products
using fabricated payments [1].

Such issue cannot be solved by solely relying on exist-
ing techniques like protocol verifications, because different
integrators usually follow different ways of incorporating and
using API services. Furthermore, misunderstandings among
the involved participants often arises logic vulnerabilities in
the business processes [3], [6]. Logic vulnerabilities are preva-
lent in real-world services that adopt mainstream protocols.
Suppressing the need for integrating security protocols in the
online payment systems allow malicious users to successfully
get through the purchase process without properly paying for
the services [7], [13]. A number of methodologies to test the
classes of vulnerabilities of the web applications have been
proposed in the past [13], [14], [15]. Davide Balzarotti et

VOL.***, NO.***, *** 2023 2

al. developed a vulnerability analysis approach that charac-
terizes both the extended state and the intended workflow of
a web application [16]. A static detection method of logic
vulnerabilities in e-commerce web applications was proposed
in [1]. Eric Chen et al. introduced an approach of building
provably secure multiparty online services, which is called the
Certified Symbolic Transaction (CST) [9]. A system that offers
security protection to vulnerable web application integrations
was presented in [3]. In the work of [17], a scanning method
was proposed to resolve the issue of parameter tampering
vulnerabilities.

However, existing approaches focus mostly on the testing or
detection of implementation systems at the code-level. In fact,
design-level vulnerabilities are indeed a major source of secu-
rity issues in web applications. For example, in Microsoft’s
security push, about 50% of the security issues has been
identified due to design-level flaws [18]. System development
engineering is a comprehensive discipline that involves many
activities such as requirements engineering, design and speci-
fication, implementation, testing, and deployment. The activity
of constructing a model is typically done in the design phases
of system development. This may in turn significantly shorten
the implementation and testing phases and further decrease
the number of flaws in the final system. Different from non-
formal models in software engineering, this work focuses on
the formal modeling of online shopping systems. In most
cases, formal models are more accurate and complete than
traditional design documents. This makes that the exploration
and construction of the formal model can generate a more
solid foundation for the implementation phase [19].

Formal methods are mathematical techniques for specifying
and verifying correctness and trustworthiness of software
systems. The U.S. Department of Defense Trusted Computer
System Evaluation require that the highest level of security
classification (the A-class) use formal specification and verifi-
cation techniques [20]. Petri net-based approaches have been
presented to model and verify the correctness and soundness of
workflow and concurrent systems [21], [22], [23], [24], [25].
Significant progress has been done on cooperative systems
and composition of web services based on Petri nets [26],
[27], [28]. However, most of the existing works focus on the
correctness and soundness of workflow, cooperative systems,
and composition of web services, but fail to concern about the
financial security issues. Logic vulnerabilities can be linked
directly to the financial losses of legitimate users, and the
impact is often severe.

E-commerce business interaction is a typical distributed and
concurrent system in the open Internet, the recent develop-
ments of which has opened a range of security challenges.
A major reason is that the typical online distributed system
handles process concurrency in a number of fashions and
ways. It is very easy for a designer to neglect significant
security interactions and validations during this process con-
currency, which might lead to logical vulnerabilities in the
system design. To cope with this issue, it is crucial to provide a
methodology which enables the detection of logical vulnerabil-
ities of system designs, prior to the actual implementation and
deployment. Logic errors in the implementation system might

cause irreparable damage, compensation for such defects and
modifying the program can be extremely costly.

Furthermore, performing an efficient systematic security
analysis of the design specification is still an open issue. Logic
vulnerabilities still lack a formal definition, but, in general,
they are often the consequence of an insufficient validation of
the business process of web applications [13]. Thus, modeling
and verifying the e-commerce business interaction processes
at the design phase is an important requirement in the current
digital economy. With this in mind, this work focuses on the
business interaction process at the design phase, and proposes
a novel formal methodology for modeling and analyzing
logical vulnerabilities of multi-participants and multi-sessions
e-commerce systems. Important contributions of this paper are
as follows.

1) Firstly, this paper proposes a novel formal model, called
Interactive Business Process Fusion (IBPF) net, to depict
distributed, multi-participants and multi-sessions e-commerce
business interaction processes based on CPN. The business
flow, logical structures, data definitions, interaction behaviors
and key properties can be depicted easily using IBPF.

2) Secondly, this paper introduces a novel modeling scheme
for IBPF according to the design specification, including
control structures, data structures and modeling procedure.
With this scheme, the business interaction process can be
established based on IBPF.

3) Thirdly, this paper presents the analyzing principles for
logical vulnerabilities, with formal definitions. Transaction-
logical consistency is defined as the basic property of e-
commerce business interaction processes. Then, a state analyz-
ing method is proposed for discovering logical vulnerabilities.

The remainder of this paper is organized as follows. Section
2 discusses a case study. Section 3 presents the modeling
scheme. Section 4 proposes the analyzing methods and Section
5 concludes this paper.

II. CASE STUDY

E-commerce systems are facing a wide range of logic
vulnerability cases in the recent past, such as the ones in
the integration of Interspire and PayPal Express [6], [7], [9],
Mongolia [29], osCommerce 2.3.1 with PayPal Payments S-
tandard [13]. After reviewing various logic vulnerability cases,
this paper presents an e-commerce business interaction process
derived from real scenarios. For illustrating our method clearly,
it is abridged, and we only concern about the key functions.
The key features of the business process are shown in Fig. 1.

Merchant systems can incorporate various payment methods
of TPP, and Fig. 1 shows an integration case. The Dot-
ted rectangles represent the pseudo code of V alidatePara,
FinishOrder, and UpdateStatus. During the checkout pro-
cess, the merchant makes two calls to the TPP. The first one
notifies the TPP with an upcoming payment (Step 2) with
authentication data (identity). Then, the TPP sends a message
attached with a payment token for identifying the payment
transaction, which the merchant passes to the shopper with
transaction gross (Step 4). The shopper then presents token
and gross to the TPP. The TPP sets and confirms certain infor-
mation about the payment (Step 5). After that, TPP redirects

VOL.***, NO.***, *** 2023 3

Order

Open Web

Browser

Receive order and

notify payment

Merchant.com/ShopperOrder

Receive and

send token

Send payment

Send token

Finish order

Confirm

finished order

Receive

information

Confirm order

Start payment

Pay done

Set information

Finish payment

Receive

update info

Receive

payment note

TPP.com/identity

Payment token
Receive token

TPP.com/Payment? token&gross

Merchant.com/finishorder? token&gross&PayerID

TPP.com/Payment? token&gross

Merchant.com/finishorder?

token&gross&PayerID
TPP.com/token&gross&identity

result
Merchant.com/UpdateStatus?orderID

Update Update status

Merchant.com/UpdateStatus?orderID

Confirm Purchase

done

orderFinished

FinishOrder()
{result=CheckPayment(identity,token);

\\Step 8

if (SESSION[“result”]==true)\\Step 9

redirect(“/UpdateStatus?”+ orderID);

\\Step 10}

UpdateStatus()

{order=LoadOrderByID(orderID);

if ([“Order”]==true)

orderStatus=PAID;}\\Step 11

ValidatePara()

{If [“Check(gross)”]==true

redirect(“/CheckPayment?”+token+gross+identity);}

\\Step 7

Fig. 1. A case of an e-commerce business process.

the shopper’s browser to merchant API FinishOrder with
payerID, gross and token as arguments (Step 6). The merchant
directly contacts the TPP to check and complete the payment.
The function V alidatePara is used to validate the integrity
of the transaction gross, and the payment is completed by
Steps 8 and 9, where the TPP is contacted to complete the
fund transfer. If the identity and other payment information
is valid, TPP records the payment and returns result = true.
This result is saved in the session variable SESSION[“result”].
By this time, the payment is completed, and the merchant
updates the status of the order. Since the browser needs to be
in synchronization with merchant state, the merchant cannot
directly call the merchant-side API, thus needs to redirect the
shopper’s browser to call merchant API UpdateStatus, by
passing orderID as an argument, which updates the status of
the order (Step 11). Then, the merchant retrieves the order
using orderID, to set the order status as “PAID” if the session
variable is true (SESSION[“result”]=true).

For security, sometimes, digital sign and encryption are
used in data transmission. However, for enhancing efficiency
and usability of the distributed business interaction process,
some messages are not signed in the checkout process, which
cannot be regarded as a security weakness, as the merchant
directly verifies the data integrity with the TPP. This interactive
mechanism guarantees the security in many real cases [1], [2],
[6], [7], [13]. In the above discussed scenario, the two calls
sent to TPP ensure the data consistency among the merchant
and TPP. Supplemented by the key validating function APIs,
such as V alidatePara, FinishOrder, and UpdateStatus,
this complex interactive mechanism of the business process

assures security, as illustrated in Fig.1.
However, the aforementioned business interaction process

is still characterize logic vulnerabilities. As long as a valid
orderID assumes a session in the success state, updateStatus
marks the corresponding order as PAID, no matter whether the
payment is successful or not. When the shopper obtains a valid
orderID for an unpaid expensive order, the orderID can be
replaced in Step 11, so that he/she can use the current session
state in order to change the order status as PAID. This enables
the shopper to get through the checkout process by paying
relatively low price for an expensive item [7], [13]. Except this
logical vulnerability, the case may has other ones. For a design
specification, although it appears to be secure, it is impossible
to judge whether it is secure or not, and it is impossible to
know in advance where and what the vulnerabilities are. This
paper uses this case to illustrate our proposed methodology.

III. MODELING SCHEME

In this section, we propose the modeling rules and formal
definitions, including data definitions for real e-commence sys-
tems, naming scheme, and the structures used in constructing
e-commerce business interaction processes.

A. Data Definitions and Naming Rules

CPN is a graphical language used to construct the models
of concurrent systems and analyzing their properties. CPN
ML embeds the Standard ML language and extends it with
constructs for defining color sets and declaring variables [19].
The color sets can be defined as the data types corresponding
to the real e-commerce systems, and the variables or constants
in the modeling process. According to the specification of the
case discussed in Section 2, based on the CPN ML language,
we define the data elements used for modeling as follows.

colset User = with a1 | a2;
var u, u1: User;
colset Merch = with b1 | b2;
var m, m1: Merch;
colset Tpp = with c1 | c2;
var t, t1:Tpp;
colset UserPara= product User*BOOL;
colset UserMerPara= product User*Merch*BOOL;
colset TPPara= product Tpp*BOOL;
colset MerPara=product Merch*BOOL;
var orderIDBOOL, grossBOOL, orderFinishedBOOL, ShopperOrder-
BOOL, tokenBOOL, identityBOOL, payerIDBOOL, resultBOOL: BOOL;
colset Parameter = union orderID: UserMerPara + gross: UserMerPara
+ orderFinished: MerPara + ShopperOrder: UserPara + token: TPPara
+ payerID: TPPara+result: TPPara + identity: MerPara;

The colsets User, Merch and Tpp are used to represent
the participants, such as the user (shopper), merchant and
TPP. UserMerPara, UserPara, MerPara and TPPara are the
types that depict the trading parameters used in the trading
process which are passed and exchanged among different
participants. Such trading parameters are constructed using
union and product types of CPN. TP, User and Mer are
the prefixes of the data produced by the TPP, user (shopper)
and merchant respectively. UserMer represents the prefix of
the data type closely associated with the user (shopper) and
merchant.

The e-commerce systems with logic flaws are vulnerable
to Web Parameter Tampering, depending on the operation of

VOL.***, NO.***, *** 2023 4

MerchMerch

1`b1++1`b2

ShopperUser

1`a1
++1`a2

UContr1 User

TppTpp

1`c1

TpContr1

Tpp

TpContr2

Tpp UContr2

User

MData4Parameter

MContr6 Merch

UContr7

User

UEnd

User

TpContr3

Tpp

MEnd

Merch

UContr6

User

MData3

Parameter

MData1 Parameter

MContr1

Merch

TpContr4

Tpp

TpContr6
Tpp

TpEnd

Tpp

TpStore

Parameter

MStoreParameter

MContr5

Merch

TpContr5 Tpp

UContr3

User

MData2

Parameter

UContr4

User

UContr5

User

MContr2

Merch

UStore

Parameter

MContr4

Merch

MContr3

Merch

RecOrder Order

SendPay

RecNote

Payment

FinishOrd
[resultBOOL=true
andalso m=m1]

UUpdate

Confirm

SetInfo

MUpdate

[orderIDBOOL=true]

SdGross

[grossBOOL=true]

SdPayID

SdIdenty

RecToken

FinishPay2 FinishPay1

[tokenBOOL=true
andalso
identityBOOL=true]

PayDone

UpdateInfo

ConOrd1 ConOrd2

ConOrd3

m u

u

u1

t

t

t1

t1
u1

1`payerID((u, payerIDBOOL))

m1

u1

u1

u1

t1

t1

m1

m1

1`gross((u, m, true))

1`gross((u, m, grossBOOL))

m

m1

u1

t1

t1

t1

t1

t1

t1

1`token((t, tokenBOOL))++
1`identity((m, identityBOOL))

1`orderID((u, m, orderIDBOOL))

1`gross((u, m, grossBOOL))

m1

m1

1`orderID((u, m,
orderIDBOOL))

1`payerID((u, payerIDBOOL))

t1

t1

u1

u1

u1

1`identity((m, true))

1`identity((m, identityBOOL))

u1

u1

u1

u1

u1

m

m1

1`orderID((u, m,
true))

1`orderFinished((m, orderFinishedBOOL))

m1

m1

m

m

1`payerID((u, payerIDBOOL))++
1`result((t1, resultBOOL))

Fig. 2. The LBPs of participants.

parameters exchanged between the clients and servers in order
to modify the application data, such as user credentials and
permissions, quantity of products and price, etc. Especially,
any HTML form controls can be tampered with, and the form
submissions can be intercepted. Thus, one can bypass the
client-side validations [17], [30]. A malicious user however
can interact with a vulnerable web application using a browser
of which he has full control to manipulate any client-side code
as well as HTTP request parameters [17]. For example, an
attacker can tamper with URL parameters directly. Thus, in
this paper, we adopt the following underlying assumptions [1]:

1) Requests from shoppers are untrusted.

2) Unsigned cashier requests that are sent via insecure
channels are untrusted.

3) Cashier responses that are transmitted by shoppers to
merchants via HTTP redirection are untrusted.

Therefore, order total, order ID, currency and merchant
ID can be tainted during the trading process. Then, we use
BOOL type to depict this scene, and a BOOL value is as-
signed to every trading parameter. The expression “parameter
name”+“BOOL” is used to name them, e.g., orderID and
orderIDBOOL.

VOL.***, NO.***, *** 2023 5

B. Formal Definitions
A Colored Petri Net is a nine-tuple CPN =

(P, T,A,Σ, V, C,G,E, I) whose basic definition and more
related concepts, such as multiset, color set, and inscription,
can be found in [19]. The CPN modelling language is a
general-purpose one, i.e., it is not aimed at modelling a
specific class of systems [19]. The formal representation of
CPN forms the foundation for defining various behavioral
properties and their analysis methods. According to the
characteristics of e-commerce business interaction processes,
we impose some restrictions on the structures and data
types of CPN for accurately depicting the business logic of
multi-participants e-commerce systems. Thus, we propose the
following definitions.

Definition 1 A Logic Business Process (LBP) is a CPN
LBP = (P, T,A,Σ, V, C,G,E, I), where

1) LBP has three special places α, β and γ, where α ∈ P
is the initial place, β ∈ P is the terminal place, γ ∈ P is the
memory place, and •α = β• = γ• = ∅.

2) Let LBPE=(P , T ∪ {τ}, A ∪ {(τ, α), (β, τ), (γ, τ)},
Σ , V , C, G′, E′, I) be the trivial extension of LBP ,
in which E′ : {(τ, α), (β, τ), (γ, τ)} → EXPRV , and
a∈A→E′(a)=E(a); t∈T→G′(t)=G(t), and τ has no guard.
Then, LBPE is strongly connected.

An LBP is a special CPN, and corresponds to the internal
business process of a participant in the entire e-commerce in-
teraction process. Fig. 2 shows the LBPs with initial markings
of the shopper, merchant and TPP as of the case discussed
in Section 2. An LBP starts from an initial place α and ends
at terminal place β and memory place γ, where α depicts
the beginning state of a participant, β represents the end of
a executing process, and γ is used to store the internal data
after the transaction. For example, in Fig. 2, the place Merch
is the initial place of the merchant. MEnd and MStore are the
terminal place and memory place respectively. If we connect
Merch with MEnd and MStore using a transition and three
arcs among them, the LBP of the merchant would be strongly
connected, and it is used to guarantee the intercommunication
feature of LBP.

Definition 2 Let LBP = (P, T,A,Σ, V, C,G,E, I) be a
LBP. Then, a Logic Business Process with Channels (LBPC) is
LBPC = (P∪PIN∪PO, T, A∪AIN∪AO,Σ, V, C ′, G,E′, I ′)
such that the following holds.

1) PIN is a set of input channel places, PO is a set of
output channel places, PIN 6= ∅, PO 6= ∅, •PIN = P •O = ∅,
PIN ∩ PO ∩ P = ∅.

2) {α, β, γ} 6⊂ (PIN ∪ PO).
3) AIN ⊆ PIN × T , AO ⊆ T × PO, AIN ∩AO ∩A = ∅.
4) C ′ : (PIN ∪ PO)→ Σ, and p∈P→C ′(p)=C(p).
5) E′ : (AIN ∪AO)→ EXPRV , and a∈A→E′(a)=E(a).
6) I ′ : (PIN ∪ PO)→ EXPR∅, and p∈P→I ′(p)=I(p).
An LBPC is an extension of LBP integrated with some

interaction places (channels) which are used to depict the com-
munication channels of trading parameters among different
participants. For the channel places, we use the convention
“prefix”+“Chank” for naming, k ∈ N+. For example, Fig. 3
is the LBPC of the merchant, which is extended from the
LBP shown in Fig. 2 by using five input channel places,

UChan1, TppChan1, UChan3, TppChan3, UChan4; and five
output channel places, MerChan1, MerChan2, MerChan3,
MerChan4, MerChan5. UChan1 represents a channel place
launched from the user; MerChan2 represents a channel place
launched from the merchant; and TppChan3 represents a
channel place launched from TPP.

MerchMerch

1`b1++1`b2

UChan1

Parameter

MerChan2

Parameter

MerChan1

Parameter

TppChan1 Parameter

MData4Parameter

MContr6 Merch

MerChan3

Parameter

TppChan3

Parameter

MerChan4

Parameter

MEnd Merch

UChan4

Parameter

MerChan5

Parameter

UChan3

Parameter

MData3

Parameter

MData1 Parameter

MContr1

Merch

MStoreParameter

MContr5

Merch

MData2

Parameter

MContr2

Merch

MContr4

Merch

MContr3

Merch

RecOrder

FinishOrd
[resultBOOL=true
andalso m=m1]

MUpdate

[orderIDBOOL=true]

SdGross

[grossBOOL=true]

SdPayID

SdIdenty

RecToken

UpdateInfo

m

1`ShopperOrder((u, ShopperOrderBOOL))1`identity((m, true))

1`payerID((u, payerIDBOOL))

m1

1`result((t1, resultBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderFinished((m, true))

1`gross((u, m, true))

1`gross((u, m, grossBOOL))

m

m1

1`gross((u, m, grossBOOL))

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

1`orderID((u, m, orderIDBOOL))

m1

m1
1`orderID((u, m, orderIDBOOL))

1`orderID((u, m,
orderIDBOOL))

1`token((t, tokenBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))

1`payerID((u, payerIDBOOL))

1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

1`identity((m, true))

1`identity((m, identityBOOL))

m

m1

1`orderID((u, m,
true))

m1

m1

m

m

1`payerID((u, payerIDBOOL))++
1`result((t1, resultBOOL))

Fig. 3. The LBPC of the merchant.

Definition 3 Let LBPCn=(Pn∪PINn ∪ POn, Tn, An, Σn,
Vn, Cn, Gn, En, In), n∈N2, be two LBPCs which are
disjoint, and have common places, such that P1 ∩ P2 = ∅,
PIN1 ∩ PIN2 = ∅, PO1 ∩ PO2 = ∅, PIN1 ∩ PO2 6=

VOL.***, NO.***, *** 2023 6

∅, PO1 ∩ PIN2 6= ∅, T1 ∩ T2 = ∅, A1 ∩ A2 = ∅,
Σ1 ∩ Σ2 6= ∅, V1 ∩ V2 6= ∅; C1(p) = C2(p), I1(p) =
I2(p), p ∈ (PIN1 ∩ PO2) ∪ (PO1 ∩ PIN2). Then, the
Fusion Operation Φ of the two nets is LBPC1ΦLBPC2

= LBPC = (P ∪ PIN ∪ PO, T, A,Σ, V, C,G,E, I), where
P = P1 ∪ P2, T = T1 ∪ T2, A = A1 ∪ A2, Σ = Σ1 ∪ Σ2,
V = V1 ∪ V2, (p ∈ Pn)→ (C(p) = Cn(p))∧(I(p) = In(p)),
(a ∈ An)→ (A(a) = An(a)), (t ∈ Tn)→ (G(t) = Gn(t)).

Definition 3 is a rigor formal definition of fusion
operation of two LBPCs. It is just like the synchronous syn-
thesis method in the original Petri net. It specifies a synthesis
method based on places of CPN, by which an integrated e-
commerce business process can be built in a step-by-step man-
ner. The benefit is to help designers understand and analyze a
business process with different views by composite operations.
Note that, for two LBPCs, only their input and output channel
places with the arc inscriptions have intersection and their
corresponding LBPs have no intersection.

Definition 4 Let LBPCn=(Pn∪PINn∪POn, Tn, An, Σn,
Vn, Cn, Gn, En, In), n,m ∈ N+, n≤m, m≥2, be m LBPCs
satisfying Definition 2, and

⋃m
n=1 PINn =

⋃m
n=1 POn.

Then, IBPF = (P ∪ PIN ∪ PO, T, A,Σ, V, C,G,E, I) =
LBPC1ΦLBPC2Φ...ΦLBPCm is called a Interactive Busi-
ness Process Fusion (IBPF) net.

Definition 4 is based on Definition 3. A set of LBPCs can
construct an IBPF. Definition 4 defines the Fusion Operation
between two LBPCs, and an IBPF is the union of m LBPCs
LBPC1 − LBPCm based on the Fusion Operation, via a
set of common places, i.e.,

⋃m
n=1 PINn and

⋃m
n=1 POn. Not

that input channel places can only be combined with output
ones. Based on Definitions 1-3 and the examples in Figs. 3-5,
as shown in Fig. 6, a complete business interaction process-
IBPF is constructed by composing the LBPCs presented in
Fig. 3 through to Fig. 5, in accordance with the shopper,
merchant, and TPP respectively. The three LBPCs synthesised
by 12 channel places such as UChan1, MerChan2, TppChan1,
TppChan1. Then, the properties of IBPFs are described as
follows.

Property 1 A Interactive Business Process Fusion (IBPF)
net IBPF = (P ∪ PIN ∪ PO, T, A,Σ, V, C,G,E, I) =
LBPC1ΦLBPC2Φ...ΦLBPCm holds the following proper-
ties.

1) IBPF has m initial places α1, α2, ..., αm, m terminal
places β1, β2, ..., βm, and m memory places γ1, γ2, ..., γm,
where •

⋃m
n=1 {αn}=

⋃m
n=1 {βn}

•=
⋃m
n=1 {γn}

•=∅.
2) If p ∈ P , and p/∈(

⋃m
n=1 {αn}∪

⋃m
n=1 {βn}∪

⋃m
n=1 {γn}),

then •p 6= ∅, and p• 6= ∅.
3) Let IBPFE = (P , T ∪ {τ}, A ∪

⋃m
n=1 {(τ, αn)}

∪
⋃m
n=1 {(βn, τ)} ∪

⋃m
n=1 {(γn, τ)}, Σ , V , C, G′, E′,

I) be the trivial extension of IBPF , in which E′ :⋃m
n=1 {(τ, αn)} ∪

⋃m
n=1 {(βn, τ)} ∪

⋃m
n=1 {(γn, τ)} →

EXPRV , and a∈A→E′(a)=E(a); t∈T→G′(t)=G(t), and τ
has no guard. Then, IBPFE is strongly connected.

Proof. Every LBP has three special places α, β and γ
respectively. In LBPC, {α, β, γ} 6⊂ (PIN ∪ PO). According
to Definition 3, the fusion operation Φ of two LBPCs just
refers to the combination of input and output channel places

ShopperUser

1`a1
++1`a2

UContr1 User

UChan1

Parameter

MerChan2

Parameter

UChan2

Parameter
UContr2

User

TppChan2

Parameter

UContr7

User

UEnd

User

MerChan4

Parameter

UChan4
Parameter

MerChan5

Parameter

UChan3

Parameter

UContr6

User

UContr3

User

UContr4

User

UContr5

User

UStore

Parameter

Order

SendPay

UUpdate

Confirm

ConOrd1 ConOrd2

ConOrd3

u

u

1`ShopperOrder((u, true))

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL)) u1

u1

u1

u1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m, orderIDBOOL))

1`orderFinished((m,
orderFinishedBOOL))

u1

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

u1

u1

1`payerID((u, payerIDBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

u1

u1

u1

u1

u1

1`orderFinished((m,
orderFinishedBOOL))

Fig. 4. The LBPC of the shopper.

and their arcs; P =
⋃m
n=1 Pn, T =

⋃m
n=1 Tn, A =

⋃m
n=1An.

Thus, IBPF has m initial places α1, α2, ..., αm, m terminal
places β1, β2, ..., βm, and m memory places γ1, γ2, ..., γm.
∀t ∈ Tn → (t, αn) /∈ An; ∀t ∈ (T \Tn)→ (t, αn) /∈ (A\An).
Then, ∀αn ∈ Pn→(αn ∈ P ∧ •αn=∅), i.e., •

⋃m
n=1 {αn}=∅.

Likewise,
⋃m
n=1 {βn}

•=
⋃m
n=1 {γn}

•=∅.
According to Definition 4, as

⋃m
n=1 PINn =

⋃m
n=1 POn,

∃i, j∈N+, i, j≤m, making that (∀p ∈ PINi)→(p ∈ POj),
(∃ti ∈ Ti) ∧ (∃tj ∈ Tj) → ((p, ti) ∈ Ai) ∧ ((tj , p) ∈ Aj).
Thus, (p, ti), (tj , p) ∈ A, i.e., •p 6= ∅, and p• 6= ∅. Similarly,
∃i, j∈N+, i, j≤m, making that (∀p ∈ POi)→(p ∈ PINj),
(∃ti ∈ Ti) ∧ (∃tj ∈ Tj) → ((ti, p) ∈ Ai) ∧ ((p, tj) ∈ Aj).
Thus, (ti, p), (p, tj) ∈ A, i.e., •p 6= ∅, and p• 6= ∅.

Let IBPi, IBPj are any two logic business processes of
IBPCi and IBPCj respectively in an IBPF , εi1, εi2 ∈
(Ti∪Pi). According to Definition 1, the subgraph of IBPFE

VOL.***, NO.***, *** 2023 7

UChan2

Parameter

TppTpp

1`c1

TpContr1

Tpp

MerChan1

Parameter

TppChan1

Parameter

TpContr2

Tpp

TppChan2

Parameter

TpContr3

Tpp

MerChan3

Parameter

TppChan3

Parameter

TpContr4

Tpp

TpContr6
Tpp

TpEnd

Tpp

TpStore

Parameter

TpContr5 Tpp

RecNote

Payment

SetInfo

FinishPay2 FinishPay1

[tokenBOOL=true
andalso
identityBOOL=true]

PayDone

t

t

1`identity((m, identityBOOL))

1`token((t, true))

t1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))

t1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))++
1`payerID((u, true))t1

t1

1`gross((u, m, grossBOOL))

t1

t1

t1

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

t1

t1

1`result((t1, true))

t1

1`token((t, tokenBOOL))++
1`identity((m, identityBOOL))

1`gross((u, m, grossBOOL))

t1

t1

Fig. 5. The LBPC of TPP.

LBPiE=(Pi, Ti ∪ {τ}, Ai ∪ {(τ, αi), (βi, τ), (γi, τ)}, Σi ,
Vi, Ci, Gi′, Ei′, Ii) is strongly connected. Then, there is a
directed path from εi1 to εi2, and vice versa. Likewise, LBPjE
is strongly connected. From any εi ∈ (Ti ∪ Pi), there is a
directed path to τ . As (τ, αj) is an directed arc in IBPFE ,
there is a directed path from εi to any εj ∈ (Tj ∪ Pj). For
any p ∈ (

⋃m
n=1 PINn ∪

⋃m
n=1 POn), ∃tk ∈ Tk and ∃tl ∈ Tl,

k, l∈N+, k, l≤m, making that (tk, p), (p, tl) ∈ A. Then, there
is a directed path from p to any ε ∈ (P ∪T ∪{τ}) in IBPFE .
Thus, IBPFE is strongly connected.

Condition 1 represents that an IBPF has an initial place set,
a terminal place set and a memory place set; condition 2 means
that every input or output channel place would be a message
interaction bridge between two IBPs, and had predecessor and
successor nodes; condition 3 guarantees the connectivity of
IBPF. Definitions 1-4 and Property 1 construct a complete
formal specification system based on CPN. These definitions
are related and progressive.

C. Basic Structures
Here, we illustrate the basic structures used for the modeling

process, including routing, control and data structures. Basic

routing structures are used for constructing the control and
data ones in internal processes of participants, and business
interaction processes among participants.

1) Routing Structures: Petri nets are suitable to describe
distributed and concurrent properties. True concurrency is
allowed instead of the interleaving-based semantics based on
some special structures. In this paper, we define several basic
structures for constructing an IBPF according to WFMC
[31]. As shown in Fig. 7, sequential structure depicts the
scene where several events or APIs fire one after another.
Concurrent structure illustrates the way of constructing the
concurrent scene. When there exists selective routing in a
business process, it would be depicted by the conditional
selection structure.

2) Control Structures: In this work, control structures mean
the places and transitions that are used to coordinate the
activities among the participants. In this work, we present three
kinds of control structures:

a) Internal control structures.
Internal control structures are used to construct the internal

business process of a participant based on routing structures.
The flowing tokens in the control structures belong to the
colsets that represent the participants, and the vars belong to
these colsets, we can call them participant vars. For the LBP
of TPP shown in Fig. 2, the participant vars t and t1 belong
to the colset Tpp which represent the TPP. The arcs which
have participant vars, together with their associated places and
transitions belong to the internal control structures, e.g., the
path from Tpp to TpEnd, and SetInfo to PayDone. This means
that the internal business process, which is composed of APIs,
functions and operation events, is controlled and conducted by
a participant.

b) Multi-session and multi-participants.
As we know, although Petri nets are good at constructing

models of concurrent systems and analyzing their properties,
their structures are relatively fixed. Petri nets are effective in
modeling and analyzing flexible manufacture systems [32],
[33]. However, e-commerce systems based on the Internet are
often open and dynamic, characterizing multi-sessions, multi-
participants and multi-tasks. A user can open many Internet
browsers and sessions, and simultaneously place different
orders during the same business process. Then, this scenario
can invite security attacks [15].

CPN has the concepts of colsets and colors. Thus, in the
modeling scheme, we can make the business structure of IBPF
as the relatively fixed business process of the e-commerce
system, and use different colsets to express multi-participants,
and different colors to depict multi-session. In Fig. 2, colsets
User, Merch and Tpp represent the user (shopper), merchant
and TPP respectively. The colors a1 and a2 depict two users,
and they can start two sessions according to the same business
process. b1 and b2 depict two merchant sessions that are
ready to be started. In the business process, the flowing tokens
express the trading parameters of some session. The complex
color types can also help constructing the parameters, e.g.,
product and union types. For example, in Fig. 2, gross((u,
m, grossBOOL)) represents that the trading parameter gross
belongs to a session started by u and m. Therefore, these

VOL.***, NO.***, *** 2023 8

MerchMerch

1`b1++1`b2

ShopperUser

1`a1
++1`a2

UContr1 User

UChan1

Parameter

MerChan2

Parameter

UChan2

Parameter

TppTpp

1`c1

TpContr1

Tpp

MerChan1

Parameter

TppChan1 Parameter

TpContr2

Tpp UContr2

User

TppChan2

Parameter

MData4Parameter

MContr6 Merch

UContr7

User

UEnd

User

TpContr3

Tpp

MerChan3

Parameter

TppChan3

Parameter

MerChan4

Parameter

MEnd

Merch

UChan4

Parameter

MerChan5

Parameter

UChan3

Parameter

UContr6

User

MData3

Parameter

MData1 Parameter

MContr1

Merch

TpContr4

Tpp

TpContr6
Tpp

TpEnd

Tpp

TpStore

Parameter

MStoreParameter

MContr5

Merch

TpContr5 Tpp

UContr3

User

MData2

Parameter

UContr4

User

UContr5

User

MContr2

Merch

UStore

Parameter

MContr4

Merch

MContr3

Merch

RecOrder Order

SendPay

RecNote

Payment

FinishOrd
[resultBOOL=true
andalso m=m1]

UUpdate

Confirm

SetInfo

MUpdate

[orderIDBOOL=true]

SdGross

[grossBOOL=true]

SdPayID

SdIdenty

RecToken

FinishPay2 FinishPay1

[tokenBOOL=true
andalso
identityBOOL=true]

PayDone

UpdateInfo

ConOrd1 ConOrd2

ConOrd3

m u

u

1`ShopperOrder((u, true))1`ShopperOrder((u, ShopperOrderBOOL))

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

t

t

1`identity((m, true))1`identity((m, identityBOOL))

1`token((t, true))

t1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))
t1

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))++
1`payerID((u, true))

1`payerID((u, payerIDBOOL))

m1

u1

u1

u1

t1

t1

1`result((t1, resultBOOL))

1`orderID((u, m, orderIDBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m, orderIDBOOL))

1`orderFinished((m, true))

1`orderFinished((m, orderFinishedBOOL))

1`gross((u, m, true))

1`gross((u, m, grossBOOL))

m

m1

1`gross((u, m, grossBOOL))

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

1`gross((u, m, grossBOOL))

u1

t1

t1

t1

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

t1

t1

1`result((t1, true))

t1

1`token((t, tokenBOOL))++
1`identity((m, identityBOOL))

1`orderID((u, m, orderIDBOOL))

1`gross((u, m, grossBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m,
orderIDBOOL))

1`token((t, tokenBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))

1`payerID((u, payerIDBOOL))

1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

t1

t1

u1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

u1

u1

1`payerID((u, payerIDBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`identity((m, true))

1`identity((m, identityBOOL))

u1

u1

u1

u1

u1

m

m1

1`orderID((u, m,
true))

1`orderFinished((m, orderFinishedBOOL))

m1

m1

m

m

1`payerID((u, payerIDBOOL))++
1`result((t1, resultBOOL))

Fig. 6. The complete business process-IBPF.

design rules can control and implement multi-sessions and
multi-participants in the e-commerce business processes.

c) Validation functions.
In distributed e-commence systems, the designed interac-

tion mechanism is used to guarantee the funds security [6],
[7], [12], [34], in which validation functions play important
roles. The trading parameters flowing among the distributed
participants are checked by the Validation functions in order
to guarantee the legality. In LBPF, we use guards [19] to
depict these validation functions. For instance, as in the case
discussed in Section 2, there are some validation functions,
such as V alidatePara, FinishOrder, and UpdateStatus.

Such functions are depicted by the guards of some key
transitions, e.g., SdGross, FinishOrd, MUpdate in Fig. 6.

3) Data Structures: Data structures depict the data flow
(trading parameters flow) in the business processes, includ-
ing channels of Definition 2, memory places of Definition
1 and internal flowing paths of data. Channels depict the
transmission paths of the trading parameters among different
participants. Memory places are used to store the internal
data after the transaction process, and the data can reflect the
trading result of a participant. Internal flowing paths represent
the data flow inside the business process of a participant.
For example, the flowing path of parameter orderID in the

VOL.***, NO.***, *** 2023 9

LBP of the merchant in Fig. 2. According to the case in
Section 2, orderID is a trading parameter produced after the
merchant accepted the order from the shopper, and this event
is represented by the transition RecOrder. This corresponds
to the event of Receive and send token in the case of Fig.
1. Then, the parameter flows through other events and forms
a data flow path until it is transmitted to the memory place
MStore. So as other parameters.

p1

t1

p2 p3

t2 t3

p4 p5

t4

p6

p1

t1 t2

p2 p3

t3 t4

p4

p1

t1

p2

t2

p3

Sequential structure Concurrent structure Conditional selection structure

Fig. 7. Routing structures

In CPNtools, for easy modeling, avoiding the two com-
plex parameters holding the same variable is a basic rule.
For example, Fig. 8(a) presents a data structure including
two parameters va1((u, va1BOOL)), va2((u, va2BOOL))
belonging to the union type of Parameter, in which var
u : User, var va1BOOL, va2BOOL : BOOL, and every
parameter includes three elements: one constructor, and two
variables belonging to the basic types [19]. Although this looks
correct, there would be a binding error at t2. As for the input
of t2, there are two parameters belonging to complex data
types holding the same variable u. Through our experiments,
we found that splitting can effectively avoid this binding error,
which ensures that complex parameters have distinct values.
For example, Fig. 8(b) represents an improved data structure.
As for every transition, there is just one complex parameter.

D. Modeling Procedure

To construct an LBPF, we elicit the intended functions in
terms of the design specifications derived from the requirement
analysis during the system design phase, and construct the
model based on the following steps:

1) Data Definitions of LBPF .
Acquire the trading parameter set from the design specifi-

cations, and declare Σ and V .
2) Construct LBPs of Participants.
Identify the order of operation events and APIs in business

interaction processes of participants in accordance with the
key functionalities and design specifications. Then, construct
the control and data structures to depict the internal business
functionalities of different participants aided by Definition 1.

3) Construct LBPCs of Participants.

Confirm the message delivering mechanism, and identify
the input and output channel places according to Definition 2.
Then, connect them to their corresponding LBPs using arcs
with E.

4) Fusion Operation of LBPCs.
According to Definitions 3 and 4, synthesize the obtained

LBPCs and get an IBPF . It is worthy of note that an initial
marking should be added at last.

IV. ANALYZING LOGIC VULNERABILITY

In this section, based on LBPF , we present the methods
of analyzing the logic vulnerabilities. Firstly, we define the
transaction-logical consistency as the basic property of trust-
worthy e-commerce business systems. Then, we illustrate the
verification procedure.
A. Transaction-Logical Consistency

In e-commerce protocols, atomicity is the basic property
[35], which usually applies to the network level, but not to the
application level. The validations of protocols in the network
level cannot reveal such logic errors and defects in business
processes as lack of calibration and inconsistency among data
[28]. Therefore, based on the existing properties, we propose
the following transaction conditions to guarantee the security
goal of an e-commerce business interaction process.

Definition 5 Let IBPF = (P ∪ PIN ∪
PO, T, A,Σ, V, C,G,E, I) = LBPC1 Φ LBPC2 Φ ...
Φ LBPCm be an interactive business process Fusion (IBPF)
net under the initial making M0, m ∈ N+, and σ is a
executable transition sequence of IBPF . A reachability
marking M (M0

σ→M) is called Transaction-Finished State,
if the following conditions hold:

1) M (βm) =
∣∣∣⋃++

t∈•βm
E (t, βm)

∣∣∣.
2) M (γm) =

∣∣∣⋃++
t∈•γm

E (t, γm)
∣∣∣.

Transaction-Finished State depicts a completed state of
a transaction. Condition 1 illustrates that a participant had
finished a transaction. If a shopper has paid and TPP is at the
paid state, then merchant has to reach the state of a finished
transaction. On the other hand, if a shopper has not paid and
TPP is not at the paid state, then the merchant cannot be at the
shipping state of a to-be-finished transaction. For any terminal
place βm, its token number is equal to that of input variables
on the input arcs. This ensures the completion of a single
transaction. Condition 2 represents that any memory place
γm should have obtained the necessary trading parameters.
Likewise, the token number in γm is equal to that of the input
variables on the input arcs.

Here, The notation
⋃

means the union operation. However,
in CPN, the set is based on Multisets [19]. The symbols ++
is the operator used to construct a multiset consisting of the
tokens, for example, in Fig. 6, the expression 1‘b1++1‘b2
represents that there are two tokens which are b1 and b2
respectively. “||” depicts that the token values binding with
the arc inscriptions. As E is the set of arc expressions, and
we see the expressions as the multiset of tokens that are
transmitted to the next transition. For example, in Fig. 9,∣∣∣⋃++

t∈•MStoreE (t,MStore)
∣∣∣ = 1′orderID((a2, b2, true)) ++

1′payerID((a1, true)) ++ 1′result((c1, true)).

VOL.***, NO.***, *** 2023 10

Fig. 8. Data structures

Definition 6 Let IBPF = (P ∪ PIN ∪
PO, T, A,Σ, V, C,G,E, I) = LBPC1 Φ LBPC2 Φ ...
Φ LBPCm be an interactive business process Fusion
(IBPF) net under the initial making M0, m ∈ N+, then
IBPF satisfies the Transaction-Logical Consistency if
every Transaction-Finished State M satisfies the following
conditions:

1) For every parameter ν in ∀γm, νBOOL=true.
2) For every variable ρ in ∀βm and ∀γm that depicts a

session or participant, it has only one value.
Definition 6 depicts the Transaction-Logical Consistency by

a formal description according to the standard CPN semantic.
It is a definition illustrating the conditions that the Transaction-
Finished States should satisfy. The conditions illustrate that
each participant must reach the correct conclusion. Condition
1 shows that there is no invalid data and parameter tampering
existing in the trading process. Condition 2 represents that
all the trading parameters belong to the same transaction.
Definition 6 protects the interests of distributed participants
and guarantee that all the participants are in a fair state,
i.e., there is no possibility of paying without receiving goods
and vice versa. In other words, any given participant cannot
damage the interests of another. For example, Fig. 9 is a
Transaction-Finished State M :

M(TpStore)=1′gross((a1, b1, true))++1′token((c1, true))
++1′Identity((b1, true));
M(TpEnd) = 1′c1;
M(MStore)=1′orderID((a2, b2, true))++1′payerID((a1,
true))++1′result((c1, true));
M(MEnd) = 1′b1;
M(UStore)=1′orderF inished((b2, true));
M(UEnd) = 1′a1;
M(MData3)=1′orderID((a1, b1, true))

M represents that a transaction is completed, howev-
er, it does not satisfy Transaction-Logical Consistency. Al-
though all BOOL variables are true, there are two val-
ues for the shopper and merchant variables u and m, i.e.,
a1, b1, a2, b2. This state illustrates that the shopper has
paid for orderID((a1, b1, true)), and received the goods of
orderID((a2, b2, true)). It damages the interest of the mer-
chant, and does not meet the Transaction-Logical Consistency,
which is caused by the interaction process that leads to states
inconsistency among distributed participants.

B. Analyzing Procedure

A logic vulnerability in a distributed e-commerce business
interaction process exists when the merchant or TPP cannot
validate whether a given shopper has paid for the correct
order total with the expected gross or not. Based on logic
vulnerabilities, it is easy to launch attacks in trading process.
Using the browser extensions simply, attackers can withhold
HTTP requests, modify requests or forge requests. In addition,
attackers can exploit a signed token to mimic as a cashier,
reuse payment information from previous orders or even
change the return URLs in HTTP forms to intercept cashiers’
responses. To sum up, logic vulnerabilities are caused by the
tainted trading parameters as shown in Tab. I [1].

TABLE I
TAINT TRADING PARAMETERS

Type Description

Tainted orderID
To bypass order payments, attackers can replay
the payment information of previous orders
from the same merchant

Tainted gross Attackers can pay an arbitrary amount for an
order by tampering with the gross sent to TPP

Tainted merchantID
When merchantID is tainted, an attacker can
set up his/her own merchant account on the
designated cashier’s server

Exposed token

An exposed signed token invalidates any
security checks against trusted symbolic values,
which is because such a signed request may be
forged by an attacker

For depicting these malicious behaviors, in Section 3, we
know that multi-session or multi-user can be depicted by IBPF
conveniently. Then, tampered parameters can be depicted by
changing the BOOL values corresponding to the parameters.
Adhering to the principles of the modeling process in Section
3, together with specific initial marking, we can build a
specific application behavior scene and then verify the business
process. We present our analyzing procedure with related
definitions as follows.

Definition 7 An IBPF = (P ∪ PIN ∪ PO, T , A, Σ,
V,C,G,E, I) is terminable under an initial marking M0 if:

1) ∃Γ =
{
M ′|M ′ ∈ R (M0) ,∀t ∈ T → ¬M ′ t→

}
.

2) ∀M ∈ R(M0), there exists a transition sequence σ,
making that M σ→M ′, M ′ ∈ Γ.

Definition 7 guarantees that an IBPF can terminate after the
running process. Condition 1 means an IBPF has a terminated
state set, in which the terminated state cannot fire anymore.
Condition 2 depicts that ∀M ∈ R(M0) can reach a terminated
state by firing a transition sequence.

Definition 8 An IBPF = (P ∪ PIN ∪ PO, T , A, Σ,
V,C,G,E, I) is rational under an initial marking M0 if:

1) IBPF is bounded [19].
2) IBPF is terminable.
Definitions 7 and 8 are used to ensure that an IBPF

would not run indefinitely. Instead it must reach some ended
states to represent that a transaction process has either been
successfully completed or terminated for some reason. Then,
the state space is limited. These properties can be validated
by CPNtools. If an IBPF is rational, we can search the state
space and verify the Transaction-Logical Consistency.

Definition 9 Let IBPF = (P ∪ PIN ∪
PO, T, A,Σ, V, C,G,E, I). Then, a 2-tuple (IBPF ′,

VOL.***, NO.***, *** 2023 11

Fig. 9. A Transaction-Finished State.

Algorithm 1: Verify the Transaction-Logical Consistency
under an Initial Configuration

Input: IBPF ′ = (P ∪ PIN ∪ PO , T , A, Σ, V,C,G,E′, I), initial
marking M0

Output: A marking set Ω
1. Ω = ∅, Π = {M0};
2. Let M0 be the root node, and mark it with “Intermediate”;
3. while “Intermediate” nodes exist do

Choose an arbitrary “Intermediate” node as M ;
3.1 if M is a Transaction-Finished State and does not satisfy
Transaction-Logical Consistency then

Ω = Ω ∪ {M};
Goto 3;

end
3.2 else if ∀t ∈ T → ¬M t→ then

Π = Π ∪ {M};
Goto 3;

end
3.3 else

for every enabled t ∈ T at M do
M ′ = M

t→;
if M ′ /∈ (Ω ∪ Π) then

Mark M ′ as “Intermediate”;
Π = Π ∪ {M ′};

end
end

end
3.4 Remove mark “Intermediate” of M ;

end

M0) is called an Initial Configuration that is rational, in
which M0 is an initial marking of IBPF , IBPF ′ =
(P ∪ PIN ∪ PO, T, A,Σ, V, C,G,E′, I).

The construction of Initial Configuration is based on the
logical vulnerability which is to be verified. It can be seen
as an initial state of an IBPF, which represents the behavior
conditions before an online transaction begins. E′ either shows
some variations from E such that changes will be noted on
some BOOL values on the corresponding arcs, or E′=E. For
example, we can make the IBPF and the initial marking of
Fig. 6 as an Initial Configuration, which is used to verify the
vulnerability of “a user can pay for a cheap order but check

out an expensive one”, “a user pay for another user’s order”
and “a user can pay himself/herself for an item he/she buys
in an online shop” [7], [13]. In this case, E′ of the Initial
Configuration is the same as E, and of course, IBPF ′ is
the same as IBPF . If we want to verify the vulnerability
of “a user can pay less” [7], [13], which is also listed
as “Tainted gross” in Tab. 1, we can make a new Initial
Configuration and change the IBPF presented in Fig. 6,
with the following changes M0(Tpp) = 1′c1, M0(Merch) =
1′b1, M0(Shopper) = 1′a1, and E′(SendPay, UChan2) =
1′token((t, tokenBOOL)) + +1′gross((u,m, false)) where
E(SendPay, UChan2) = 1′token((t, tokenBOOL)) +
+1′gross((u,m, grossBOOL)).

A payment is assumed secure when both the authenticity
and integrity of the payment status are verified, and this is
guaranteed by the Transaction-Logical Consistency in this
work. Algorithm 1 is the process of searching the state space
and verifying the Transaction-Logical Consistency under an
Initial Configuration. The marking set Ω that do not satisfy
Transaction-Logical Consistency is the output of Algorithm
1. For example, Fig. 9 is a marking belonging to Ω which is
found under the initial configuration of Fig. 6.

Theorem 1 Algorithm 1 can be terminated.

Proof. According to Definitions 7 and 8, the input IBPF ′ of
Algorithm 1 has a finite state space under an initial marking
M0. Algorithm 1 searches the markings from M0, and adds the
markings those not satisfying Transaction-Logical Consistency
to Ω in Step 3.1. Other constructed markings are added to
Π in Steps 3.2 and 3.3. In Step 3.3, new produced marking
those do not belong to Ω is marked as “Intermediate”, and
the notation “Intermediate” of current marking is removed in
Step 3.4. This represents that the marking set of “Intermediate”
is continuously updated until it becomes empty, so it is
limited. Above descriptions illustrate that Algorithm 1 can be
terminated. Algorithm 1 is a breadth-first traversal method. It
only searches a part of the state space.

VOL.***, NO.***, *** 2023 12

We summarize the verification procedure based on the above
methods as below.

1) Establish the IBPF according to the design specifica-
tion.

2) Construct the Initial Configuration according to some
logic vulnerability.

3) Use Algorithm 1 to obtain Ω and to analyze the corre-
sponding logic vulnerability.

4) Goto Step 2 to verify another logic vulnerability.

TABLE II
VERIFICATION RESULT OF THE CASE

Initial Configurations Vulnerabilities Exist?

The IBPF of Fig. 6; M0(Tpp)=1′c1,
M0(Merch)=1′b1++1′b2,
M0(Shopper)=1′a1++1′a2

“pay for a cheap
order but check
out an expensive
one”

Yes

The IBPF of Fig. 6; M0(Tpp)=1′c1,
M0(Merch)=1′b1++1′b2,
M0(Shopper)=1′a1++1′a2

“pay for another
users’ order” Yes

The IBPF of Fig. 6; M0(Tpp)=1′c1,
M0(Merch)=1′b1++1′b2,
M0(Shopper)=1′a1++1′a2

“a user can pay
himself for an
item he buys in
an online shop”

Yes

The IBPF of Fig. 6 with
E(SendPay, UChan2) =
1′token((t, tokenBOOL))
++1′gross((u,m, false));
M0(Tpp)=1′c1, M0(Merch)=1′b1,
M0(Shopper)=1′a1

“a user can
tamper gross and
pay less”

No

The IBPF of Fig. 6 with
E(UUpdate, UChan4) =
1′orderID((u,m, false)) ;
M0(Tpp)=1′c1, M0(Merch)=1′b1,
M0(Shopper)=1′a1

“a user can
tamper orderID” No

The IBPF of Fig. 6 with
E(SendPay, UChan2) =
1′token((t, false))++1′gross((u,m,
grossBOOL)) ; M0(Tpp)=1′c1,
M0(Merch)=1′b1, M0(Shopper)=1′a1

“a user can
tamper the token
of TPP and
replay it”

No

Algorithm 1 is a part of the verification process, and the
summarized verification procedure is the sketch of the whole
verification procedure. Thus, notable logic vulnerabilities of
the case discussed in Section 2 can be identified using our
proposed methodology. Tab. II illustrates the Initial Configu-
rations and their corresponding vulnerabilities, where the third
column represents whether the vulnerabilities exist in the e-
commerce business interaction process.

Our methods can be potentially implemented to detect
various kinds of logic vulnerabilities of various real cases,
with suitable modifications to the Initial Configurations and
arc expressions. If the system development process is strictly
consistent with the proposed methods and the obtained system
design, the implementation system is accordant with the mod-
el, and ultimately more secure than the system without our
modeling and analyzing process. Under the Initial Configura-
tions, using the proposed modeling and analyzing methods, the
known or unknown vulnerabilities can be discovered. Existing
related works introduced in Section 1 focus mostly on the test-
ing or detection of implementation systems at the code-level,
where our approach is at the the design level and application
level. Our approach is a formal methodology that is generic
for the relevant types of logic vulnerabilities. The proposed

methods can be applied to other design specifications of e-
commerce business processes as well. Compared with previous
related works, this paper has different research objectives and
emphases. The proposed methodology can complement the
traditional methods. However, the proposed work in this paper
cannot deal with the vulnerabilities of network level, the ones
caused by hardware accidents, and the non-logical flaw issues
like the account leaking and decryption.

V. CONCLUSION

This paper proposed a novel methodology to detect the ris-
ing logic vulnerabilities in the distributed business interaction
processes of e-commerce systems during the design phase.
A systematic approach is presented in this work, including
formal definitions, modeling scheme and analyzing procedure.
The efficiencies of our proposed approach in detecting logic
vulnerabilities has been discussed and demonstrated through a
case study. The proposed methodology can also be potentially
applied to other similar e-commerce business interaction pro-
cesses by suitably defining the business processes and datasets.
This methodology can determine whether a system design
is immune to logic vulnerabilities. Then, it can help modify
the incorrect design, and eventually guarantee the security of
system design against logic vulnerabilities. Despite the effec-
tiveness of our proposed approach, there is scope for further
developing the related tools or functions for supporting the
full automation of the proposed methodology, or combining
third party components with CPNtools.

REFERENCES

[1] F. Sun, L. Xu, and Z. Su, “Detecting logic vulnerabilities in e-commerce
applications.” in NDSS, 2014.

[2] W. Yu, Y. Wang, L. Liu, Y. An, B. Yuan, and J. Panneerselvam,
“A multiperspective fraud detection method for multiparticipant e-
commerce transactions,” IEEE Transactions on Computational Social
Systems, pp. 1–13, 2023.

[3] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard: Toward automatic
protection of third-party web service integrations.” in NDSS, 2013.

[4] Y. Xie, G. Liu, C. Yan, C. Jiang, M. Zhou, and M. Li, “Learning
transactional behavioral representations for credit card fraud detection,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14,
2022.

[5] Y. Xie, G. Liu, C. Yan, C. Jiang, and M. Zhou, “Time-aware attention-
based gated network for credit card fraud detection by extracting
transactional behaviors,” IEEE Transactions on Computational Social
Systems, pp. 1–13, 2022.

[6] E. Chen, S. Chen, S. Qadeer, and R. Wang, “A practical approach to
protocol-agnostic security for multiparty online services,” 2014.

[7] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to shop for free
online–security analysis of cashier-as-a-service based web stores,” in
Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp.
465–480.

[8] Y. Wang, W. Yu, P. Teng, G. Liu, and D. Xiang, “A detection method for
abnormal transactions in e-commerce based on extended data flow con-
formance checking,” Wireless Communications and Mobile Computing,
vol. 2022, no. 3, 2022.

[9] E. Y. Chen, S. Chen, S. Qadeer, and R. Wang, “Securing multiparty
online services via certification of symbolic transactions,” in Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 833–
849.

[10] C. Liu, Q. Zeng, L. Cheng, H. Duan, M. Zhou, and J. Cheng, “Privacy-
preserving behavioral correctness verification of cross-organizational
workflow with task synchronization patterns,” IEEE Transactions on
Automation Science and Engineering, vol. 18, no. 3, pp. 1037–1048,
2021.

[11] C. W. Enumeration, “Cwe-840 business logic errors,” 2014.
[12] C. Cwe, “472: External control of assumed-immutable web parameter.”

VOL.***, NO.***, *** 2023 13

[13] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic
flaws in web applications.” in NDSS, 2014.

[14] A. Sudhodanan, A. Armando, R. Carbone, L. Compagna et al., “Attack
patterns for black-box security testing of multi-party web applications.”
in NDSS, 2016.

[15] D. Hirschberger, D.-I. V. Mladenov, M. S. C. Mainka, and J. Schwenk,
“Bachelor thesis cashier-as-a-service based webshops overview and steps
towards security testing,” 2016.

[16] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, “Multi-module
vulnerability analysis of web-based applications,” in Proceedings of
the 14th ACM conference on Computer and communications security.
ACM, 2007, pp. 25–35.

[17] A. P. Fung, K. Cheung, and T. Wong, “Faith: Scanning of rich web
applications for parameter tampering vulnerabilities,” Tech. Rep., 2012.

[18] G. McGraw and J. Viega, “Building secure software,” in RTO/NATO
Real-Time Intrusion Detection Symp, 2002.

[19] K. Jensen and L. M. Kristensen, Coloured Petri nets: modelling and
validation of concurrent systems. Springer Science & Business Media,
2009.

[20] D. C. Latham, “Department of defense trusted computer system evalu-
ation criteria,” Department of Defense, 1986.

[21] H. Liu, Y. Feng, J. Li, and J. Luo, “Robust petri net controllers for
flexible manufacturing systems with multitype and multiunit unreliable
resources,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 53, no. 3, pp. 1431–1444, 2023.

[22] W. M. van der Aalst, N. Lohmann, and M. La Rosa, “Ensuring correct-
ness during process configuration via partner synthesis,” Information
Systems, vol. 37, no. 6, pp. 574–592, 2012.

[23] Q. Guo, W. Yu, and L. Qi, “Multi-factor balanced feedback and
reliability analysis of adaptive cruise control system based on petri
nets,” in 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2022, pp. 1084–1089.

[24] S. Wang, X. Guo, O. Karoui, M. Zhou, D. You, and A. Abusorrah,
“A refined siphon-based deadlock prevention policy for a class of petri
nets,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 53, no. 1, pp. 191–203, 2023.

[25] W. Yu, Z. Ding, L. Liu, X. Wang, and R. D. Crossley, “Petri net-
based methods for analyzing structural security in e-commerce business
processes,” Future Generation Computer Systems, vol. 109, pp. 611 –
620, 2020.

[26] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng, “Towards com-
prehensive support for privacy preservation cross-organization business
process mining,” IEEE Transactions on Services Computing, vol. 12,
no. 4, pp. 639–653, 2019.

[27] M. Wang, Z. Ding, P. Zhao, W. Yu, and C. Jiang, “A dynamic data
slice approach to the vulnerability analysis of e-commerce systems,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50,
no. 10, pp. 3598–3612, 2020.

[28] W. Yu, C. Yan, Z. Ding, C. Jiang, and M. Zhou, “Analyzing e-
commerce business process nets via incidence matrix and reduction,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48,
no. 1, pp. 130–141, 2018.

[29] M. Wang, G. Liu, C. Yan, and C. Jiang, “Modeling and vulnerable points
analysis for e-commerce transaction system with a known attack,” in
9th International Conference on Security, Privacy, and Anonymity in
Computation, Communication, and Storage, 2016, pp. 422–436.

[30] D. Wichers, “Owasp top-10 2013,” OWASP Foundation, February, 2013.
[31] W. P. D. I.-X. WfMC, “Process definition language,” Document Status-

1.0 Final Draft., Document Number WFMC-TC-1025 Workflow Man-
agement Coalition, Lighthouse Point, FL, 2002.

[32] B. Yang and H. Hu, “Maximally permissive robustness analysis of
automated manufacturing systems with multiple unreliable resources,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–
13, 2022.

[33] Y. Dong, Z. Li, and N. Wu, “Symbolic verification of current-state
opacity of discrete event systems using petri nets,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7628–
7641, 2022.

[34] A. L. Doupé, “Advanced automated web application vulnerability anal-
ysis,” Ph.D. dissertation, University of California, Santa Barbara, 2014.

[35] M. Panti, L. Spalazzi, and S. Tacconi, “Verification of security properties
in electronic payment protocols,” 2002.

Wangyang Yu received the M.S. degree from Shan-
dong University of Science and Technology, Qing-
dao, China, in 2009, and Ph.D. degree from Tongji
University, Shanghai, China, in 2014. He is currently
an Associated Professor with the College of Com-
puter Science, Shaanxi Normal University, Xi’an,
China. He was also a visiting scholar from 2016
to 2017 at University of Derby, UK. His research
interests include the theory of Petri nets, formal
methods in software engineering and trustworthy
software.

Lu Liu is the Head of School of Informatics at the
University of Leicester, UK. Prof. Liu worked as
a Research Fellow of the WRG e-Science Centre
at Leeds University on the EPSRC/BAE funded
NECTISE Project and the CoLaB Project which was
jointly funded by the EPSRC and the China-863
Program. Prof. Liu has over 120 scientific publica-
tions in reputable journals (e.g. IEEE Transactions
on Computers, IEEE Transactions on Service Com-
puting, ACM Transactions on Embedded Comput-
ing Systems). Prof. Liu has secured many research

projects which are supported by UK research councils, BIS and leading UK
industries. Prof. Liu serves as an Editorial Board member of 6 international
journals and the Guest Editor for 5 international journals. He has chaired
over 20 international conference workshops and presently or formerly serves
as the program committee member for over 50 international conferences and
workshops. He is a Fellow of BCS (British Computer Society).

Xiaoming Wang received his Ph.D. degree in com-
puter theory and software from Northwest Universi-
ty, Xi’an, China, in 2005. He is currently a professor
and Ph. D. supervisor in Shaanxi Normal Univer-
sity, Xi’an, China. Prof. Wang is head of School
of Computer Science, and he was also a research
professor(visiting scholar) from 2007 to 2008 at
Georgia State University, USA. His current research
interests include network security, access control,
pervasive computing, wireless sensor network, op-
portunistic networks, workflow management system,

and system dynamics. His research has been supported by the National Science
Foundation of China (NSFC), Key Research Project of Ministry of Education
of China. Prof. Wang has authored and coauthored more than 40 publications
in journal, books and international conference proceedings.

Ovidiu Bagdasar is a Associate Professor in Math-
ematics at the University of Derby. He received a
PhD in Applied Mathematics from University of
Nottingham, UK in 2011, and a PhD in Mathematics
from UBB Cluj-Napoca, Romania in 2015. Ovidi-
u’s research in Applied Mathematics, Optimization,
Traffic Modelling, Discrete Mathematics and Re-
current Sequences produced more than 50 journal
articles, book chapters, and presentations at pres-
tigious international conferences. Ovidiu has been
involved in the optimization of production lines and

the automatic design of ceramic colours and predictive analytics. Ovidiu was
also organiser of conferences and was Editor or Guest Editor for international
journals.

John Panneerselvam is a Lecturer in Computing at
the University of Leicester, UK. His current research
is focused on energy efficient cloud systems and he
has published his recent research works in notable
peer reviewed international conferences, journals
and as book chapters. He is an active member
of IEEE and his research interests include Cloud
Computing, Big Data Analytics, Opportunistic Net-
working and P2P Computing.

