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Alleviating Search Bias in Bayesian Evolutionary
Optimization with Many Heterogeneous Objectives

Xilu Wang, Yaochu Jin, Fellow, IEEE, Sebastian Schmitt, and Markus Olhofer

Abstract—Multi-objective optimization problems whose objec-
tives have different evaluation costs are commonly seen in the
real world. Such problems are now known as multi-objective opti-
mization problems with heterogeneous objectives (HE-MOPs). So
far, however, only a few studies have been reported to address
HE-MOPs, and most of them focus on bi-objective problems
with one fast objective and one slow objective. In this work,
we aim to deal with HE-MOPs having more than two black-
box and heterogeneous objectives. To this end, we develop a
multi-objective Bayesian evolutionary optimization approach to
HE-MOPs by exploiting the different data sets on the cheap
and expensive objectives in HE-MOPs to alleviate the search
bias caused by the heterogeneous evaluation costs for evaluating
different objectives. To make the best use of two different training
data sets, one with solutions evaluated on all objectives and
the other with those only evaluated on the fast objectives, two
separate Gaussian process models are constructed. In addition, a
new acquisition function that mitigates search bias towards the
fast objectives is suggested, thereby achieving a balance between
convergence and diversity. We demonstrate the effectiveness of
the proposed algorithm by testing it on widely used multi-/many-
objective benchmark problems whose objectives are assumed to
be heterogeneously expensive.

Index Terms—Multi/many-objective optimization, different
evaluation costs, surrogate-assisted evolutionary algorithm,
Bayesian optimization.

I. INTRODUCTION

SURROGATE-ASSISTED evolutionary algorithms
(SAEAs) are powerful tools for optimizing

computationally expensive multi-objective problems (MOPs),
where several conflicting objective functions must be
simultaneously optimized and the evaluations of the objectives
are highly time-consuming or costly. While conventional
multi-objective evolutionary algorithms (MOEAs) assume that
each candidate solution can be accurately evaluated, SAEAs
typically construct computationally efficient surrogate models
to approximate the expensive real objective functions, and
then the surrogates are used together with the expensive real
objective functions to guide the evolutionary optimization.
Alongside the choice of surrogate model, a model management
strategy that determines which candidate solutions are
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evaluated using the expensive objective functions is pivotal
for the success of an SAEA [1]–[3]. Various classification
or regression models are commonly used as surrogates in
SAEAs, including support vector machines [4], radial basis
function networks [5], feedforward neural networks [6], and
Gaussian processes (GPs), also known as Kriging which is
a special case of GPs [7], [8]. Among them, the GP is a
popular choice for modelling expensive objective functions
due to its ability of capturing the model’s beliefs over
the unknown objective function, providing both estimated
objective values and the uncertainty of the estimations. The
estimations provided by GPs can be utilized to design an
acquisition function to select the next new data point to
query (i.e., to evaluate the solution using the real objective
functions), guiding the search of the optimum. An SAEA with
a GP as the surrogate model and an acquisition function for
model management is known as Bayesian optimization [9].
Bayesian optimization has become popular and well-known in
engineering since Jones et al. [10] introduced Efficient Global
Optimization (EGO), which employs expected improvement
(EI) as the acquisition function. The past decade has witnessed
a rapid development of Bayesian optimization, including
various new acquisition functions and various real-world
applications, and Bayesian optimization algorithms have
exhibited promising performance in many studies [11].

SAEAs typically assume that the computational complex-
ities of all objective functions are similar, which enables
the evaluation of different objective functions of a candidate
solution to be completed at the same time. Consequently, the
selection operator of an MOEA can be conducted and the
evolutionary search can proceed to the next generation. This
assumption, however, can be violated in practice, e.g., different
computationally expensive objective functions in an expensive
MOP are of varying computational complexities: the evalu-
ation of aerodynamic and structural mechanics performance
of an airplane wing design or a car shape involves compu-
tationally intensive computational fluid dynamics (CFD) and
finite element analysis simulations, where several hours of
evaluation time are typical for a single fitness evaluation.
Additionally, some types of evaluations can be an order of
magnitude slower than others, for example, crashworthiness
assessment is much more resource- and time-consuming than
CFD simulations. Such MOPs exhibit so-called heterogeneous
objectives [12] and, in particular, we consider heterogeneously
expensive MOPs (HE-MOPs) in this paper, where non-uniform
evaluation times in expensive MOPs give rise to the hetero-
geneity.

Most recently, new MOEAs have been proposed to effec-
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tively address HE-MOPs. Most of the algorithms, however, are
limited to considering a class of bi-objective HE-MOPs having
one computationally cheap (fast) objective function f c and one
computationally expensive objective function fe (also called
delayed or slow objective). Existing methods for handling HE-
MOPs can be roughly categorized into two groups, i.e., non-
surrogate based and surrogate based methods, which are briefly
reviewed below.

Non-surrogate based methods: Allmendinger et al. [13]
first introduced HE-MOPs and proposed a ranking-based
MOEA to allow solutions with missing objective function
values caused by fe to guide the search. Three strategies
are developed to generate a pseudovalue for filling a missing
objective value: 1) drawing a random pseudovalue from the in-
terval of the minimum and maximum objective values obtained
so far; 2) adding noise to the value of fe associated with a
randomly selected solution; 3) inheriting the delayed objective
value of the nearest neighbor. Subsequently, new selection
strategies are proposed based on the ranking subject to missing
objective values. In a follow-up work by Allmendinger et
al. [2], MOPs with non-uniform latencies are defined more
formally based on the framework of MOEAs, and three general
schemes are proposed to handle heterogeneous objectives,
including Waiting, Fast-first and Interleaving schemes. While
Waiting directly applies an MOEA to HE-MOPs by waiting for
the completion of fitness evaluations of the delayed objective,
Fast-first employs a single-objective evolutionary algorithm
to consume the additional fitness evaluations available for
f c during the waiting of expensive evaluations, maximizing
the use of available cheap evaluations. Unlike Fast-first, more
elaborated strategies are introduced in Interleaving schemes
(i.e. brood and speculative interleaving) to utilize the limited
evaluations by integrating the search results of each objective.
Although the non-surrogate based methods shed light on
possible directions for handling HE-MOPs, a major remaining
issue is that the obtained solutions may be still far from
Pareto optimal due to the limited evaluation budget available
in expensive MOPs. In addition, how well they can scale to
more complex problem settings with more objectives has not
been explored.

Surrogate based methods: More recently SAEAs have
been extended to HE-MOPs, which is motivated by the fact
that SAEAs have emerged as powerful methods for the opti-
mization of MOPs with expensive evaluations. Chugh et al.
[14] proposed a heterogeneous Kriging-assisted evolutionary
algorithm, called HK-RVEA, to make use of the heterogeneity
within the SAEA framework. Similar to Interleaving schemes,
HK-RVEA adopted a single-objective evolutionary algorithm
(SOEA) and genetic operators to generate solutions for cheap
evaluations available when the initial population and the new
samples are submitted for evaluations on both objectives,
respectively. To make use of the additional evaluations on f c,
Wang et al. [15] developed a parameter-based transfer learning
strategy based on a GP-assisted evolutionary algorithm (T-
SAEA). In T-SAEA, common decision variables related to
both f c and fe are determined first using a filter-based
feature selection, then the corresponding parameters in the GP
models can be shared, thereby improving the quality of the

GP surrogate for fe. However, the performance of T-SAEA
degrades when the delay length becomes large. Moreover,
the performance of T-SAEA depends on the selected pivot
features by the filter-based feature selection. In a follow-up
work, Wang et al. [16] proposed an instance-based transfer
learning method (Tr-SAEA) to address the heterogeneous data
in bi-objective problems. Domain adaptation techniques are
adopted to generate synthetic samples for fe, and a GP-
based co-training method is introduced to augment the training
data for surrogate models of fe using the unlabeled synthetic
data. Unfortunately, Tr-SAEA only learns the mapping in the
objective space and requires an additional optimization method
to obtain the corresponding solutions in the search space.
It is well-known that there exists a functional relationship
between fe and f c (usually a trade-off relation) for solutions
on the Pareto front. Hence, in [17] a co-surrogate is adopted
to model the relationship between the objective functions.
Subsequently, transferable instances are identified from the
search of f c to speed up the optimization of fe. Interestingly,
trust region methods, instead of evolutionary algorithms, with
the use of surrogates have also been successfully applied to
HE-MOPs. For example, multi-objective heterogeneous trust
region algorithms [18], [19] are proposed to apply a modified
trust region algorithm with quadratic surrogate models to deal
with heterogeneity. While HK-RVEA, T-SAEA and Tr-SAEA
are developed to tackle bi-objective problems with heteroge-
neous objectives, multi-objective heterogeneous trust region
algorithms are easily scalable to any number of objectives;
however, the multi-objective heterogeneous trust region algo-
rithms hinges on strong assumptions: the expensive objective
functions are black-box and twice continuously differentiable,
and the cheap ones are given analytically and derivatives are
easily available [18], [19]. To address the scalability issue in
handling HE-MOPs with limited evaluation budgets, this work
extends SAEAs to HE-MOPs with more general and more
practical problem settings, i.e., HE-MOPs with more than
three objectives (called HE-many-objective problems, HE-
MaOPs) and different combinations of computationally cheap
and expensive objectives. We propose an MOEA to reduce
the search bias resulting from the heterogeneous computational
complexities of the objectives and limit the computational time
for training GP models with an increased amount of data on the
cheap objectives. To this end, an ensemble surrogate consisting
of two GPs is proposed, one trained only using the offline data
sampled before optimization starts and the other constantly
updated using newly sampled data during the optimization. In
addition, a new acquisition function that penalizes search bias
towards the cheap objectives is designed.

The key contributions of the proposed search bias penalized
BO, termed as SBP-BO, can be summarized as follows:

1) To make use of the different amount of available data
evaluated on cheap and expensive objectives, an ensemble
consisting of two GPs is constructed for each cheap
objective, while one GP is used to approximate each
expensive objective. Before optimization starts, while the
initial population is evaluated on all objective functions,
the cheap objectives can be explored using a single-
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objective optimization algorithm, resulting in abundant
extra solutions on the cheap objectives. Hence, for each
cheap objective, one GP is trained with the solutions
evaluated on all objectives, while the other is trained with
the data only evaluated on cheap objectives during the
initialization. Correspondingly, the former is re-trained
with a selected subset of the offline data and new data
sampled during the optimization, while the latter remains
unchanged. For each expensive objective, the GP is
always trained and updated with solutions evaluated on
all objectives. This way, the prediction performance of the
surrogate can be enhanced, while the computational cost
is limited when the amount of data of the fast objectives
grows.

2) To alleviate the search bias towards the fast objectives
and achieve a good balance between the exploitation and
exploration, a new acquisition function is proposed. The
proposed acquisition function can not only evaluate the
quality of a solution in terms of convergence and diver-
sity, but also promotes the exploration on the expensive
objectives.

The rest of paper is organized as follows. Section II provides
a problem description, followed by an introduction to multi-
objective Bayesian optimization including GPs and acquisition
functions. Then, the proposed SBP-BO is introduced in Sec-
tion III. Section IV provides details about the experimental
settings and Section V presents the experimental results to
demonstrate the effectiveness of SBP-BO. Finally, we draw
conclusions and discuss future research.

II. BACKGROUND

A. Problem Description

Before we tackle the challenges posed by the presence
of computationally heterogeneous objectives, we present the
problem description at first. We consider expensive multi-
and many-objective optimization problems with heterogeneous
objectives (HE-MOPs and HE-MaOPs) in the following form:

minx f(x) = (f1(x), f2(x), . . . , fm(x))
s.t. x ∈ X (1)

where x = (x1, x2, · · · , xd) is the decision vector with d
decision variables, X denotes the decision space, the objective
vector f consists of m (m > 2) objectives and for MaOPs
the number of objectives m is larger than 3. The evaluation
time of each objective is denoted by t = (t1, t2, · · · , tm),
where we assume the objectives are ordered in terms of
their computational complexity, ranked from the fastest with
i = 1 to the slowest i = m, i.e. t1 ≤ t2 ≤ · · · ≤ tm.
The objective functions are black-boxes that can be evaluated
by either time-consuming numerical simulations, or costly
physical experiments. Building surrogate models based on the
data collected via numerical simulations or experiments has
been shown to be an efficient approach to such black-box
expensive optimization problems [3]. In this work, we assume
that the evaluation of each objective function can be done in
parallel, and the computation time for building surrogates and
applying the genetic operators of the evolutionary algorithm

is negligible compared to that for evaluating the true objective
functions. Therefore, we characterize the heterogeneity of the
objectives by the number of affordable evaluations of an
objective fi relative to the slowest objective, fm, which can
be calculated given the evaluation time as the ratio ri = b tmti c
[2], [12]. Here, b.c denotes the floor operation.

For convenience, we introduce a notation to divide the m
objectives into two groups based on the value of ri. The i-th
objective is called cheap, denoted as f c, if ri > rthres; the
objective is called expensive, denoted as fe, if ri ≤ rthres,
where rthres is a threshold separating the cheap objectives
from expensive objectives. For real-world problems that have
a natural separation between cheap and expensive objectives
[20], [21], the threshold can be defined straightforwardly. In
case there is no intuitive separation between cheap and expen-
sive objectives, the threshold can be defined according to the
user’s preference. It should be pointed out that the partitioning
of the objectives has no direct influence on the effectiveness of
the proposed algorithm, which does not make any assumptions
on the ratios. Together with the idea of constructing surrogates
for all objectives, this makes the proposed algorithm generic
and applicable to a wide range of problems.

B. Multi-objective Bayesian Optimization

Multi-objective Bayesian optimization, an extension of
Bayesian optimization to MOPs, has been successfully ap-
plied to simultaneously optimizing expensive black-box multi-
objective problems [7], [22]–[24]. Multi-objective Bayesian
optimization aims to perform a limited number of objective
evaluations to identify a set of non-dominated solutions using
an MOEA. Therefore, multi-objective Bayesian optimization
typically first trains a Gaussian process using data collected
from the previous evaluations to approximate each objective
function of an MOP. A brief introduction to GPs is presented
in Section I in the Supplementary material. An acquisition
function is then adopted to determine where in the decision
space to sample in the next by balancing exploration and
exploitation. Based on the way in which Bayesian optimization
and evolutionary algorithms work together, multi-objective
Bayesian optimization can be further divided into two groups,
evolutionary Bayesian optimization (EBO) and Bayesian evo-
lutionary optimization (BEO) [25]. In BEO the evolutionary
algorithm is the basic framework where the acquisition func-
tion is adopted as a criterion for model management, while in
EBO Bayesian optimization is the basic framework in which
the acquisition function is optimized using an evolutionary
algorithm. In the following, we will briefly review the existing
work on multi-objective Bayesian optimization.

A straightforward way to address expensive MOPs using
Bayesian optimization is to decompose an MOP into multiple
single-objective problems, so that existing acquisition func-
tions for single-objective optimization can be directly applied
to MOPs. The combination of scalarization and evolutionary
algorithms is a prominent approach in this line of research.
In the work of Knowles [26], a vector of objective values is
converted into a scalar value using the Tchebycheff scalariza-
tion function, so that the standard EI can be adopted as the
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acquisition function when optimizing MOPs. Similarly, some
decomposition-based MOEAs (e.g., MOEA/D [27] and RVEA
[28]) that decompose an MOP into a set of single-objective
subproblems, have been extended to address expensive MOPs
with GPs for function approximation and the EI as the acquisi-
tion function [7], [29]. Wang et al. [8] employed RVEA as the
optimizer and proposed an adaptive acquisition function based
on lower confidence bound to dynamically tune the weights of
the uncertainty and the predicted mean fitness value according
to the search dynamics.

Quality indicators for a non-dominated solution set (per-
formance metrics) were originally developed to assess and
compare the quality of solution sets (rather than a single
solution) obtained by different algorithms [30]. Interestingly,
some quality indicators have been employed as a scalar
measure for assessing the contribution of single solutions,
reducing an MOP to a single-objective optimization problem.
Various multi-objective Bayesian optimization methods with
extended acquisition functions based on performance indi-
cators have been developed, among which the hypervolume
(HV) is the most commonly used. An early and popular
performance indicator based algorithm is S-Metric-Selection-
based Efficient Global Optimization (SMS-EGO) [31], which
is based on the S metric or HV metric [32]. The combination
of the EI and HV, which is known as Expected hypervolume
improvement (EHVI), is more commonly seen in the context
of expensive MOPs. Arguably, EHVI was first introduced in
[33] to provide a scalar measure for improvement for pre-
screening solutions in SAEAs, and then became popular as a
treatment of expensive optimization with multiple objectives
[34], [35].

Given the popularity of information theoretic approaches
to single-objective Bayesian optimization, it is not surprising
that there have been ample extensions of information-based
acquisition functions for tackling expensive MOPs based on
the information theory. For example, predictive entropy search
[36] has been extended to MOPs by maximally reducing
the entropy of the posterior distribution over the Pareto set,
called PESMO; however, it is computationally expensive to
approximate and optimize PESMO. Belakaria et al. [23] devel-
oped a max-value entropy search for multi-objective Bayesian
optimization to reduce the computational burden incurred by
the optimization of information-theoretic acquisition functions.
A subsequent work is the extension of the output space entropy
based acquisition function in the context of MOPs, known as
MESMO [23]. Empirical results show that MESMO is more
efficient than PESMO. However, MESMO fails to capture
the trade-off relations between objectives for MOPs where
no points in the Pareto front are near the maximum of each
axis [22]. To address this issue, Suzuki at al. [22] proposed a
Pareto-frontier entropy search (PFES) that considers the entire
Pareto front.

In this work, the proposed acquisition function is based
on the adaptive acquisition function AFA [8] to evaluate the
quality of a solution, owing to its computational efficiency and
promising performance on MOPs. Considering an m-objective
minimization problem {fi(x)}mi=1, the predictions of a candi-
date solution x is derived from the GP of each objective. The

vectors of the predicted mean and variance of x are denoted
as σ(x) = {σi(x)}mi=1 and µ(x) = {µi(x)}mi=1, respectively.
The adaptive acquisition function for the candidate solution x
is defined as

AFA(x) = (1−α) · (µ(x)./µmax) +α · (σ(x)./σmax) (2)

where
α = −0.5 · cos

( FE

FEmax
· π
)

+ 0.5 (3)

is an adaptation parameter defined by a cosine function. ‘./’
denotes element-by-element division for two vectors of the
same size. FE and FEmax denote the current and maximum
number of real objective function evaluations; µmax and σmax
represent the maximum values of the mean and variance values
provided by GPs on the current population. Hence, both the
predicted objective value and the uncertainty are normalized
to [0, 1]. Note that AFA(x) is a vector with a length of m
and minimised by an MOEA. Even though the formulation
of AFA(x) looks similar to lower confidence bound [37], the
different sign in front of the term proportional to the variance
makes a big difference. While the lower confidence bound
tries to balance exploration and exploitation by maximising the
uncertainty and at the same time minimising the mean value,
the motivation behind AFA(x) is different. The AFA(x)
attempts to achieve relatively fast convergence in the early
stage by assigning a large weight to the mean value. As the
optimization progresses, the contribution of the uncertainty is
increased in the acquisition function, which makes regions
of the search space with high variance less attractive for
the search. Therefore, an even more exploitative search is
achieved by selecting samples with minimized uncertainty. The
explorational aspect of the search is realized by the multi-
objective nature of the selection operator in the MOEA, and
a set of evenly distributed and well converged solutions will
be realized.

III. PROPOSED ALGORITHM

In this section, the proposed search bias penalized Bayesian
optimization (SBP-BO) algorithm for solving HE-MOPs and
HE-MaOPs is introduced. Consequently, SBP-BO has two
main components. An ensemble surrogate to approximate
the cheap objective functions, and a search bias penalized
acquisition function to select new samples considering the
impact of the heterogeneous evaluation time. In the following,
we will introduce the notations and the framework step by
step, and then present the details of the two key components.

A. Basic Ideas and the Overall Framework

The overall framework of SBP-BO is presented in Fig. 1.
The main steps of the proposed algorithm are as follows, the
pseudo code containing more details is given in Algorithm 1:
• Step 1: Initialization. An initial population P with n

individuals is evaluated on m real objective functions
using Latin Hypercube sampling (LHS) that produces
the offline data set D = (P,YP). During the evalu-
ation of the expensive objectives, each cheap objective
f cj , j = 1, · · · , p can be evaluated n · rj times. This is
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Fig. 1. The overall framework of SBP-BO.

done by using a single-objective evolutionary algorithm
to optimize each objective f cj , and the corresponding data
is saved as Dc′

j .
• Step 2: Initial construction of GP models.

SBP-BO constructs Gaussian processes GP =
[GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ] for each objective
using the data D evaluated on all objectives. For each
cheap objective f cj , j = 1, · · · , p, an extra Gaussian
process GP c

′

j is trained on the additional data set Dc′

j ,
allowing us to construct an ensemble with two members
GP cj and GP c

′

j .
• Step 3: Selection of new samples. Similar to the standard

GP-assisted SAEA, SBP-BO adopts a baseline MOEA to
optimize the HE-MOP/HE-MaOP for a certain number
of generations, in which the ensemble surrogate predicts
the value of each cheap objective f cj , j = 1, · · · , p for
the candidate solutions, while GP ei predicts the value of
the expensive objectives fei , i = 1, · · · , q. In our case, the
reference vector guided evolutionary algorithm (RVEA)
[28] is adopted as the baseline MOEA, where a reference
vector guided selection is introduced to select the next
generation according to the angle-penalized distance.
Subsequently, all individuals in the optimized population
are evaluated by the proposed acquisition function. Again,
the reference vector guided selection is employed to
identify a set of promising solutions, in which u new
query points X and u · rj−u additional query points Xa

j

are randomly selected to be evaluated on all objectives
and on cheap objectives f cj , respectively. Consequently,
the newly evaluated solutions X are added to dataset D.

• Step 4: Update of GP models. SBP-BO follows a strategy
used in [5], [26] to manage the training data: A pre-
defined maximum number L of training data is set to
11d − 1 + 25 [26], where d is the number of decision
variables. When the number of data samples in D is
less than L, e.g., in the beginning of the optimization,
all solutions in D are used to train the GP models, i.e.

Algorithm 1 The framework of SBP-BO
Input: FEe

max: the maximum number of the expensive objective function
evaluations; r: the ratio of the evaluation times between the expensive
and cheap objectives; u: the number of new samples for updating the GP
models; wmax: the maximum number of generations before updating GP
models;

Output: Optimal solutions in D;
1: Initialization: Use the Latin Hybercube Sampling method to sample

an initial population P ; P is evaluated on all objective functions,
obtaining the objective values YP ; set D = (P ,YP ) and train Gaussian
processes GP = [GP c

1 , · · · , GP c
p , GP e

1 , · · · , GP e
q ] for each objective

using D that evaluated on all objectives; run an SOEA to optimize
fc
j , j = 1, · · · , p and save data in Dc′

j , then GP c′
j for each cheap

objective fc
j is trained on Dc′

j ; set FE = |D|, w = 1 and Niter = 1.
2: while FEe 6 FEe

max do
3: //Using the surrogate in the RVEA//
4: Create the initial population;
5: while w 6 wmax do
6: Generate offspring using the simulated binary crossover and

polynomial mutation;
7: Use the ensemble to predict cheap objective values and the

GP e
1 , · · · , GP e

q to predict the expensive objective values on the com-
bined population;

8: Use the reference vector guided selection to select the next
generation;

9: Perform the reference-vector-adaptation;
10: w = w + 1;
11: end while
12: Use the proposed acquisition function to evaluate the optimized

solutions found by RVEA;
13: Use the reference vector guided selection to determine u new solutions

X and u · rj − u additional new solutions Xa
j , j = 1, · · · , p to be

evaluated on all objectives and on each fc
j , j = 1, · · · , p, respectively.

Consequently, the newly solutions are saved in the corresponding datasets
Dnew = (X,Y ) and Da

j = (Xa
j ,Y

c
j ), respectively;

14: Add Dnew to D and select training data Dt from data set D
evaluated on all objectives;

15: GP = [GP c
1 , · · · , GP c

p , GP e
1 , · · · , GP e

q ] is updated: GP e
i , i =

1, · · · , q is updated with Dt, while GP c
j , j = 1, · · · , p is updated with

Dt and Da
j .

16: Update FEe = FEe + u, Niter = Niter + 1;
17: end while
18: Return the optimized solutions;

GP = [GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ]. If D contains
more samples than L, a subset Dt will be selected
from the training data archive to limit the computation
time, where the quality of the Gaussian processes and
the optimization performance are considered. Since the
solutions in D have been evaluated on all objectives, ex-
isting training data management methods for GP-assisted
MOEAs, such as K-RVEA and MOEA/D-EGO, also can
be used. While the GPs for the slow objectives GP ei ,
i = 1, · · · , q are updated with the selected L training
data samples Dt, each GP cj , j = 1, · · · , p is trained
using both Dt and the extra new samples Xa

j . Note
that GP c

′

j , j = 1, · · · , p remain unchanged during the
optimization, which are trained once with the offline data
generated in Step 1 only.

• Repeat Step 3 and Step 4 until the allowed computation
budget is exhausted.

B. Ensemble Surrogate for Cheap Objectives

As described above, an ensemble surrogate including two
GP models, GP cj and GP c

′

j , are constructed for each cheap
objective f cj , j = 1, · · · , p. The predicted mean value of f cj



6

on a new sampled solution x provided by the ensemble is a
weighted combination of the predictions of GP cj and GP c

′

j .
Motivated by product of experts [38], confident predictions
should have more influence on the combined prediction than
the less confident ones. Hence, the weight is calculated based
on the level of uncertainty of each GP’s prediction, and the
ensemble prediction is

µcj(x) = αj µGP c
j
(x) + βj µGP c′

j
(x)

αj =
σGP c′

j
(x)

σGP c′
j

(x) + σGP c
j
(x)

βj =
σGP c

j
(x)

σGP c′
j

(x) + σGP c
j
(x)

(4)

where µGP c
j

and σGP c
j

are the predictions of GP cj , and
µGP c′

j
and σGP c′

j
are the predictions of GP c

′

j . As men-
tioned earlier, training two separate GP models on D and
Dc′ makes the update of the GP models more efficient and
computationally more effective. Specifically, while GP =
[GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ] are updated with newly
sampled data selected according to the acquisition function,
we do not re-train GP c

′
= [GP c

′

1 , · · · , GP c
′

p ] during the
optimization. Moreover, the method for selecting training sam-
ples used to retrain GP = [GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ],
as presented in Step 4, limits the maximum training time
while allowing for building an effective model using relevant
samples.

This training scheme makes it possible to adopt an ex-
isting strategy for selecting training data to update GP =
[GP c1 , · · · , GP cp , GP e1 , · · · , GP eq ] in the context of HE-MOPs.
Specifically, the number of training data is typically capped to
limit the computational complexity of constructing the surro-
gates, which is a common practice in GP-based evolutionary
algorithms [5], [7], [26]. For standard MOPs, it is desirable
to select a subset so that the quality of the surrogates can be
improved as much as possible, and the resulting surrogate-
assisted search can maintain a balance between convergence
and diversity. Note that each solution is evaluated on all
objectives in standard MOPs, so that the balance between con-
vergence and diversity can be estimated by selection criteria
in MOEAs, such as nondominated sorting and the crowding
distance. However, this is not the case for HE-MOPs since
many solutions are partially evaluated. Consequently, it is
difficult to select a subset that can balance convergence and
diversity. To tackle this challenge, we train two GPs (GP cj and
GP c

′

j ) using solutions evaluated on all objectives and solutions
evaluated on fast objectives, respectively. Hence, the existing
strategies for selecting training data [5], [26] can be directly
applied to HE-MOPs as we update GP cj only.

C. Search Bias Penalized Acquisition Function

In order to alleviate the search bias towards the cheap ob-
jectives resulting from the heterogeneous evaluation times, we
propose to include a penalty term in the acquisition function
for alleviating the search bias, which prioritizes the expensive
objectives in minimizing the acquisition function. This penalty

term is multiplied by the adaptive acquisition function reported
in Eq. (2), resulting in a search bias penalized acquisition
function (AFSBP ). Having obtained the optimized population
by RVEA using the GP ensemble, the mean and variance of
the objective values of all individuals are predicted by the GP
models at first. Given a candidate solution x in the optimized
population, the proposed acquisition function can be computed
analytically as follows:

AFSBP (x, Niter) = AFA(x) ◦ SBP(x, Niter) (5)

where Niter is the current iteration number of the Bayesian
optimization loop, SBP(x, Niter) is the penalty term to be
described below in detail, AFA(x) denotes the acquisition
function of Eq. (2), and ◦ denotes component-wise mul-
tiplication. As a result, each individual in the population
can be evaluated according to AFSBP , obtaining a vector
with length m. Hence, minimising AFSBP is still a multi-
objective optimization problem, and therefore the reference
vector guided selection in RVEA is adopted in this work.

Let µ(x) = {µi}mi=1 denote the predicted mean value of the
objective vector with length m on the candidate solution x in
the optimized population, and the maximum and minimum
value of the predicted mean of the optimized population
will be identified and denoted as µmax = {µmaxi }mi=1 and
µmin =

{
µmini

}m
i=1

, respectively. In order to calculate the
penalty terms for x, first we normalize the objective vector
into the same range, i.e, [0,1]

µ̄(x) = (µ(x)− µmin)./(µmax − µmin), (6)

where again ./ indicates component-wise division. Hence,
µ̄(x) = {µ̄i}mi=1 is a vector with length m, and the cor-
responding penalty term SBP = {SBPi}mi=1 for the data
sample x is also defined as a vector including the penalty
term for each objective.

For the i-th objective, the penalty term SBPi is calculated
as

SBPi(µ̄i, Niter) = 1− π (µ̄i, Niter) (7)

where π (µ̄i, Niter) is calculated using an exponential distri-
bution function,

π (µ̄i, Niter) = λ (Niter) e
−λ(Niter)µ̄i (8)

with
λ(Niter) =

1

wiNiter + 1
, (9)

and
wi =

ri∑m
i ri

, (10)

where wi encodes the relative number of affordable evalua-
tions of objective i. This penalty is intuitively motivated by
the exponential distribution in modeling situations in which
certain events occur at a constant probability per unit length
[39]. Due to the fact that fast objectives can be explored
more often than slow objectives in HE-MOPs, we construct
different exponential distribution functions π (µ̄i, Niter) for
each objective function based on the evaluation times of
different objectives to alleviate search biases. For example,
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the exploration on a fast objective is expected to occur at a
lower probability than that on slow objectives. This is achieved
by generating different λ(Niter) values with respect to the
evaluation times and the number of iterations. Hence, a large
number of affordable function evaluations, i.e. a larger value
of ri, of an objective function fi will result in a higher value
of wi, and accordingly a smaller value of λ. Since 0 ≤ µ̄i ≤ 1
and 0 ≤ λ ≤ 1, this leads to more uniformly distributed
and smaller values for π and therefore results in a larger
penalty value on the corresponding fast objectives. Therefore,
the acquisition function will prefer new samples that not
only balance the local exploitation and global exploration, but
also reduce the search bias by prioritizing the exploration for
selecting slow functions. Similarly, as optimization progresses
and Niter increases, the penalty term will approach a value of
1 for all objectives, gradually reducing the disadvantage over
the fast objectives in the acquisition function.

To take a closer look at the proposed SBP, we consider an
example HE-MOP with r = (5, 1) having a cheap and an
expensive objective functions (denoted as f c and fe, respec-
tively). Contour plots of h1(Y , Niter) = SBPc(Y c,Niter)

SBPe(Y e,Niter)
and

h2(Y , Niter) = SBPc(Y
c, Niter) + SBPe(Y

e, Niter) with
respect to f c, fe and Niter are given in Fig. 2. For Niter = 1
shown in Fig. 2(a), the penalty on fe is always smaller
than that on f c. This indicates that including such a penalty
term into an acquisition function will guide the selection
of new samples towards exploring the expensive objective
function. Hence, the proposed algorithm will encourage the
search towards fe and mitigate the intrinsic search bias due
to heterogeneous objectives. For Niter = 1 shown in Fig. 2(b),
the search bias penalty varies a lot in different regions of the
objective space: there is a significant difference with respect
to the penalty between the regions with smaller objective
values and the regions with lager objective values. As the
optimization proceeds, the difference between the cheap and
expensive objectives will gradually shrink, as illustrated in Fig.
2(c) and 2(d), indicating a decreasing influence on the search
bias. Finally, the penalty is almost equal across the whole
objective space, as shown in Figs. 2(e) and 2(f). This allows
SBP-BO to find out a set of satisfying solutions that cover the
whole Pareto front.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

1) Test Problems: Although there are no test problems
available that have inherently heterogeneous objectives, any
existing multi-/many-objective benchmark problem can be
adopted as HE-MOPs/MaOPs, assuming the evaluation times
of the objectives are substantially different. Therefore, we
have selected three widely used test suites of scalable multi-
objective test problems, i.e., the DTLZ [40] and WFG [41]
test suites, and extend them to simulate HE-MOPs and HE-
MaOPs. For all the test instances used in the experimental
studies, the number of decision variables is set to 10.

2) Performance Indicators: The modified inverted gen-
erational distance (IGD) [30], the IGD+ indicator [42], is
adopted as the performance indicator due to its computational

(a) Niter=1 (b) Niter=1

(c) Niter=10 (d) Niter=10

(e) Niter=100 (f) Niter=100

Fig. 2. Contour plots of h1(Y , Niter) =
SBPc(Y

c,Niter)
SBPe(Y e,Niter)

((a), (c) and (e))
and h2(Y , Niter) = SBPc(Y c, Niter) + SBPe(Y e, Niter) ((b), (d) and
(f)) with r = (5, 1).

efficiency and precise evaluation of the quality of the obtained
non-dominated solutions in terms of convergence and diversity.
Let Z =

{
z1, z2, . . . ,z|Z|

}
be a given reference solution

set, where |Z| is the number of reference solutions, and
A =

{
a1,a2, . . . ,a|A|

}
be an obtained approximation to the

Pareto front, IGD+ is calculated as follows:

IGD+(A,Z) =
1

|Z|

|Z|∑
j=1

min
ai∈A

d+ (ai, zj) . (11)

The distance d+ is the distance between a reference solu-
tion z = (z1, z2, · · · , zm) and an objective vector a =
(a1, · · · , am). Here, m is the number of objectives. d+ is
defined as:

d+(a, z) =

√√√√ m∑
k=1

(max {zk − ak, 0})2 (12)

The smaller the IGD+ value is, the better the quality of the
non-dominated solution set.

Each algorithm under comparison is performed on each
benchmark problem for 20 independent runs. The Wilcoxon
rank sum test at a significance level of 0.05 is adopted to
compare the results obtained by SBP-BO and other algorithms
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under comparison. To reduce the probability of making a type
I error, the Holm-Bonferroni correction is adopted. The cor-
responding statistical results are presented in Tables I-VI and
Tables SI-SVI in the Supplementary material, where symbols
”(+)”, ”(–)”, and ”(≈)” indicate that the compared algorithm
performs significantly better than, significantly worse than,
or as well as the proposed algorithm, respectively. Note that
we use notation ‘S’ to indicate tables and figures in the
Supplementary materials in order to avoid confusion.

3) Algorithms Under Comparison: To the best of authors
knowledge, SBP-BO is the first algorithm designed for ad-
dressing HE-MOPs and HE-MaOPs. For comparison, one
of state-of-the-art heterogeneity-handling methods, HK-RVEA
[14], is slightly adapted to the proposed problem setting.
Specifically, the SOEA in HK-RVEA optimizes each cheap
objective using the different number of additional evaluations
in the initialization. The genetic operators are used to generate
additional samples for each cheap objectives while waiting
for the expensive evaluation on new samples.As existing
surrogate-assisted heterogeneity handling methods, e.g., T-
SAEA [15], Tr-SAEA [16] and TC-SAEA [17], cannot address
HE-MOPs or HE-MaOPs with more than two objectives, we
compared them with the proposed algorithm on heterogeneous
bi-objective optimization problems reported in [17]. Note that
we did not include non-surrogate assisted algorithms for two
reasons: 1) it has been shown that surrogate-assisted methods
outperform non-surrogate assisted methods; 2) most existing
non-surrogate assisted methods work only for bi-objective
problems with one fast and one slow objective. Since SBP-BO
is based on GP assisted RVEA, a representative GP-assisted
MOEA, K-RVEA [7], is also adopted as a surrogate assisted
Waiting method to examine the performance of the proposed
algorithm.

To further investigate the efficacy of the proposed surrogate
ensemble and the search bias penalized acquisition function,
we perform the following ablation studies:
• Ablations on the use of additional data of the fast ob-

jectives: In order to confirm that the GP ensemble for the
fast objectives contributes to performance improvement,
we consider several variants of SBP-BO for utilizing the
extra data: i) SBP-BO-R: to limit the computational time
for re-training GPs, a fixed number of evaluated samples
are randomly selected from all available data to train a
GP for each objective; ii) SBP-BO-C: to effectively re-
train a GP for each objective, SBP-BO-C first clusters all
available data in the decision space, and then selects one
sample from each cluster, constructing a small yet diverse
subset. iii) SBP-NoGPc: to investigate whether the use
of surrogate models on the relatively cheap objectives is
useful or not, SBP-NoGPc assumes that the evaluation
of the relatively cheap objectives f cj , j = 1, · · · , p can
be calculated instantly. Hence, there is no surrogate con-
structed on the cheap objectives, and the cheap objective
values in line 7 in Algorithm 1 is provided by the true
cheap evaluation.

• Ablations on the proposed SBP: To test the effect of
the proposed SBP on the optimization of HE-MOPs/HE-
MaOPs, we remove the SBP from SBP-BO. Therefore,

the acquisition function is degrades into the adaptive ac-
quisition function (AAF), introducing the corresponding
variant, BO-AAF.

4) Parameter settings: We use RVEA as the multi-objective
optimizer and a real-coded genetic algorithm that uses the
simulated binary crossover and polynomial mutation is em-
ployed as the single-objective optimizer. In addition, we use
the DACE toolbox [43] to construct the GP models.

All experiments are performed in MATLAB R2019a on
an Intel Core i7-8750H with 2.21 GHz CPU. The parameter
settings used in the experiments are summarized as follows:

• The initial population size for all the compared algorithms
is set to 11d− 1 [26] where d is the number of decision
variables. The initial population is generated by LHS.

• The maximum number of generations before updating the
GPs (wmax) is set to 20.

• The number of new solutions selected for evaluations on
all objectives at each BO iteration is set to u = 3.

• The maximum number of function evaluations for the
slow objectives (FEemax) is set to 200 for heterogeneous
bi-objective problems, and 300 for HE-MOPs/MaOPs.

B. Experimental Results

1) Comparison with state-of-the-art methods: Each algo-
rithm is performed on the test problems with m = 3, 5, 10
objectives, respectively. For simplicity, only one slow objec-
tive is included while all other objectives are considered as
fast objectives with the same evaluation time, resulting in
r = (rc, rc, · · · , rc, 1). Tables I-II present the experimental
results in terms of the IGD+ values obtained on each test
instance with rc = 5 and rc = 10, respectively. Hence, the
threshold rthres is set to 1 for simplicity, and we will test
different r and rthres in the next subsection.

Firstly, the results presented in Table I show that the pro-
posed SBP-BO significantly outperforms K-RVEA and HK-
RVEA on 27 and 29 out of 48 test instances, respectively,
indicating the effectiveness of the proposed strategies for
handling HE-MOPs/HE-MaOPs. Secondly, it is interesting to
see that both K-RVEA and HK-RVEA show significantly
better performance than SBP-BO on DTLZ7. A possible
explanation for this might be that in K-RVEA and HK-RVEA
a fixed reference set is used to evaluate whether diversity
or convergence should be prioritized in the selection of new
samples. In this way, the exploration can be guaranteed, so
that K-RVEA and HK-RVEA are able to account for the
disconnected Pareto front of DTLZ7. According to the results
on WFG1-WFG9 summarized in Table I, SBP-BO achieves
the best performance in terms of IGD+ metric on 20 test
instances, followed by K-RVEA with 5 best results. Note that
K-RVEA significantly outperforms the proposed algorithm on
WFG1 with m = 3 and WFG9 with m = 10. Recall that both
WFG1 and WFG9 are difficult for optimization algorithms
to achieve a good diversity. WFG1 is designed by using the
most complex transformation function to add complexity to a
underlying problem, making it hard an optimization algorithm
to converge to the true Pareto front. Similarly, WFG9 features
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a troublesome transformation function and is also a multi-
model and nonseparable problem. Lastly, by comparing K-
RVEA using the Waiting method with HK-RVEA and SBP-BO
we can confirm the effectiveness of using a GP ensemble and
the proposed acquisition function. While HK-RVEA generally
shows similar performance with RVEA, SBP-BO exhibits
better performance than RVEA on most test problems.

The results presented in Table II are consistent with those in
Table I, further supporting the benefit of using a GP ensemble
to make use of the additional data on the fast objectives and
the search bias penalized acquisition function. It is noteworthy
that with rc increasing from 5 to 10, the proposed algorithm
maintains its advantage for solving HE-MOPs and HE-MaOPs
by properly making use of the information obtained from the
optimization of the fast objectives. Note, however, that the
proposed algorithm may fail to maintain a good diversity of
the obtained solutions on some test problems, such as DTLZ7
and WFG9. Hence, although the proposed SBP acquisition
function promotes the search towards the slow objectives, but it
may lead to a poor diversity of the solutions on some problems.

To gain a deeper insight into the quality of the final solution
sets obtained by K-RVEA, HK-RVEA and SBP-BO, Figs.
3 and Figs. S1-S2 in the Supplementary materials show the
nondominated solution set with the median IGD+ value among
20 runs obtained by K-RVEA, HK-RVEA and SBP-BO on
DTLZ2, DTLZ4, WFG2 and WFG6 with m = 3, 5, 10,
respectively. Fig. 3 demonstrate that the proposed SBP-BO
shows promising performance in terms of both convergence
and diversity on the selected three-objective test problems,
compared with K-RVEA and HK-RVEA. For example, it
is clear that SBP-BO finds a better approximation of the
true Pareto front on DTLZ2 when compared with the other
algorithms, indicating its good balance between diversity and
convergence. It is worth noting that while HK-RVEA covers a
small part of the true Pareto front, SBP-BO is able to achieve
a set of well distributed solutions. This observation further
supports the advantage of the proposed SBP for reducing the
search bias towards to the cheap objectives. Regarding HE-
MaOPs, similar observations can be made, as illustrated in
Figs. S1-S2, where the solutions on the estimated Pareto front
are shown in the parallel coordinate plots. These observations
can be explained from the perspective of the use of additional
data and the reduction of search bias by the SBP acquisition
function.

To explore the performance of SBP-BO as the evolution pro-
ceeds, the IGD+ values obtained by each algorithm over the
number of real fitness evaluations (FEs) on test problems with
rc = {5, 10} and the corresponding statistically significant
differences are summarised in Tables SI-SII, respectively, in
the Supplementary materials. As can be seen from the tables,
the proposed SBP-BO shows significantly better performance
than K-RVEA on DTLZ2, WFG3, WFG5 and WFG6 with
FEe = 150, indicating the fast convergence of SBP-BO.
Although HK-RVEA shows better performance than K-RVEA,
SBP-BO can significantly outperform HK-RVEA on DTLZ2,
WFG4, WFG6 and WFG7 with FEe = 200. Subsequently,
Figs. S3-S4 plot the boxplots of the IGD+ values obtained
by each algorithm on DTLZ2, DTLZ4, WFG2 and WFG6

TABLE I
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY K-RVEA,
HK-RVEA, AND SBP-BO WITH FEe

max = 300 AND r = (rc, . . . , rc, 1)
WHERE rc = 5

Problem m K-RVEA HK-RVEA SBP-BO

3 7.88e+1 (1.16e+1) – 9.07e+1 (1.42e+1) – 5.35e+1 (2.10e+1)
5 3.96e+1 (1.21e+1) – 5.41e+1 (8.50e+0) – 2.45e+1 (8.88e+0)DTLZ1
10 3.31e-1 (1.42e-1) – 1.97e-1 (8.40e-2) ≈ 1.58e-1 (2.31e-2)

3 7.52e-2 (1.02e-2) – 5.98e-2 (1.05e-2) – 4.15e-2 (3.27e-3)
5 1.79e-1 (1.88e-2) – 1.38e-1 (9.34e-3) – 1.06e-1 (7.07e-3)DTLZ2
10 2.38e-1 (1.32e-2) – 2.73e-1 (4.02e-2) – 2.04e-1 (9.70e-3)

3 2.13e+2 (3.73e+1) ≈ 2.35e+2 (3.55e+1) – 1.72e+2 (4.57e+1)
5 1.25e+2 (3.49e+1) – 1.64e+2 (3.70e+1) – 9.17e+1 (2.53e+1)DTLZ3
10 7.96e-1 (3.52e-1) ≈ 8.05e-1 (3.58e-1) ≈ 6.12e-1 (1.48e-1)

3 2.59e-1 (7.57e-2) ≈ 3.41e-1 (1.30e-1) – 2.31e-1 (1.29e-1)
5 2.73e-1 (5.59e-2) ≈ 3.66e-1 (6.29e-2) – 2.89e-1 (9.04e-2)DTLZ4
10 2.58e-1 (1.77e-2) ≈ 2.68e-1 (3.08e-2) ≈ 2.57e-1 (2.60e-2)

3 6.76e-2 (1.15e-2) – 6.52e-2 (9.38e-3) – 3.08e-2 (2.87e-3)
5 2.90e-2 (6.77e-3) – 1.90e-2 (3.57e-3) ≈ 1.89e-2 (3.55e-3)DTLZ5
10 6.22e-3 (7.70e-4) ≈ 7.31e-3 (1.43e-3) ≈ 7.22e-3 (9.88e-4)

3 3.03e+0 (6.09e-1) ≈ 3.15e+0 (4.09e-1) ≈ 3.05e+0 (4.83e-1)
5 1.77e+0 (3.28e-1) ≈ 1.90e+0 (3.09e-1) ≈ 1.83e+0 (4.89e-1)DTLZ6
10 3.85e-2 (7.26e-3) – 2.69e-2 (8.73e-3) – 2.47e-2 (7.67e-3)

3 1.09e-1 (2.63e-2) + 6.64e-2 (1.04e-2) + 1.65e-1 (4.89e-2)
5 4.79e-1 (2.94e-1) + 3.36e-1 (7.50e-2) + 9.98e-1 (3.48e-1)DTLZ7
10 9.08e-1 (3.88e-2) + 9.36e-1 (2.65e-2) + 9.54e-1 (1.70e-1)

3 1.64e+0 (4.10e-2) + 1.74e+0 (1.15e-1) ≈ 1.76e+0 (1.34e-1)
5 2.19e+0 (7.70e-2) ≈ 2.22e+0 (8.27e-2) ≈ 2.20e+0 (6.82e-2)WFG1
10 2.81e+0 (1.32e-1) ≈ 2.81e+0 (1.26e-1) ≈ 2.79e+0 (1.46e-1)

3 2.91e-1 (2.74e-2) – 2.20e-1 (2.22e-2) – 1.80e-1 (2.81e-2)
5 3.93e-1 (6.16e-2) – 2.82e-1 (3.07e-2) – 2.10e-1 (2.89e-2)WFG2
10 3.96e-1 (1.38e-1) – 3.98e-1 (1.45e-1) – 3.11e-1 (8.55e-2)

3 4.12e-1 (5.12e-2) – 4.53e-1 (5.97e-2) – 2.10e-1 (3.02e-2)
5 4.29e-1 (8.76e-2) – 3.43e-1 (3.57e-2) ≈ 3.48e-1 (8.35e-2)WFG3
10 5.59e-1 (6.59e-2) – 5.35e-1 (7.26e-2) ≈ 5.36e-1 (7.64e-2)

3 3.92e-1 (2.82e-2) – 3.84e-1 (2.41e-2) – 3.22e-1 (2.28e-2)
5 7.73e-1 (4.30e-2) – 8.55e-1 (6.66e-2) – 7.06e-1 (3.89e-2)WFG4
10 3.25e+0 (8.96e-1) ≈ 3.45e+0 (8.52e-1) – 3.18e+0 (7.82e-1)

3 3.78e-1 (6.53e-2) ≈ 2.59e-1 (1.69e-2) ≈ 2.99e-1 (8.32e-2)
5 7.96e-1 (6.80e-2) – 7.12e-1 (3.17e-2) – 6.59e-1 (4.20e-2)WFG5
10 2.12e+0 (4.55e-1) – 1.97e+0 (4.58e-1) ≈ 1.78e+0 (3.69e-1)

3 6.77e-1 (5.71e-2) – 5.04e-1 (7.46e-2) – 4.16e-1 (8.37e-2)
5 1.18e+0 (1.41e-1) – 9.28e-1 (8.25e-2) – 7.61e-1 (8.25e-2)WFG6
10 1.29e+0 (3.37e-2) – 1.28e+0 (5.73e-2) – 1.03e+0 (2.96e-2)

3 4.98e-1 (4.06e-2) – 5.44e-1 (3.21e-2) – 4.35e-1 (4.11e-2)
5 8.74e-1 (6.09e-2) – 1.03e+0 (8.34e-2) – 7.28e-1 (4.22e-2)WFG7
10 3.49e+0 (4.68e-1) ≈ 3.63e+0 (5.24e-1) – 3.33e+0 (4.32e-1)

3 6.57e-1 (5.50e-2) – 5.64e-1 (2.90e-2) – 5.03e-1 (2.86e-2)
5 1.49e+0 (4.32e-2) – 1.40e+0 (6.33e-2) – 1.25e+0 (3.85e-2)WFG8
10 1.47e+0 (2.47e-1) ≈ 3.57e+0 (1.10e+0) – 1.58e+0 (6.99e-1)

3 5.76e-1 (7.03e-2) ≈ 5.72e-1 (1.15e-1) ≈ 5.51e-1 (1.36e-1)
5 1.13e+0 (2.54e-1) ≈ 1.31e+0 (1.95e-1) – 1.14e+0 (1.94e-1)WFG9
10 3.71e+0 (8.56e-1) + 5.16e+0 (6.40e-1) ≈ 4.69e+0 (8.73e-1)

+/–/≈ 5/27/16 3/29/16

with different number of FEs over 20 runs, confirming the fast
convergence achieved by SBO-BO. Moreover, we demonstrate
the search process of each algorithm in terms of IGD+ values
in Figs. S5-S6, where the error bars indicate the variance of
IGD+ values over 20 runs. According to Figs. S5-S6, similar
conclusion can be made.

2) Influence of different r and rthres on the optimization
performance: Each objective in an HE-MOP/HE-MaOP re-
quires a distinct period of time to be evaluated, it is there-
fore expected to test the proposed algorithm on problems
with different r = (rc1, r

c
2, · · · , rcp, re1, · · · , req), where p and

q are the number of cheap and expensive objectives. In
this subsection, the heterogeneity handling ability of SBP-
BO is tested on three-objective and ten-objective problems
with different numbers of expensive objectives (q), different
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(a) True PF (b) K-RVEA (c) HK-RVEA (d) SBP-BO

(e) True PF (f) K-RVEA (g) HK-RVEA (h) SBP-BO

(i) True PF (j) K-RVEA (k) HK-RVEA (l) SBP-BO

(m) True PF (n) K-RVEA (o) HK-RVEA (p) SBP-BO

Fig. 3. The final solution set with the median IGD+ values found by K-RVEA, HK-RVEA and SBP-BO on DTLZ2, DTLZ4, WFG2 and WFG6 problems
with m = 3 and r = (5, 5, 1).

ratios of function evaluation times between objectives (r),
and different threshold values (rthres). Firstly, SBP-BO is
examined on three-objective test functions with two sets of
r values, i.e., one set having r = (5, 5, 1), r = (7, 3, 1),
and r = (9, 1, 1), and the other having r = (15, 5, 1),
r = (10, 10, 1), and r = (19, 1, 1). The statistical results in
terms of IGD+ are presented in Tables SIII-SIV. Secondly,
ten-objective problems with r = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
and rthres = 1, 3, 5 are used to test the impact of rthres on
the optimization performance, and the statistical results are
presented in Table III. Lastly, the impact of different r is
further investigated on ten-objective problems with rthres = 3,
where r is set to r1 = (10, 8, 8, 7, 5, 4, 3, 2, 2, 1), r2 =
(10, 9, 8, 6, 3, 2, 2, 2, 1, 1), and r3 = (9, 7, 3, 3, 3, 2, 2, 2, 1, 1),

respectively. The results are summarized in Table IV.

Although it is unclear what influence the exact form of r and
the exact value of rthres will have on the optimization process,
we can make the following observations. First, the instance
with r = (9, 1, 1) will cause a strong search bias towards
the objective whose rc1 = 9 compared with r = (5, 5, 1) or
r = (7, 3, 1), making the problem more difficult to solve.
Consequently, the instance with r = (19, 1, 1) will render the
strongest search bias among all r situations for three-objective
problems studied in this work. Secondly, regarding the ten-
objective test instances, a larger rthres will result in a stronger
search bias towards the cheap objectives. Consequently, prob-
lems with rthres = 5 become more challenging to solve than
those with rthres = 1. Moreover, we have a similar expectation
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TABLE II
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY K-RVEA,
HK-RVEA, AND SBP-BO WITH FEe

max = 300 AND r = (rc, . . . , rc, 1)
WHERE rc = 10

Problem m K-RVEA HK-RVEA SBP-BO

3 7.88e+1 (1.16e+1) – 8.43e+1 (1.19e+1) – 5.44e+1 (1.63e+1)
5 3.96e+1 (1.21e+1) ≈ 4.58e+1 (7.06e+0) – 2.68e+1 (1.01e+1)DTLZ1
10 3.31e-1 (1.42e-1) – 2.26e-1 (7.29e-2) – 1.79e-1 (7.83e-2)

3 7.52e-2 (1.02e-2) – 5.17e-2 (2.82e-3) – 3.82e-2 (2.19e-3)
5 1.79e-1 (1.88e-2) – 1.35e-1 (1.06e-2) – 9.84e-2 (3.10e-3)DTLZ2
10 2.38e-1 (1.32e-2) – 2.70e-1 (3.23e-2) – 1.97e-1 (5.04e-3)

3 2.13e+2 (3.73e+1) ≈ 2.38e+2 (2.49e+1) – 1.75e+2 (4.62e+1)
5 1.25e+2 (3.49e+1) – 1.50e+2 (2.45e+1) – 7.82e+1 (2.35e+1)DTLZ3
10 7.96e-1 (3.52e-1) ≈ 9.84e-1 (4.63e-1) ≈ 7.13e-1 (2.80e-1)

3 2.59e-1 (7.57e-2) ≈ 3.28e-1 (1.29e-1) – 2.11e-1 (1.09e-1)
5 2.73e-1 (5.59e-2) ≈ 3.27e-1 (7.94e-2) ≈ 2.91e-1 (6.90e-2)DTLZ4
10 2.58e-1 (1.77e-2) ≈ 2.90e-1 (3.95e-2) – 2.43e-1 (1.47e-2)

3 6.76e-2 (1.15e-2) – 7.24e-2 (1.26e-2) – 3.38e-2 (9.19e-3)
5 2.90e-2 (6.77e-3) – 2.22e-2 (4.81e-3) ≈ 1.92e-2 (5.01e-3)DTLZ5
10 6.22e-3 (7.70e-4) ≈ 7.21e-3 (1.25e-3) ≈ 7.46e-3 (1.72e-3)

3 3.03e+0 (6.09e-1) ≈ 3.15e+0 (4.28e-1) ≈ 3.19e+0 (3.57e-1)
5 1.77e+0 (3.28e-1) ≈ 1.74e+0 (2.30e-1) ≈ 2.11e+0 (3.84e-1)DTLZ6
10 3.85e-2 (7.26e-3) – 2.63e-2 (8.52e-3) ≈ 2.60e-2 (1.06e-2)

3 1.09e-1 (2.63e-2) ≈ 6.56e-2 (5.42e-3) + 1.51e-1 (6.51e-2)
5 4.79e-1 (2.94e-1) + 3.22e-1 (4.49e-2) + 8.96e-1 (3.07e-1)DTLZ7
10 9.08e-1 (3.88e-2) + 9.29e-1 (4.40e-2) + 1.26e+0 (1.74e-1)

3 1.64e+0 (4.10e-2) + 1.86e+0 (1.33e-1) ≈ 1.81e+0 (1.79e-1)
5 2.19e+0 (7.70e-2) ≈ 2.23e+0 (1.00e-1) ≈ 2.22e+0 (1.20e-1)WFG1
10 2.81e+0 (1.32e-1) ≈ 2.85e+0 (1.14e-1) ≈ 2.80e+0 (9.46e-2)

3 2.91e-1 (2.74e-2) – 2.40e-1 (1.96e-2) – 1.59e-1 (1.46e-2)
5 3.93e-1 (6.16e-2) – 2.77e-1 (2.45e-2) – 2.01e-1 (2.42e-2)WFG2
10 3.96e-1 (1.38e-1) – 4.38e-1 (1.18e-1) – 2.29e-1 (2.21e-2)

3 4.12e-1 (5.12e-2) – 4.48e-1 (3.98e-2) – 2.11e-1 (1.88e-2)
5 4.29e-1 (8.76e-2) – 3.61e-1 (6.32e-2) ≈ 3.28e-1 (5.21e-2)WFG3
10 5.59e-1 (6.59e-2) ≈ 5.48e-1 (5.76e-2) ≈ 5.58e-1 (7.30e-2)

3 3.92e-1 (2.82e-2) – 3.55e-1 (2.13e-2) – 2.90e-1 (1.64e-2)
5 7.72e-1 (4.30e-2) ≈ 8.12e-1 (5.71e-2) – 7.15e-1 (1.11e-1)WFG4
10 3.25e+0 (8.96e-1) ≈ 3.58e+0 (1.10e+0) ≈ 3.09e+0 (1.03e+0)

3 3.78e-1 (6.53e-2) – 2.69e-1 (2.73e-2) ≈ 2.72e-1 (5.38e-2)
5 7.96e-1 (6.80e-2) ≈ 7.14e-1 (4.94e-2) ≈ 7.24e-1 (8.37e-2)WFG5
10 2.12e+0 (4.55e-1) ≈ 1.95e+0 (8.20e-1) ≈ 1.70e+0 (3.72e-1)

3 6.77e-1 (5.71e-2) – 5.21e-1 (1.03e-1) – 3.29e-1 (2.74e-2)
5 1.18e+0 (1.41e-1) – 8.86e-1 (1.03e-1) – 6.53e-1 (5.58e-2)WFG6
10 1.29e+0 (3.37e-2) – 1.30e+0 (3.55e-2) – 1.03e+0 (2.36e-2)

3 4.98e-1 (4.06e-2) – 5.31e-1 (2.92e-2) – 4.12e-1 (2.88e-2)
5 8.74e-1 (6.09e-2) – 9.51e-1 (7.23e-2) – 7.30e-1 (6.09e-2)WFG7
10 3.49e+0 (4.68e-1) ≈ 3.79e+0 (7.49e-1) ≈ 3.52e+0 (6.18e-1)

3 6.57e-1 (5.50e-2) – 5.71e-1 (4.07e-2) – 4.94e-1 (2.85e-2)
5 1.49e+0 (4.32e-2) – 1.41e+0 (5.06e-2) – 1.28e+0 (4.85e-2)WFG8
10 1.47e+0 (2.47e-1) ≈ 4.45e+0 (7.78e-1) – 1.88e+0 (7.38e-1)

3 5.76e-1 (7.03e-2) ≈ 5.81e-1 (1.00e-1) ≈ 4.89e-1 (1.38e-1)
5 1.13e+0 (2.54e-1) ≈ 1.24e+0 (1.76e-1) ≈ 1.19e+0 (2.00e-1)WFG9
10 3.71e+0 (8.56e-1) ≈ 4.84e+0 (4.41e-1) ≈ 4.66e+0 (8.77e-1)

+/–/≈ 3/23/22 3/25/20

that an optimization algorithm can achieve better performance
on ten-objective problems with a smaller q (i.e., r1) than those
with a larger one (i.e., r3).

The IGD+ values in Tables SIII-SIV achieved by HK-
RVEA and the proposed algorithm accord with our earlier
observations that compared with HK-RVEA, SBP-BO shows
similar or significantly better performance on all test problems
except DTLZ7, with different r. This observation provides
evidence for confirming SBP-BO’s ability for solving various
HE-MOPs. Besides, it is interesting to note that changing
r from (5, 5, 1) to (9, 1, 1) generally causes a reduced per-
formance for both HK-RVEA and SBP-BO on most test
problems, which is expected. According to the results in
Table IV, SBP-BO significantly outperforms HK-RVEA on
five test instances, while similar performance can be achieved
by both algorithms on the remaining ones. We can also observe
that the performance of SBP-BO and HK-RVEA degrades as

TABLE III
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY

HK-RVEA, AND SBP-BO ON TEN-OBJECTIVE PROBLEMS WITH
r = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) AND DIFFERENT rthres AND

FEe
max = 300

.

Problem rthres HKRVEA SBP-BO

1 3.45e-1 (2.26e-1) ≈ 3.29e-1 (8.81e-2)
DTLZ1 3 6.18e-1 (1.96e-1) ≈ 6.07e-1 (3.44e-1)

5 1.53e+0 (9.21e-1) ≈ 1.55e+0 (5.18e-1)

1 1.21e+0 (5.28e-2) – 1.04e+0 (3.23e-2)
DTLZ2 3 1.49e+0 (1.89e-1) ≈ 1.61e+0 (1.06e+0)

5 2.77e+0 (1.66e+0) – 1.98e+0 (9.56e-1)

1 2.37e-1 (7.60e-2) – 1.64e-1 (2.84e-2)
DTLZ3 3 3.17e-1 (1.61e-1) ≈ 3.15e-1 (1.12e-1)

5 3.26e-1 (1.42e-1) – 3.08e-1 (1.39e-1)

1 2.52e-1 (1.73e-2) ≈ 2.45e-1 (1.59e-2)
DTLZ4 3 2.64e-1 (1.65e-2) – 2.48e-1 (1.98e-2)

5 2.71e-1 (3.94e-2) ≈ 2.80e-1 (3.25e-2)

+/–/ ≈ 0/5/7

rthres increases. Similar conclusions can be drawn from Table
III, confirming the effectiveness of SBP-BO in handling HE-
MOPs/HE-MaOPs.

To further illustrate the influence of different r on the
performance of the optimization algorithms considered in this
work, the approximations of the true Pareto front on DTLZ5
with r = (5, 5, 1) and r = (9, 1, 1) obtained by HK-RVEA and
SBP-BO are shown in Figs. 4-5, where FEemax is set to 300
and 1000, respectively. From these results, our observations
can be summarized as follows:
• Consistent with the aforementioned hypothesis, the search

bias is more likely to occur on problems when r =
(9, 1, 1) in the different function evaluation ratios con-
sidered between objectives, rendering a multi-objective
optimization algorithm inefficient. An illustrative exam-
ple is given in Fig. 4 when FEemax = 300. SBP-BO
can achieve better diversity on DTLZ5 with r = (5, 5, 1)
compared with that on DTLZ5 with r = (9, 1, 1).
Similar observations can be made from Fig. 5, where
FEemax = 1000.

• The proposed SBP-BO can find a set of solutions with
good quality on all considered test instances, while HK-
RVEA suffers from the heterogeneous objectives. As
depicted in Fig. 4, the solution set obtained by HK-RVEA
only covers some subregions, especially those around the
two end points of the true Pareto front of DTLZ5, which
is a curve for that problem. We note that the proposed
SBP-BO shows its advantage for handling HE-MOPs,
which is achieved by an efficient use of the additional
data on the cheap objectives with the help of the ensemble
GP surrogate and the alleviation search bias by means of
the proposed acquisition function. It is clear that SBP-BO
finds a satisfying Pareto front approximation with respect
to both diversity and convergence when FEemax = 1000,
confirming that the proposed SBP acquisition function
can reduce the search bias introduced by heterogeneous
objectives.

3) Results on bi-objective heterogeneous problems: In this
subsection, we compare SBP-BO with three transfer-learning
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(a) HK-RVEA (b) SBP-BO

(c) HK-RVEA (d) SBP-BO

Fig. 4. The final solution set with the median IGD+ values found by HK-
RVEA and SBP-BO on DTLZ5 with FEs

max = 300 and r = (5, 5, 1) ((a)
and (b)) and r = (9, 1, 1) ((c) and (d))
, respectively.

(a) HK-RVEA (b) SBP-BO

(c) HK-RVEA (d) SBP-BO

Fig. 5. The final solution set with the median IGD+ values found by HK-
RVEA and SBP-BO on DTLZ5 with FEs

max = 1000 and r = (5, 5, 1) ((a)
and (b)) and r = (9, 1, 1) ((c) and (d)), respectively.

TABLE IV
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY HK-RVEA,

AND SBP-BO ON TEN-OBJECTIVE PROBLEMS WITH rthres = 3,
r1 = (10, 8, 8, 7, 5, 4, 3, 2, 2, 1), r2 = (10, 9, 8, 6, 3, 2, 2, 2, 1, 1) AND

r3 = (9, 7, 3, 3, 3, 2, 2, 2, 1, 1), AND FEe
max = 300

.

Problem r HK-RVEA SBP-BO

r1 3.56e-1 (1.33e-1) – 2.75e-1 (1.00e-1)
DTLZ1 r2 2.66e-1 (1.01e-1) ≈ 2.51e-1 (1.16e-1)

r3 3.29e-1 (1.65e-1) ≈ 2.71e-1 (9.60e-2)

r1 2.79e-1 (1.70e-2) ≈ 2.67e-1 (2.15e-2)
DTLZ2 r2 2.67e-1 (2.70e-2) ≈ 2.77e-1 (2.36e-2)

r3 2.80e-1 (4.18e-2) + 3.11e-1 (2.70e-2)

r1 1.41e+0 (7.11e-1) ≈ 1.35e+0 (6.09e-1)
DTLZ3 r2 7.30e-1 (4.76e-1) ≈ 9.10e-1 (5.26e-1)

r3 1.48e+0 (5.47e-1) ≈ 1.30e+0 (5.60e-1)

r1 3.44e+0 (1.66e+0) – 2.14e+0 (1.07e+0)
DTLZ4 r2 2.71e+0 (9.07e-1) – 1.58e+0 (1.76e-1)

r3 4.01e+0 (9.13e-1) – 3.05e+0 (7.56e-1)

+/–/ ≈ 1/4/7

(TL) based heterogeneity-handling methods, i.e., T-SAEA
[15], Tr-SAEA [16] and TC-SAEA [17], on the same bi-
objective heterogeneous problems with the same parameter
setting reported in [17]. Specifically, as presented in the
Supplementary material, DTLZ1 to DTLZ7 and two modified
counterparts (DTLZ1a and DTLZ3a) of DTLZ1 and DTLZ3,
and UF1 to UF7 from the UF test suite [44], are used as test
instances. The statistical results in terms of IGD values [30]
obtained by each algorithm on test instances with rc = 5 and
rc = 10 are summarized in Tables V and SV, respectively.
We can observe that at least one of the TL-based methods
significantly outperforms SBP-BO on 10 out of 16 problems
for rc = 5, while SBP-BO is only significantly better than
all TL approaches on two problems. Similar observations
can be made from Table SV. The performance difference is
understandable since in the TL-based approaches information
on the correlation of the two objectives is acquired, which
allows for an estimation of the expensive objective from the
search experience on the cheap objective. Such information is
not used in SBP-BO and the selection of new samples is only
guided by the heterogeneous evaluation times in SBP-BO.

However, the extension of the TL-based approaches to
problems with more than two objectives is nontrivial. Mul-
tiple models for transferring knowledge between each pair
of objectives will need to be trained, which increases the
computational complexity substantially. More importantly, it
is an open question how to utilize the information from these
models in a consistent manner, as, for example, information on
one objective will be provided by multiple models that might
contain contradicting information.

4) Ablation studies
Further experiments are performed here to provide a deeper

understanding of the performance of SBP-BO by testing the
effectiveness of each component. The IGD+ values obtained
by SBP-BO and its variants are presented in Table VI and
Table SVI in the Supplementary material. The following
observations can be made:

• According to Tables VI and SVI, we can see that the
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TABLE V
MEAN (STANDARD DEVIATION) IGD VALUES OBTAINED BY T-SAEA,

TR-SAEA, TC-SAEA AND SBP-BO FOR BI-OBJECTIVE PROBLEMS WITH
FEe

max = 200 AND r = (rc, 1) WHERE rc = 5

.

Problem T-SAEA Tr-SAEA TC-SAEA SBP-BO
DTLZ1 21.7 (11.9) ≈ 20.7 (5.38) ≈ 20.1 (8.16)≈ 19.2 (9.52)
DTLZ1a 1.06 (1.00) – 0.21 (0.07) – 0.36 (0.04) – 0.14 (0.05)
DTLZ2 0.05 (0.03) ≈ 0.03 (0.01) ≈ 0.02 (0.00) ≈ 0.05 (0.01)
DTLZ3 203 (100) ≈ 327 (82.1) ≈ 132 (79.3) ≈ 204 (92.2)
DTLZ3a 5.34 (37.5) + 3.39 (1.87) + 2.30 (0.66) + 13.8 (5.56)
DTLZ4 0.60 (0.13) – 0.16 (0.07) + 0.44 (0.13) – 0.38 (0.12)
DTLZ5 0.05 (0.02) ≈ 0.03 (0.03) ≈ 0.03 (0.00) ≈ 0.05 (0.00)
DTLZ6 2.56 (1.21) + 0.72 (0.09) + 2.62 (1.95) + 5.76 (0.47)
DTLZ7 1.15 (0.91) + 0.03 (0.01) + 0.05 (0.08) + 5.01 (0.46)
UF1 0.19 (0.02) + 0.19 (0.01) + 0.19 (0.02) + 1.20 (0.14)
UF2 0.14 (0.02) + 0.12 (0.01) + 0.13 (0.02) + 0.59 (0.03)
UF3 0.19 (0.08) + 0.49 (0.01) ≈ 0.42 (0.03) + 1.09 (0.05)
UF4 0.23 (0.02) – 0.22 (0.00) – 0.19 (0.01) – 0.17 (0.00)
UF5 2.49 (0.44) + 2.43 (0.28) + 2.42 (0.38) + 4.91 (0.36)
UF6 1.01 (0.25) + 1.32 (0.39) + 0.81 (0.19) + 5.33 (0.69)
UF7 0.37 (0.06) + 0.32 (0.11) + 0.33 (0.05) + 1.01 (0.09)
+/≈/– 9/4/3 9/5/2 9/4/3

proposed algorithm yields the best IGD+ values on 22
and 14 out of 48 test instances for rc = 5 and rc = 10
respectively, confirming the effectiveness of the ensemble
model and the search bias penalized acquisition function.

• The effectiveness of the proposed way of utilizing the
additional data in SBP-BO can be validated by comparing
SBP-BO with SBP-BO-C and SBP-BO-R. From Table
VI, SBP-BO significantly outperforms SBP-BO-C and
SBP-BO-R on 23 and 21 test problems, respectively. This
is consistent with the findings in [15]: how to utilize
the additional data obtained from the search of cheap
objectives plays a vital role in the optimization of HE-
MOPs/HE-MaOPs. One weakness of the commonly used
methods for training data selection based on cluster-
ing or randomly selection is that they cannot use all
available data. This issue becomes more challenging for
HE-MOPs where abundant training data are available
for the fast objectives, making the algorithm inefficient
for addressing problems with heterogeneous objectives.
Similar observation can be made from Table SVI. Note
that there is no limitation on the available FEs for the
relatively cheap objectives and thousands of cheap FEs
are consumed in SBP-NoGPc. It is interesting to see that
SBP-BO is able to significantly outperform SBP-NoGPc

on 14 and 17 out of 48 test instances for rc = 5 and
rc = 10, respectively. The comparison between SBP-BO
and SBP-NoGPc indicates that the algorithm can benefit
from the use of surrogates on the cheap objectives. A
possible explanation is that surrogates may smooth out
some local optima and thus accelerate the search, which
was discussed intuitively in [45] and empirically verified
in [46].

• Compared with BO-AAF, the proposed algorithm shows
significantly better performance on 9 out of 48 test
instances, and similar performance on the remaining test
problems, according to the results in Table VI. It is
worthy of noting that for HE-MOPs/HE-MaOPs with
rc = 10, the advantage of SBP-BO becomes a little less
clear compared with BO-AAF, as can be observed from
the results in Table SVI. SBP-BO is worse than BO-AFF

on one test instance, but it only outperforms BO-AFF
on 7 out of 48 instances. The results indicate that the
algorithm can benefit from the use of the search bias
penalty on some problems. However, since it is highly
tricky to measure the search bias, it is challenging to
apply an appropriate degree of penalty. This is might
be the reason why SBP-BO and BO-AAF show similar
performance on most test problems.

V. CONCLUSION

In this paper, we address heterogeneously expensive multi-
/many-objective optimization problems, which have not re-
ceived much attention in the evolutionary optimization com-
munity. We focus on exploiting the different amounts of data
for the cheap and expensive objectives in constructing surro-
gates and reducing the search bias towards the cheap objectives
within the Bayesian optimization framework. Specifically, an
ensemble of Gaussian processes is constructed for each cheap
objective to make use of both the solutions evaluated on all
objectives and on the cheap objectives only. To reduce the
bias towards the cheap objectives, we introduce a penalty
term into the acquisition function, guiding the selection of
new samples by taking the search bias into consideration.
Different from most state-of-the-art algorithms that are limited
to bi-objective optimization problems, the proposed algorithm
is more generic in that it is applicable to problems with
more than two objectives, where each objective can have a
different evaluation time. Thus, the proposed work constitutes
a valuable step forward towards solving real-world problems.

Encouraged by the promising results of the present work,
we are interested in further investigating the efficient use
of additional data on the cheap objectives, e.g., by properly
guiding the single objective search. Meanwhile, the experi-
mental results of the current work suggest that the proposed
algorithm is less effective on nonseparable, multi-modal and
disconnected problems, implying that more powerful search
operators are required. Finally, this work adopts a simplified
way to measure the search bias resulting from heterogeneous
objectives, which leaves much room for further improvement
in alleviating the search bias.
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TABLE VI
MEAN (STANDARD DEVIATION) IGD+ VALUES OBTAINED BY BO-AAF, SBP-BO-C, SBP-BO-R, BO-NOGPc AND SBP-BO WITH FEe

max = 300
AND rc = 5.

Problem m BO-AAF SBP-BO-C SBP-BO-R BO-NoGPc SBP-BO

3 6.26e+1 (2.01e+1) ≈ 8.18e+1 (1.79e+1) ≈ 1.06e+2 (2.57e+1) – 4.14e+1 (8.26e+0) ≈ 5.35e+1 (2.10e+1)
5 3.24e+1 (1.51e+1) – 3.87e+1 (1.42e+1) – 4.77e+1 (1.86e+1) – 2.59e+1 (5.24e+0) ≈ 2.45e+1 (8.88e+0)DTLZ1
10 2.05e-1 (1.13e-1) – 2.05e-1 (4.17e-2) – 1.95e-1 (4.35e-2) – 1.63e-1 (5.84e-2) ≈ 1.58e-1 (2.31e-2)

3 3.95e-2 (2.71e-3) ≈ 5.74e-2 (3.45e-3) – 7.87e-2 (1.22e-2) – 1.78e-1 (1.90e-2) – 4.15e-2 (3.27e-3)
5 1.06e-1 (5.42e-3) ≈ 1.04e-1 (5.16e-3) ≈ 1.54e-1 (1.14e-2) – 1.65e-1 (1.66e-2) ≈ 1.06e-1 (7.07e-3)DTLZ2
10 2.07e-1 (1.22e-2) ≈ 2.08e-1 (1.12e-2) ≈ 2.08e-1 (1.02e-2) ≈ 3.38e-1 (6.38e-2) – 2.04e-1 (9.70e-3)
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