
 1

 Abstract — In situations involving teams of diverse robots,

assigning appropriate roles to each robot and evaluating their

performance is crucial. These roles define the specific

characteristics of a robot within a given context. The stream

actions exhibited by a robot based on its assigned role are referred

to as the process role. Our research addresses the depiction of

process roles using a multivariate probabilistic function. The main

aim of this study is to develop a role engine for collaborative multi-

robot systems and optimize the behavior of the robots. The role

engine is designed to assign suitable roles to each robot, generate

approximately optimal process roles, update them on time, and

identify instances of robot malfunction or trigger replanning when

necessary. The environment considered is dynamic, involving

obstacles and other agents. The role engine operates hybrid, with

central initiation and decentralized action, and assigns unlabeled

roles to agents. We employ the Gaussian Process (GP) inference

method to optimize process roles based on local constraints and

constraints related to other agents. Furthermore, we propose an

innovative approach that utilizes the environment's skeleton to

address initialization and feasibility evaluation challenges. We

successfully demonstrated the proposed approach's feasibility,

and efficiency through simulation studies and real-world

experiments involving diverse mobile robots.

Index Terms— Multi-robot path planning, Role-based

collaboration, Gaussian process inference, Bayesian consensus.

I. INTRODUCTION

ulti-robot teams have found applications in various

domains, such as surveillance [1], inspection [2], rescue

operations [3], automation [4], and logistics [5]. However, the

collaboration among these agents can pose significant

challenges, especially when the robots vary in terms of

hardware, size, and functionalities within dynamic

environments. To adapt to the environment, robots need to

dynamically adjust their behavior and optimize their task

sequences to minimize energy consumption and prevent

collisions. The process role is a term used to describe the

sequence of actions carried out by a robot according to its

assigned role. This concept is derived from the E-CARGO

model and the Role-Based Collaboration (RBC) theory, as

outlined in references [6], [7]. Enabling collaboration and

Manuscript received ****, 2021. This work was supported in part by the

Natural Sciences and Engineering Research Council, Canada (NSERC) under

Grant RGPIN-2018-04818 and the Innovation for Defence Excellence and

Security (IDEaS) program from the Canadian Department of National Defence
(DND) under grant CFPMN2-051. Any opinions and conclusions

in this work are strictly those of the authors and do not reflect

the views, positions, or policies of – and are not endorsed by
– IDEaS, DND, or the Government of Canada.

management interaction based on process roles can

significantly impact this approach. For example, in a firefighter

scenario, a robot may be designated as an extinguisher

corresponding to a destination point 𝑥𝑁 (𝑡) and process role

includes determining the optimal trajectory, motion dynamics,

and activation timing and angle for extinguishing fires (Fig. 1).

Similarly, an aerial robot may assume the role of a mapper,

responsible for relocating to the best position to provide

information or the fire's location to other agents. The trajectory

of these multivariant actions (process role) shapes the behavior

of the robot according to the role it fulfills.

State 0 State i

State i+1

State N

R1

R2

R3

D1

Central Unit

Fig. 1. The process role multivariant function of a ground Firefighter

robot(R1) involves a sequence of actions θi(𝑡), which include the

dynamic characteristics (𝑥𝑖 (𝑡), �̇�𝑖(𝑡)) and the functional aspects of the

extinguisher, such as the angle at which it operates and the command

flag for extinguishing fires (𝜌𝑖 , 𝐹𝑖𝑟𝑒𝑖)

 An ideal role engine incorporates mechanisms to assess the

feasibility of assigned roles [6] [7]. It is capable of assigning

suitable roles and adapting them as needed. The role engine can

handle teams of different sizes, ranging from small groups to

large-scale deployments. It mostly employs a hybrid control

approach, combining centralized control for role assignment

and initialization (role negotiation, agent evaluation, and role

assignment) and decentralized control for task execution (role

playing). This allows for effective coordination among robots

while maintaining flexibility and independence. Optimization

techniques are used to improve robot behavior and

performance. The role engine also includes mechanisms to

detect robot malfunctions and failures, triggering replanning

B. Akbari, Z. Wang and H. Zhu are with Collaborative Systems Laboratory
(CoSys Lab), Department of Computer Science and Mathematics, Nipissing

University, North Bay, Ontario, Canada (Email: behzada@nipissingu.ca,

zwang529@my.nipissingu.ca, haibinz@nipissingu.ca)
L. Wan, R. Adderson and Y.-J. Pan are with the Advanced Control and

Mechatronics Laboratory (ACM Lab), Department of Mechanical Engineering,

Dalhousie University, Halifax, Nova Scotia, Canada (Email:
lucas.wan@dal.ca, ryan.adderson@dal.ca, yajun.pan@dal.ca).

Role Engine Implementation for a Continuous and

Collaborative Multi-Robot System
Behzad Akbari, Member, IEEE, Zikai Wang, Haibin Zhu, Senior Member, IEEE, Lucas Wan, Student

Member, IEEE, Ryan Adderson, Student Member, IEEE, and Ya-Jun Pan, Senior Member, IEEE

M

mailto:behzada@nipissingu.ca
mailto:wang529@my.nipissingu.ca
mailto:haibinz@nipissingu.ca
mailto:lucas.wan@dal.ca
mailto:ryan.adderson@dal.ca
mailto:yajun.pan@dal.ca

 2

processes to reassign roles or adjust strategies for the team to

maintain functionality and complete tasks [6]. The primary

focus of this paper was on the adaptation of roles and the

optimization of process roles. By considering the process role

as a continuous multivariant probabilistic function, we can

optimize its posterior density based on the factors occurring in

the scenario. Gaussian process (GP) inference, a probabilistic

method, allows us to make predictions and perform

probabilistic reasoning on unknown functions. The

combination of GP inference and factor graphs for application

in motion planning scenarios is referred to as Gaussian Process

Motion Planning (GPMP), as introduced in [8] [9]. This

research introduced the concept of utilizing the GP function as

a process role that can be influenced by factors or dynamic

events within the system. While finding the optimal process

roles in multi-agent systems is a computationally challenging

task, GP inference can provide an approximately optimal

solution by efficiently incorporating kinematic and size

constraints in a continuous domain. The approximation of

optimality is achieved through the Gaussian assumption and an

iterative method for solving nonlinear optimization [10, 11, 12].

In the case of multi-agent scenarios, GP inference can be

extended to incorporate new shared factors, such as robot

collision, in the optimization problem [13].
 This paper presents an advanced role engine design that

encompasses a wide range of desirable characteristics. These

characteristics are achieved by employing a flexible hybrid

approach, which ensures excellent scalability in various settings

with different numbers of robots and environmental conditions.

The approach closely mimics real-world situations by using

centralized control during training and initialization stages, and

decentralized control during operational phases.

 The paper utilizes Group Role Assignment (GRA) [6] [14]

as a central mechanism to assign initial process roles, reducing

costs associated with each source-destination pair. In

decentralized role playing, GP inference is implemented to

establish consensus among autonomous robots, effectively

leveraging shared information during role-playing. A novel

technique is proposed where a simplified representation of the

environment is used to create a dedicated map for each type of

robot.

 Furthermore, the paper improves GP inference to generate

multiple continuous process roles within dynamic

environments. The role engine proposed in this study addresses

the challenge of managing a diverse group of robots with

unknown roles and arbitrary initial positions. It initializes

process roles centrally based on robot size, evaluates feasibility,

generates a qualification matrix, and determines the most

suitable assignments. After identifying the initial process roles

to handle dynamic factors and uncertainty introduced by

different autonomous agents, each robot is capable of

autonomous movement while staying connected to others to

achieve consensus in their process role. They create and

navigate along an approximately optimal continuous trajectory

that avoids collisions and adheres to their individual limitations.

The main contributions of this paper can be summarized as

follows:

1. The first development of a comprehensive role engine for

collaborative multi-robot systems, encompassing role

initialization, association, assignment, and role-playing

using the RBC methodology.

2. Modeling a multivariant probabilistic function for the

process role using GP inference, allowing for optimization

based on local or shared factors.

3. Practical implementation of the system for multi-robot

pathfinders.

II. BACKGROUND AND PRELIMINARIES

A. Role-Based Collaboration (RBC)

 The RBC methodology employs roles as its primary

mechanism to facilitate collaboration [15] [16]. The

fundamental abstract model of RBC is E-CARGO

(Environments - Classes, Agents, Roles, Groups, and Objects)

[17] [18]. An RBC-based role engine encompasses role

negotiation, agent evaluation, GRA, and role-playing [19]. Role

negotiation involves clarifying and verifying roles to ensure

successful collaboration among agents in a given scenario. If a

viable solution exists, agents can be assessed for each role, and

a qualification matrix can be generated based on the process

roles and agents involved. The role engine handles dynamic

role assignment. However, the existing RBC role engine does

not address process role optimization. This paper introduces an

enhanced RBC model, which includes a component for role

adaptation and employs multivariate GP inference to model the

process role. This enables the optimization of the process role

by considering environmental factors and information from

other agents.

B. Gaussian Process Inference

 A GP is a probabilistic model or probability distribution that

describes a collection of functions [20]. It represents smooth,

continuous-time functions using a limited number of states. GP

interpolation can be efficiently computed using a gradient-

based optimization algorithm. The Markov model is a

mathematical framework used to express GP [21]. In GP

inference, a Bayesian approach is employed, incorporating

prior constraints and the likelihood of events. The Maximum a

Posteriori (MAP) estimation is utilized to find an approximately

optimal function. The prior constraint promotes smoothness,

and encourages start and end points, while the likelihood

function ensures collision-free paths with reduced energy

consumption [9]. , as shown in:

 θ∗ = argmax
θ

P(θ|e1, 𝑒2, . . , 𝑒𝑁𝑓−1), (1)

where θ is the multivariant vector-valued function representing

the agent behavior (process role), and e1, 𝑒2, . . , 𝑒𝑁𝑓−1 are a set of

random binary events of interest. The posterior distribution of

𝜃 given e1, 𝑒2, . . , 𝑒𝑁𝑓−1 can be derived from the prior and

likelihood by Bayes rule:

 P (θ|e1, . . , 𝑒𝑁𝑓−1) ∝ P (θ)L(e1|θ). . L (𝑒𝑁𝑓−1|θ) (2)

 Similar to [11] this rule is represented as the product of a

series of factors solvable with a factor graph,

P (θ|e) ∝ ∏ 𝑓𝑛𝑓
(θ𝑛𝑓

)

𝑁𝑓

𝑛𝑓=1

,

 (3)

where 𝑓𝑛𝑓
 are factors on state subsets θ𝑛𝑓

. It is shown in [11]

that this MAP problem can be solved efficiently in linear time

by exploiting the sparsity.

 3

B-1. GP Markov model

 Based on [21] [11], a linear time-varying stochastic

differential equation (LTV-SDE) form of GP inference can be

written as:

 �̇�(𝑡) = 𝐴(𝑡)𝜃(𝑡) + 𝑢(𝑡) + 𝐹(𝑡)𝑤(𝑡), (4)

where 𝑢(𝑡) is the known system control input, 𝐴(𝑡) and 𝐹(𝑡)

are time-varying matrices of the system, and 𝑤(𝑡) is generated

by a white noise process. The white noise process is itself a

zero-mean GP:

 𝑤(𝑡) ∼ 𝐺𝑃(0, 𝑄𝐶𝛿(𝑡 − 𝑡′)), (5)

where 𝑄𝐶 is the power-spectral density matrix and 𝛿 (𝑡 − 𝑡′) is

the Dirac delta function. The solution to the initial value

problem of this LTV-SDE is in the form of mean and

covariance [21]:

 𝜇(𝑡) = Φ(𝑡, 𝑡0)𝜇0 + ∫ Φ(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠
𝑡

𝑡0

,

(6)

 𝐾(𝑡, 𝑡′) = Φ(𝑡, 𝑡0)𝐾0Φ(𝑡′, 𝑡0)𝑇 +

 ∫ Φ(𝑡, 𝑠)𝐹(𝑠)𝑄𝑐𝐹(𝑠)𝑇Φ(𝑡′, 𝑠)𝑇𝑑𝑠
min(𝑡,𝑡′)

𝑡0
,

(7)

where Φ is the state transition matrix and 𝜇0, 𝐾0 are the mean

and covariance, respectively, at 𝑡0. The Markov property of (4)

results in the sparsity of the inverse kernel matrix 𝐾−1 which

allows for fast inference [21]. Then the proportion of GP prior,

can be written as follows:

P (θ) ∝ exp {−

1

2
∥ θ − μ ∥K

2 } .
(8)

where ∥. ∥𝛴
2 is the Mahalanobis distance with covariance K.

B-2. The collision avoidance likelihood function

 In GP inference, constraints are formulated as rules that the

trajectory must obey. For example, the likelihood function of

collision avoidance indicates the probability of being free from

collisions with other robots or obstacles. All likelihood

functions are defined as a distribution in the exponential family

for a single robot, given by:

Ls (θi; ei) ∝ exp {−

1

2
∥ ℎ(𝜃𝑖) ∥𝛴𝑎𝑏𝑠𝑖

2 },
(9)

where ℎ (𝜃𝑖) is a Hinge loss function for a given current

configuration 𝜃𝑖 , 𝑒𝑖 is the corresponding event, such as no

collision, and 𝛴𝑎𝑏𝑠𝑖
 is the hyperparameters of distribution [22].

For a multi-agent case, a new factor for collision between robots

needs to be combined as in [13]:

 Lm (θi; ei) ∝

exp {−
1

2
∥ ℎ(𝜃𝑖) ∥𝛴𝑎𝑏𝑠𝑖

2 } ∏ exp {−
1

2
∥ 𝑔(𝜃𝑖, 𝜃𝑖′) ∥𝛴𝑚𝑢𝑙

2 }

𝑚

𝑖′=1
𝑖′≠𝑖

,

(10)

where 𝑔(𝜃𝑖 , 𝜃′𝑖) is a vector-valued function that defines the cost

of two agents 𝑖 and 𝑖′ being close to each other, 𝑚 is the

number of agents and 𝛴𝑚𝑢𝑙 is a hyperparameter of the

distribution. The specific likelihood and obstacle cost function

used in this paper is slightly different from (10), detailed in

Section III-C (Role playing).

B-3. MAP inference

By solely focusing on obstacle detection and collision

avoidance, we can formulate the MAP posterior estimation

using equations (2), (8), and (9) as follows:

 θ𝑗
∗ = argmin{

θ

1

2
∥ θj − μj ∥K

2 +
1

2
∥ ℎ(𝜃𝑗) + ℎ1(𝜃𝑗 , 𝜃0..𝑛) ∥𝛴𝑜𝑏𝑠

2 },

(11)

which is a non-linear least square problem that can be solved by

iterative algorithms such as Gauss-Newton or Levenberg-

Marquardt until convergence. The corresponding linear

equation is as follows:
θ∗ = argmin ∥

𝑟
𝑨θ − 𝒃 ∥2, (12)

where 𝑨 ∈ ℝ𝑛𝑓×𝑛𝑠 is the measurement Jacobian consisting of

𝑛𝑓 measurement rows and 𝒃 is an 𝑛𝑠 -dimensional vector

computable similar to iSAM2 [23].

III. ROLE ENGINE FORMULATION

 This study introduces the implementation of a role engine

specifically designed for a diverse group of robots operating in

an environment filled with obstacles. These robots have

different hardware, sizes, and capabilities, and they freely

navigate in a dynamic environment. The role engine utilizes a

hybrid approach that combines role negotiation and assignment

through a central system (Algorithm 1) to initiate robots for

role-playing. Although the role-playing itself is decentralized,

the robots establish connections with each other and exchange

information to reach a consensus using a distributed channel, as

depicted in Fig. 2. In our approach, each robot's role is

determined based on its destination and process role, which

includes trajectory functions such as dynamics and

functionality. The destination positions are not predefined and

can involve various formations, such as circles, squares, or

lines. By leveraging Fig. 2, our role engine initializes, assigns,

and optimizes the best process roles for the robots through the

central computer to minimize overall cost, with a particular

focus on factors like smoothness and obstacle avoidance.

 To assess the suitability of each robot for a given destination,

we employ trajectory cost as a measure in agent evaluation. The

trajectories and outcomes of the GRA algorithm serve as an

initial guideline for robots to engage in role-playing. During the

role-playing phase, the robots take into account both the initial

process roles derived from GRA and newly observed factors

such as collision likelihood, to optimize process roles. This

enables the robots to adapt their actions and roles in response to

a dynamic environment.

A. Role negotiation and feasibility check

 This subsection is dedicated to role negotiation; relevant

information is extracted from the environment, scenario, and

available resources to assess the feasibility of the problem. It is

essential to thoroughly investigate all potential solutions in

order to assign appropriate roles to the agents. An action field

representation called the Environment Map (E-Map) is

constructed to streamline the search process and expedite

evaluation, incorporating weighted graphs. The E-Map needs to

be tailored to suit different types of robots. For instance, certain

obstacles may be disregarded for aerial vehicles, while large

robots may have restricted access to certain paths. Based on the

robots' parameters, an E-Map is generated from the original

environment image, which can be sourced from a camera

capturing real-life situations. The Role-Negotiation algorithm

examines all feasible paths and generates possible initial paths.

If there are no viable initial paths connecting the source and

destination, the problem is deemed infeasible. Algorithm 2

provides a detailed explanation of the Role-Negotiation

algorithm. The algorithm's output includes environment

 4

representations based on the type of robot, signed distance

fields (as discussed in Section IV.B), and initial process roles.

Further information regarding the E-Map and Auxiliary nodes

can be found in Appendix A.

Initiate process roles
Observe behaviors

Detect problem

Start

Role Negotiation

Is it feasible?Abort

Agent Evaluation and
GRA

Yes!

No!

 Robot (1)

Robot (m)

..

Yes

Global

Global

Global

problem?

Fig. 2. The general flowchart of the proposed algorithm.

Algorithm 1: Central Computer Main Function

Input:𝒜, ℛ, 𝑒, 𝑎𝑟𝑔 // Agents, roles (Destinations ID), env, and arguments

 1: 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 , 𝐸𝑛𝑣𝜏 , 𝑆𝑑𝑓𝜏 ,Init_paths Role-Negotiation(𝒜, ℛ, 𝑒, 𝑎𝑟𝑔)

 2: if 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ==False:
 3: Abort()
 4: endif

 5: 𝜆 = 𝑎𝑟𝑔. 𝜆 //coefficent weight for different costs

 6: �̅�GRA(𝐸𝑛𝑣𝜏 , 𝑆𝑑𝑓𝜏 ,Init_paths, 𝜆) // Optimal initial paths

 7: Publish(�̅�, 𝑆ℎ𝑎𝑟𝑒𝑑_𝐶ℎ𝑎𝑛𝑛𝑒𝑙) //set the distributed storage

 7: for j in range(�̅�. Length): //number of process roles

 8: 𝑎𝑗Define_agent(�̅�,j, 𝐸𝑛𝑣𝜏(𝑗))

 9: endfor

 10: for j in range(�̅�. Length):

 11: RolePlaying.start(𝑎𝑗) //Start role playing

 12: endfor

 13: while true:

 14: �̅�, NewMap = subscrib(𝑆ℎ𝑎𝑟𝑒𝑑_𝐶ℎ𝑎𝑛𝑛𝑒𝑙)

 15: if Prob(�̅�, NewMap) == true: //problem detected

 16: if Not_Negotiable:
 17: Abort()

 18: Else

 19: 𝑎𝑟𝑔=UpdateArg(�̅�) //𝑢𝑝𝑑𝑎𝑡𝑒 𝑎𝑟𝑔𝑢𝑚𝑛𝑒𝑡𝑠
 20: Go(Line1) //Renew the negotiation

 21: endif

 22: endif

 23: endwhile

 The original GP inference (GPMP algorithm) [11] makes

the assumption of a direct path from the source to the

destination, represented by the red dashed line in Fig. 3.

However, this simplistic approach is overly optimistic in

complex environments with intricate arrangements of

obstacles. To ensure practical and realistic results, the algorithm

in [11] requires offline parameter adjustment. On the other

hand, in [24], a fully supervised method is employed to

determine the GP parameters. While GP is typically a semi-

supervised method that can be trained using diverse training

environments, our approach does not prioritize that aspect.

Instead, we incorporate E-Maps, which are customized maps

designed for each robot type. E-Maps facilitate the

identification of a quicker shortest path and auxiliary nodes. In

our algorithm, the initial path is established as a collection of

line segments connecting these auxiliary nodes, which serves as

an approximation of the shortest route from the source to the

destination. The distribution of steps along these connected line

segments, as illustrated in Fig. 3, determines the initial path for

each robot. This incorporation of E-Maps allows us to achieve

a faster GRA and a narrower range of parameter tuning

compared to the conventional GPMP method. For additional in-

depth details, please refer to Appendix A. The computational

complexity of the Role-Negotiation stage is denoted as

𝑂(𝑚𝑛ę), where m and n represent the number of robots and

roles, respectively, and ę represents the number of edges in the

E-Map graph (as explained in Appendix A). The complexity

analysis indicates that Lines 7-15 have a complexity of 𝑂(𝑚𝑛),

while Line 9 has an additional complexity of 𝑂(ę).

Algorithm 2: Role-Negotiation Algorithm

Input:𝒜, ℛ, 𝑒 //Agents, roles (Destinations), environment

Output: 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝐸𝑛𝑣𝜏 , 𝑆𝑑𝑓𝜏,Init_paths

 1: Init_paths [] // Initialize to an empty list

 2: for 𝜏 in 𝒜. Γ: // For all robot types, initiate environments

 3: 𝐸𝑛𝑣𝜏Environment(e, 𝜏) // Dedicated for each robot’s type

 4: 𝑆𝑑𝑓𝜏SignedDistanceField(𝐸𝑛𝑣𝜏)

 5: 𝐸_𝑀𝑎𝑝𝜏Make_Env_map(e, 𝜏)

 6: endfor

 7: for a in 𝒜: // for all agents(sources)

 8: for r in ℛ: // for all roles (destinations)

 9: Aux_noods[a,r] Find_Aux(𝐸_𝑀𝑎𝑝𝜏(𝑎), a,r)

 10: Init_paths[a,r] Make_Init_Path(Aux_noods[a,r] , a,r)

 11: Endfor

 12: if{Union of all possible paths to 𝑟 }=={∅}:
 13: 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑖𝑡𝑦=False

 14: endif

 15: endfor

 16: return 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝐸𝑛𝑣𝜏 , 𝑆𝑑𝑓𝜏 ,Init_paths

B. GRA and agent evaluation

Suppose that the system is workable (minimum feasible

assignment found for all roles), and based on role negotiation,

the qualification of each agent can be computed for a process

role and used to construct the Q matrix [6] [14] [25]. The

qualification of each agent in that role is defined as a floating-

point value result of the process role cost function. Using the

generated Q matrix and the GRA algorithm, the optimal process

role assignment can be obtained from the team's viewpoint. The

Q matrix in the proposed problem presents the cost for each

robot's process role.

Fig. 3. Initial path based on E-Map (green path) compared to

GPMP(red dash-line)

 5

Qualification matrix: For every trajectory 𝜃, the qualification

value is calculated using generic cost functions. Similar to GP

inference, the objective function of each trajectory is defined by

combining a function, 𝐹𝑔𝑝, derived from the Gaussian process

prior, which penalizes deviations from the prior mean to

maintain smooth trajectories and a conflict cost function that

considers the costs of obstacles and collisions associated with

other robots, aiming to avoid such collisions:
𝑞[𝜃] = 𝜆𝐹𝑔𝑝[𝜃] + 𝐹𝑐𝑜𝑛𝑓[𝜃] , (13)

where the balance between the two functionals is regulated by

the parameter 𝜆 , where the prior functional 𝐹𝑔𝑝 is generated

through the GP formulation.

 𝐹𝑔𝑝[𝜃] =
1

2
∥ θ − μ ∥K

2 , (14)

Algorithm 3: GRA and Process role initialization
Input: 𝐸𝑛𝑣𝜏 , 𝑆𝑑𝑓𝜏,Init_paths, 𝜆

Output: OptPaths //Initial and optimized process roles

 1: for a in 𝒜:

 2: for r in ℛ: //for all agents and roles

 3: Init Init_path[a,r]

 4: if Init == ∅: //if no path exists

 5: Q[a,r]=Inf

 6: else //if the initial path exists
 7: 𝜃𝑎,𝑟=Init //Init path

 8: 𝑖𝑖 = 0 // Number of iterations

 9: while true: //converging loop

 11: d𝜃𝑎,𝑟 =GP.Inference(Init,a,r, 𝐸𝑛𝑣𝜏(𝑎) , 𝑆𝑑𝑓𝜏(𝑎))

 12: 𝜃𝑎,𝑟= 𝜃𝑎,𝑟 + d𝜃𝑎,𝑟 //Update

 13: Erra,r= 𝐹𝑐𝑜𝑛𝑓(�̂�𝑎,𝑟) + 𝜆𝐹𝑔𝑝(𝜃𝑎,𝑟)

 14: ii=ii+1

 15: if Convergence(d𝜃𝑎,𝑟 , 𝑖𝑖, Erra,r) or ii > IterN:
 16: Q[a,r]= Erra,r //qualification matrix

 17: Break

 18: endif
 19: endwhile

 20: endif

 21: endfor

 22: endfor

 23: Tr ,Tc =GRA(Q) //Find the best assignment vectors

 24: for i in Tr: //for i in row vector Tr

 25: OptPaths[i]= 𝜃𝑇𝑟(𝑖),𝑇𝑐(𝑖)

 26: endfor
 27: return OptPaths

 A conflict cost function 𝐹𝑐𝑜𝑛𝑓 , is the combination of collision

with obstacles and other agents. Similar to the approach used in

[22] for sphere-shaped robots, the conflict function computes

the arc-length parameterized line integral of the workspace

obstacle and collision cost:

 𝐹conf[θ] = ∫ ∫ 𝑐(𝑥)
𝛽

∥
𝑑

𝑑𝑡
𝑥 ∥ 𝑑𝑡

𝑡𝑁

𝑡0
, (15)

where 𝑥 is forward kinematic that maps robot configuration to

workspace and 𝑐(.) is the workspace cost function that

penalizes the set of body points 𝛽 when they are around an

obstacle and coming from the Signed Distance Field (SDF) of

the environment [22]. The derivative,
𝑑

𝑑𝑡
𝑥 is the velocity of a

body's center point in the workspace. Based on [11],

multiplying the norm of the velocity with the cost in the

trajectory integral above gives an arc-length parameterization.

Given the Q matrix, the GRA will find assignment matrix T,

summarized in vectors Tr, Tc using the Hungarian algorithm

[14] (Table II). Regarding the complexity of Algorithm 3,

taking into account the sparsity of GP inference [10], the

complexity remains 𝑂(𝑚𝑛 𝑁), within the nested loop. Here, 𝑚

represents the number of agents, 𝑛 represents the number of

roles, and 𝑁 represents the length of the trajectory state. The

overall complexity for process role initialization and GRA is

𝑂(𝑚𝑛ę + 𝑚𝑛 𝑁 + 𝑚3) due to the utilization of the Hungarian

algorithm in GRA (ę represents the number of edges in the E-

Map graph).

C. Role-playing

 Our algorithm supports an interactive environment where

autonomous robots are initialized and begin their actions by the

central computer. To gather information about the environment

and the robots' positions, we utilize a central camera that

captures a top-view image of the environment. Alternatively,

future implementations can obtain this information from an

aerial mapper. Consensus in our role-playing occurs through the

sharing of process roles between agents using message passing

and a shared channel. This sharing of process roles is crucial for

avoiding collisions between robots and addressing dynamic

situations. A common approach to prevent inter-robot collisions

is to treat nearby robots as stationary objects and employ Hinge

losses similar to other obstacles. Another method, as described

in [12, 13], introduces a new factor to penalize the proximity of

agents. In our proposed method, we take a slightly different

approach compared to [12, 13]. We examine conflicts among

all the process roles at each time step and generate a dedicated

collision potential field matrix for the agent. Fig. 5 provides an

example to illustrate this concept.

Table II: Assignment matrix T for the 4-robot scenario.
T 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒

𝒂𝟏 0 0 1 0

𝒂𝟐 1 0 0 0

𝒂𝟑 0 1 0 0

𝒂𝟒 0 0 0 1

Fig. 4. The initial process roles were obtained through GRA for a

scenario involving four agents navigating to unlabeled star points.

Fig. 5. Moving two robots in a narrow hallway and computing conflict

field (the gray area) in timestep 𝑘 for robot R2(thicker path).

 The role-playing process is detailed in Algorithm 4, where

the prediction state at step k is determined based on previous

states, the robot's position, and collision likelihoods. Similar to

the GP inference [11], the states are updated using an iterative

approach. To address environmental changes and conflicts

among agents, a function called MakeConflictField(..) has been

 6

created. This function compares process roles, updates the

environment, and enforces penalties in cases of conflicts.

Additionally, a straightforward color tracking algorithm is

employed to track the robot's position. The calculated process

role will get published in the shared channel. Considering the

limited number of states for process roles, the complexity of

Algorithm 4 at each time step primarily depends on GP

inference, which has a linear relationship with the number of

states N [10]. Additionally, capturing conflicts between process

roles has a complexity of 𝑂(𝑛2) for n roles overall, resulting in

a complexity of 𝑂(𝑁 + 𝑛2).

 Algorithm 4: Role-playing Agent

Input: 𝐸𝑛𝑣𝜏, Init_path , j,arg //Dedicated map and initial path for the agent j

 1: for k in total_time_step.range :

 2: �̅�𝑘, 𝑁𝑒𝑤𝐸𝑛𝑣𝑗 Subscribe(Shared_Channel)

 3: 𝑁𝑒𝑤𝑆𝑑𝑓𝑗MakeConflictField(�̅�𝑘,j, 𝑁𝑒𝑤𝐸𝑛𝑣𝑗 ,k)

 4: 𝑃𝑜𝑠𝑗TrackPosition(𝑁𝑒𝑤𝐸𝑛𝑣𝑗 , �̅�𝑗)

 5: d𝜃𝑗 GP.Inference(�̂�𝑗, 𝑃𝑜𝑠𝑗,NewEnvj,NewSdfj)//Update state

 6: 𝜃𝑗= 𝜃𝑗 + d𝜃𝑗

 7: Publish (𝜃𝑗 , 𝑆ℎ𝑎𝑟𝑒𝑑_𝐶ℎ𝑎𝑛𝑛𝑒𝑙)

 8: endfor

IV.IMPLEMENTATION DETAILS

 In this part, more implementation details about process role

optimization will be covered. To maintain simplicity, we focus

on treating the process role as identical to the trajectory without

taking into account any additional behavioral functions. The

Levenberg-Marquardt iterative algorithm is used to solve the

non-linear least-squares optimization problem in Eq. (11). The

optimization is stopped if a maximum iteration is reached or if

the relative decrease in error is smaller than a threshold.

A. GP prior:

 A constant-velocity prior is used for modeling the GP,

including the positions and velocities of robots. For a robot 𝑗 the

state includes:

𝜃𝑗(𝑡) = [𝑥𝑗 (𝑡), 𝑥𝑗̇ (𝑡)]
𝑇

 , (16)

where 𝜃𝑗(𝑡) is the position and velocity of the j-th robot in the

group of m robots. This model is a white-noise acceleration

model
�̈� = 𝑤(𝑡). (17)

 The Markovian model in Eq. (4) is given by:

𝐴(𝑡) = [
0 𝐼
0 0

] , 𝑢(𝑡) = 0, 𝐹(𝑡) = [
0
𝐼

] (18)

 For Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘, the state transition matrix and process

noise in Eqs. (6) and (7) are:

Φ(𝑡, 𝑠) = [
𝐼 (𝑡 − 𝑠)𝐼
0 𝐼

] , 𝑄𝑘,𝑘+1 = [

1

3
Δ𝑡𝑘

3𝑄𝑐
1

2
Δ𝑡𝑘

2𝑄𝑐

1

2
Δ𝑡𝑘

2𝑄𝑐 Δ𝑡𝑘
 𝑄𝑐

].

(19)

The time propagation, denoted as 𝑡 − 𝑠, involves the use of

the identity matrix I and the power-spectral density matrix Qc

derived from the temporal kernel. The constant velocity GP

prior is centered on a trajectory with zero acceleration. By

incorporating this prior, the approach aims to reduce actuator

acceleration in the configuration space. This interpretation

provides a physical understanding of smoothness within this

framework.

B. Collision-avoidance likelihood:

 An SDF matrix [22] is used for finding the collision

likelihood, as in Fig. 6. The problem of finding the minimum

signed distance from the robot surface to any obstacles is

converted to see the difference between the signed distance of

the sphere center and the sphere radius to any obstacle. An

obstacle cost function for any trajectory 𝜃𝑖 is then completed by

computing the Hinge loss:
ℎ(𝜃𝑖) = 𝑐(𝑥(𝜃𝑖 , 𝑆)), (20)

where x is the forward kinematics for sphere 𝑆, c is the Hinge

loss function:

𝑐(𝑧) = {
−𝑑(𝑧) + 𝜖 𝑖𝑓 𝑑(𝑧) ≤ 𝜖

0 𝑖𝑓 𝑑(𝑧) > 𝜖
 ,

(21)

where d(z) is the signed distance from any point z in the

workspace to the closest obstacle surface, and 𝜖 is a 'safety

distance' indicating the boundary of the 'unsafe area' near

obstacle surfaces. The signed distance d(z) is calculated from

an SDF matrix. In this particular application, the SDF is specific

to the type of robot and its interaction with other robots. The

covariance parameter in Eq. (9) is defined as Σ𝑜𝑏𝑠𝑖
= 𝜎𝑜𝑏𝑠 𝐼.

Fig. 6. SDF specific to a provided map containing obstacles

C. Motion constraints:

 Motion constraints exist in real-world robot team planning

and formation problems and should be considered during

trajectory estimation. For example, constraints may exist on

initial and destination states as well as other states along the

trajectory. These constraints are treated as prior knowledge on

the trajectory states with very small uncertainties. Constraints

can model such a penalty function 𝑓 (𝜃𝑐), where 𝜃𝑐 is the set of

states involved and can be incorporated into a likelihood

function,

Lconstraint (θ) ∝ exp {−
1

2
∥ 𝑓(𝜃𝑐) ∥𝛴𝑐

2 }, (22)

where 𝛴𝑐 = 𝜎𝑐𝐼 and 𝜎𝑐 is an arbitrary variance for this

constraint, indicating how 'tight' the constraint is. For example,

for speed limit constraint, the penalty function would be a

difference between the current velocity and maximum velocity.

V. EXPERIMENTAL STUDIES

 A GPMP2 Python library [11] has been enrolled for process

role optimization and OpenCV for image processing and

simulations. The SciPy Optimize library is employed in Python

to solve the optimization problem in GRA. All experiments are

performed on a laptop with 8 Intel Core i7-4910MQ @

2.90GHz CPUs, 16GB RAM. The approach to 2D path

planning problems is tested with complex environment

distributions and different robot types with size constraints.

A. Simulation tests

1- Obstacle distribution and feasibility test

 In this scenario, four homogeneous robots are considered in

six different environments, shown in Fig. 7, with varying

 7

obstacles and robot sizes (small, medium, large, and different

combinations). The destination points are organized in

formations resembling blue circles. Comparisons are conducted

between the proposed algorithm and the traditional GPMP. The

sensitivity of both algorithms to parameter settings using E-

Map and without E-Map are examined for GRA. Considering

parameters (𝜎𝑜𝑏𝑠 = 0.05,0.10,0.15,0.2), the algorithms aim to

find the approximate optimal paths from the sources to

destinations using either the normal GPMP with a straight line

as the initial path or the initial path from the E-Map. The

percentage of feasibility, average error, and average converging

time in both cases are measured for six different environments

and four sets of parameters for a total of 24 scenarios.

Fig. 7. The first experiment of the proposed algorithm with E-map

for 𝜎𝑜𝑏𝑠 = 0.15 (the green circles are the sources, and the blue circles

are the destinations)

Fig. 8. GPMP without E-map for 𝜎𝑜𝑏𝑠 = 0.15 , (the green circles are

the sources, and the blue circles are the destinations)

The performance criteria of the two algorithms are presented

in Table III. The feasibility is shown in terms of the average of

success or failure. In the case of failures, there is at least a point

on the graph where the center of the robot touches the obstacle.

The average converging time is the average number of

iterations to converge in each algorithm. Note that only the

converging times for the feasible cases in GPMP are

considered.
Table III: Comparing the results of two algorithms

 Feasibility Overall cost Converging time

Our method 100% 0.00052 3.31

GPMP 57.14% 0.01346 7.49

2- Testing of GRA advantages

In the second set of simulations, six robots are considered in

two groups of different sizes. Three small sizes (radius = 0.02

m) and three large size robots (radius = 0.1 m). Similar to the

previous experiment, 24 scenarios are tested for four ranges of

parameters (𝜎𝑜𝑏𝑠 = 0.05,0.10,0.15,0.2) and six different

environments. The environments are shown in Fig. 9, where the

space between the obstacles is not necessarily larger than the

robot size. An E-Map is used for both cases. In the first test,

roles are associated with each robot base on the Nearest

Neighbor (NN) algorithm means we associate the closest

destination to sources. In the second algorithm, the GRA is used

to test feasibility and role negotiation based on the cost of the

robots, similar to Eq. (13). In Table IV, the feasibility, cost, and

converging time for both algorithms are compared.

Fig. 9. The proposed algorithm under GRA for 𝜎𝑜𝑏𝑠 = 0.15, (green

circles with different radius are the robots with different sizes in the

source, and blue ones are the destinations)

Fig. 10. GPMP using NN algorithm for 𝜎𝑜𝑏𝑠 = 0.15, (the green circles

with different radius are the robots with different sizes at the sources,

and blue circles are the destinations)

Table IV: Comparing the algorithms for RBC model
 Feasibility Overall cost Converging time

GRA 100% 0.000869 3.11

NN 100% 0.001749 3.53

 As shown in Table IV, the feasibility in both cases is 100%

because of the E-Map. The proposed GRA algorithm

significantly improves the average cost and converging time.

3-Role and task-based role-playing

 We implemented a simulation case for two collision

avoidance scenarios using a task or role-based collaboration.

We considered four robots traveling from arbitrary sources to

unlabeled destinations in a 5 × 5 𝑚 environment, including

 8

obstacles. In task-based collaboration, in Fig. 11A, robots share

only their last positions and compute their distance to find

shared collision likelihood, and in role-based collaboration,

Fig.10B, they use all the process roles and compute their time-

trajectory distances. In Fig. 11, the advantage of collaborating

with the process role instead of tasks is shown with improved

smoothness and reliability costs. We used the average jerk

(change of acceleration) of the trajectories as a smoothness cost.

The smoothness factor improved from 0.006 to 0.0003, and the

minimum distance between all the robots also improved from

0.18 m to 0.23 m.

4-Narrow hallway comparison with MA-GPMP [13]

 In this simulation, we compared our algorithm against the

MA-GPMP [13] in a narrow hallway scenario. In Eq. (10) in

the MA-GPMP algorithm, a shared factor for the inter-robot

distance is extended to the optimization problem for each point.

In our algorithm, we compute a cost function for each process

role that conflicts with other process roles. The goal is to switch

the positions of two robots that start in two rooms separated by

a narrow hallway. The width of the hallway is smaller than the

combined diameter of the two robots, meaning that robots

cannot pass each other in the hallway. The size of the

environment and settings are set to be similar to those in [13].

The result can be seen in Fig. 12. In our method, we penalize

process roles for conflict areas and try to minimize the conflict

by updating process roles close to the place where the conflict

is happening. This is compared to the MA-GPMP method that

tries to avoid the collision at the beginning (Fig. 12B). From

these results, we can conclude that our approach makes more

efficient use of the available space and is better suited for

constrained environments than MA-GPMP.

Fig. 11. The comparison of task-based (A) and role-based (B) role-

playing.

Fig. 12. The comparison of our proposed algorithm (A) against MA-

GPMP algorithm (B).
B. Experimental on the real robot

Experimental studies are carried out with four mobile robots

on an indoor floor with a size of 5 × 5 m , filled with different

size black obstacles (black boxes), and one camera installed to

capture the scene. Raw frames, the E-Map, and the SDF matrix,

are available in the resolution of 200 by 200 for each dedicated

group of robots at any time. As shown in Fig. 13, two types of

mobile robots with different sizes are used: a) two Pioneer 3-

DX mobile robots with a length of 0.33 m between the two-

wheel centers, effective linear velocity range of 0.1-0.7 m/s, and

angular velocity range of 0.25-1.5 rad/s; b) two TurtleBot3

Burger mobile robots with the length of 0.16 m between the

two-wheel centers, a maximum linear velocity of 0.22 m/s, and

maximum angular velocity of 2.84 rad/s. As our proposed

process role model only uses positions and linear velocity

information about its agents, a separate controller based on [26]

is used to develop a kinematic model of a two-wheel mobile

robot and generate inputs of a linear velocity and an angular

velocity. The algorithms are implemented firstly in Gazebo in

Robot Operating System (ROS) and then are deployed to real-

world robots. An example of the agents operating in a Gazebo

environment is shown in Fig. 14.

(a)Pioneer 3DX mobile robot (b) TurtleBot3 Burger

Fig. 13. Experimental Setup at ACM Lab, Dalhousie University

 In this test, four robots of two different sizes are commanded

to form a diamond in a static environment. This test is first

conducted in a simulated Gazebo environment and then applied

to real robots. The robots communicate through a shared

channel network in the Advanced Control and Mechatronics

(ACM) lab at Dalhousie University. The experimental

environment is shown in Fig. 16. The approximately optimal

process roles generate 100 points. The main algorithm runs in

the central computer and can efficiently assign robots with the

proper roles in the environment with narrow and wide passages

to minimize the costs. The trajectories of the robots in the

experiments are shown in Fig. 15.

Fig. 14. An example of two Pioneer 3DX robots and two Turtlebot3

robots in a simulated Gazebo environment.

Fig. 15. Experimental results of the commanded (+) and actual

trajectories (.) of the four robots.

 9

 The experimental results, as shown in Figs. 15 and 16,

demonstrate the initial positioning of robots based on their

unique characteristics and size. This arrangement enables

efficient navigation through obstacles by leveraging the central

computer. Once the autonomous robots begin their actions, they

establish communication through the shared ROS channel and

utilize the top view camera's image to perceive the

environment. To monitor the robot positions, a color-based

tracking algorithm is employed. The process roles are updated

at each step as the robots progress toward their destinations. It's

worth noting that a small error is observed in Figure 15, which

can be attributed to tracking issues resulting from low

resolution. Future work could address this by incorporating

additional sensors to enhance the accuracy of robot localization

in the environment.

VI. CONCLUSION

This research introduces a new role engine designed for

multiple collaborative robots. The algorithm focuses on

defining, managing, and evaluating the roles of a team of robots

to enhance their performance. It incorporates a consensus-based

process role optimization that utilizes GP inference, taking into

account environmental constraints and shared factors in

dynamic multi-robot scenarios. Additionally, an environment

map is created based on the field's skeleton to improve

feasibility and scalability. Both simulations and real-world

experiments involving ground robots of different sizes

navigating through obstacles demonstrate the effectiveness and

efficiency of the proposed framework.

Fig. 16. Experimental setup: starting from the positions in (A) the

agents move to the diamond formation in (D). In (B), the Turtlebots

move in front of the Pioneers, while avoiding collisions, to take

efficient paths through the obstacles in (C).

Future work will focus on applying the proposed method to

address complex requirements, such as adaptive robot team

collaboration using dynamic role assignments. It is important to

note that this paper initially employs a central computer for role

negotiation, agent evaluation, and role assignment. However,

future research will explore the potential of the central

computer to play more significant roles in robot team

collaboration in an adaptive way. Additionally, there are plans

to expand the scale and environment with a fully decentralized

approach by developing a consensus algorithm for each robot.

APPENDIX A

 A) Environment Map – An E-MAP is a customized

weighted graph that serves as a representation of the

environment, specifically designed for a particular type of

robot. The process of creating an E-Map involves the following

steps:

1. Assign penalties to the obstacles in the environment based

on the characteristics of the robot.

2. Generate the skeleton of the environment using a thinning

algorithm, [13]. Additionally, remove stair artifacts using a

technique similar to [14].

3. Identify feature nodes, which are nodes on the skeleton

that have neighbors in more than one direction. These nodes are

then used to construct the graph, as depicted in Figure 16.

Fig. 16. Making E-Map: A) Original Image; B) Calculate the visitable

pixels; C) Create the skeleton and de-stairing; D) Make weighted graph

from the corner and intersections.

Fig. 17. E-Maps for two types of robots: (A) R=0.1; (B) R=0.05

(A) (B)

(C) (D)

 10

Fig. 18. (A) Find the shortest path; (B) Reduce the number of nodes
 B) Detecting Auxiliary nodes - Auxiliary nodes between two

start and end nodes are the nodes in the graph that make the

shortest path; the nearest node on the skeleton to the source and

destination is considered as the start and end nodes,

respectively. Using these nodes and the environment map, A*

search algorithm [15] with an octile distance heuristics is

applied to find the shortest path on the environment map from

the start to the end node, as shown in Fig. 18. Additional

filtering may be done to the nodes to reduce the number of

nodes. This node reduction is made in consideration of the size

of the robot, based on the feasible location map generated

earlier. It searches for feasible nodes by drawing a line and

checking whether the line passes through obstacles. If no path

is found between the start and end node, a path between the

source and destination may not be feasible. The feature nodes

traversed along the path are returned as the reference auxiliary

nodes to speed up the initial path calculation.

REFERENCES

[1] M. Schwager, B. J. Julian, M. Angermann and D. Rus., "Eyes in the sky:

Decentralized control for the deployment of robotic camera networks.,"

in Proceeding of the IEEE, Sept 2011.

[2] T. Suzuki, T. Sekine, T. Fujii, H. Asama and I. Endo., "Cooperative

formation among multiple mobile robot teleoperation in inspection task,"

in Proc. IEEE Conference on Decision and Control,
Sydney,NSW,Australia, Dec. 12-15, 2000.

[3] D. Liu, Q. Jiang, H. Zhu and B. Huang, "Distributing UAVs as Wireless

Repeaters in Disaster Relief via Group Role Assignment," International
Journal of Cooperative Information Systems, vol. 29, no. 1&2, pp.

2040002:1-22, 2020.

[4] J. Alonso-Mora, R. A. Knepper, R. Siegwart and D. Rus, "Local motion
planning for collaborative multi-robot manipulation of deformable

objects," in Proc. IEEE international conference on robotics and

automation, Seattle,WA,USA, May 26-30 2015.

[5] H. Tang, A. Wang, F. Xue, J. Yang and Y. Cao, "A Novel Hierarchical

Soft Actor-Critic Algorithm for Multi-Logistics Robots Task

Allocation," IEEE Access, vol. 9, pp. 42568-42582, Feb. 2021.

[6] H. Zhu, E-CARGO and Role-Based Collaboration: Modeling and

Solving Problems in the Complex World, Wiley-IEEE Press, Aug. 2021.

[7] H. Zhu and Zhou M.C., "Role-based collaboration and its Kernel
mechanisms," IEEE Trans on Systems, Man, Cybernetics., vol. 36, no. 4,

p. 578–589, Jul. 2006.

[8] M. Mustafa, Y. Xinyan and B. Byron, "Gaussian Process Motion
Planning," in Proc. IEEE Conference on Robotics and Automation

(ICRA-2016), 2016.

[9] J.-S. Ha, H.-J. Chae and H.-L. Choi, "Approximate Inference-Based
Motion Planning by Learning and Exploiting Low-Dimensional Latent

Variable Models," IEEE Robotics and Automation Letters, vol. 3, no. 4,

pp. 3892-3899, October 2018.

[10] J. Dong, M. Mukadam, F. Dellaer and B. Boots, "Motion planning as

probabilistic inference using Gaussian processes and factor graphs," in

Proceedings of Robotics: Science and Systems, Stockholm, Sweden, may

16-21, 2016.

[11] M. Mukadam, C. A. Cheng, X. Yan and B. Boots, "Approximately

optimal continuous-time motion planning and control via Probabilistic

Inference," in IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 2017.

[12] S. Guo, B. Liu, S. Zhang, J. Guo and C. Wang, "Continuous-time

Gaussian Process Trajectory Generation for Multi-robot Formation via
Probabilistic Inference," Cornell University, Arxiv, 2020.

[13] L. Petrovic, I. Markovic and M. Seder, "Multi-agent Gaussian Process

Motion Planning via Probabilistic Inference," in IFAC-PapersOnLine,
2018.

[14] H. Zhu, M. Zhou and R. Alkins, "Group Role Assignment via a Kuhn-

Munkres Algorithm-based Solution," IEEE Trans. on Systems, Man, and
Cybernetics, Part A: Systems and Humans, vol. 42, no. 3, pp. 739-750,

May 2012.

[15] H. Zhu, "Role-Based Autonomic Systems," Software Science and
Computational Intelligence,, vol. 2, no. 3, pp. 32-51, July 2010.

[16] H. Zhu, "Adaptive Collaboration Systems," IEEE Systems, Man, and

Cybernetics Magazine, vol. 1, no. 4, pp. 8-15, Oct. 2015.

[17] H. Zhu, M. Hou and M. Zhou, "Adaptive Collaboration Based on the E-

CARGO Model," Int’l J. of Agent Technologies and Systems, vol. 4, no.

1, pp. 59-76, 2012.

[18] H. Zhu, "Role-Based Collaboration and the E-CARGO: Revisiting the

Developments of the Last Decade," IEEE Systems, Man, and Cybernetics

Magazine, vol. 1, no. 3, pp. 27-35, July 2015.

[19] M. Hou, S. Banbury and C. Burns, Intelligent Adaptive Systems: An

Interaction-Centred Design Perspective, Boca Raton, FL: CRC Press,

2014.

[20] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning, MIT Press, 2006.

[21] S. Anderson, T. D. Barfoot, C. H. Tong and S. Särkkä, "Batch
Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian

Process Regression," Autonomous Robots, vol. 39, no. 3, pp. 221-238,

July 2015.

[22] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C.

Dellin, J. Bagnell and S. Srinivasa, "CHOMP:Covariant Hamiltonian

optimization for motion planning," The International Journal of Robotics
Research, vol. 32, no. 1164–1193, pp. 9-10, Sep. 2013.

[23] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert,

"iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree,"
The International Journal of Robotics research., vol. 31, no. 2, pp. 216-

235, May 2012.

[24] M. Bhardwaj, B. Boots and M. Mukadam, "Differentiable Gaussian
Process Motion Planning," in IEEE International Conference on

Robotics and Automation (ICRA), Paris, France, 2020.

[25] M. Hou, H. Zhu, M. Zhou and G. R. Arrabito, "Optimizing Operator-
Agent Interaction in Intelligent Adaptive Interface Design: A Conceptual

Framework," IEEE Trans. on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 41, no. 2, pp. 161-178, Mar. 2011.

[26] L. Ssebazza and Y. J. Pan, "DGPS-based localization and path following

approach for outdoor wheeled mobile robots," International Journal of

Robotics and Automation, vol. 30, no. 1, pp. 13-25, Jan. 2015.

