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Trajectory Inference of Unknown Linear Systems
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Abstract—Proliferation of cheaper autonomous system pro-
totypes has magnified the threat space for attacks across the
manufacturing, transport, and smart living sectors. An accurate
trajectory inference algorithm is required for monitoring and
early detection of autonomous misbehaviour and to take relevant
countermeasures. This paper presents a trajectory inference
algorithm based on a closed-loop output error approach using
partial states measurements. The approach is based on a physics
informed state parameteterization that combines the main ad-
vantages of state estimation and identification algorithms. Noise
attenuation and parameter estimates convergence are obtained
if the output trajectories fulfil a persistent excitation condition.
Known and unknown desired reference/destination cases are con-
sidered. The stability and convergence of the proposed approach
are assessed via Lyapunov stability theory under the fulfilment of
a persistent excitation condition. Simulation studies are carried
out to verify the effectiveness of the proposed approach.

Index Terms—Trajectory inference, Closed-loop Output error,
State parameterization, Output measurements, Parameter iden-
tification, Excitation signal.

I. INTRODUCTION

IN the last decades, one of the main control and machine

learning issues in many industrial and military applications

[1], [2] involving autonomous systems is regarded to the

trajectory inference problem [3], [4]. Its main objective is to

infer the trajectory that follows a system from previous and/or

current states measurements [5] and a prior knowledge of its

physics [6], also known as model-based.

Trajectory inference is usually done off-line by searching a

model that fits the data history of the system’s trajectories to

infer future destinations or mission profiles [7]. However, cur-

rent detection technologies (e.g., radars) are non-cooperative,

that is, they only provide noisy partial states measurements

and, in the worst case, the measurements contain gaps. These

problems hinder the accurate realization of the inference task.

Therefore, the inference problem is not regarded to only

predict the future trajectory, but also to find a model that is

capable to reconstruct the complete past trajectory using the

available measurements and to estimate the unmeasured ones.

State observers such as the Luenberger observer [8] or its

variants [9] are one of the classical model-based approaches

for state estimation that use partial states measurements. The
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performance of the state observer is degraded when there exists

modelling error and noise at the output measurements. Model-

free approaches such as high-gain observers [10] and sliding-

mode observers [11] are used to overcome this issue by taking

advantage of the robust properties of the sliding manifold.

However, these models are sensitive to measurement noise and

are affected by the “peaking” phenomena.

Kalman filter [12] is an optimal state observer that in-

corporates modelling error at the prior model and noise at

the output measurements. Both the modelling error and the

noise are assumed to have a Gaussian distribution [13], [14].

Kalman filter and its variants combine two different sources

of knowledge: a prior model of the system dynamics and a

posterior state estimation such that the mean between these

two state estimations matches with the exact mean of the

posterior state distribution. Nevertheless, Kalman filter can

rapidly diverge when the prior model is not accurate or

wrongly converge to different state estimates.

Whilst high-gain observers is the model-free version of

the Luenberger observer, particle filter [15] is the model-free

version of Kalman filter. In the particle filter approach, only

sample points of the output measurements and a proposed

distribution are used to generate normalized histograms that

reconstruct the shape of the followed trajectory. However, the

selection of the proposed distribution is not trivial and requires

a large number of samples to achieve accurate results [16].

Neural networks are used as a model-free approach for

state inference [17], [18]. Two different approaches can be

distinguished direct-solution models and time-stepper models

[19]. Whilst direct models [20] infer the trajectory from an

initial value problem for a given initial state and set of inputs,

the time-stepper models [21] learn the dynamics. Time-stepper

methods are characterized by using a similar approach to

numerical solvers [22], [23], that is, the current state is used

to obtain the next state in the next time instance. However,

these approaches require that the physics of the system to

be normalized to avoid divergence of the neural weights.

Furthermore, these networks require full states measurements.

Alternatively, recurrent neural networks (RNNs) [24] are used

as a complementary algorithm for Kalman filter algorithms

[25], [26]. The idea is to incorporate memory [27] and

adaptation to overcome the lack of knowledge of the prior

model [28]. However, the RNN is data hungry and it is not able

to capture the real physics of the system and, in consequence,

biased estimates are obtained.

Reinforcement Learning (RL) has been used mainly for

control purposes [29], [30] to find the optimal control policy

that minimizes a cost function with or without a model of
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the system [31], [32]. Here, the dynamic model of the system

is inferred from the system trajectories to solve recursively a

Hamilton-Jacobi-Bellman equation. However, RL techniques

have not been used for online trajectory estimation problems

and require access to the control input which is not available

in non-cooperative detection systems.

The best performance of the aforementioned models is

achieved when an accurate dynamic model is used, also known

as physics informed model [19]. System identification methods

aim to estimate the parameters [24], [33], [34] of a given

system in order to design physics informed models for either

model-based controllers and gain tunings. The most popular

methods for parameter identification are least-squares (LS)

[35], [36] and gradient algorithms and their respective variants.

Parameter convergence can be achieved under the fulfilment of

a persistent of excitation (PE) condition [37] at the regressor

matrix. However, these kind of algorithms require complete

states measurements. Moreover, if the measurements are noisy

then biased estimates are obtained [38].

Novel architectures have been developed for parameter iden-

tification [39]–[41]. These methods are the Closed-Loop Input

Error (CLIE) [42] and the Closed-Loop Output Error (CLOE)

[43], [44]. Both the CLIE and CLOE algorithms have a state

observer structure based on the real system and an estimated

model which use either the input error or output error to update

an identification law that subsequently updates the estimated

model [45]. On the one hand, the CLIE algorithm assumes

knowledge of the control input and complete state output to

estimate the parameters of a system. On the other hand, the

CLOE algorithm requires complete output measurements to

estimate the parameters of the system. In addition, the CLOE

algorithm requires initial parameter estimates close to their

real values to achieve good results.

Therefore, there exists a trade-off between state estimation

and system identification. On the one hand, state estimation

requires an accurate physics-informed model to achieve good

trajectory inference. Conversely, system identification requires

noise-free state measurements to obtain unbiased parameter

estimates. In addition, to the best of our knowledge there

are no parameter identification algorithms that consider partial

states measurements. Furthermore, there are no theoretical ap-

proaches that combine the main advantages of state estimation

and identification algorithms and verify both the convergence

of the parameters estimates and states.

Inspired by the previous comments, this paper reports a

CLOE algorithm for physics informed trajectory inference

using partial states measurements. The approach extends the

scope of standard CLOE algorithms and combines the ad-

vantages of both estimation and identification algorithms in a

complementary mechanism. Parameter and states convergence

is analysed using Lyapunov stability theory. The main contri-

butions of the work are the following:

• The CLOE algorithm is extended for partial states mea-

surements based on a physics-informed parameterization

in terms of the desired reference/destination and the

output measurements of an estimated model.

• Both the parameters and states estimates are computed

simultaneously using the output of an estimated model

and a proposed excitation signal instead of the noisy-

output measurements.

• A rigorous stability analysis of the closed-loop output er-

ror dynamics using Lyapunov stability theory is provided.

• The regressor matrices associated to the desired reference

and the estimated output measurements are noise-free and

consequently the estimated states are also noise-free.

The paper outline is as follows: Section II presents the

problem formulation. Section III defines the state param-

eterization based on the desired trajectory and the output

measurements. Section IV presents the CLOE trajectory in-

ference algorithm. Section V covers a CLOE architecture for

unknown desired reference/destination. Section VI reports the

simulations studies using different autonomous system models.

The conclusions are presented in Section VII.

Throughout this paper, N, R, R
+, R

n, R
n×m denote

the spaces of natural numbers, real numbers, positive real

numbers, real n-vectors, and real n×m-matrices, respectively;

In ∈ R
n×n denotes an identity matrix; λmin(A) and λmax(A)

denotes the minimum and maximum eigenvalues of matrix

A, respectively; det(A) and adj(A) stand to the determinant

and the adjoint matrix of matrix A; L denotes the Laplace

transform, ⊗ and vec(A) defines the Kronecker product and

the matrix stretch, the norms ‖A‖ =
√
λmax(A⊤A) and ‖x‖

stand for the induced matrix and vector Euclidean norms,

respectively; where x ∈ R
n, A,B ∈ R

n×n and n,m ∈ N.

II. PROBLEM FORMULATION

Consider a linear time invariant continuous-time system [8]

ẋ = Ax+Bu
y = Cx, x(0) = x0,

(1)

where x ∈ R
n is the state vector, u ∈ R

m is the control

input, y ∈ R
p is the output vector with p < n, A ∈ R

n×n,

B ∈ R
n×m, and C ∈ R

p×n denote the plant, input, and output

matrices, respectively. The matrices A and B are unknown.

Assumption 1: The pair (A,B) is controllable and the pair

(A,C) is observable.

Assumption 2: Only measurements of the output y are

available, that is, we have partial-states measurements.

Assumption 3: The control input u has an unknown linear

structure that ensures stability of the closed-loop trajectories

and tracking of a desired reference xd.

Consider that the control input of system (1) has the

following linear structure [46]

u = K(xd − x)−B†(Axd − ẋd), (2)

where K ∈ R
m×n is an unknown stabilizing gain, B† is

the Moore-Penrose pseudoinverse of B, xd, ẋd ∈ R
n are the

desired reference and its derivative. Substituting (2) in (1)

leads to

ẋ = (A−BK)(x− xd) + ẋd, (3)

The matrix A− BK is Hurwitz, such that the closed-loop

error dynamics

ẋ− ẋd = (A−BK)(x− xd) (4)
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exhibits exponential stability [47], that is, limt→∞ x(t) =
xd(t). This paper aims to estimate the hidden physics and infer

the trajectory of (3) from the partial data measurements y and

knowledge of the desired reference. However, this approach

can also be expanded for unknown desired references.

III. STATE PARAMETERIZATION

The following parameterization is derived from the structure

of a Luenberger observer [48], [49]. The LTI system (1) can

be expressed as

ẋ = Ax+Bu+ L(y − y)
u = K(xd − x)−B†(Axd − ẋd)
y = Cx,

(5)

where L ∈ R
n×p is a stabilizing gain. The above system can

be reduced to the following differential equation

ẋ = (A−BK + LC)x− (A−BK)xd + ẋd − Ly. (6)

The additional term does not affect the real system trajecto-

ries, however is helpful for this approach since we are able to

incorporate the output measurements in the main differential

equation. Notice that the matrix A−BK+LC is also Hurwitz.

The Laplace transform of (6) is

X(s) =(sI −A)−1x0 + (sI −A)−1(sI −A+ F )Xd(s)

− (sI −A)−1LY (s), (7)

where A = A − BK + F ∈ R
n×n and F = LC ∈ R

n×n.

Then, the solution of (6) is

x(t) = eAtx0 + xd(t) +

∫ t

0

eA(t−τ)(Fxd(τ)− Ly(τ))dτ.

(8)

The solution (8) gives one way to parametrize the states

in terms of the desired reference xd and the output y. The

solution (7) can be expressed as

X(s) =(sI −A)−1x0 − (sI −A)−1

p∑

i=1

LiY i(s)

+Xd(s) + (sI −A)−1
n∑

i=1

F iXi
d(s), (9)

where Li and F i denote the column i of matrices L and

F , respectively; analogously, the terms Xi
d and Y i denote

the element i of vectors Xd and Y . By construction, the

characteristic polynomial of sI −A satisfies

D(s) = det(sI −A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0,

where αi > 0. Then,

n∑

i=1

(sI −A)−1F iXi
d(s) :=

n∑

i=1

adj(sI −A)

D(s)
F iXi

d(s),

p∑

i=1

(sI −A)−1LiY i(s) :=

p∑

i=1

adj(sI −A)

D(s)
LiY i(s),

(10)

where adj(A) is the adjoint matrix of matrix A. Consider

the first summation of (10), then it is possible to split the

numerator as

adj(sI −A)F i =




βi1
n−1s

n−1 + · · ·+ βi1
1 s+ βi1

0

βi2
n−1s

n−1 + · · ·+ βi2
1 s+ βi2

0
...

βin
n−1s

n−1 + · · ·+ βin
1 s+ βin

0




=




βil
0 βil

1 · · · βil
n−1

βi2
0 βi2

1 · · · βi2
n−1

...
...

...
...

βin
0 βin

1 · · · βin
n−1







1
s
...

sn−1




:= W i
xN(s)

where W i
x ∈ R

n×n contains the coefficients of the numerator

and N(s) ∈ R
n is a vector of powers of s. So,

n∑

i=1

adj(sI −A)

D(s)
F iXi

d(s) =
n∑

i=1

W i
x

N(s)

D(s)
Xi

d(s). (11)

The term N(s)/D(s) defines n filters applied to the desired

reference xd(t). This vector of n filters of xi
d(t) can be

obtained by the following linear system

ξ̇ix = ALξ
i
x +BLx

d
i , ξix(0) = 0,

ζix = ξix,
(12)

where ξix defines the state of the linear system i, ζix is the

output which is equivalent to the state ξx, and the matrices

AL ∈ R
n×n and BL ∈ R

n are given by

AL =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αn



, BL =




0
0
...

0
1



.

Note that (sI − AL) = D(s). So, the first summation in

(10) can be written in the time domain as

L−1

{
n∑

i=1

adj(sI −A)

D(s)
F iXi

d(s)

}
= Wxξx, (13)

where Wx = [W 1
x ,W

2
x , · · · ,W

n
x ] ∈ R

n×n2

and ξx =
[(ξ1x)

⊤, (ξ2x)
⊤, · · · , (ξnx )

⊤]⊤ ∈ R
n2

. A similar procedure is

applied to the second summation. So, its time domain rep-

resentation is

L−1

{
p∑

i=1

adj(sI −A)

D(s)
LiY i(s)

}
= Wyξy, (14)

where Wy = [W 1
y ,W

2
y , · · · ,W

p
y ] ∈ R

n×np and ξy =
[(ξ1y)

⊤, (ξ2y)
⊤, · · · , (ξpy)

⊤]⊤ ∈ R
np. The elements W i

y ∈
R

n×n are the coefficients of adj(sI − A)Li and ξiy ∈ R
n

is the state vector obtained from the following linear system

ξ̇iy = ALξ
i
y +BLy

i, ξiy(0) = 0,
ζiy = ξiy.

(15)

So (8) can be equivalently written as

x = eAtx0 + xd +Wxξx −Wyξy. (16)
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We can easily compute the term eAt by considering the

eigendecomposition [50] of matrix A, i.e.,

A = PDP−1, (17)

where P ∈ R
n×n is a matrix whose columns are the eigenvec-

tors of matrix A, and D ∈ R
n×n is a diagonal matrix whose

elements on its diagonal are the eigenvalues of matrix A. Then

the exponential of matrix A is given by

eAt = PeDtP−1. (18)

Remark 1: The existence of the eigendecomposition requires

that the algebraic multiplicity of repeated eigenvalues have

the same number of associated eigenvectors. This issue can

be solved by choosing different eigenvalues with algebraic

multiplicity one.

However, the term eAtx0 exponentially converges to zero

as t → ∞. So, for instance we can assume that this term is

zero or that x0 = 0. Taking the time derivative of (16) along

the linear systems (12) and (15) is

ẋ =ẋd +Wxξ̇x −Wy ξ̇y

=ẋd +Wx

[
AL · · · AL

]
ξx +Wx

[
BL · · · BL

]
xd

−Wy

[
AL · · · AL

]
ξy −Wy

[
BL · · · BL

]
y

=ẋd +Wx(Axξx +Bxxd)−Wy(Ayξy +Byy)

=ẋd +Φ⊤
x Θx − Φ⊤

y Θy, (19)

where the matrices associated to the desired reference are

given by Ax = diag{AL, · · · , AL} ∈ R
n2×n2

, Bx =
diag{BL, · · · , BL} ∈ R

n2×n, and equivalently, the matrices

associated to the output are Ay = diag{AL, · · · , AL} ∈
R

np×np, and By = diag{BL, · · · , BL} ∈ R
np×n. The terms

Φx = Φ(xd, ξx) ∈ R
r1×n and Φy = Φy(y, ξy) ∈ R

r2×n

define the regressor matrices and Θx ∈ R
r1 , Θ ∈ R

r2 are the

parameters vectors which can be expressed as

Φx = In ⊗ (Axξx +Bxxd), Θx = vec(Wx)
Φy = In ⊗ (Ayξy +Byy), Θy = vec(Wy).

(20)

Notice that WxBx = F and WyBy = L. In the next section

the trajectory inference algorithm is developed using only the

output measurements y and the desired destination xd.

IV. CLOE TRAJECTORY INFERENCE

The proposed algorithm aims to estimate both the states and

parameters of the parameterization (19). To achieve this goal,

the output measurements need to be rich enough [51], [52] to

excite the identification algorithm. So, an excitation signal is

added to the output measurements as

yτ = y + Cτ, (21)

where τ ∈ R
n is an excitation vector. This new output satisfies

xτ = x+ τ and belongs to the next LTI system

ẋτ = Axτ − (A− F )(xd + τ) + ẋd + τ̇ − Lyτ (22)

which can be equivalently written as

ẋτ = ẋd + τ̇ +Wx(Axξx +Bx(xd + τ))
−Wy(Ayξy +Byyτ )

= ẋd + τ̇ +Φ⊤
x Θx − Φ⊤

y Θy,
(23)

where Φx and Φy are rewritten as

Φx = In ⊗ (Axξx +Bx(xd + τ))

Φy = In ⊗ (Ayξy +Byyτ ).

Fig. 1 depicts the diagram of the proposed trajectory infer-

ence algorithm. Two subsystems composed of n linear systems

ξ̇ix and p linear systems ξ̇iw; with the output error e, between

the output measurements yτ and the output w of an estimated

model (constructed by the proposed state-parameterization),

feed an identification algorithm that subsequently updates the

estimated model.

Unknown Linear System

+

Identification Law

Estimated model
+
-

+

+
+

Fig. 1. Block diagram of the proposed CLOE trajectory inference

Consider an estimated model which has the following

structure

ż = Âz − (Â − F̂ )(xd + τ) + ẋd + τ̇ − L̂w
w = Cz, z(0) = z0 = x0,

(24)

where z ∈ R
n denotes the states of the estimated model, w ∈

R
p is the output, and Â, F̂ , and L̂ are estimates of A, F , and

L, respectively. The estimated model (24) written in the form

of (23) is

ż = ẋd + τ̇ + Ŵx(Axξx +Bx(xd + τ))

−Ŵy(Ayξw +Byw)

= ẋd + τ̇ +Φ⊤
x Θ̂x − Φ⊤

z Θ̂y,

(25)

where Ŵx ∈ R
n×n2

and Ŵy ∈ R
n×np are the estimates of

Wx and Wy , respectively. The term Φz = Φz(w, ξw) ∈ R
r2×n

defines the regressor matrix constructed with the output mea-

surements of the estimated model and Θ̂x ∈ R
r1 , Θ̂y ∈ R

r2

are the parameter estimates vectors. The regressor matrix Φz

and the parameter estimates vector Θ̂ are given by

Φz = In ⊗ (Ayξw +Byw),

Θ̂x = vec(Ŵx), Θ̂y = vec(Ŵy).
(26)

The state ξw = [(ξ1w)
⊤, (ξ2w)

⊤, · · · , (ξnw)
⊤]⊤ ∈ R

np is

obtained from the following linear systems

ξ̇iw = ALξ
i
w +BLw

i,
ζiw = ξiw.

(27)
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Define the output error between the output measurements

yτ and the output of the estimated model w as

e = yτ − w. (28)

The closed-loop output error (CLOE) dynamics between

(23) and (25) is

ė =C
(
Wx(Axξx +Bx(xd + τ))−Wy(Ayξy +Byyτ )

− Ŵx(Axξx +Bx(xd + τ)) + Ŵy(Ayξw +Byw)
)

=− C
(
WyAy(ξy − ξw) +WyBye

+ W̃x(Axξx +Bx(xd + τ))− W̃y(Ayξw +Byw)
)

=− C
(
WyAy(ξy − ξw) +WyBye+Φ⊤

x Θ̃x − Φ⊤
z Θ̃y

)

=− C(WyBye+Φ⊤
x Θ̃x − Φ⊤

z Θ̃y + ε) (29)

where W̃x = Ŵx −Wx ∈ R
n×n2

, W̃y = Ŵy −Wy ∈ R
n×np

denote the parametric error of matrices Wx and Wy; the terms

Θ̃x = vec(W̃x) ∈ R
r1 and Θ̃y = vec(W̃y) ∈ R

r2 denote

the parametric error of the linear parameterization; and ε :=
WyAy(ξy−ξw) is a bounded residual error, i.e., ‖ε‖ ≤ ε̄ ≥ 0.

Parameter and states convergence is achieved under the

fulfilment of the next persistent of excitation condition.

Lemma 1: [53] The regressors Φx : Rn × R
n2

→ R
r1×n

and Φz : Rp ×R
np → R

r2×n are persistently exciting (PE) if

there exists α1, α2, α3, α4 > 0, and T > 0 such that for all

t ≥ 0, the next relationships are fulfilled

α1Ir1 ≤ S1 =

∫ t+T

t

Φx(τ)Φ
⊤
x (τ)dτ ≤ α2Ir1 ,

α3Ir2 ≤ S2 =

∫ t+T

t

Φz(τ)Φ
⊤
z (τ)dτ ≤ α4Ir2 .

(30)

The following theorem establishes the uniformly ultimate

boundedness (UUB) [54] of the CLOE trajectories under the

fulfilment of the PE condition (30).

Theorem 1: Consider the CLOE dynamics (29). Assume that

the regressor matrix Φz fulfils the PE condition (30). Define

k := λmin(CL) which verifies

k > λmax(C)ε̄+ ρ (31)

where ρ ∈ R
+. If the parameter estimates Θ̂x and Θ̂y are

updated by the following update rules

˙̂
Θx =

˙̃
Θx = ΓxΦxC

⊤e, (32)

˙̂
Θy =

˙̃
Θy = −ΓyΦzC

⊤e, (33)

where Γx ∈ R
r1×r1 and Γy ∈ R

r2×r2 are positive diagonal

matrices. Then the trajectories of (29) are UUB with a practical

bound µ = λmax(C)
k

ε̄ and the parameter estimates Θ̂ remain

bounded.

Proof: Consider the following Lyapunov function

V =
1

2
e⊤e+

1

2
Θ̃⊤

x Γ
−1
x Θ̃x +

1

2
Θ̃⊤

y Γ
−1
y Θ̃y (34)

The time-derivative of the Lyapunov function (34) along the

CLOE dynamics (29) and the update rules (32) and (33) is

V̇ =− e⊤C(WyBye+Φ⊤
x Θ̃x − Φ⊤

z Θ̃y + ε) + Θ̃⊤
x Γ

−1
x

˙̃
Θx

+ Θ̃⊤
y Γ

−1
y

˙̃
Θy

=− e⊤CWyBye− Θ̃⊤
x (ΦxC

⊤e− Γ−1
x

˙̃
Θx)− e⊤Cε

+ Θ̃⊤
y (ΦzC

⊤e+ Γ−1
y

˙̃
Θy)

=− e⊤C(WyBye+ ε)

≤− λmin(CL)‖e‖2 + λmax(C)‖ε‖‖e‖

=− k‖e‖

(
‖e‖ −

λmax(C)ε̄

k

)

Therefore, V̇ is negative definite if

‖e‖ >
λmax(C)

k
ε̄ ≡ µ (35)

If we select a large enough gain L such that (31) is satisfied

ensures that the CLOE trajectories (29) converge to a compact

set Se of radius µ, i.e., ‖e‖ ≤ µ and hence, the trajectories of

(29) are UUB.

The uniform complete observability (UCO) result [51] is

used to show that Θ̂x and Θ̂y are bounded. First, the update

rules (32) and (33) can be written as the following linear-time

variant (LTV) system [55]
[
˙̂
Θx

˙̂
Θy

]
=

[
ΓxΦxC

⊤

ΓyΦzC
⊤

]
uy

σ = Φ⊤
x Θ̂x +Φ⊤

z Θ̂y

(36)

where σ ∈ R
n is the outputs of each LTV system, uy = e is

the control input, and B(t) =

[
ΓxΦxC

⊤

−ΓyΦzC
⊤

]
∈ R

(r1+r2)×n is

a time-varying matrix. Since e is bounded then the output w is

also bounded. This implies that the regressor Φz is bounded.

By construction Φx is always bounded. These facts guarantee

boundedness of the term

σ ≡ −CWyBye− ė− ε. (37)

Notice that (37) and (29) are equivalent. So, since the input

uy = e and the output σ are bounded, and the regressors

Φx and Φz are PE ensure the boundedness of the parametric

errors Θ̃x and Θ̃y , and hence Θ̂x and Θ̂y are also bounded.

This completes the proof.

The real estimated trajectory can be easily computed by

ŷ = w − τ
x̂ = z − [τ, τ̇ ]⊤.

(38)

V. CLOE TRAJECTORY INFERENCE: UNKNOWN

REFERENCE

The approach can also be expanded for unknown desired

reference or destination. So, (22) can be rewritten as

ẋτ = Axτ − (A− F )τ + τ̇ − Lyτ + ηd, (39)

where η = diag{ẋd−(A−F )xd} ∈ R
n×n is a diagonal matrix

that contains the unknown desired reference/destination and
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d = [1, · · · , 1]⊤ ∈ R
n. The proposed state-parameterization is

used in (39) to obtain the next LTI system

ẋτ = τ̇ +Wx(Axξx +Bxτ)−Wy(Ayξy +Byyτ )
+Wη(Axξη +Bxd)
= τ̇ − Φ⊤

y Θy +Φ⊤
η Θη.

(40)

Unknown Linear System

+

Identification Law

Estimated model
+
-

+

Fig. 2. CLOE diagram for unknown desired reference/destination

The matrix Wη = [W 1
η , · · · ,W

n
η ] ∈ R

n×n2

is a parameters

matrix and their components are computed as W i
η = adj(sI−

A)ηi; ξη = [(ξ1η)
⊤, · · · , (ξnη )

⊤]⊤ ∈ R
n2

where ξiη ∈ R
n

denotes the state of the following LTI system

ξ̇iη = ALξ
i
η +BLd

i

ζiη = ξiη,
(41)

and the regressor Φη = Φη(τ, ξx, ξη) ∈ R
r3×n and the

parameters Θη ∈ R
r3 are defined as

Φη =

[
In ⊗ (Axξx +Bxτ)
In ⊗ (Axξη +Bxd)

]
, Θη =

[
vec(Wx)
vec(Wη)

]
. (42)

Then, the estimated model has the following structure

ż = τ̇ + Ŵx(Axξx +Bxτ)− Ŵy(Ayξw +Byw)

+Ŵη(Axξη +Bxd)

= τ̇ − Φ⊤
y Θ̂y +Φ⊤

η Θ̂η,
w = Cz,

(43)

where Ŵη ∈ R
n×n2

are estimates of Wη and the parameter

estimates vector Θ̂η ∈ R
r3 is defined as

Θ̂η =

[
vec(Ŵx)

vec(Ŵη)

]
∈ R

r3 .

So, the CLOE dynamics between (40) and (43) is

ė =C
(
Wx(Axξx +Bxτ)−Wy(Ayξy +Byyτ )

+Wη(Axξη +Bxd)− Ŵx(Axξx +Bxτ)

+ Ŵy(Ayξw +Byw)− Ŵη(Axξη +Bxd)
)

=− C
(
WyBye− Φ⊤

z Θ̃y +Φ⊤
η Θ̃η + ε

)
(44)

Fig. 2 depicts the diagram of the proposed CLOE algorithm

for unknown desired reference/destination. The diagram is

almost the same as the diagram of Fig. 1 where another

subsystem composed of n linear systems ξ̇η is added to

feed the identification algorithm that subsequently updates the

estimated model estimates.

Theorem 1 holds for the unknown reference case where the

update rule (32) is changed to

˙̃
Θη = ΓηΦηC

⊤e, (45)

where Γη ∈ R
r3×r3 is a diagonal gain matrix and Φη fulfils

the PE condition (30).

Remark 2: The matrix η can include unknown and bounded

exogenous disturbances without modifying the state parame-

terization (40).

Notice that if the output measurements y are noise-free and

the regressors Φy , Φx or Φη fulfil the PE condition (30), then

ε = 0. So, the output error e converges to zero.

Remark 3: For the proposed method, the involved com-

putation is dominated by the CLOE identification rule to

estimate either Θ̂x, Θ̂y , or Θ̂η . If one does the calculations

of the right hand side of (32) and (33), for Θ̂x has growth

with (r1p)
2n due to the Kronecker products, and for Θ̂y

has growth with (r2p)
2n. Thus, the complexity is given by

O
(
n((r1p)

2 + (r2p)
2)
)
. The same procedure is applied to

update rule (45), the CLOE with unknown desired destination

one has growth with (r3p)
2n, so the complexity is given by

O(n((r2p)
2 + (r3p)

2)).

VI. SIMULATION STUDIES

The performance of the proposed trajectory inference algo-

rithm are assessed using a F-16 aircraft dynamics, a 2-DOF

robot manipulator, and a quadcopter drone model. A sampling

period of 0.1ms and the ODE5 solver are used to obtain more

accurate approximations of the continuous-time update laws.

A. F-16 aircraft dynamics

Consider a F-16 short period dynamics [54]

ẋ =



−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1


x+



0
0
1


u

y = Cx, C = [I2, 02×1].

Here, x = [α, q, δe]
⊤, where α is the angle of attack, q

is the pitch rate and δe is the elevator deflection angle, and

u = δec is the elevator command. Consider a stabilization task

at the origin. Gaussian random noise is added at the output

measurements to model sensor noise. In addition, an excitation
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signal τ is added to guarantee parameter estimate convergence.

This signal is composed by an exponential weighted sum of

sinusoidal functions of different frequencies. It is clear that the

pair (A,B) is controllable and the pair (A,C) is observable.

Assume that the F-16 dynamics is controlled by any un-

known feedback controller of the form u = −Kx where

K ∈ R
1×3 is a stabilizing gain. So, since K is unknown

we are able to choose any stable characteristic polynomial. It

is proposed to locate the system’s poles at −5,−6,−4, that

is, D(s) = (s+ 6)(s+ 5)(s+ 4).
Remark 4: On the one hand, if the poles are chosen to be

far from the origin in the left-side of the complex plane, it

implies that the control gain K is large and hence the output

gain L will increase too. Conversely, if the poles are located

near the origin in the left-side of the complex plane, then the

control gain K and L will be small.

The estimated model (25) of the F-16 aircraft dynamics is

ż = expAt z0 + τ̇ + Ŵx(Axξx +Bxτ)− Ŵy(Ayξw +Byw),

where Ŵx ∈ R
3×9 and Ŵy ∈ R

3×6. So we need to estimate 27

parameters for Θ̂x and 18 parameters for Θ̂y . The gains of the

update law are manually tuned until the best performance is

achieved. The final gains are Γx = 700I27 and Γy = 1000I18.

The initial condition term is computed as

eAtx0 = PeDtP−1x0

with x0 = z0 = [1,−1, 1]⊤, D = −diag{4, 5, 6}, and

P =




0.0605 −0.0392 −0.0274
−0.2421 0.1960 0.1643
0.9684 0.9798 −0.9860


 .

Fig. 3 shows the trajectory inference results. Fig. 3(a)

shows an accurate tracking of the real system’s trajectory

with excitation signal. The real trajectory (without excitation

signal) was recovered by computing ŷ = w − τ , the results

are shown in Fig. 3(b). Notice that the estimated trajectories

exhibit a smooth response in comparison to the noisy signal

yτ . Parameter estimates convergence of both Θ̂x and Θ̂y are

shown in Fig. 3(c) and Fig. 3(d). The design of the excitation

signal τ is one of the main challenges of any identification

algorithm because parametric drift may exist. Notice that

the proposed excitation signal guarantees parameter estimates

convergence but is slow.

Fig. 4 shows the output error results. The output error is

equivalent to the innovation of a Kalman filter algorithm where

the outcome is only the noise of the noisy-measurements

which implies that the estimated trajectory can infer the real

trajectory and reduce the level of noise.

B. 2-DOF robot

Consider a 2-DOF robot [56] endowed with gearbox such

that its dynamics can be expressed as a perturbed linear system

of the form

q̈ = −Aq q̇ +Bqu+Dq,

where q = [q1, q2]⊤ ∈ R
2 denotes the joint positions, u ∈ R

2

is the control input associated to the voltage applied to the

0 20 40 60 80 100

-200

0

200

400

(a) Output comparison: yτ vs w

0 200 400 600 800 1000

-2

0

2

500 600 700 800

-0.05

0

0.05

(b) Estimated trajectory: y vs ŷ

0 200 400 600 800 1000

0

20

40

(c) Parameter estimates Θ̂x

0 200 400 600 800 1000

-50

0

50

100

(d) Parameter estimates Θ̂y

Fig. 3. Trajectory Inference results: F-16 aircraft case

0 200 400 600 800

-0.1

0

0.1

Fig. 4. Output error trajectories

actuators, Aq = A⊤
q > 0 ∈ R

2×2 stands for a dissipative

matrix, Bq = B⊤
q > 0 ∈ R

2×2 is a control matrix gain, and

Dq ∈ R
2 is a disturbance vector. Consider that the robot is

controlled by a PD controller of the form

u = Kp(qd − q) +Kd(q̇d − q̇) +B−1
q (q̈d +Aq q̇d),

where Kp,Kd > 0 ∈ R
2×2 denote the proportional and

derivative control gains, and qd, q̇d, q̈d ∈ R
2 are the desired

reference and their respective time-derivatives. So, the closed-

loop dynamics between the robot model and the PD controller

is given by

q̈ = q̈d +BqKp(qd − q) + (Aq +BqKd)(q̇d − q̇) +Dq.

In most cases, the terms B−1
q (·) in u are not used in real

control laws because the control gains are chosen to be large

enough such that the disturbance vector Dq and the terms

associated to the time-derivatives of the desired reference are

attenuated. This means, that the closed-loop trajectories have

practical stability or equivalently they are UUB.

The above dynamics written in state space is

ẋ = −Ax+Axd + ẋd +D,

with x = [q⊤, q̇⊤]⊤ ∈ R
4, xd = [q⊤d , q̇

⊤
d ]

⊤ ∈ R
4, and A >

0 ∈ R
4×4, and D ∈ R

4 are given by

A =

[
02 I2

BqKp Aq +BqKd

]
, D =

[
02×1

Dq

]
.

Assume that we only have measurements of the joint angles,

so the output matrix is C = [I2, 02].
For this case, the state parameterization (40) is used because

the dynamics possesses a disturbance vector. Assume that
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the desired reference xd is known in advance. The estimated

model has the following structure

ż =eAtz0 + ẋd + τ̇ + Ŵx(Axξx +Bx(xd + τ))

− Ŵy(Ayξy +Byw) + Ŵη(Axξη +Bxd)

=ẋd + τ̇ − Φ⊤
y Θ̂y +Φ⊤

η Θ̂η,

where Ŵx ∈ R
4×16, Ŵy ∈ R

4×8, and Ŵη ∈ R
4×16.

So, we have to estimate 128 parameters for Θ̂η , and 32

parameters for Θ̂y . The same excitation signal is used for the

trajectory inference algorithm. The system’s poles are located

at −4,−5,−6,−7, that is, D(s) = (s+4)(s+5)(s+6)(s+7).
The initial condition is x0 = z0 = [0.1, 0.1, 0, 0]⊤ ∈ R

4,

D = −diag{7, 6, 5, 4}, and

eAtz0 = PeDtP−1z0

P =




−0.0029 0.0046 −0.0078 0.0151
0.0202 −0.0274 0.0392 −0.0605
−0.1414 0.1643 −0.1960 0.2421
0.9897 −0.9860 0.9798 −0.9683


 .
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-200
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(a) Output comparison: yτ vs w
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-0.75

(b) Estimated trajectory: y vs ŷ
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40

(c) Parameter estimates Θ̂y (d) Parameter estimates Θ̂η

Fig. 5. Trajectory Inference results: 2-DOF robot case with known constant
reference

The update rule gains are manually tuned until the best

identification performance is achieved. The final matrices are

Γy = 2000I32 and Γη = 1500I128. First, the following

constant desired references are used q1d = π
3 , q2d = −π

4 .

The trajectory inference results are shown in Fig. 5. Sim-

ilarly to the F-16 aircraft results (see Fig. 3), the inference

algorithm is able to extract the real trajectory and reduce the

noise. Parameter estimates convergence of both Θ̂y and Θ̂η are

also achieved. Here, the excitation signal τ is not applied to the

real system dynamics, instead is an external signal added to the

output measurements for identification purposes. Thus, we are

able to use any excitation signal τ with different frequencies

and amplitudes to guarantee parameters convergence.

The constant desired reference is modified to the follow-

ing time-varying reference, q1d(t) = π
3 sin

(
π
4 t
)
, q2d(t) =

π
3 cos(πt). Fig. 6 shows the trajectory inference results for

a time-varying reference. Similar results to the constant ref-

erence case (see Fig. 5) are obtained. Noise attenuation and

parameter estimates convergence are achieved by using the

prior knowledge of the desired reference and the proposed

excitation signal. In addition, a time-varying reference adds a

new way to excite the identification algorithm
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-200
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400

(a) Output comparison: yτ vs w
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(b) Estimated trajectory: y vs ŷ
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0
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40

(c) Parameter estimates Θ̂y (d) Parameter estimates Θ̂η

Fig. 6. Trajectory Inference results: 2-DOF robot case with known time-
varying reference

Finally, assume that the desired reference is unknown, that

is, we only have available the output measurements y and

the proposed excitation signal τ . Fig. 7 shows the obtained

inference results for the constant desired reference case. Notice

that it is obtained similar results to the ones obtained in Fig.

3. Here the desired reference xd is estimated in Θ̂η such that

almost the same performance is achieved.
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(a) Output comparison: yτ vs w
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-0.75

(b) Estimated trajectory: y vs ŷ

0 200 400 600 800 1000

0
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40

(c) Parameter estimates Θ̂y (d) Parameter estimates Θ̂η

Fig. 7. Trajectory Inference results: 2-DOF robot case with unknown constant
reference

Fig. 8 shows the trajectory inference results for an unknown

time-varying reference. In contrast to the previous cases, an

unknown time-varying reference causes that the estimates of

Θ̂η to be time-variant. This modifies the output error e, and

consequently affects the estimates of Θ̂y . Despite the estimated

trajectory was noise-free and achieve good inference results,

the parameter estimates cannot converge. Further work will

extend the proposed approach for LTV and nonlinear systems.

The norm of the output error ēi = ‖kei‖, i = 1, 2 of the

last 200 seconds of simulation time is used as a performance

metric of the proposed approach, where k is a scaling factor.

Table I summarizes the numerical results of the output error

norm using a scaling factor of k = 100.



9

0 20 40 60 80 100

-200

0

200

400

(a) Output comparison: yτ vs w

990 992 994 996 998 1000

-1

0

1

996.6 996.7

-0.55
-0.5

-0.45
-0.4

-0.35

(b) Estimated trajectory: y vs ŷ
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Fig. 8. Trajectory Inference results: 2-DOF robot case with unknown time-
varying reference

TABLE I
OUTPUT ERROR NORM RESULTS

Reference
xd

Constant reference Time-varying reference
ē1 ē2 ē1 ē2

Known 404.2606 404.2652 399.9450 400.0409
Unknown 404.2611 404.2660 659.573 497.8619

Table I clearly shows that almost the same output error

results is achieved for a constant desired reference (either

known and unknown). In contrast, the output error increases

for unknown time-varying references since the parameter

estimates become time-variant.

C. Drone model

A drone model is used to further test the proposed approach.

Consider the following drone linear model

Ẋ =

[
03 I3
03 03

]
X +




03×1 03×1 03×1

0 −g 0
g 0 0
0 0 1

m


u,

Y =
[
I3 03

]
X,

where X = [x, y, z, ẋ, ẏ, ż]⊤ ∈ R
6 denotes the vector

of linear positions and velocities, Y is the output vector,

u = [φ, θ, µ]⊤ ∈ R
3 defines the control input given by the

roll and pitch Euler angles and the total thrust, respectively;

m = 0.467kg is the mass of the drone and g = 9.81m/s2 is the

gravity acceleration. This linear model is obtained around the

hover flight condition [57]. Each state is corrupted by a low

amplitude Gaussian noise with zero mean and standard devia-

tion of 0.1. The drone is controlled by a liner quadratic regu-

lator (LQR) controller that ensures the small angle condition.

The initial condition is X0 = [1,−1,mg + 2, 0, 0, 0]⊤ ∈ R
6.

The desired reference is Xd = [3,−3, 5, 0, 0, 0]⊤.

First, we aim to show the main problem of model-based

approaches for trajectory inference such as Kalman filter.

Dynamic mode decomposition (DMD) [58] is used to obtain a

linear matrix from data collected of a random and rich mission

profile. The final estimated matrix is

Â =





−0.5172 0.0618 −0.0212 0.4891 −0.2033 0.0374
0.0155 −0.6329 0.1055 0.0150 0.4398 0.0119
−0.0287 0.1604 −0.2172 −0.1267 −0.0423 0.5105
0.0922 0.2043 0.1058 −7.6491 0.7124 0.0349
−0.0773 −0.0554 −0.0212 0.8802 −4.6677 0.2985
0.0293 0.1427 −0.1908 −0.1169 0.2121 −0.4928




.

Matrix Â is used to compute a Kalman filter algorithm with

covariance matrices Q = 1I6 and R = 0.5I3. The results

of the trajectory inference using the standard Kalman filter

are shown in Fig. 9. It is observed that the estimated linear

matrix is not accurate due to the presence of noise in the state

measurements and the lack of information of the control input.

In consequence, the estimated trajectories are not precise and

require fine tuning of either the state space matrices or the

covariance matrices. Another alternative is to use data-driven

approaches, but they require a large amount of data and access

to the control input signals in order to be applied online which

violates Assumption 3.

(a) Real trajectories (b) Estimated trajectories

Fig. 9. Kalman filter trajectory inference results

In view of the above, we aim to show the benefits of our

CLOE trajectory inference algorithm. The drone’s poles are

located at −4,−5,−6,−7,−8,−9, that is, D(s) = (s+4)(s+
5)(s+6)(s+7)(s+8)(s+9). The initial condition is computed

similarly to the F-16 and 2-DOF robot models. The update

rule gains are manually tuned until the best identification

performances is achieved. The final matrices are Γy = 500I216
and Γη = 500I108. The inference results are given in Fig. 10.
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Fig. 10. Trajectory inference results: Drone case with unknown constant
reference

Similar results are obtained for the drone model, that is,

accurate trajectory inference with noise attenuation and pa-

rameter estimates convergence. One important point to observe

is that the number of parameters to estimate increases as the



10

number of states of the system increases. Here, the number

of parameters of the real model can be arbitrarily large or

small since we are not considering a fixed parametric model

structure as in standard identification algorithms, e.g., least

squares methods. On the other hand, the proposed technique

outperforms Kalman filter when an inaccurate prior model is

available.

VII. CONCLUSIONS

This paper reports a trajectory inference algorithm based

on a CLOE approach using partial states measurements. The

algorithm combines the main advantages of a state estimation

and identification algorithms to estimate both the states and

parameter estimates simultaneously. A physics-informed state-

parameterization model is used to express controllable and

observable linear system in terms of the desired reference

and the output measurements. Known and unknown desired

reference cases are analysed. The stability and convergence of

the proposed approach are rigorously assessed using Lyapunov

stability theory. Simulations verify the proposed approach with

good trajectory inference results and noise attenuation.

The number of parameter estimates increases as the number

of states and output measurements increases even for a system

with low number of states. Further work will investigate the

dimensionality reduction of the number of parameter estimates

to be computed. In addition, the algorithm requires a good

excitation signal design for parameter estimates convergence.

Further work will also investigate the adequate design of

excitation signals to improve convergence time and guarantee

parameter estimates convergence. Furthermore, the extension

of the proposed approach for LTV and nonlinear systems are

the main concern for our future work.
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