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2000, pp. 950-953. for gait analysis. Bessonov and Umnov [8] have developed hexapod
[23] H. Demuth and M. Bealé\eural Network Toolbax Natick, MA: The ~Mmotion in straight lines, and Song and Waldron [1] have made a survey

MathWorks, Inc, 1998. _ _ _ about the gait study. Recently, Yang and Kim [9] have proposed a
[24] R. A. Fisher, “The use of multiple measurements in taxonomic proliault-tolerant gait for a hexapod robot on even terrain. It proved math-

lems,” Ann. Eugenicsvol. 7, no. Il, pp. 179-188, 1936. ematically and graphically, that the gait developed could withstand a

[25] gb:}lr'lgrgf\r}gr’;agtelrgsghalys's and UnderstandingBerlin, Germany: fault occurred with reasonable stride length. They later extended the

[26] R. Mouci, “Neural networks, fuzzy logic and neuro-fuzzy approache¥0rk with an improved fault tolerant gait [10], and another gait over
to character recognition,” M.S. thesis, Electrical Eng. Dept., Americanneven terrain [11].
Univ. Beirut, Lebanon, 1997. Among these studies, however, nearly all gaits developed are
[27] Iris Data Samples ([Online]. Available: ftp.ics.uci.edu/pub/mapased upon a simplified rectangular two-dimensional (2-D) model
chine-learning databases/iris/iris.data . S .
which limits the robot design. Although there are several hexapods
(Silex [12], Aquarobot [5], Katharina [13], Odex [14] etc.) built in
hexagonal architectures, few analytical comparisons on gait properties
have been made between rectangular and hexagonal architectures.
Preumontet al. [15] have stated that hexagonal architecture has
. . advantages in turning gait while rectangular has advantages in straight
Comparison Between Different Model of Hexapod forward gait. No mathematical analysis has been made, howerver. In
Robot in Fault-Tolerant Gait this paper, we have considered a hexagonal model for gait analysis
) on the even terrain. In order to show the characteristics of this
Stanley Kwok-Kei Chu and Grantham Kwok-Hung Pang model, we have made comparisons with the rectangular model in
fault tolerant gait. In Section Il, some useful definitions, and the
. . . . traditional rectangular model, will be described first. Section 11l will
Abstract—This paper presents a gait analysis of the equilateral hexag- describe the new hexagonal model. Comparisons will be made in
onal model of hexapod robot. Mathematical analysis has been made on 4 4 . :
mobility, fault-tolerance, and stability. A comparison with the rectangular ~ Section 1V, and Section IV will conclude the paper.
model of hexapod robot is also given, and it has shown that the hexagonal

model shows better turning ability, a higher margin of stability during the
fault-tolerant gait, and greater stride length in certain conditions. Il. PRELIMINARIES

Index Terms—Hexagonal model, hexapod robot, rectangular model,  The common model that represents a hexapod robot for gait analysis
stability margin. is a simplified 2—-D model. As shown in Fig. 1, the body of the hexapod
is represented by arectangle. Legs are attached to the longer sides of the
rectangle. Leg numbers of the hexapod are 1, 2, and 3 on the left-hand
side and 4, 5, and 6 on the right-hand side. Each leg has areachable area

One of the fundamental objectives in robotics is to create robots tha—D, or workspace in three-dimensional (3—-D). The size and shape
move around. Many researchers have made comparisons betweerbthie reachable area depend on the leg design. For this model, the hip
use of legs and wheels for locomotion [1], [2]. To summarize, leggggint (i.e., the joint linking the body and leg) is a rotational joint with

|. INTRODUCTION

robots have the following advantages over wheeled robots: vertical axis, the leg therefore, having reachable area in the form of an
1) able to traverse on different terrain; annulus. This kind of leg design, however, arises interference problem
2) higher mobility; as the neighboring legs on the same side have overlapping reachable
3) lower mechanical coupling between the payload and the terra@ifgas. This makes the gait analysis more complicated. One way to solve
4) less destructive to the ground. this problem is to eliminate all the overlapping reachable area, so that

each leg has a distinct region which can be accessed only by itself, and
not by any other leg. Furthermore, a rectangular region of the reachable
area is defined, as shown in Fig. 2. Another way to solve this problem
Manuscript received October 11, 2000; revised September 15, 2001 aado mark the region of the overlapping area so that the leg can reach
aeegtsember 20, 2001. This paper was recommended by Associate Editor Ritfyse areas whenever interference does not occur [10]. Fig. 3 shows the
S. K.-K. Chu and G. K.-H. Pang are with the Department of Electrical anr&]odel with markln_gs of an overlz_ipplng area. By using this model, the
Electronic Engineering, The University of Hong Kong, Hong Kong (e—maill.rObOt can move with a Ionggr stride length. .
gpang@hkueee.hku.hk). Let P and@ denote the size of a cell. Also, I& be the distance

Digital Object Identifier 10.1109/TSMCA.2002.807066 between the reachable cell and the robot body,lanthe width of the

1083-4427/02$17.00 © 2002 IEEE
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1 Another useful term in gait analysis is stride length. It is defined as
the distance which the center of gravity translates during one complete
locomotion. Fault is defined as failure in the kinematic part of a leg and
failure of communication between controller and a leg effector. The
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fault occurrence situations from [9] are 1) only one fault event occurs
during a whole locomotion; and 2) the fault is not recovered during the

3
locomotion.
C/e CL5 \)4 Ill. HEXAGONAL MODEL

Inspired by the work of Yang and Kim [9], we also focus on the fault
tolerance gait design, but on a different model. The main difference be-

Fig. 1. Simplified hexapod model.

P tween the hexagonal model and the rectangular one, is that the former
L———J one makes use of an equilateral hexagon as the robot body. One leg is
T attached to each side of the hexagon. Fig. 4 gives the relationship be-
O o tween the reachable aread and annulus, and Fig. 5 shows the model. To
C{ }) _L make referral easier, legs are numbered anticlockwise starting from the
/

of the robot would be employed for two models. That means each leg
has a reachable area in the form of an annulusrand is the radius

of the annulus.

- - For the rectangular model, the area occupied by the robot body

({ is equal to2P x U. For the hexagonal model, the body area is
O

2
\ T = - bottom, as shown in Fig. 5. Comparison assumes the same leg design
lD

(I? sin 60°/2) x 6. Practically, the body area of the model should
be equal, for better comparison since most of the electronic and
mechanical parts are placed on the top of the body. This is a minor
Fig. 2. Model with rectangular reachable area. point, however, because the size of the electronic and mechanical parts
depend upon many factors, such as, the packaging of the electronic

L components.

Itis reasonable to assumie= P. By using this assumption, we can
get the area of the robot bo@?. Then the relationship betwedh
and! is given by

P —

91 p

| op? —23V3
\ 4 S ~ 2
p2_p23V3
D T4
l approximatelyP =1.13987 or! = 0.8774P. Q)
f: ; ‘ ; : A more important constraint for comparison is the size of the reachable
C{ O i i% : : area. As stated in [9F and@ with 7.« andrmin is shown graphically
in Fig. 4. Mathematically
1 2
12 — - . 2 —_
Fig. 3. Model with extended reachable area. Pmax = (Fmin + Q)" + <2P> : ©)

robot body. For the second modél;, = P + 2L is the length of the
extended reachable area, whéres less thar).5 P. Yang and Kim [9]
have proposed a fault-tolerance gait for the hexapod robot based ofrig- 6 shows the leg placing sequence of the fault-tolerant gait.
this model. Assumptions are made for the simplicity of analysis. Théjie hexapod is moving in the positivedirection. The number at

A. Fault-Tolerant Gait

include the following. the left upper corner shows the step number. The black dot represents

1) The hexapod has a symmetric structure. the foothold position of the leg in supporting phase. The yellow dot

2) The contact between a foot and the ground is a point. indicates the leg in the swing phase. The red dot represents the center

3) There is no slipping between the foot and the ground. of gravity of the robot. Each leg is only restricted to move within

4) All the mass of the legs is lumped into the body, and the centdle reachable area. The blue lines in each model illustrate the area
of gravity is assumed to be at the centroid of the body. enclosed by the supporting legs. The further away the center of gravity

5) The initial foothold positions should be at the specified locatioris from these blue lines, the more stable the robot is. Initially, the
before the locomotion starts. foothold of all the legs can be placed at the middle of the annulus, with

6) The speed of the hexapod body when it moves and the averdg@rmax from the center point of the sector and equal distance from
speed of each leg during the transfer phase are constant.  both sides of the sector. The hexapod will travel in periodic quadruped
They have defined a fault stability marg#, which is the minimum of gaits so thatS; > (. With this kind of fault-tolerant gait, the stride
stability margins of gaits, generated by changing alternately the statdesigth of the robot can achievg/2r ... To prove this, we need to
one supporting leg of the gait to transfer state, and maintaining the otkerify whether each leg can achie¥¢2rm... Since legs are moved
legs’ states. Fault tolerance gait is formed so thatjs non-negative in pairs (leg 1 & 4, leg 2 & 5, leg 3 & 6), verification can only apply
during a whole locomotion. to these combinations. Obviously, leg 1 & 4 can achi&¥®r,ax, it
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Initial foothold Lift C.G.

/’-77.3* [min r

2 6
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Fig. 4. Relationship between the reachable area and annulus. 3
4 2

Liftleg 1 & 4 Move C.G..

uonoa(g Sunjrepm

Fig. 5. Simplified hexagon mode.

remains leg pairs (2 & 5) and (3 & 6). Moreover, leg pairs (2 & 5) an
(3 & 6) are symmetric pairs, so only one of those needs to be verifie
Without loss of generality, leg 6 is chosen for verification. For leg ¢
to move in positives-direction, using simple geometrical calculation,
we can prove leg 6 can move 0.65.. until it reaches the boundary
of the annulus.

B. Stride Length

It should be noted that the maximum stride length for the rectangular
model for fault-tolerant locomotion is equalid P. For the hexagonal Fig. 6. Fault tolerant gait sequence of hexagonal model.
model, using a fault-tolerance gait, i.e., with the center of gravity falls

at the cross-point of the supporting legs, the maximum stride lengthyig,yement. In the rectangular model case, crab walking is needed if

Liftleg3 & 6 Placeleg2 & 5

equal t00.57wux. FOrruax > P. the robot makes locomotion different from the longitudinal axis of the
To obtain a greater stride length for a hexagonal model, it is desirgghot body. For the hexagonal model, by symmetry, however, there are
thatr... > P. Hence, from (2) already three longitudinal axes, and they can move in every 60 degree
. 1 \2 , angle. Each pair of legs only needs to be responsible for 60-degree
(Pmin + Q)" + <;P> >P range of movement. This provides a simpler way for motion control.
(Fein + Q) > </§p2> . C. Turning Ability

o ) ) Turning of the hexapod depends on the location of the turning center

Let 7min be zero, which implies tha” = 0. 1" is the distance [16]. |n this paper, comparison is made on the case that the turning
between the reachable area and the robot bidy= 0 means the center is at the center of gravity. We assume that the tips of the legs
hexapod has a kinematics structure just located outside the robot beg¥. <iill at the center of the reachable areas after the turning, and we
If W < 0, it means the kinematics structure is located below the rOb&Smpare the maximum turning angle in one step. Fig. 7(a) shows the

body. . . changes in foothold when the robot makes a turn of aggler the
By letting rmin equals to zero, we obtain the result: rectangular model. The distance and direction moved by each leg are
V3 different. The positional changes can be expressed in vector form. Let
(rmin + Q) > <7P> the position vector of the center of gravity 8¢C'x, C'y ), the position
O >0.866P. 3) vector of each leg’s center beC; (LCix, LC'iy ) and the rotational

matrix beR(¢). Then changes of foothold in vector form is expressed
Hence, if theQ)/ P ratio is greater than 0.866, the hexagonal models
has a greater stride length than rectangular one. Another advantage . . .
of the hexagonal model is that it is easier to change the direction of [(LOi) - (C')\} * (1 - R((b)) :
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x, the stability
margin.

3

Fig. 7. (&) Turning step for rectangular model. (b) Turning step for hexagor'_a
model.

|
1g. 9. Stability margin in one of the fault-tolerant gait.

As the robot moves in fault tolerant gait, the leg pairs moving sequené%s Stability Margin

are (3&4),(2&5),and (1 & 6). Since the turning center is at the center Fig. 6 shows the leg placing sequence of the fault-tolerance gait. The

of gravity, the fault stability is always non-negative. robot moves in a downward direction. From Fig. 6, the minimum dis-
From Fig. 7(a), there is limitation on the turning angle of the rectamance between the center of gravity, and the boundary enclosed by the

gular model. The robot should make a turn such that the next foothaldpporting legs, can be calculated. Among those leg placing sequence

is within the reachable area. By graphical inspection, the condition fdlagrams, step 4 is the most critical condition. The stability margin
the robot to make a turn without excessing the reachable area is

in step 4 is shown in Fig. 9.
Q

a =I'sin 60°
2 cos ("";b — tan™! i)

b =Ilsin 600 + l7'rnax-
2
1 2 , By cosine rule
>2,/P? + (§(Q + U)) sin %

This condition shows that the turning angle is related to@hé@, and BY Sine rule ‘ o
U With the assumption théf = P, the changes in turning angle with sin120° _ sinf o oD 000
(/P ratio is shown in Fig. 8. For the cagg¢ = 0.866 P, the turning c b :

C
angle is+2.27. When() = P, the turning angle is-24.298. The Hence, the stability margin is as follows:
higher the)/ P ratio is, the greater the turning angle.

For the hexagonal model, itis easier to make turning about the center

¢ = Va2 + b2 — 2ab cos 120°.

r=asinf => x = % sin 120°.
C
of gravity. The distance and the angular change of the six legs are ideising (1) and (3)] and@ can be expressed in terf?, and then, b,
tical in hexagonal model, which is easy to implement in both hardwag@de can be calculated. This also implies that the comparison is based
and software. The amount of turning angle depends upon the size ofdhesame-size robot of the same size. Finally, the stability margan

annulus in Fig. 4. The turning angle must be greater tha@’ if there  be found equal t0.4692P. The values of, Q, rmax, ¢, b, ¢, andz are
is an overlapping area between adjacent legs, as shown in Fig. 7&3) follows:

It can be _observed, therefore, t_hiaBO0 turr_ung angle_ can be easily | =0.8T7AP, O = 0.8660P, rwme = P
achieved in hexagonal case, while the turning angle is still less tHan 30 b e

even wherQ)/ P ratio equal to three. This has shown that the hexagonal x =0.4692P, a =0.7598P, b= 1.2598P
model has better turning ability than the rectangular model. ¢ =1.7669P.



756

“« s

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 6, NOVEMBER 2002

seen that: is already greater thah> P when@/P > 1.5. Therefore,
with increasing value of, it must be greater thaa for all positive
values ofQ/P.

IV. CONCLUSIONS

In this paper, we have made a number of comparisons between the
hexagonal model and the rectangular model of hexapod robots. As-
suming the same leg design and robot size, the hexagonal model shows
better turning ability, higher stability margin and greater stride length in
certain conditions. Mathematical relations between these two models
have been formed. We hope this analysis can contribute to the hexapod

Fig. 10. Stability margin in one of the fault-tolerant gait of the rectangular
model.

(1]
Stability margin between Hexagonal and rectangular model [2]
052 T T T T T T T T T
(3]
05t .
(4]
0.48 1 4
_.0.46} Hexagonal mode! (5]
[y
5044
g [6]
2042} / 1
2 -» f 7
S 04} / E 7l
] 1
Rectanguiar model
036, E
[l
034 " L s T L 1 L 1 1
0 02 04 06 08 1 12 14 186 18 2 [10]
Ratio of Q/P
Fig. 11. Stability margin against ratio 6§/ P. [11]
[12]

Fig. 10 shows the smallest stability margin using fault tolerant gait in

a rectangular model. Assume tHat= P and(@ = 0.866P (same 13]
stride length as in the hexagonal modekgbility margine in this case [14]
is calculated.

[15]
P
tan 3 =
P+Q [16]
Using (2)
Q =0.866P, (3 =28.187°, e = f(sinf)

f :%(P + Q) = 0.9330P, ande = 0.4407P.

From the above calculation, the hexagonal model with the same
stride length shows a slightly better margin of stability. A more general
relationship can be shown by plotting the stability margin of the two
models against the ratio 6§/ P. The result shows that the hexagonal
model has higher stability margin fa}/ P ratio over the range from 0
to 1. The dash lines in Fig. 11 indicate the caseJgd”® = 0.8660.

It should be noted that the upper limit ofis 0.5 P for all positive
@/ P. Also, it can be proved that is a monotonic increasing function
for all positive values of)/P. A more detail mathematical proof is
included in the appendix. From the observation of Fig. 11, it can be

design and development.
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