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Correspondence

Robust Nonlinear Model Identification Methods well controlled experimental conditions. In optimum design, model ad-
Using Forward Regression equacy is evaluated by design criteria that are statistical measures of
goodness of experimental designs by virtue of design efficiency and ex-
X. Hong, C. J. Harris, S. Chen, and P. M. Sharkey perimental effort. Quantitatively, model adequacy is measured as func-

tion of the eigenvalues of the design matrix. In a recent study [9], the
) ) authors have outlined an efficient learning algorithm, in which a com-
Abstract—n this correspondence new robust nonlinear model con-  ssijte cost function was introduced to optimize the model approxima-

struction algorithms for a large class of linear-in-the-parameters models . . . .
are introduced to enhance model robustness via combined parameter tion ability using the forward orthogonal least squares (OLS) algorithm

regularization and new robust structural selective criteria. In parallel to  [10], and simultaneously determined model adequacy using an A-op-
parameter regularization, we use two classes of robust model selection timality design criterion (i.e., minimizes the variance of the parameter
criteria based on either experimental design criteria that optimizes model  estimates). This algorithm has been further studied [11] as part of the
adequacy, or the predicted residual sums of squares (PRESS) statistic g_qpjine hased neurofuzzy model (NeuDec) and applied to model real
that optimizes model generalization capability, respectively. Three robust d ical | h hat th | del bei
identification algorithms are introduced, i.e., combined A- and D-opti- ynamical processes. twas_s own that the resu Fant models can be Im-
mality with regularized orthogonal least squares algorithm, respectively; Proved based on the reduction of parameter variance. There are a va-
and combined PRESS statistic with regularized orthogonal least squares riety of optimality design criteria such as A- and D-optimality [8] based
?'gor'thm- A common %h?faCte”St'C of ﬂgjese_ halgr?rlthmﬁ is thlf_"t the - on different aspects of experimental design. The D-optimality criterion
Inherent computation efficiency associated with the orthogonalization o gt effective in optimising the parameter efficiency and model ro-
scheme in orthogonal least squares or regularized orthogonal least squares ; T . .
has been extended such that the new algorithms are computationally bustness via the maximization of the determinant of the design ma-

efficient. Numerical examples are included to demonstrate effectiveness trix. A new model construction and design algorithm using a new cost

of the algorithms. function based on the D-optimality criterion has been introduced [12].
Index Terms—Cross validation, experimental design, forward regres- 1 hiS algorithm leads automatically to an unbiased model parameter es-
sion, generalization, structure identification. timate with an overall robust and parsimonious model structure. The

efficiency of the algorithm lies in the construction of the new D-opti-
mality based cost function based on the orthogonalization process to
. INTRODUCTION gain computational advantages, and hence to maintain the inherent ad-

A large class of nonlinear models and neural networks can be cl¥3ntage of computational efficiency associated with the conventional
sified as a kernel regression model [1]-[3]. The forward regressiéfward OLS approach.
approach is an efficient model construction method [4] which selectsBecause the evaluation of model generalization capability is based
regressors in a forward manner by virtue of their contribution to tH#irectly on a concept of cross validation [13], it is desirable to develop
maximization of the model error reduction ratio. Regularization teciiew model selective criteria, based on the fundamental concept of cross
niques have been incorporated into the orthogonal least squares (Ova@ifation, that can distinguish model generalization capability during
algorithm to produce a regularized orthogonal least squares (ROItB$ model construction process. A fundamental concept in cross vali-
algorithm that reduces the variance of parameter estimates [5], [6]. d@tion is that of delete-1 cross validation in statistics, and the associ-
produce a model with good generalization capabilities, model selecti@i¢d concept of the PRESS statistic [14] and [15]. These are usually
criteria such as the Akaike information criterion (AIC) [7] are usuallgomputational expensive, however, recently an automatic nonlinear re-
incorporated into the procedure to determinate the model construct@@ssion model construction algorithm has been introduced based on
process. Yet the use of AIC or other information based criteria, if uséfward regression and the PRESS statistic that minimizes computa-
in forward regression, only affects the stopping point of the model séonal expense [16].
lection, but does not penalize regressors that might cause poor moddecause parameter regularization and robust model structure selec-
performance, e.g. too large parameter variance or ill-posedness oftihe are effective and complementary approaches for robust modeling,
regression matrix, if this is selected. This is due to the fact that AliCis also highly desirable to develop algorithms combining parameter
or other information based criteria are usually simplified measures degularization and model structure selection via direct model general-
rived as approximation formulas that is particularly sensitive to modiglation capability for maximized model robustness. Recently a locally
complexity. regularized orthogonal least squares (LROLS) algorithm has been in-

In order to achieve a model structure with improved model gendroduced [17] which uses an effective Bayesian evidence method [18]
alization, it is natural that a model generalization capability cost funte optimize local regularization parameters. The LROLS algorithm [17]
tion should be used in the overall model searching process, rather théme is capable of producing a very parsimonious model with excel-
only being applied as a measure of model complexity. Optimum ebent generalization performance. Following [17], parameter regulariza-
perimental designs have been used [8] to construct smooth networkti@a and robust model structural selection criteria have been combined
sponse surfaces based on the setting of the experimental variables ufmiegnhanced model robustness, and these are formed by combining a
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influence the model selection procedure critically and it can be chosahere the matrix(PTP) is called the design matrix. It is well
with ease from a wide range of values. In order to combine parakmown that a model based on least squares estimates tends to be
eter regularization with regularized model structure selection basedwnrsatisfactory for a near ill conditioned regression matrix (or design
the PRESS statistic [20], we initially derived the PRESS error in thmatrix). The condition number of the design matrix is given by
orthogonal weight regularized model (see Appendix C). DuetotheiG* = (max\y)/(min)y), where Ay, (K = 1,---,M) are the
herent computation efficiency associated with forward regularized aigenvalues of the design matrix. Too large a condition number of
thogonal least squares, the effort involved in the computation of titee design matrix will result in unstable parameter estimates if a least
PRESS statistic is minimized. The PRESS statistic is applied direc#iguares algorithm is used [1] and [2], whilst a small condition number
in the forward regression model structure construction process as a efithe design matrix leads to model robustness. Optimum experimental
function in order to optimize the model generalization capability. Thé¢esigns have been used [8] to construct smooth system response
basic idea of improving computational efficiency is to reduce the corgurfaces based on the design or setting of the experimental variables
putational expense to minimize the computation of PRESS errors,inder well controlled experimental conditions. Design criteria are
which an inherent orthogonalization is used to avoid a matrix investatistical measures of goodness of experimental designs by virtue of
sion. Further significant reduction in computation arises owing to thgesign efficiency and experimental effort, and are aimed at avoiding
derivation of a forward recursive formula to compute PRESS erroisodel poor designs with unnecessarily large model parameter es-
Based on the properties of the PRESS statistic the proposed algoritiiiates’ variance or extravagant model sizes that waste resources.
can achieve a fully automatic procedure without resort to another vatixperimental design criteria of A-optimality and D-optimality are
dation data set for model assessment. explained in Section II-A in order to provides background for the
This paper systematically reviews recent advances on robust mego model identification algorithms introduced in Sections I1I-A and
eling techniques based on forward regression developed by the authgesstion 111-B.
The remainder of the paper is organized as follows, Section Il pro-aternatively, parameter estimates can be derived based on a regu-
vides a general background for the proposed algorithms, including @grized cost function off, = Zi\;l(y(t) — 22/[:1 pe(x(1))8x)? +
timal experimental criteria and the PRESS statistic. Section I, sugﬁil ~187, wherey, > 0,k = 1,2,---, M are regularization pa-
plemented by Appendices, presents three robust algorithms and s@gjgeters. The regularized least squares estimat@s. pére given by
appropriate analysis. Numerical examples in Section 1V demonstr,

the effectiveness of algorithms introduced in Section IlI-B and III-C. R
Section V is devoted to conclusions. e, =rP'P+0)"'Ply (5)

wherel’ = diag{~1, 72, --,va }. The concept of parameter regula-

sation may be incorporated into a forward orthogonal least squares al-
A linear-in-the-parameters model [radial basis function (RBFRjorithm as a locally regularized orthogonal least square estimator (see

neural network, B-spline neurofuzzy network] can be formulated agpendix A for details), which forms the foundation for all the robust

Il. PRELIMINARIES

[1] and [2] identification algorithms introduced in this paper (see Section III).
M . . . . .
o(t) = Zpk(x(t))t% + ) ) A. (?ptlmal Experlme.ntal Design Criteria | o
=1 Itis natural to consider model subset selection from an initial model
base with}/ regressors in the framework of the optimal experiment de-
wheret = 1,2,---, N, andNV isthe size of the estimation data sgt!)  sign. In doing so, not just the model size has been taken into account,
is system output variablg(t) = [y(t—1),- -+, y(t—n,),u(t=1),---,  putdifferent models of the same size can be evaluated. Consider the ap-

u(t—mn,)]" is systeminput vector of observables with assumed knovglication of experimental design criteria in the context of model subset
dimension of n, +n.). u(t) is system input variabley.(-) isaknown  selection. In this section, we initially introduce the concepts of exper-
nonlinear basis function, such as RBF, or B-spline fuzzy memberstigental design criteria including A-optimality and D-optimality based
functions.¢(¢) is an uncorrelated model residual sequence with zegh using a fixed sized subset. The subset model is constructed from the
mean and variance ef’. Equation (1) can be written in the matrixfyll model with regression matri® by usingn, regressors selected

form as from M regressors if?, ny < M. The resultant regression matrix is
_ denotedP;. € RV X" the resultant design matrix B P, andAg,
y=PO+Z (@) &k =1,...,n, are the eigenvalues & P.
o Definition 1: A-optimality criterion minimizes the sum of the vari-
wherey = [y(1).---,y(N)]" is the output vector® = ance of a parameter estimate ved®r= [¢, - -, 6,,,]”
[61,-+,080m]" is parameter vectorE = [£(1),---,6(N)]7 is ) 4
the residual vector, anB is the regression matrix min < J, =tr [cov@] =g’ Z N (6)
— Ak
P (X(;))’ P2 (X(;)) o pM(X(;)) Definition 2: The D-optimality criterion maximizes the determinant
p = | 2D p(x(2) e pu(x(2)) | of the design matrix oP | P,
.................. .o ng
p1(x(N)), p2Ax(N)) -+ pu(x(N)) max {J;s = det(PZP/@) = H Ak g (1)
- . N M k=1
By setting a cost function off; = 2= (y(t) = D pw This criterion favors models with smaller condition numbers to
(x(t))0)", the least squares estimates®fs given by [21] ensure model efficiency and robustness. It is well known that a model
e =((P'P)'pPy. (3) based on least squares estimates tend to be unsatisfactory for a near

ill-conditioned regression matrix (or design matrix). The D-optimality
criterion [8] inherently improves model robustness. Robust identifi-
. cation algorithms using the combined experimental design optimality
(i) E® =© criteria with regularized orthogonal least squares are introduced in
(ii) cov® = o> (PTP) ™! (4) Section Ill-A and 1I-B.

Assume that (2) represents the data generating procd&5Hfis non-
singular, then
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B. PRESS Statistic A. Robust Identification Using Combined A-Optimality and

Cross validation criteria are metrics that measures a modeIF’{segularlzed Orthogonal Least Squares

generalization capability, which can alternatively be used as a modell'his algorithm is provided in Appendix B. Consider the A-opti-
selection criterion for robustness. One commonly used version 'Bglity design criterion given in Definition 1, but based on model (37)
cross-validation is the so called leave-one-out cross-validation. TéRppendix A) with orthogonal basie .. The A-optimality cost func-
idea is that, for any model, each data point in the estimation data #gf that minimizes the sum of the variance of the auxiliary parameter
Dy = {x(t).y(tH)}1L, is sequentially set aside. In turn, a model i€stimate vectog = [g1, -+, gn,]" for a subset model with, regres-
estimated using the remainirigy — 1) data, and the prediction error SOr's is given by
is derived using the data point that was removed. To select a model . . 2 1
b ing the leave-one-out cross-validation as the model selective min ¢ Ja = tricovg] = o Z re [ (10)

y using g
criterion, the model with a minimal mean squares of the predictig®inceA ® = g, it can be assumed that to penalize the large variance of

errors is selected. There is an elegant way to generate the predictigfauxiliary parameter vectgrwill also consequently penalize large
error known as the PRESS statistic [15] for linear-in-the-parametefgriance of parameter vect®.
models (without actually sequentially splitting the estimation data set)A composite cost function is defined as

g

by using the Sherman—Morrison—-Woodbury Theorem [15]. J=Ji+a1Ja
Consider a predictor that is identified based on (1), the PRESS errors 1 ng no
(=O (¢4 — i =2 [viy = 2. ST
&' 7Y (t|t — 1) can be calculated using [15] as F\YY l;gk:hl> +a kz_:l . (11)
0t — 1) =y(t) — 3 (t]t — 1) where, for the sake of simplicity, = o2 a , is a positive small number.
E(t) Equation (11) can be directly incorporated into the conventional for-

(8)

1= p(H)T[PTP]-'p(t) ward OLS algorithm to select the most relevatit regressor at thieth

forward regression stage, via

where (=Y (¢[t — 1) is model prediction using leave-one-out data *) -1y 1 o a
(without sample at), p(t) is used forp(x(t)) for notational sim- J=J ~ N IRkt P (12)
plicity,and the PRESS statistic is computed by Atthe kth forward regression stage, a candidate regressor is selected as
the kth regressor if it produces the smallgét’ and further reduction
J,=E [[5(“)(t|t - 1)]2] ) (9) onJ%=" The selection procedure will terminate.f*) > J®*—"

at the derived model sizey. This is significant because it means that

A robust identification algorithm using the PRESS statistic and regije proposed approach can automatically detect a parsimonious model
larized orthogonal least squares is introduced in Section III-C. size.

The above A-optimality based design model construction algorithm

was firstly introduced [9] and applied as part of the B-spline based

I1l. ROBUST NONLINEAR MODEL IDENTIFICATION METHODS neurofuzzy model (NeuDec) [11]. It was shown in [9] and [11] that
USING FORWARD REGRESSION the resultant models can be improved based on the reduction of model

. . . arameter variance.
New robust nonlinear model construction algorithms for a large clags

of linear-in-the-parameters models are introduced to enhance modelgo-r hust Identification Using Combined D-Optimality and
bustness via combined parameter regularization and new robust Strrii'Egularized Orthogonal Least Squares

tural selective criteria. Three algorithms are introduced: 1) two robust " ) ] ) ) ) .
identification algorithms using combined A or D-optimality and regu- 11is algorithm is provided in Appendix B. Consider the orthogonal

larized orthogonal least squares algorithm respectively, and 2) a roffgemposition of the subset model with regression m&ixDenote

identification algorithm using combined PRESS statistic and a reguldrs = WrAx, whereA,. is a unit upper triangular matrix generated

ized orthogonal least squares algorithm. based on the orthogonal triangularizatiorfaf. Consider the D-opti-
Unfortunately, the experimental design criteria of (6) and (7) or tHB2lity design criterion given in Definition 2, but based on model (37)

PRESS statistic of (9) are inherently inefficient and computationalfith orthogonal basisv;.. The D-optimality F’es'g” criterion that max-

prohibitive if applied for model subset selection, due to the derivatidfiiZ€S the determinant of the design mat”ff‘omk W, is given by

o_f eig_enva_lues, exponer_wtial growth of possibl_e su_bsets, matrix invgr- max{Jp, = det (W,{WL) — H ki (13)

sion, incuring the associated curse of dimensionality. Subset selection il

based on computationally efficient algorithms, such as forward regr@secause

sion is preferable. Locally parameter regularization may be combined det(PTPk) _ det(Al') det(WTWk) det(Ay)

with forward orthogonal least squares, and this forms a basis in the REE y R '

T
development of the proposed robust model construction algorithms in- = det(W, Wy) _ (14)
troduced in Section III. due todet(A ) = 1; this establishes the equivalence of (7) and (13).

A key to understanding the development of these algorithms andThis implic_es that the selection of a subsePaf fromP is equiv_a}lent
their properties is to see that all of the algorithms are based on the §the selection of a subsetW . from W, or that a better conditioned
thogonalized space. Model selective cost functions or algorithm deriya: ¢an be achieved via a better conditiondtl: due to the equivalence
tions are based on orthgonal basis rather than original regresspr,  ©f (7) and (13). ) ) _ )
or auxiliary parameter vecta, (associated with orthogonal space), Unfortunately a composite cost function based on the linear combi-
rather than the original parametes. Due to this aspect, a commonnation of.Ji andJp, is unusable, because 1) is to be minimized
characteristic of these algorithms is that the inherent computation 8fd/p, is to be maximized; and 2) the algorithm efficiency cannot be
ficiency associated with the orthogonalization has been extended s@€hieved due to the product term in (13).
that the new algorithms are computationally efficient. For simplicity of Construct instead the following cost furlcotlon: ,
notation, as a function of forward regression stethe resultant model — — oo _ =
selection criteria for all the proposed algorithms are denoteki’ds o = ¥(Jng) = ~log(Jy) = kz_:llog |:I~.k] ' (19)
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Clearly the maximization of p, is equivalent to the minimization of large parametric valueg;, but significantly small; values (norm
¥ (Jp, ), due to the fact that the solution of of an orthogonal basis)? should be sufficiently small so that new

n I _ regressors are added to the model if and only if its contribution to
O0(Iy) = In, 9Jp, =0 (16) model error reductionl /N gz, is significant, here we requirg <
is equivalent to that of girk /[N log 1/k4]. If this inequality is violated, the model selection
automatically stops. In practice, it is suggested that cross validation
9Jp, =0 a7 by using two data sets, an estimation set and a validation set, should

be used to find an appropriate Cross validation based statistical in-
formation criterion such as AIC (or other statistical model selective
criteria, e.g., GVC, FPE or MDL) should be directly applicable in the

for Jp, > 0 (as the design matrix is nonnegative).
The new augumented cost function is defined as

=T+ o selection of3. It has also been shown [19] that valuesodoes not crit-
1y = o LT ically influence the model selection procedure and can be chosen from
N (y - ;gkhk +8 /; log P 18) 2 wide range of values.

wherej is a small positive number. Equation (18) can be incorporated L i . L
into the forward OLS algorithm to select the most relevahtregressor C- Robust Identification Using Combined PRESS Statistic and
at thekth forward regression stage, via Regularized Orthogonal Least Squares

g _ gG=1) 1 2,4 Alog 1 (19) This algorithm is provided in Appendix B. Alternatively, the PRESS

N IkFR T P08 k| statistic of (9) that optimizes model generalation capability can be used
At the kth forward regression stage, a candidate regressor is selecteds8 robust model selective criterion. Note that (8) does not incorporate
the kth regressor if it produces the smallgét’ and further reduction parameter regularization. In order to combine the PRESS statistic into
onJ%*~1 Because/p is an increasing function i, < 1, whichis a model with regularization and the forward regression learning algo-
true for some: > K, the selection procedure will terminatefif©) >  rithm, initially it is necessary to derive the PRESS error in an orthog-
J*=1 at the derived model size; if a proper is set. onal weight regularized model. This is given in Appendix C. Consider
The robust identification using combined D-optimality and regulathe PRESS erroid —*) (|t —1) in (64) of Appendix C, which are based

ized orthogonal least squares based on the forward Gram-Schmidt gmothe system in the orthogonalized form of (37), yielding

cedure is shown in Appendix B. For the complete procedure, including €0t —1) =y(t) — gt = 1)

optimization of regularization parameters, see [19], where an effective £(t)

Bayesian evidence method [18] has been introduced to optimize local =1 WO [WIW + L] tw(?)
regularization parameters. Note that a very small positive regularization £()

parameter such as{= 10~¢, Vi) can be used to simplify the mod- = (20)

eling procedure yet improve the resultant parameter estimate varianc ()

Clearly if 3 = 0, the proposed algorithm reduces to the converf? M,
tional forward regularized OLS algorithm. By using the error reduction mar(t) =1 — Z wi (t) ) (1)
ratio (ERR), the conventional forward OLS algorithm equivalently uses ‘ — kit
J® = 1/N(y'y — 7%, gr1) as a selection criteria, which is aThe PRESS error, if not being computed on orthogonal regression
monotonically decreasing function of the iteration stefAn error tol-  space (associated with a diagnonal Hessian matrix), generally involves
erance is needed for the termination of the selection procedure.) Thistensive computation due to matrix inversion [15]. However the
suggests that the selection procedure can be alternatively terminateghitbunt of computation is significantly reduced by using [20], in
the usual way as in the conventional OLS procedure, but with any arlgihich no matrix inversion is involved. This is due to 1) the calculation
trarily small 3 to improve model robustness. However in the proposesf the PRESS error being based on an orthogonalised model with a
algorithm, the new cost functioi* will increase after some selec- diagnonal Hessian matrix; and 2) the regularization in the orthogonal
tion stage; this follows by analysing the effect of the tefiiog[1/xc]  parameter vectag rather than the original parameter vectr
in (19). An arbitrarily small? will detect the near singularity of the re-  |n the following, it is shown that computational expense can be
gression matrix during the selection procedure to prevent the selectigither significantly reduced by utilizing the forward regression
of an oversized ill-posed model. Moreover in this algorithm the errgjrocess via a recursive formula. In the forward regression process,
tolerancep is not necessary for the termination of the selection procéne model size is configured as a growing variableConsider the
dure if an appropriatg is applied. Compared to the forward orthogonamnodel construction by using a subsetiofegressorgk < M); that
least squares (OLS) algorithm [4] that combines the AIC criterion [73, a subset selected from the full model set consisting/ofnitial
in order to stop model construction before a high parameter estimgdgressors [given by (2)] to approximate the system. The PRESS errors
variance becomes a problem, the proposed method aims to preveniif{go) can be written, by replaciny with a variable model size, as

ﬁére

high parameter estimate variance problem at the earliest selection stage. (=0 (1)

This should enhance the power of the forward orthogonal least squares et -1) = (1) (@2)
(OLS) algorithm. Also note that the parameter regularization in the Qfnere

thogonal parameter space is incorporated by using (39) for parameter Fw?(t)

estimation. (This can be clearly seen in Appendix B.) It has also been ne(t) =1— Z LA (23)
shown that using the D-optimality criterion can also enhance regular- il Al

ized orthogonal least squares [19]. and¢, (t) is the model residual associated with a subset model structure

Note that at any stade, the decremental cost function (19) containgvith k regressors.(t) can be written as a recursive formula, given by
two terms: 1); s1. /N, which represents the model error reduction due , wi(t)
- - - A Do : e (t) = ne—1(t) = - (24)
to the inclusion of a new regressor; and/2)og[1/xx], which rep- Kk + Ve
resents overall model deterioration (the increase of condition numidris is advantageous in that, for a new model with size increased from
due to the inclusion of a new small eigenvalue from this additional rék—1) to &, the PRESS error coefficient (¢) needs only to be adjusted
gressor.) This latter term helps to distinguish bad model terms that hd@emodel size with a minimal computational effort.
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As in conventional forward regression [4], a Gram—Schmidt proce- L5
dure is used to construct the orthogonal basisin a forward regres- 1 —
sion manner. At each regression step, the PRESS statistic can be com- /,
puted using the algorithm and then used as a regressor selective criteria 0.5 / =
for model construction that minimizes the mean square PRESS errors (t-2) / N P
) . 2 y(t-2) 0 PO R
JH - Hg(‘”(ﬂt - 1)] ] 1 /
-0.5 e » v 4
_ [[@(t)]z] 4 e
2
m( )
[&(t -1.5
2 -15 -1 05 0 05 1 1.5
N Z ni(t) (25) y(t—1)
Due to the properties assouated with the minimization of the PRESS @
statistic, a fully automatic nonlinear predictive model contruction algo-
rithm can be achieved. This can be initially explained intuitively. Anal- 15
ysis of the function/¢*) shows that it is concave with respectio 1 Lot
because/*’ is decremental for small, while E[¢(t)] decreases sig paE \
nificantly. As the model structure grows, and the decreade[# (t)] 0.5 o "

(the contribution toward better model approximation due to:there-
gressor) becomes negligible (as the model has achieved sufficient ap-
proximation capability),7*> will become incremental due to PRESS

<
=
o~
|
®
N
o
NN
)
cele ©

error inflation, for some: > ny. ng would clearly be the optimal \ . //
model size based on the minimization of the PRESS statistic. -1 u,’
This point is clarified via the following analysis. Denote the model
residualc(¢) for a model with sizet as¢;. (1) = y(t) = S5, w;(t)g:. LS T 05 0 05 1 L5
Clearly y(t-1)
§r(t) = &kr (8) + wisr (B) greta. (26) ®)

Fig. 1. Nonlinear time series modeling problem; (a) phase plot of the noise
From (25) and (26), the PRESS statistic for a model of Bissgiven free time series; and (b) phase plot of the iterative RBF model output, using the

combined D-optimality and ROLS algorithm with= 10—4.
by
g0 _ {[{k t1* }
Nk (0
_E [Era1(t) + wrar (B)gria]? TABLE |
-~ n2(t) COMPARISON OF MODELLING ACCURACY FOR
) 9 k 5 2 NONLINEAR TIME SERIESMODELLING
—E [Ert1 (1)) T E Wit (O)giett @7)
- 77% (f) ,"é (f) D-optimality | MSE over training data | MSE over testing data | number of terms
. . . LROLS OLS LROLS OLS LROLS OLS
by assuming that the model residual sequence is uncorrelated v . .
weighting and and and and and and
model regressors. D-opt D-opt D-opt D-opt D-opt D-opt
The change off (%) over thekth regression step, by increasihdo le-6 0.09275 0.07764 0.09635  2.53132 19 94
(k + 1), can be written by le-d 0.09311  0.07762 | 0.09607  0.41540 13 93
le-2 0.09338 0.08966 0.09750  0.09379 13 25
AJ = JEt+D _ gk _ {[&-H QIR ] le+0 0.09395 0.09360 0.09667  0.09627 13 14
’lk+1 (t)

_E |:[£k-‘;1 (7-‘)]2] _E {w2+1£f)92+1} ) (28)
i (t) i (t) a growing model structure untih.J > 0 at a derived model sizey,

The difference between the first two terms in (2EJ([¢.+1(#)]*)/ when the contribution of théith regressor becomes insignificant.
(n41(0)] —El([&+1(D]*)/(ni(t))], represents the effects of theThe proposed algorithm terminates Ht'¢+1) > J("¢) where the
PRESS errors inflation (from a model withregressors to that (QL: + model is optimized based on the minimization of the PRESS statistic
1) regressors). Clearlf[([¢x+1(#)]” )/(77k+1(f ) —E[([e41( H*)/  atJoo.

(e ()] > 0 for |lwip, ()| # 0, due toni, (t) < ni(t). The effect This property (the sign change &.J ask grows) can be applied

of this property tends to |ncrea§é" Alternatively, the last term in to construct the automatic identification algorithm, introduced in
(27), E[(wis1(H)gis1)/(ni(t))], representing the contribution of the Appendix B. This is based on the forward regression model con-
kth regressor in model approximation, tends to decrga$e As the struction with an incremental, by simultaneously monitoring*’.

model achieves sufficient approximation capability at a certain modehe procedure can be automatically terminated at a derived model
sizek = ny + 1, the last term in (27) becomes insignificant, suchvith size ny, whenJ**) > =" Neither a separate criterion to
that this term is smaller than the effects of the PRESS errors inflatiterminate the selection procedure, nor any iteration of the procedure is
of J* (at a level of~ O(1/N) per regression step), resulting inneeded (as the procedure does not use any predetermined controlling
AJ > 0. Thatis,AJ > 0 requires thaZ[(wi,(*)gis1)/(ni(t))]  parameter to be adjusted via iteration).

< E[([&+1 D)/ it O] =El([Er+1 (D]*)/(ni(£))]. The for-  The proposed algorithm is based on the standard Gram-Schmidt [4]
ward regression model construction algorithm selects significaRtocedure in which the orthogonal basis is constructed in a forward
regressof||wi1 (t)|| # 0) that minimizes the PRESS statistic, withregression manner. At each regression step, the PRESS statistic can be
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Fig. 2. System input-output observations in example 2.

formed and applied as a regressor selective criterion for model cavith ROLS, respectively. For this example, an 18—-term model was pro-
struction, as shown in Appendix B. Note that in this algorithm a verguced using th LROLS algorithm alone (not using D-optimality) [17]
small positive regularization parameter such-as£ 10 °, Vi) canbe and the resultant mean squares errors over the training and testing sets
used to reduce parameter variance. Alternatively a similar optimizatiarere 0.092 64 and 0.096 78, respectively. From the results shown in
procedure of the regularization parameters can be implemented [TIdble 1, it is seen that the combined D-optimality and regularized or-
[19], and this is under investigation by the authors. thogonal least squares subset selection algorithm of Section III-B is
able to produce sparser models with an equally good generalization
performance. In addition, the model construction process is insensitive
to the value of3. The model produced by the combined LROLS and
This section simply illustrates the operation of the robust algorithnid-optimality algorithm with3 = 10~* was used to interatively gen-
introduced in Section I11.B and III.C, respectively. Additional examerate the time series according to
ples on simulated data and practical implementation of these algorithms )
can be found in [9], [11], [16], [17], [19], and [20]. 9a(t) = frer(ya(t — 1), ya(t — 2)) (32)
Example 1: A simulated nonlinear time series given by

IV. NUMERICAL EXAMPLES

givengq(0) = §4(0) = 0.1 resultant phase plot is shown in Fig. 1(b).
B 5 Example 2: Consider the following benchmark nonlinear dynamic

y(t) = (0.8 — 0.5exp(—y (f - D)yt -1) system given by [23] and [24]

— (0.3 4+ 0.9exp(—y*(t — 1)))y(t — 2)

(o z(t) =
dsin(w - 29
F0-Lsin(my(t = 1)) + &) (29) S(t=1)2(t—2)2(t—3)u(t—2)[= (f—3) — 1 Fu(t—1)

where the noise () is given as¢ ~ N(0,0.3%). One thousand T+ 22(t=2)+22(t - 3)
noisy _sgmples were generated. The first 500 data points were 9§ﬁ{ére the system input(t) is given as a uniformly distributed random
for training, and another 500 samples were used for model valldatl%nm in the rangé—1, 1], andy(z) = =(x) + &, in which the noise

The underlying noise-free system is € ~ N(0,0.05%). As shown in Fig. 2, 200 data points were gener-
ated. The input vector is predetermined as a 5-input vectaf#gs=

(33)

ya(t) = (0.8 = 0.5 exp(—y:,@ = 1)))ya(t=1) [y(t—1),y(t—2), y(t—3),u(t—1),u(t—2)]". The Gaussian func-
= (0.3+0.9exp(—yi(t — 1)))yalt — 2) tiong(z, ¢;) = exp{—||a—c;||*/7*} is used as basis functions to con-
+0.1sin(my(t — 1)) (30) struct an RBF model, with a width = 1. All 200 training data points

are used as the candidate centre set. The proposed combined PRESS
is specified by a limit cycle, as shown in Fig. 1(a). A Gaussian RB#tatistic and regularized orthogonal least squares subset selection algo-

model taking the form of rithm of Section I1I-C was applied for automatic model structure detec-
tion, in which the regularization parameter was sef;as 107%,vi. A
4(t) = frer(y(t—1), y(t — 2)) (31) parsimonious model structure can be detected at a derived model size

when the PRESS statistic is minimized. During the forward regression
is used to construct the process underlying the noisy data. The Gaussaiadel construction process, the PRESS statistic gradually decreases
kernel function has a variance of 0.81. until ng = 37, with anincrementof.J = 1.97x 10~7 > 0, such that
The modeling accuracy over both the training and validation data séte model with 37 centers is automatically derived as the final model.
are compared in Table 1 by using combined D-optimality with OLS drhe results of the derived RBF model with 37 centers, are shown in
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Fig. 3. Modeling results using RBF network with 37 centers (example 2).

Fig. 3. The model MSE and PRESSat = 37, is0.0995%, and0.11>  algorithm which was originally introduced based on model selection
respectively, demonstrating that the model is appropriate. by maximizing output energy has been greatly exhanced for model
selection based on various robustness objectives.

V. CONCLUSIONS

APPENDIX A
In this paper, we have introduced some robust nonlinear modeling LOCALLY REGULARIZED FORWARD ORTHOGONAL
techniques by developing algorithms for model construction in LEAST SQUARES ESTIMATOR

the framework of forward regression. In order to enhance mOdelThe LROLS procedure can automatically select a subseb ak-
robustness, we use combined parameter regularization and new roB\'@ésors to construct a parsimonious model with parameter regulariza-

structL_JraI s_ele_ctlve criteria, _|nclud|ng MO classeg of rgbu_st mOdﬁJ)n. The forward orthogonal least squares estimator involves selecting
selective criteria based on either experimental design criteria that Qps. ofng variablespr = [pi(1),- -, pr(N)]T k= 1,-- -, ng, from

timizes model adequacy, or the PRESS statistic that optimizes moﬂ?lregressors to form a set of orthogonal bagis k = 1, -, ng, ina

generalization capability, respectively. In particular, a common featurrc?rward regression manner. The principle of RLOLS algorithm for the
of the algorithms is that computational efficiency has been achievgﬁiucture determination is as follows

through the orthogonalization scheme in an orthogonal least squareg orthogonal decomposition @ is
or regularized orthogonal least squares algorithm. Significantly, the
power of the well known forward orthogonal least squares (OLS) P=WA (34)
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whereA = {a;;} isanM x M unit upper triangular matrix an#v  The most relevanty regressors can be forward selected according to
isanN x M matrix with orthogonal columns that satisfy the value of the error reduction rafi@@ R R]. At the kth selection, a
candidate regressor is selected aslittiebasis of the subset if it pro-

W'W =diag{s. ..., 5} (33)  duces the largest value pE R R}, from the remainind M — k + 1)
with candidates. By setting an appropriate tolergnoghich can be found
ke =wrpwgp, k=1,....,M (36) by trial and error or via some statistical information criterion such as
Akaike’s information criterion(AIC) [7] that forms a compromise be-
so that (2) can be expressed as tween the model performance and model complexity, the variable se-
y = (PA"')(AO)+= = Wg + = 37) lection is terminated whenno
whereg = [g1.---.gn]" is an auxiliary vector. The LROLS algo- 1—- > [ERR] < p. (42)
rithm uses the following error criterion for parameter estimation. k=1
e - This procedure can automatically select a subset,ofegressors to
Jr=2"=Z+g I'g. (38)  construct a parsimonious model. Equivalently, this procedure can be

Becaus€(¢) is uncorrelated with past output signals, it may be shom/?‘?(pressed as

4]and [5] that ; . 1
[4]and [5] TR = g gk (43)
wly .
g = —————, k=1,---,M. (39) (0) T i i
W, Wi+ Yk whereJ'" = y'y. At the kth forward regression stage, a candidate

regressor is selected as #th regressor if it produces the smallgt) .
Equation (43) is used in the derivation of experimental design criteria
dbﬁlsed algorithms in Sections IlI.A and Section III.B.

The original model coefficient vect@® = [¢1,-- -, 6,,]" can then be
calculated fromA ® = g through backsubstitution. t; = 0, Vi, the
procedure reduces to conventional forward OLS procedure [4], an
v =--- = ym = v, thisis then the regularized OLS algorithm with
a global regularization parameter [5].

The ROLS procedure can use the conventional OLS procedure f-g
model term selection which maximizes model approximation capa-
bility in a forward regression manner. The principle of the method is 1) At the first step, initialize7® = y'y,for1 <i < M
shown below. The number of all possible regressdrean be much
larger thamg, butny significant regressors can be identified using the

APPENDIX B
HREE ALGORITHMS (COMBINED A- AND D-OPTIMALITY OR PRESS
STATISTIC WITH ROLS SUBSET SELECTION ALGORITHMS)

For combined A-optimality and ROLS, set> 0

forward OLS procedure. As the orthogonality propestyw; = 0 for For combined A-optimality and ROLS, sét> 0
i # j holds, (37) is multiplied by itself and the time average is then For combined PRESS statistics and ROLS
taken, and the following equation is easily derived Eo(t) = y(t),m0(1) = 1,¥1, ie, (t=1,---,N)
1 _r— and compute
Vy y = ngw;‘ Wi + :T:. (40) P
( ) —
=P

The output varianceE[y' ()] = (1/N)yTy consists of two parts, r»'(l) =(w")'w
(1/N) M giw] wy, the output variance explained by the regres- 0 (Wi Ty
sors and1/N)Z”=, the part of unexplained variance. The Error Re- 9= O (44)

1 1

duction Ratio[E R R], which is defined as the increment toward the

overall output varianc& [y (#)] due to each regressor or input variable 2) Use one of the optional block representing one of three different

pr(t) divided by the overall output variance is computed as 3 'zillggrithms. See (45)—(47) as shown at the bottom of the page.
in
CIL WL Wi o ,, . )
[ERR]). = T yry k=1, M. (41) ']((7311)) = min { ](( )), 1<:i < M} (48)
Combined A-optimality and ROLS Combined D-optimality and ROLS
or i N .
](l) = g _ L ( ()) ( + N?x;). (45) J((il)) =g _ L% (giz)) Hil) + Blog |:h(11):| (46)
1 1
or

Combined Press statistic and ROLS
e7(t) =&(t) —wl” (g, (t=1.--.N)
[wi” (1)]?

ORI

(1) =g (1) — L (F=100N)
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Combined A-optimality and ROLS Combined D-optimality and ROLS
N2 or ;
J((zk)) — J(k—1) _ % (gl(ct)) HE;) + h_’;i)‘ (51) J((zk)) — J(k 1) _ \ ( ()) ( ) + /310“ |:_Z):| (52)
or
Combined PRESS statistic and ROLS
&) =6 (t) —wi (g, (t=1.---.N)
(i) (i) [w§ & )]
M ( ) 7}k—1(t)_ G, _ = 17"'7]\,)
r»',; + Ve
T = 53
@ z_: ( )t 53)
= ( )
and select If the data sample indexed ats deleted from estimation data set, the
—— (il) =p,, leave-one-out model parameter vector from the orthogonal weight reg-
O ]((:1)) (49) ularized model is given by
(-0 _ O W=t B A G AN E)
4) At the kth step wheré: > 2for1 < i < M,i # i1...i # g —{[W I'w +T} Wy
ir—1, COmpute — [H(_*)]” [W(—t)]Ty(—f) (58)
T . . .
OB PPy whereW(~" andy(~* denote the resultant regression matrix, and
’ W,f Wi - output vector respectively. By derivation, it can be shown that
k—1
wi) =p; - ug,gw] HY =H - w(t)w'( 7‘1) (59)
=1 YW =yt W - y(w! (1) (60)
K = (W) Ty . .
k k({) . k The PRESS error evaluatedfain an orthogonal weight regularized
(i _ (W )y (50) model is given by
k ( )
+7 - —0
_ ' _ _ ¢Vt =D =y(t)—[g"" w(t)
5) Use one of the optional block representing one of three different —y(t)— [y(ft)]TW(ft) [H(ft)]flw(t)_ (61)
algorithms. See (51)—(53) as shown at the top of the page.
6) Find From (59), and by using the matrix inversion lemma, yields
I = min{J(}) 1<i < Moi#in. i} (54) H™ =[H - w(t)w' ()]
and select e Hi'wow! ' ()H!
aip = al®) =H 4+ 1—wl(tH)Htw(t) (62)
k= a’]k
e and )
i) — (=) 1=1. H “wi(t)
Wi =W =P, a;p W, = .
EEWET = P ; TR HT wit) = - Tw(r) (63)
JH) = J((fk)) (55) Substituting (60) and (63) into (61), yields
7) The procedure is monitored and terminated at the dekived TV —1) =y(t) — [yT W — y(t)w™ ()]
step, whenJ®) > J*=D Otherwise, set = k + 1, go to y H™'w(t)
step 2. 1-wl(tH)H-'w(t)
_y(t) —y" WH 'w(t)
APPENDIX C T l-wT()H'w(t)
PRESS EBROR IN AN ORTHOGONAL WEIGHT REGULARIZED MODEL £(t) ‘
Following (39), the parameter vector in an orthogonal weight regu- - wl(HH tw(t)
larized model is &(t) (64)

g=WW+rIr"'"wWiy=H"'"W'y (56)

wherel' = diag{~1,--
on the orthogonal weight regularized model is
&(t) =y(t) - y  WH™ 'w(t).

g wi(t) = y(t) - (57)

Y € RMXM The model residual based

T1-wI(HWIW + ] 'w(t)
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