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Robust Nonlinear Model Identification Methods
Using Forward Regression

X. Hong, C. J. Harris, S. Chen, and P. M. Sharkey

Abstract—In this correspondence new robust nonlinear model con-
struction algorithms for a large class of linear-in-the-parameters models
are introduced to enhance model robustness via combined parameter
regularization and new robust structural selective criteria. In parallel to
parameter regularization, we use two classes of robust model selection
criteria based on either experimental design criteria that optimizes model
adequacy, or the predicted residual sums of squares (PRESS) statistic
that optimizes model generalization capability, respectively. Three robust
identification algorithms are introduced, i.e., combined A- and D-opti-
mality with regularized orthogonal least squares algorithm, respectively;
and combined PRESS statistic with regularized orthogonal least squares
algorithm. A common characteristic of these algorithms is that the
inherent computation efficiency associated with the orthogonalization
scheme in orthogonal least squares or regularized orthogonal least squares
has been extended such that the new algorithms are computationally
efficient. Numerical examples are included to demonstrate effectiveness
of the algorithms.

Index Terms—Cross validation, experimental design, forward regres-
sion, generalization, structure identification.

I. INTRODUCTION

A large class of nonlinear models and neural networks can be clas-
sified as a kernel regression model [1]–[3]. The forward regression
approach is an efficient model construction method [4] which selects
regressors in a forward manner by virtue of their contribution to the
maximization of the model error reduction ratio. Regularization tech-
niques have been incorporated into the orthogonal least squares (OLS)
algorithm to produce a regularized orthogonal least squares (ROLS)
algorithm that reduces the variance of parameter estimates [5], [6]. To
produce a model with good generalization capabilities, model selection
criteria such as the Akaike information criterion (AIC) [7] are usually
incorporated into the procedure to determinate the model construction
process. Yet the use of AIC or other information based criteria, if used
in forward regression, only affects the stopping point of the model se-
lection, but does not penalize regressors that might cause poor model
performance, e.g. too large parameter variance or ill-posedness of the
regression matrix, if this is selected. This is due to the fact that AIC
or other information based criteria are usually simplified measures de-
rived as approximation formulas that is particularly sensitive to model
complexity.

In order to achieve a model structure with improved model gener-
alization, it is natural that a model generalization capability cost func-
tion should be used in the overall model searching process, rather than
only being applied as a measure of model complexity. Optimum ex-
perimental designs have been used [8] to construct smooth network re-
sponse surfaces based on the setting of the experimental variables under
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well controlled experimental conditions. In optimum design, model ad-
equacy is evaluated by design criteria that are statistical measures of
goodness of experimental designs by virtue of design efficiency and ex-
perimental effort. Quantitatively, model adequacy is measured as func-
tion of the eigenvalues of the design matrix. In a recent study [9], the
authors have outlined an efficient learning algorithm, in which a com-
posite cost function was introduced to optimize the model approxima-
tion ability using the forward orthogonal least squares (OLS) algorithm
[10], and simultaneously determined model adequacy using an A-op-
timality design criterion (i.e., minimizes the variance of the parameter
estimates). This algorithm has been further studied [11] as part of the
B-spline based neurofuzzy model (NeuDec) and applied to model real
dynamical processes. It was shown that the resultant models can be im-
proved based on the reduction of parameter variance. There are a va-
riety of optimality design criteria such as A- and D-optimality [8] based
on different aspects of experimental design. The D-optimality criterion
is most effective in optimising the parameter efficiency and model ro-
bustness via the maximization of the determinant of the design ma-
trix. A new model construction and design algorithm using a new cost
function based on the D-optimality criterion has been introduced [12].
This algorithm leads automatically to an unbiased model parameter es-
timate with an overall robust and parsimonious model structure. The
efficiency of the algorithm lies in the construction of the new D-opti-
mality based cost function based on the orthogonalization process to
gain computational advantages, and hence to maintain the inherent ad-
vantage of computational efficiency associated with the conventional
forward OLS approach.

Because the evaluation of model generalization capability is based
directly on a concept of cross validation [13], it is desirable to develop
new model selective criteria, based on the fundamental concept of cross
validation, that can distinguish model generalization capability during
the model construction process. A fundamental concept in cross vali-
dation is that of delete-1 cross validation in statistics, and the associ-
ated concept of the PRESS statistic [14] and [15]. These are usually
computational expensive, however, recently an automatic nonlinear re-
gression model construction algorithm has been introduced based on
forward regression and the PRESS statistic that minimizes computa-
tional expense [16].

Because parameter regularization and robust model structure selec-
tion are effective and complementary approaches for robust modeling,
it is also highly desirable to develop algorithms combining parameter
regularization and model structure selection via direct model general-
ization capability for maximized model robustness. Recently a locally
regularized orthogonal least squares (LROLS) algorithm has been in-
troduced [17] which uses an effective Bayesian evidence method [18]
to optimize local regularization parameters. The LROLS algorithm [17]
alone is capable of producing a very parsimonious model with excel-
lent generalization performance. Following [17], parameter regulariza-
tion and robust model structural selection criteria have been combined
for enhanced model robustness, and these are formed by combining a
locally regularized orthogonal least squares (LROLS) model selection
with a D-optimality experimental design [19], and by combining regu-
larized orthogonal least squares and the PRESS statistic [20].

In [19], the D-optimality design criterion further enhances the model
efficiency and robustness. An added advantage is that the user only
needs to specify a weighting for the D-optimality cost in the combined
model selecting criterion and the entire model construction procedure
becomes automatic. The specific value of this weighting factor does not
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influence the model selection procedure critically and it can be chosen
with ease from a wide range of values. In order to combine param-
eter regularization with regularized model structure selection based on
the PRESS statistic [20], we initially derived the PRESS error in the
orthogonal weight regularized model (see Appendix C). Due to the in-
herent computation efficiency associated with forward regularized or-
thogonal least squares, the effort involved in the computation of the
PRESS statistic is minimized. The PRESS statistic is applied directly
in the forward regression model structure construction process as a cost
function in order to optimize the model generalization capability. The
basic idea of improving computational efficiency is to reduce the com-
putational expense to minimize the computation of PRESS errors, in
which an inherent orthogonalization is used to avoid a matrix inver-
sion. Further significant reduction in computation arises owing to the
derivation of a forward recursive formula to compute PRESS errors.
Based on the properties of the PRESS statistic the proposed algorithm
can achieve a fully automatic procedure without resort to another vali-
dation data set for model assessment.

This paper systematically reviews recent advances on robust mod-
eling techniques based on forward regression developed by the authors.
The remainder of the paper is organized as follows, Section II pro-
vides a general background for the proposed algorithms, including op-
timal experimental criteria and the PRESS statistic. Section III, sup-
plemented by Appendices, presents three robust algorithms and some
appropriate analysis. Numerical examples in Section IV demonstrate
the effectiveness of algorithms introduced in Section III-B and III-C.
Section V is devoted to conclusions.

II. PRELIMINARIES

A linear-in-the-parameters model [radial basis function (RBF)
neural network, B-spline neurofuzzy network] can be formulated as
[1] and [2]

y(t) =

M

k=1

pk(x(t))�k + �(t) (1)

wheret = 1; 2; � � � ; N , andN is the size of the estimation data set.y(t)
is system output variable,x(t) = [y(t�1); � � �, y(t�ny),u(t�1); � � �,
u(t�nu)]

T is system input vector of observables with assumed known
dimension of(ny+nu).u(t) is system input variable.pk(�) is a known
nonlinear basis function, such as RBF, or B-spline fuzzy membership
functions.�(t) is an uncorrelated model residual sequence with zero
mean and variance of�2. Equation (1) can be written in the matrix
form as

y = P�+ � (2)

where y = [y(1); � � � ; y(N)]T is the output vector,� =
[�1; � � � ; �M ]T is parameter vector,� = [�(1); � � � ; �(N)]T is
the residual vector, andP is the regression matrix

P =

p1(x(1)); p2(x(1)) � � � pM(x(1))

p1(x(2)); p2(x(2)) � � � pM(x(2))

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

p1(x(N)); p2(x(N)) � � � pM(x(N))

:

By setting a cost function ofJ1 = N

t=1
(y(t) � M

k=1
pk

(x(t))�k)
2, the least squares estimates of� is given by [21]

�̂ = (PT
P)�1PT

y: (3)

Assume that (2) represents the data generating process. IfPTP is non-
singular, then

(i) E�̂ = �

(ii) cov�̂ = �2(PT
P)�1 (4)

where the matrix(PTP) is called the design matrix. It is well
known that a model based on least squares estimates tends to be
unsatisfactory for a near ill conditioned regression matrix (or design
matrix). The condition number of the design matrix is given by
C = (max�k)=(min�k), where �k; (k = 1; � � � ;M) are the
eigenvalues of the design matrix. Too large a condition number of
the design matrix will result in unstable parameter estimates if a least
squares algorithm is used [1] and [2], whilst a small condition number
of the design matrix leads to model robustness. Optimum experimental
designs have been used [8] to construct smooth system response
surfaces based on the design or setting of the experimental variables
under well controlled experimental conditions. Design criteria are
statistical measures of goodness of experimental designs by virtue of
design efficiency and experimental effort, and are aimed at avoiding
model poor designs with unnecessarily large model parameter es-
timates’ variance or extravagant model sizes that waste resources.
Experimental design criteria of A-optimality and D-optimality are
explained in Section II-A in order to provides background for the
two model identification algorithms introduced in Sections III-A and
Section III-B.

Alternatively, parameter estimates can be derived based on a regu-
larized cost function ofJr = N

t=1
(y(t) � M

k=1
pk(x(t))�k)

2 +
M

k=1

k�

2

k, where
k > 0, k = 1; 2; � � � ;M are regularization pa-
rameters. The regularized least squares estimates of�̂r, are given by
[22]

�̂r = (PT
P+ �)�1PT

y (5)

where� = diagf
1; 
2; � � � ; 
Mg. The concept of parameter regula-
sation may be incorporated into a forward orthogonal least squares al-
gorithm as a locally regularized orthogonal least square estimator (see
Appendix A for details), which forms the foundation for all the robust
identification algorithms introduced in this paper (see Section III).

A. Optimal Experimental Design Criteria

It is natural to consider model subset selection from an initial model
base withM regressors in the framework of the optimal experiment de-
sign. In doing so, not just the model size has been taken into account,
but different models of the same size can be evaluated. Consider the ap-
plication of experimental design criteria in the context of model subset
selection. In this section, we initially introduce the concepts of exper-
imental design criteria including A-optimality and D-optimality based
on using a fixed sized subset. The subset model is constructed from the
full model with regression matrixP by usingn� regressors selected
fromM regressors inP, n� � M . The resultant regression matrix is
denotedPk 2 <

N�n , the resultant design matrix byPT
kPk, and�k,

k = 1; . . . ; n� are the eigenvalues ofPT
kPk.

Definition 1: A-optimality criterion minimizes the sum of the vari-
ance of a parameter estimate vector�̂ = [�1; � � � ; �n ]T

min J2 = tr cov�̂ = �2
n

k=1

1

�k
: (6)

Definition 2: The D-optimality criterion maximizes the determinant
of the design matrix ofPT

kPk

max J3 = det PT
kPk =

n

k=1

�k : (7)

This criterion favors models with smaller condition numbers to
ensure model efficiency and robustness. It is well known that a model
based on least squares estimates tend to be unsatisfactory for a near
ill-conditioned regression matrix (or design matrix). The D-optimality
criterion [8] inherently improves model robustness. Robust identifi-
cation algorithms using the combined experimental design optimality
criteria with regularized orthogonal least squares are introduced in
Section III-A and III-B.
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B. PRESS Statistic

Cross validation criteria are metrics that measures a model’s
generalization capability, which can alternatively be used as a model
selection criterion for robustness. One commonly used version of
cross-validation is the so called leave-one-out cross-validation. The
idea is that, for any model, each data point in the estimation data set
DN = fx(t); y(t)gNt=1 is sequentially set aside. In turn, a model is
estimated using the remaining(N � 1) data, and the prediction error
is derived using the data point that was removed. To select a model
by using the leave-one-out cross-validation as the model selective
criterion, the model with a minimal mean squares of the prediction
errors is selected. There is an elegant way to generate the prediction
error known as the PRESS statistic [15] for linear-in-the-parameters
models (without actually sequentially splitting the estimation data set)
by using the Sherman–Morrison–Woodbury Theorem [15].

Consider a predictor that is identified based on (1), the PRESS errors
�(�t)(tjt � 1) can be calculated using [15] as

�
(�t)(tjt� 1) = y(t)� ŷ

(�t)(tjt� 1)

=
�(t)

1� p(t)T [PTP]�1p(t)
(8)

where ŷ(�t)(tjt � 1) is model prediction using leave-one-out data
(without sample att), p(t) is used forp(x(t)) for notational sim-
plicity,and the PRESS statistic is computed by

Jp = E [�(�1)(tjt� 1)]2 : (9)

A robust identification algorithm using the PRESS statistic and regu-
larized orthogonal least squares is introduced in Section III-C.

III. ROBUST NONLINEAR MODEL IDENTIFICATION METHODS

USING FORWARD REGRESSION

New robust nonlinear model construction algorithms for a large class
of linear-in-the-parameters models are introduced to enhance model ro-
bustness via combined parameter regularization and new robust struc-
tural selective criteria. Three algorithms are introduced: 1) two robust
identification algorithms using combined A or D-optimality and regu-
larized orthogonal least squares algorithm respectively, and 2) a robust
identification algorithm using combined PRESS statistic and a regular-
ized orthogonal least squares algorithm.

Unfortunately, the experimental design criteria of (6) and (7) or the
PRESS statistic of (9) are inherently inefficient and computationally
prohibitive if applied for model subset selection, due to the derivation
of eigenvalues, exponential growth of possible subsets, matrix inver-
sion, incuring the associated curse of dimensionality. Subset selection
based on computationally efficient algorithms, such as forward regres-
sion is preferable. Locally parameter regularization may be combined
with forward orthogonal least squares, and this forms a basis in the
development of the proposed robust model construction algorithms in-
troduced in Section III.

A key to understanding the development of these algorithms and
their properties is to see that all of the algorithms are based on the or-
thogonalized space. Model selective cost functions or algorithm deriva-
tions are based on orthgonal basiswk rather than original regressorpk,
or auxiliary parameter vectorgk (associated with orthogonal space),
rather than the original parameters�k. Due to this aspect, a common
characteristic of these algorithms is that the inherent computation ef-
ficiency associated with the orthogonalization has been extended such
that the new algorithms are computationally efficient. For simplicity of
notation, as a function of forward regression stepk, the resultant model
selection criteria for all the proposed algorithms are denoted asJ(k).

A. Robust Identification Using Combined A-Optimality and
Regularized Orthogonal Least Squares

This algorithm is provided in Appendix B. Consider the A-opti-
mality design criterion given in Definition 1, but based on model (37)
(Appendix A) with orthogonal basiswk. The A-optimality cost func-
tion that minimizes the sum of the variance of the auxiliary parameter
estimate vectorg = [g1; � � � ; gn ]T for a subset model withn� regres-
sors is given by

min JA = tr[covĝ] = �
2

n

k=1

1

�k
: (10)

SinceA� = g, it can be assumed that to penalize the large variance of
the auxiliary parameter vectorg will also consequently penalize large
variance of parameter vector�.

A composite cost function is defined as
J =J1 + �1JA

=
1

N
y
T
y �

n

k=1

g
2
k�k + �

n

k=1

1

�k
(11)

where, for the sake of simplicity,� = �2�1, is a positive small number.
Equation (11) can be directly incorporated into the conventional for-
ward OLS algorithm to select the most relevantkth regressor at thekth
forward regression stage, via

J
(k) = J

(k�1) �
1

N
g
2
k�k +

�

�k
: (12)

At thekth forward regression stage, a candidate regressor is selected as
thekth regressor if it produces the smallestJ(k) and further reduction
on J(k�1). The selection procedure will terminate ifJ(k) � J(k�1)

at the derived model sizen� . This is significant because it means that
the proposed approach can automatically detect a parsimonious model
size.

The above A-optimality based design model construction algorithm
was firstly introduced [9] and applied as part of the B-spline based
neurofuzzy model (NeuDec) [11]. It was shown in [9] and [11] that
the resultant models can be improved based on the reduction of model
parameter variance.

B. Robust Identification Using Combined D-Optimality and
Regularized Orthogonal Least Squares

This algorithm is provided in Appendix B. Consider the orthogonal
decomposition of the subset model with regression matrixPk. Denote
Pk = WkAk, whereAk is a unit upper triangular matrix generated
based on the orthogonal triangularization ofPk. Consider the D-opti-
mality design criterion given in Definition 2, but based on model (37)
with orthogonal basiswk. The D-optimality design criterion that max-
imizes the determinant of the design matrix ofWT

kWk is given by

maxfJD = det W
T
kWk =

n

k=1

�kg: (13)

Because

det(PTkPk) = det(AT
k ) det(W

T
kWk) det(Ak)

= det(WT
kWk) (14)

due todet(Ak) = 1; this establishes the equivalence of (7) and (13).
This implies that the selection of a subset ofPk fromP is equivalent

to the selection of a subset ofWk fromW, or that a better conditioned
Pk can be achieved via a better conditionedWk due to the equivalence
of (7) and (13).

Unfortunately a composite cost function based on the linear combi-
nation ofJ1 andJD is unusable, because 1)J1 is to be minimized
andJD is to be maximized; and 2) the algorithm efficiency cannot be
achieved due to the product term in (13).

Construct instead the following cost function:

JD =  (JD ) = � log(JD ) =

n

k=1

log
1

�k
: (15)
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Clearly the maximization ofJD is equivalent to the minimization of
 (JD ), due to the fact that the solution of

@ (JD ) = �
1

JD
@JD = 0 (16)

is equivalent to that of

@JD = 0 (17)

for JD > 0 (as the design matrix is nonnegative).
The new augumented cost function is defined as

J =J1 + �JD

=
1

N
y
T
y �

n

k=1

g2k�k + �

n

k=1

log
1

�k
(18)

where� is a small positive number. Equation (18) can be incorporated
into the forward OLS algorithm to select the most relevantkth regressor
at thekth forward regression stage, via

J(k) = J(k�1) �
1

N
g2k�k + � log

1

�k
: (19)

At thekth forward regression stage, a candidate regressor is selected as
thekth regressor if it produces the smallestJ(k) and further reduction
onJ(k�1). BecauseJD is an increasing function if�k < 1, which is
true for somek > K, the selection procedure will terminate ifJ(k) �
J(k�1) at the derived model sizen� if a proper� is set.

The robust identification using combined D-optimality and regular-
ized orthogonal least squares based on the forward Gram-Schmidt pro-
cedure is shown in Appendix B. For the complete procedure, including
optimization of regularization parameters, see [19], where an effective
Bayesian evidence method [18] has been introduced to optimize local
regularization parameters. Note that a very small positive regularization
parameter such as (
i = 10�6, 8i) can be used to simplify the mod-
eling procedure yet improve the resultant parameter estimate variance.

Clearly if � = 0, the proposed algorithm reduces to the conven-
tional forward regularized OLS algorithm. By using the error reduction
ratio (ERR), the conventional forward OLS algorithm equivalently uses
J
(k)
1 = 1=N(yTy � n

k=1 g
2
k�k) as a selection criteria, which is a

monotonically decreasing function of the iteration stepk. (An error tol-
erance� is needed for the termination of the selection procedure.) This
suggests that the selection procedure can be alternatively terminated in
the usual way as in the conventional OLS procedure, but with any arbi-
trarily small� to improve model robustness. However in the proposed
algorithm, the new cost functionJ(k) will increase after some selec-
tion stage; this follows by analysing the effect of the term� log[1=�k]
in (19). An arbitrarily small� will detect the near singularity of the re-
gression matrix during the selection procedure to prevent the selection
of an oversized ill-posed model. Moreover in this algorithm the error
tolerance� is not necessary for the termination of the selection proce-
dure if an appropriate� is applied. Compared to the forward orthogonal
least squares (OLS) algorithm [4] that combines the AIC criterion [7]
in order to stop model construction before a high parameter estimate
variance becomes a problem, the proposed method aims to prevent the
high parameter estimate variance problem at the earliest selection stage.
This should enhance the power of the forward orthogonal least squares
(OLS) algorithm. Also note that the parameter regularization in the or-
thogonal parameter space is incorporated by using (39) for parameter
estimation. (This can be clearly seen in Appendix B.) It has also been
shown that using the D-optimality criterion can also enhance regular-
ized orthogonal least squares [19].

Note that at any stagek, the decremental cost function (19) contains
two terms: 1)g2k�k=N , which represents the model error reduction due
to the inclusion of a new regressor; and 2)� log[1=�k], which rep-
resents overall model deterioration (the increase of condition number
due to the inclusion of a new small eigenvalue from this additional re-
gressor.) This latter term helps to distinguish bad model terms that have

large parametric valuesg2k, but significantly small�k values (norm
of an orthogonal basis).� should be sufficiently small so that new
regressors are added to the model if and only if its contribution to
model error reduction,1=Ng2k�k, is significant, here we require� <
g2k�k=[N log 1=�k]. If this inequality is violated, the model selection
automatically stops. In practice, it is suggested that cross validation
by using two data sets, an estimation set and a validation set, should
be used to find an appropriate�. Cross validation based statistical in-
formation criterion such as AIC (or other statistical model selective
criteria, e.g., GVC, FPE or MDL) should be directly applicable in the
selection of�. It has also been shown [19] that value of� does not crit-
ically influence the model selection procedure and can be chosen from
a wide range of values.

C. Robust Identification Using Combined PRESS Statistic and
Regularized Orthogonal Least Squares

This algorithm is provided in Appendix B. Alternatively, the PRESS
statistic of (9) that optimizes model generalation capability can be used
as a robust model selective criterion. Note that (8) does not incorporate
parameter regularization. In order to combine the PRESS statistic into
a model with regularization and the forward regression learning algo-
rithm, initially it is necessary to derive the PRESS error in an orthog-
onal weight regularized model. This is given in Appendix C. Consider
the PRESS errors�(�t)(tjt�1) in (64) of Appendix C, which are based
on the system in the orthogonalized form of (37), yielding

�(�t)(tjt � 1) = y(t)� ŷ(�t)(tjt� 1)

=
�(t)

1�w(t)T [WTW + �]�1w(t)

=
�(t)

�M (t)
(20)

where

�M(t) = 1�

M

i=1

w2
i (t)

ki + 
i
: (21)

The PRESS error, if not being computed on orthogonal regression
space (associated with a diagnonal Hessian matrix), generally involves
extensive computation due to matrix inversion [15]. However the
amount of computation is significantly reduced by using [20], in
which no matrix inversion is involved. This is due to 1) the calculation
of the PRESS error being based on an orthogonalised model with a
diagnonal Hessian matrix; and 2) the regularization in the orthogonal
parameter vectorg rather than the original parameter vector�.

In the following, it is shown that computational expense can be
further significantly reduced by utilizing the forward regression
process via a recursive formula. In the forward regression process,
the model size is configured as a growing variablek. Consider the
model construction by using a subset ofk regressors(k � M); that
is, a subset selected from the full model set consisting ofM initial
regressors [given by (2)] to approximate the system. The PRESS errors
in (20) can be written, by replacingM with a variable model sizek, as

�(�t)(tjt� 1) =
�k(t)

�k(t)
(22)

where

�k(t) = 1�

k

i=1

w2
i (t)

�i + 
i
(23)

and�k(t) is the model residual associated with a subset model structure
with k regressors.�k(t) can be written as a recursive formula, given by

�k(t) = �k�1(t) =
w2
k(t)

�k + 
�
: (24)

This is advantageous in that, for a new model with size increased from
(k�1) tok, the PRESS error coefficient�k(t)needs only to be adjusted
for model size with a minimal computational effort.



518 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 4, JULY 2003

As in conventional forward regression [4], a Gram–Schmidt proce-
dure is used to construct the orthogonal basiswk in a forward regres-
sion manner. At each regression step, the PRESS statistic can be com-
puted using the algorithm and then used as a regressor selective criteria
for model construction that minimizes the mean square PRESS errors

J(k) =E �(�t)(tjt� 1)
2

=E
[�k(t)]

2

�2
k
(t)

=
1

N

N

t=1

[�k(t)]
2

�2
k
(t)

: (25)

Due to the properties associated with the minimization of the PRESS
statistic, a fully automatic nonlinear predictive model contruction algo-
rithm can be achieved. This can be initially explained intuitively. Anal-
ysis of the functionJ(k) shows that it is concave with respect tok,
becauseJ(k) is decremental for smallk, whileE[�2k(t)] decreases sig-
nificantly. As the model structure grows, and the decrease inE[�2k(t)]
(the contribution toward better model approximation due to thekth re-
gressor) becomes negligible (as the model has achieved sufficient ap-
proximation capability),J(k) will become incremental due to PRESS
error inflation, for somek > n� . n� would clearly be the optimal
model size based on the minimization of the PRESS statistic.

This point is clarified via the following analysis. Denote the model
residual�(t) for a model with sizek as�k(t) = y(t)� k

i=1 wi(t)gi.
Clearly

�k(t) = �k+1(t) + wk+1(t)gk+1: (26)

From (25) and (26), the PRESS statistic for a model of sizek is given
by

J(k) =E
[�k(t)]

2

�2
k
(t)

=E
[�k+1(t) + wk+1(t)gk+1]

2

�2
k
(t)

=E
[�k+1(t)]

2

�2
k
(t)

+ E
w2
k+1(t)g

2
k+1

�2
k
(t)

(27)

by assuming that the model residual sequence is uncorrelated with
model regressors.

The change ofJ(k) over thekth regression step, by increasingk to
(k + 1), can be written by

�J = J(k+1) � J(k) = E
[�k+1(t)]

2

�2
k+1(t)

�E
[�k+1(t)]

2

�2
k
(t)

� E
w2
k+1(t)g

2
k+1

�2
k
(t)

: (28)

The difference between the first two terms in (27),E[([�k+1(t)]
2)=

(�2k+1(t))] �E[([�k+1(t)]
2)=(�2k(t))], represents the effects of the

PRESS errors inflation (from a model withk regressors to that of(k+
1) regressors). ClearlyE[([�k+1(t)]2)=(�2k+1(t))] �E[([�k+1(t)]

2)=
(�2k(t))] > 0 for kw2

k+1(t)k 6= 0, due to�2k+1(t) < �2k(t). The effect
of this property tends to increaseJ(k). Alternatively, the last term in
(27),E[(w2

k+1(t)g
2
k+1)=(�

2
k(t))], representing the contribution of the

kth regressor in model approximation, tends to decreaseJ(k). As the
model achieves sufficient approximation capability at a certain model
sizek = n� + 1, the last term in (27) becomes insignificant, such
that this term is smaller than the effects of the PRESS errors inflation
of J(k) (at a level of� O(1=N) per regression step), resulting in
�J > 0. That is,�J > 0 requires thatE[(w2

k+1(t)g
2
k+1)=(�

2
k(t))]

< E[([�k+1(t)]
2)=(�2k+1(t))]�E[([�k+1(t)]

2)=(�2k(t))]. The for-
ward regression model construction algorithm selects significant
regressor(kw2

k+1(t)k 6= 0) that minimizes the PRESS statistic, with

(a)

(b)

Fig. 1. Nonlinear time series modeling problem; (a) phase plot of the noise
free time series; and (b) phase plot of the iterative RBF model output, using the
combined D-optimality and ROLS algorithm with� = 10 .

TABLE I
COMPARISON OF MODELLING ACCURACY FOR

NONLINEAR TIME SERIESMODELLING

a growing model structure until�J > 0 at a derived model sizen� ,
when the contribution of thekth regressor becomes insignificant.
The proposed algorithm terminates atJ(n ) > J(n ), where the
model is optimized based on the minimization of the PRESS statistic
at J(n ).

This property (the sign change of�J ask grows) can be applied
to construct the automatic identification algorithm, introduced in
Appendix B. This is based on the forward regression model con-
struction with an incrementalk, by simultaneously monitoringJ(k).
The procedure can be automatically terminated at a derived model
with sizen� , whenJ(k) > J(k�1). Neither a separate criterion to
terminate the selection procedure, nor any iteration of the procedure is
needed (as the procedure does not use any predetermined controlling
parameter to be adjusted via iteration).

The proposed algorithm is based on the standard Gram–Schmidt [4]
Procedure in which the orthogonal basiswk is constructed in a forward
regression manner. At each regression step, the PRESS statistic can be
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Fig. 2. System input-output observations in example 2.

formed and applied as a regressor selective criterion for model con-
struction, as shown in Appendix B. Note that in this algorithm a very
small positive regularization parameter such as (
i = 10�6, 8i) can be
used to reduce parameter variance. Alternatively a similar optimization
procedure of the regularization parameters can be implemented [17],
[19], and this is under investigation by the authors.

IV. NUMERICAL EXAMPLES

This section simply illustrates the operation of the robust algorithms
introduced in Section III.B and III.C, respectively. Additional exam-
ples on simulated data and practical implementation of these algorithms
can be found in [9], [11], [16], [17], [19], and [20].

Example 1: A simulated nonlinear time series given by

y(t) = (0:8� 0:5 exp(�y2(t� 1)))y(t� 1)

� (0:3 + 0:9 exp(�y2(t� 1)))y(t� 2)

+ 0:1 sin(�y(t� 1)) + �(t) (29)

where the noise�(t) is given as� � N(0; 0:32). One thousand
noisy samples were generated. The first 500 data points were used
for training, and another 500 samples were used for model validation.
The underlying noise-free system

yd(t) = (0:8� 0:5 exp(�y2d(t� 1)))yd(t� 1)

� (0:3 + 0:9 exp(�y2d(t� 1)))yd(t� 2)

+ 0:1 sin(�y(t� 1)) (30)

is specified by a limit cycle, as shown in Fig. 1(a). A Gaussian RBF
model taking the form of

ŷ(t) = fRBF (y(t� 1); y(t� 2)) (31)

is used to construct the process underlying the noisy data. The Gaussian
kernel function has a variance of 0.81.

The modeling accuracy over both the training and validation data sets
are compared in Table 1 by using combined D-optimality with OLS or

with ROLS, respectively. For this example, an 18–term model was pro-
duced using th LROLS algorithm alone (not using D-optimality) [17]
and the resultant mean squares errors over the training and testing sets
were 0.092 64 and 0.096 78, respectively. From the results shown in
Table 1, it is seen that the combined D-optimality and regularized or-
thogonal least squares subset selection algorithm of Section III-B is
able to produce sparser models with an equally good generalization
performance. In addition, the model construction process is insensitive
to the value of�. The model produced by the combined LROLS and
D-optimality algorithm with� = 10�4 was used to interatively gen-
erate the time series according to

ŷd(t) = fRBF (yd(t� 1); yd(t� 2)) (32)

given ŷd(0) = ŷd(0) = 0:1 resultant phase plot is shown in Fig. 1(b).
Example 2: Consider the following benchmark nonlinear dynamic

system given by [23] and [24]

z(t) =

z(t�1)z(t�2)z(t�3)u(t�2)[z(t�3)�1]+u(t�1)

1 + z2(t� 2) + z2(t� 3)
(33)

where the system inputu(t) is given as a uniformly distributed random
signal in the range[�1; 1], andy(x) = z(x) + �, in which the noise
is � � N(0; 0:052). As shown in Fig. 2, 200 data points were gener-
ated. The input vector is predetermined as a 5-input vector asx(t) =
[y(t�1); y(t�2); y(t�3); u(t�1); u(t�2)]T . The Gaussian func-
tion�(x; ci) = expf�kx�cik

2=� 2g is used as basis functions to con-
struct an RBF model, with a width� = 1. All 200 training data points
are used as the candidate centre set. The proposed combined PRESS
statistic and regularized orthogonal least squares subset selection algo-
rithm of Section III-C was applied for automatic model structure detec-
tion, in which the regularization parameter was set as
i = 10�6,8i. A
parsimonious model structure can be detected at a derived model size
when the PRESS statistic is minimized. During the forward regression
model construction process, the PRESS statistic gradually decreases
until n� = 37, with an increment of�J = 1:97�10�7 > 0, such that
the model with 37 centers is automatically derived as the final model.
The results of the derived RBF model with 37 centers, are shown in
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Fig. 3. Modeling results using RBF network with 37 centers (example 2).

Fig. 3. The model MSE and PRESS atn� = 37, is0:09952, and0:112

respectively, demonstrating that the model is appropriate.

V. CONCLUSIONS

In this paper, we have introduced some robust nonlinear modeling
techniques by developing algorithms for model construction in
the framework of forward regression. In order to enhance model
robustness, we use combined parameter regularization and new robust
structural selective criteria, including two classes of robust model
selective criteria based on either experimental design criteria that op-
timizes model adequacy, or the PRESS statistic that optimizes model
generalization capability, respectively. In particular, a common feature
of the algorithms is that computational efficiency has been achieved
through the orthogonalization scheme in an orthogonal least squares
or regularized orthogonal least squares algorithm. Significantly, the
power of the well known forward orthogonal least squares (OLS)

algorithm which was originally introduced based on model selection
by maximizing output energy has been greatly exhanced for model
selection based on various robustness objectives.

APPENDIX A
LOCALLY REGULARIZED FORWARD ORTHOGONAL

LEAST SQUARESESTIMATOR

The LROLS procedure can automatically select a subset ofn� re-
gressors to construct a parsimonious model with parameter regulariza-
tion. The forward orthogonal least squares estimator involves selecting
a set ofn� variablespk = [pk(1); � � � ; pk(N)]T , k = 1; � � � ; n�, from
M regressors to form a set of orthogonal basiswk, k = 1; � � � ; n� , in a
forward regression manner. The principle of RLOLS algorithm for the
structure determination is as follows.

An orthogonal decomposition ofP is

P =WA (34)
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whereA = faijg is anM �M unit upper triangular matrix andW
is anN �M matrix with orthogonal columns that satisfy

W
T
W = diagf�1; . . . ; �Mg (35)

with

�k =wT
kwk; k = 1; . . . ;M (36)

so that (2) can be expressed as

y = (PA�1)(A�) + � =Wg + � (37)

whereg = [g1; � � � ; gM ]T is an auxiliary vector. The LROLS algo-
rithm uses the following error criterion for parameter estimation.

Jr = �T�+ gT�g: (38)

Because�(t) is uncorrelated with past output signals, it may be shown
[4]and [5] that

gk =
wT
k y

wT
kwk + 
k

; k = 1; � � � ;M: (39)

The original model coefficient vector� = [�1; � � � ; �n ]T can then be
calculated fromA� = g through backsubstitution. If
i = 0;8i, the
procedure reduces to conventional forward OLS procedure [4], and if

1 = � � � = 
M = 
, this is then the regularized OLS algorithm with
a global regularization parameter [5].

The ROLS procedure can use the conventional OLS procedure for
model term selection which maximizes model approximation capa-
bility in a forward regression manner. The principle of the method is
shown below. The number of all possible regressorsM can be much
larger thann� , butn� significant regressors can be identified using the
forward OLS procedure. As the orthogonality propertywT

i wj = 0 for
i 6= j holds, (37) is multiplied by itself and the time average is then
taken, and the following equation is easily derived

1

N
y
T
y =

1

N

M

k=1

g2kw
T
kwk +

1

N
�T�: (40)

The output varianceE[y2(t)] = (1=N)yTy consists of two parts,
(1=N) M

k=1 g
2
kw

T
kwk, the output variance explained by the regres-

sors and(1=N)�T�, the part of unexplained variance. The Error Re-
duction Ratio[ERR]k, which is defined as the increment toward the
overall output varianceE[y2(t)] due to each regressor or input variable
pk(t) divided by the overall output variance is computed as

[ERR]k =
g2kw

T
kwk

yTy
; k = 1; � � � ;M: (41)

The most relevantn� regressors can be forward selected according to
the value of the error reduction ratio[ERR]k. At thekth selection, a
candidate regressor is selected as thekth basis of the subset if it pro-
duces the largest value of[ERR]k from the remaining(M � k + 1)
candidates. By setting an appropriate tolerance�, which can be found
by trial and error or via some statistical information criterion such as
Akaike’s information criterion(AIC) [7] that forms a compromise be-
tween the model performance and model complexity, the variable se-
lection is terminated when

1�

n

k=1

[ERR]k < �: (42)

This procedure can automatically select a subset ofn� regressors to
construct a parsimonious model. Equivalently, this procedure can be
expressed as

J(k) = J(k�1) �
1

N
g2k�k (43)

whereJ(0) = yTy. At thekth forward regression stage, a candidate
regressor is selected as thekth regressor if it produces the smallestJ(k).
Equation (43) is used in the derivation of experimental design criteria
based algorithms in Sections III.A and Section III.B.

APPENDIX B
THREEALGORITHMS (COMBINED A- AND D-OPTIMALITY OR PRESS

STATISTIC WITH ROLS SUBSET SELECTION ALGORITHMS)

1) At the first step, initializeJ(0) = yTy, for 1 � i � M

For combined A-optimality and ROLS, set� > 0

For combined A-optimality and ROLS, set� > 0

For combined PRESS statistics and ROLS;

�0(t) = y(t); �o(t) = 1;8t; i.e.; (t = 1; � � � ; N)

and compute

w
(i)
1 =pi

�
(i)
1 =(w

(i)
1 )Tw

(i)
1

g
(i)
1 =

(w
(i)
1 )Ty

�
(i)
1 + 
1

: (44)

2) Use one of the optional block representing one of three different
algorithms. See (45)–(47) as shown at the bottom of the page.

3) Find

J
(1)
(i ) = min J

(1)
(i) ; 1 � i �M (48)

Combined A-optimality and ROLS

J
(1)
(i) = J(0) � 1

N
g
(i)
1

2

�
(i)
1 + �

�
: (45)

or

Combined D-optimality and ROLS

J
(1)
(i) = J(0) � 1

N
g
(i)
1

2

�
(i)
1 + � log 1

�
: (46)

or

Combined Press statistic and ROLS

�
(i)
1 (t) = �0(t)� w

(i)
1 (t)g

(i)
1 ; (t = 1; � � � ; N)

�
(i)
1 (t) = �

(i)
0 (t)�

[w
(i)
1 (t)]2

�
(i)
1 + 
1

; (t = 1; � � � ; N)

J
(1)
(i) =

1

N

N

t=1

[�
(i)
1 (t)]2

[�
(i)
1 (t)]2

: (47)
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Combined A-optimality and ROLS

J
(k)
(i) = J(k�1) � 1

N
g
(i)
k

2

�
(i)
k + �

�
: (51)

or

Combined D-optimality and ROLS

J
(k)
(i) = J(k�1) � 1

N
g
(i)
k

2

�
(i)
k + � log 1

�
: (52)

or

Combined PRESS statistic and ROLS

�k(t) = �k�1(t)� w
(i)
k (t)g

(i)
k ; (t = 1; � � � ; N)

�
(i)
k (t) = �

(i)
k�1(t)�

w
(i)
k (t)

2

�
(i)
k + 
k

; (t = 1; � � � ; N)

J
(k)
(i) =

1

N

N

t=1

[�k(t)]
2

�
(i)
k (t)

2 : (53)

and select

w1 =w
(i )
1 = pi

J
(1) =J

(1)
(i ): (49)

4) At thekth step wherek � 2 for 1 � i � M , i 6= i1 . . . i 6=
ik�1, compute

a
(i)
jk =

wT
j pi

wT
j wj

; 1 � j < k

w
(i)
k =pi �

k�1

j=1

a
(i)
jkwj

�
(i)
k =(w

(i)
k )Tw

(i)
k

g
(i)
k =

(w
(i)
k )Ty

�
(i)
k + 
k

(50)

5) Use one of the optional block representing one of three different
algorithms. See (51)–(53) as shown at the top of the page.

6) Find

J
(k)
(i ) = minfJ

(k)
(i) ; 1 � i �M; i 6= i1; . . . i 6= ik�1g (54)

and select

ajk = a
(i )
jk

wk =w
(i )
k = pi �

k�1

j=1

ajkwj

J
(k) =J

(k)
(i ): (55)

7) The procedure is monitored and terminated at the derivedk = n�
step, whenJ(k) � J(k�1). Otherwise, setk = k + 1, go to
step 2.

APPENDIX C
PRESS ERROR IN AN ORTHOGONAL WEIGHT REGULARIZED MODEL

Following (39), the parameter vector in an orthogonal weight regu-
larized model is

g = [WT
W + �]�1WT

y = H�1WT
y (56)

where� = diagf
1; � � � ; 
Mg 2 <M�M . The model residual based
on the orthogonal weight regularized model is

�(t) = y(t)� gTw(t) = y(t)� yTWH
�1
w(t): (57)

If the data sample indexed att is deleted from estimation data set, the
leave-one-out model parameter vector from the orthogonal weight reg-
ularized model is given by

g
(�t) = [W(�t)]TW(�t) + �

�1

[W(�t)]T y(�t)

= [H(�t)]�1[W(�t)]T y(�t) (58)

whereW(�t) andy(�t) denote the resultant regression matrix, and
output vector respectively. By derivation, it can be shown that

H
(�t) =H�w(t)wT (t): (59)

[y(�t)]TW(�t) =yTW� y(t)wT (t) (60)

The PRESS error evaluated att in an orthogonal weight regularized
model is given by

�
(�1)(tjt� 1)=y(t)�[g(�t)]Tw(t)

=y(t)�[y(�t)]TW(�t)[H(�t)]�1w(t): (61)

From (59), and by using the matrix inversion lemma, yields

[H(�t)]�1 = [H�w(t)wT (t)]�1

=H�1 +
H�1w(t)wT (t)H�1

1�wT (t)H�1w(t)
(62)

and

[H(�t)]�1w(t) =
H�1w(t)

1�wT (t)H�1w(t)
: (63)

Substituting (60) and (63) into (61), yields

�
(�1)(tjt� 1) = y(t)� [yTW � y(t)wT (t)]

�
H�1w(t)

1�wT (t)H�1w(t)

=
y(t)� yTWH�1w(t)

1�wT (t)H�1w(t)

=
�(t)

1�wT (t)H�1w(t)

=
�(t)

1�wT (t)[WTW+ �]�1w(t)
: (64)
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Dynamical Neural Networks for Planning
and Low-Level Robot Control

Mathias Quoy, Sorin Moga, and Philippe Gaussier

Abstract—We use dynamical neural networks based on the neural field
formalism for the control of a mobile robot. The robot navigates in an open
environment and is able to plan a path for reaching a particular goal. We
will describe how this dynamical approach may be used by a high level
system (planning) for controlling a low level behavior (speed of the robot).
We give also results about the control of the orientation of a camera and a
robot body.

Index Terms—Dynamical systems, neural networks, robot control and
planning.

I. INTRODUCTION

Our research team develops architectures for the control of mobile
robots. These robots are able to navigate in an open environment and
to find a path toward a particular goal. There are several different ap-
proaches for solving this problem ([1], and [2] and references therein]).
The recent ones which relate more directly to our work rely on potential
functions [3], [4] or neural network (NN) implementations of dynam-
ical systems [5], [6]. See also the more classical NN approach to control
given in [7]–[9]. The potential functions (or potential fields) approach
is not a new one [10]. The main drawbacks are the existence of local
minima and a difficult use in changing environments. It also relies on a
Cartesian map of the environment. This map is not always available or
accurate enough. Dynamical systems in a NN formalism try to avoid
the shortcomings of this approach.

Following Polderman and Willems [11], we will define abehavior
as the solution of a given dynamical system. From an ethological point
of view, a behavior will correspond to a particular trajectory for going
from one location to another, for instance. Note that the behavior being
the solution of a dynamical system does not mean that the whole trajec-
tory may be computed knowing the initial conditions. The solution may
be defined implicitly. Thus the differential equation has to be solved nu-
merically. This definition of a behavior is much used in an animat ap-
proach [12]. Indeed, one often defines the behavior as thetransientdy-
namics leading from an initial condition to the attractor of the system.
It is the case in the potential field case for instance. The nature of the
attractor in this case is far less important than the transient dynamics.
If the attractor is a fixed point, then the system stays on it and does not
evolve anymore. We would like here to extend the notion of behavior
to the dynamicson the attractor. In this case, a stable behavior can be
reached when the system is on an attractor (among others: stable fixed
point, limit cycle or even chaotic strange attractors [13], [14]). In this
article, we will only consider the case of fixed points with asymptotic
stability as defined in [15] for instance. In that case the robot keeps
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