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Abstract—Many visions of the future include people immersed
in an environment surrounded by sensors and intelligent devices,
which use smart infrastructures to improve the quality of life and
safety in emergency situations. Ubiquitous communication enables
these sensors or intelligent devices to communicate with each other
and the user or a decision maker by means of ad hoc wireless net-
working. Organization and optimization of network resources are
essential to provide ubiquitous communication for a longer du-
ration in large-scale networks and are helpful to migrate intelli-
gence from higher and remote levels to lower and local levels. In
this paper, distributed energy-efficient deployment algorithms for
mobile sensors and intelligent devices that form an Ambient In-
telligent network are proposed. These algorithms employ a syner-
gistic combination of cluster structuring and a peer-to-peer deploy-
ment scheme. An energy-efficient deployment algorithm based on
Voronoi diagrams is also proposed here. Performance of our algo-
rithms is evaluated in terms of coverage, uniformity, and time and
distance traveled until the algorithm converges. Our algorithms
are shown to exhibit excellent performance.

Index Terms—Ambient intelligence, deployment, distributed
algorithms, energy-efficiency, mobile wireless networks, wireless
sensor networks (WSN).

I. INTRODUCTION

DESIGN and deployment of infrastructured networks,
such as a cellular network, has matured over the last two

decades. In such networks, mobile users access the network via
fixed base stations. Planning and deployment of these networks
is carried out based on radio propagation and terrain models,
with the goal of maximizing radio coverage. More recently,
there has been a great deal of interest in ad hoc networks.
These networks employ fixed or mobile nodes and dynami-
cally organize themselves into a network without requiring an
infrastructure. In ad hoc networks, each node acts not only as
an end node, but also as a router. One important aspect in the
design of these networks is the initialization procedure and
establishment of the routing structure. In these networks, a new
paradigm is considered, where power usage instead of band-
width is of primary concern. Extending system lifetime and
robustness to unpredictable dynamics, rather than optimizing
channel throughput or minimizing the number of nodes, is the
biggest challenge during the design of these networks. Most
research on ad hoc networks has focused on issues such as the
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development of routing protocols and quality of service and not
on topology and deployment.

Wireless sensor networks (WSN) that employ ad hoc net-
working have become an area of intense research activity. This
is due to the availability of inexpensive sensors for sensing and
control and technical advances in sensors, wireless communica-
tions and networking, and signal processing. Many applications
are envisaged including: environment and habitat monitoring;
wild fire detection; inventory tracking; biomedical analysis; per-
vasive computing; battlefield surveillance; and urban search-
and-rescue operations, especially in hazardous situations. WSN
operate under limited radio coverage and attempt to conserve
bandwidth and battery power. Much research on this issue is
underway ranging from the development of power-saving hard-
ware [18] to power-efficient medium access control (MAC) and
routing protocols [11], [27], and to the development of col-
laborative signal processing and power-aware algorithms [14].
Sensor nodes are generally assumed to be fixed and randomly
placed. The number of sensors is assumed to be quite large so
that coverage of the surveillance area is not an issue. Not much
attention has been paid to optimization in terms of the number
of nodes or their topology.

One of the key issues in this area is the deployment of mobile
sensor nodes in the region of interest (ROI), where interesting
events might happen and the corresponding detection mecha-
nism is required. Before a sensor can provide useful data to
the system, it must be deployed in a location that is contextu-
ally appropriate. Optimum placement of sensors results in the
maximum possible utilization of the available sensors [23]. The
proper choice for sensor locations based on application require-
ments is difficult. The deployment of a static network is often ei-
ther human monitored or random. Though many scenarios adopt
random deployment for practical reasons such as deployment
cost and time, random deployment may not provide a uniform
sensor distribution over the ROI, which is considered to be a
desirable distribution in mobile sensor networks. Uneven node
topology may lead to a short system lifetime. Self-deployment
methods using mobile nodes [10], [25], [28] have been proposed
to enhance network coverage and to extend the system lifetime
via configuration of uniformly distributed node topologies from
random node distributions. Since mobility itself requires en-
ergy from its own limited energy source, a deployment scheme
should be designed carefully to minimize energy consumption
during deployment, as well as to achieve certain goals, such as
satisfactory coverage and/or an energy-efficient node topology.
Moreover, it is desirable for a distributed sensor network node to
have a relatively simple hardware architecture, which requires
minimal computing power and memory. Each node should have
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a simple and efficient algorithm for deployment, organization,
and management of the network. Even though much research
on energy-efficient organization and management for the static
node topology [23], [30] has been carried out, there has not been
any work on energy efficiency for deployment of mobile nodes
to the best of our knowledge.

Deployment process itself is very energy consuming due
to the locomotive action as well as computation and commu-
nications associated with it. Each node has a limited energy
source. Not only minimizing average moving distance, but also
reducing the difference of the remaining energy among sensor
nodes is essential for a longer system lifetime. Due to the dy-
namic and distributed nature of deployment, it is a challenging
task to obtain full coverage in the ROI and to utilize energy of
each sensor in a relatively fair fashion.

Previous research in distributed-sensor networking has
largely ignored sensor placement issues. Intelligent sensor
deployment strategies are necessary to minimize cost and to
provide sufficient sensor coverage. In addition, sensor de-
ployment must take into account the nature of the terrain,
redundancy due to the likelihood of sensor failures, and the
power needed to transmit between deployed sensors.

The deployment of sensor networks varies with the applica-
tion considered. It can be predetermined when the environment
is sufficiently known, in which case, the sensors can be strate-
gically hand placed [2], [19], [22]. Schwiebert et al. [22] re-
strict their investigation to an important class of WSN, namely
biomedical sensor networks, in which the locations of the sen-
sors are fixed and the placement can be predetermined. Bia-
gioni et al. [2] present and analyze a variety of regular de-
ployment topologies, including circular and star deployments as
well as deployments in square, triangular, and hexagonal grids.
There exists a close resemblance between the sensor-placement
problem and the traditional art gallery problem(AGP) in com-
putational geometry [19]. The AGP seeks to determine the min-
imal number of positions for guards or cameras so that every
point in a gallery is observed by at least one guard or camera. A
deterministic solution can be found for the AGP and it appears
to be a possible solution to a variety of sensor-placement prob-
lems. Even though there are many solutions to the AGP, all of
them assume the availability of a good model of the environment
a priori. However, it is virtually impossible to have complete in-
formation regarding the environment, where a WSN is likely to
be deployed. Furthermore, too much communication over long
range to obtain global information requires a huge amount of
energy. This is an unaffordable burden on a system with limited
power supply. Thus, deterministic deployment is impractical for
many reasons, such as the harshness of the deployment region
that may be remote, and inhospitable and the increased cost and
latency due to the large number of nodes deployed [23].

The deployment cannot be determined a priori when the en-
vironment is unknown or hostile in which case the sensors may
be air-dropped from an aircraft [6] or deployed by other means,
generally resulting in a random placement [9], [10], [17], [25].
In this paper, the self-deployment of mobile sensor nodes is con-
sidered. This is quite similar to problems considered in cooper-
ative mobile robotics [5]. Mobile sensors are often desirable,
since they can patrol a wide area, and can be repositioned for

better surveillance [21]. Some researchers have considered the
use of mobile robots in sensor networks. A recent work on mo-
bile sensor networks [10] presents a distributed and scalable po-
tential field-based approach for the deployment of mobile sen-
sors. The fields are constructed such that each sensor is repelled
by both obstacles and by other sensors, thereby forcing the net-
work to spread itself through the environment. Winfield [25]
considered autonomous dispersion of mobile nodes in a scenario
where mobility is required to cover the entire region due to a
lack of wireless-network connectivity. He used a random diffu-
sion method for node deployment while collecting data over a
fixed surveillance region. In the incremental deployment algo-
rithm [9], nodes are added one at a time. The goal is to max-
imize network coverage under the constraint that nodes main-
tain line-of-sight with each other. Loo et al. considered a system
consisting of a number of cooperating mobile nodes that move
toward a set of prioritized destinations under sensing and com-
munication constraints [16]. They show how individual agents
know when cooperation between agents improves the perfor-
mance and when they should suspend cooperation.

A related problem to deployment in WSN is spatial local-
ization [4]. In WSN, nodes need to be able to locate them-
selves in various environments and on different distance scales.
Meguerdichian et al. have considered the problem of location
and deployment of sensors in a WSN from a coverage stand-
point [17]. The problems of coverage and deployment are funda-
mentally interrelated. The authors define the coverage problem
from different points of view, including deterministic, statis-
tical, and the worst and best cases. They implicitly assumed
fixed wireless sensor nodes. They argued that coverage is a pri-
mary performance metric that provides an indication regarding
quality-of-service. They combined computational geometry and
graph theoretic approaches to develop algorithms for coverage
calculations. Coverage in WSN, which is one of the main fo-
cuses in this paper, will be discussed later in Section II. Bulusu
et al.’s work [3] is somewhat similar to the deployment problem
that is considered here. They have investigated the problem of
adaptive beacon placement for localization in a WSN. They also
pointed out the lack of viability and inadequacy of fixed and
dense beacon placement in some situations due to node per-
turbation during deployment, noisy environment, and self-in-
terference. By placing additional beacons incrementally, they
achieve empirical adaptation to terrain conditions. Unlike tradi-
tional sensor systems, sensor networks depend on dense sensor
deployment and physical colocation with their targets to accom-
plish their goals. Dense deployment allows the use of redun-
dancy [26], can reduce communication costs [20], and provides
sufficient number of nodes to allow physical colocation.

In this paper, three different deployment methods are pro-
posed. First, a deployment algorithm for mobile nodes is pro-
posed when each node is equally important and a peer-based
structure is obtained. In many WSN scenarios, clustering is em-
ployed to take advantage of local information and to reduce en-
ergy consumption. An intelligent energy-efficient deployment
algorithm for cluster-based WSN is proposed. The key idea of
the second algorithm is the introduction of local clustering [12],
[15] during the deployment process so as to increase the amount
of local control over a fraction of the entire ROI. Each node
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decides its own mode to be either in a clustering mode or a
peer-to-peer mode based on its local environment such as the
local density and the remaining energy level in a distributed and
adaptive manner. Finally, an energy-efficient deployment algo-
rithm based on Voronoi diagrams (VDs) is proposed.

The goal of the first method is different from prior work on
the deployment problem. The main objective of the first deploy-
ment algorithm is topology improvement for longer system life-
time by utilizing mobility of sensor nodes. A decision and con-
trol mechanism is provided at each sensor during deployment,
rather than random diffusion, which is used in Winfield’s work
[25]. In contrast to Howard et al. [9], who use an incremental
approach, the nodes in the first algorithm are deployed at the
same time and they organize themselves in an adaptive manner.
Unlike Loo et al. [16], the first algorithm does not require pre-
specified destinations to form an energy-efficient topology.

The significance of the second method is to provide a syn-
ergistic combination of cluster structuring and peer-to-peer
deployment scheme in an intelligent manner in a hostile and
unpredictable environment. The goals of our algorithm are the
realization of the largest possible coverage area of the network,
the formation of an energy-efficient node topology for a longer
system lifetime, and the organization of a hierarchical structure
for easier management and scalability that supports collabora-
tion among nodes. These goals can be achieved by an adaptive
combination of two modes: clustering and peer-to-peer. In a
peer-to-peer mode, each node moves itself to a sparse region
so that the coverage of the network may increase and/or an
energy-efficient node topology may be achieved. In a clustering
mode, each node follows the decision of the cluster-head so that
each node spends its energy in a balanced way and performs
collaborative missions if necessary.

The significance of the third method is to provide an estimate
of the lifetime of each node in a distributed fashion by using
local VDs. Each node can determine how long it can survive
and which action is more useful to its longevity for the current
node topology during deployment. The best energy-utilization
point is obtained by comparing utility gains for movement to
different possible node locations.

All three methods in this paper are based on the same as-
sumptions shown in Section II but have different strengths for
possible applications. In practice, sensor capabilities may vary
depending on the requirements for a certain task and the avail-
able budget. The first method can achieve a quick deployment
with simple sensors. The second method can establish clustering
structure during deployment. The third method requires more
computation, but shows local assessment of the performance
and high energy efficiency in mobility. The proper deployment
method can be chosen based on the requirements of the appli-
cations and resources available.

Our deployment algorithms will be more useful in situations
where it is hard to ensure precise initial deployment due to the
fact that the deployment area is too dangerous or inaccessible to
humans. One can envisage an application involving a hazardous
region, where sensors mounted on mobile robots are deployed
from an airborne vehicle [6]. These mobile robots then organize
themselves using algorithms presented in this paper. Randomly
scattered sensors over a battlefield or a hazardous site are not

Fig. 1. Sensor coverage models. (a) Binary sensor and (b) stochastic sensor
models.

likely to form a uniform distribution and provide desired cov-
erage. Modification of WSN topology in an autonomous and
distributed manner using our algorithms can help in improving
coverage and also to prolong expected system lifetime. This is
essential in time-critical applications. For example, if an area is
contaminated by some hazardous material, a properly deployed
sensor network can quickly sense and measure the amount of
hazardous material such as poisonous gas or nuclear leakage.
By fully covering the entire area of interest, the overall condi-
tion can be assessed quickly and this information can be used
for search and rescue missions, as well as for evacuation-route
planning. In some applications, initial sensor distributions may
be concentrated at specific points, such as elevators and stairs in
a building.

In the next section, the sensor deployment problem is formu-
lated. In Section III, performance metrics for a mobile WSN
are discussed. The deployment algorithms are presented in
Section IV followed by simulation results in Section V. Some
concluding remarks are provided in Section VI.

II. MOBILE-NODE DEPLOYMENT PROBLEM

In a WSN, physical placement or deployment of sensor nodes
is needed prior to the initialization of a network for data acqui-
sition and transmission using sensor nodes. The assumptions
made in this paper are described and the deployment problem
is formulated in this section.

It is assumed that all sensor nodes have identical capabil-
ities for sensing, communication, computation, and mobility.
Sensing coverage and communication coverage of each node is
assumed to be ideal, which means that both coverage areas have
a circular shape without any irregularity.

The coverage of each sensor can be defined either by a binary
sensor model [23] or a stochastic sensor model [28] as shown in
Fig. 1. In the binary sensor model, the probability of detection
of the event of interest is one within the sensing range (sR),
otherwise, the probability is zero. So the coverage of a sensor
network using the binary sensor model is determined by finding
the union of the areas defined by the location of each sensor
and its sR. In the stochastic sensor model, the probability of
detection of the event of interest follows a decaying function of
distance from the sensor. In this paper, the binary sensor model
is employed.

Computation capability is required at each node to support
a distributed algorithm that includes a reasoning and optimiza-
tion process for deployment and routing. It is assumed that the
initial deployment is random and a distributed-deployment al-
gorithm is executed starting from the initial random topology,
using each node’s mobility. Another assumption is that every
node has the ability to know its own location by some method,
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such as the global positioning system or iterative multilatera-
tion [24]. This locationing ability is needed by each node, while
making a decision regarding its next movement in the deploy-
ment process. Also, it is assumed that there are no errors during
transmission of data and in the calculation of locations. It is fur-
ther assumed that each node has only local information from the
neighboring nodes within its direct communication range (cR).
The cR of each node is defined by the maximum distance at
which the signal-to-noise ratio is above a given threshold.

Without loss of generality, the deployment problem for a rect-
angular ROI with a certain number of nodes that form an ad hoc
wireless network is considered. Each node has a limited amount
of energy. The goal is to find the positions and movements of
nodes to achieve maximum coverage and to form a uniformly
distributed wireless network in minimum time and with min-
imum energy consumption. A suite of heuristic algorithms are
developed for this problem and their performances are evaluated
in terms of the performance metrics: coverage, uniformity, and
the time and distance traveled until convergence. These metrics
are described next.

III. PERFORMANCE METRICS IN MOBILE WSN

The selection of suitable measures to compare performances
of different approaches and resulting solutions is an important
issue in a mobile WSN. Coverage, uniformity, and time and
distance traveled prior to convergence are considered as per-
formance metrics in mobile WSN here. Coverage and unifor-
mity are related to the performance of sensor networks after the
deployment of sensors is complete. Time and distance traveled
prior to convergence are directly related to the performance of
the deployment scheme itself.

A. Coverage

Generally, coverage can be considered as the measure of
quality of service of a sensor network. The concept of coverage
as a paradigm for the system-level functionality of multirobot
systems was introduced by Gage [7], [31].

In this paper, coverage [9] is defined as the ratio of the union
of areas (in square meters) covered by each node and the area
(in square meters) of the entire ROI. Here, the covered area of
each node is defined as the circular area within its sensing radius

. Perfect detection of all interesting events in the covered area
is assumed

where
is the area covered by the th node;
is the total number of nodes;
stands for the area of the ROI.

If a node is located well inside the ROI, its complete coverage
area will lie within the ROI. In this case, the full area of that
circle, i.e., , is included in the covered region. If a node
is located near the boundary of the ROI, then only the part of
the ROI covered by that node is included in the computation.
Because of the areas covered by nodes that fall out of the ROI

and the overlap of covered areas between nodes, one needs to
use more nodes than simply the ratio of and the area sensed
by a single node.

The overall coverage of a sensor network is composed of the
covered regions of each sensor node. Though the coverage of
a sensor is expressed by a sensor model which is binary or sto-
chastic, the overall coverage of a sensor network depends on the
locations of the sensor nodes in the sensor field. The topology
including the locations and spacing of sensor nodes determines
the overall coverage of the network as well as the expected life-
time of the network.

sR and cR of a node are distinguished in the paper. In gen-
eral, they will be different and accordingly sensing coverage and
communication coverage will be different. Sensing coverage
can be accrued when sensor nodes are connected via wireless
links. If the network is separated by any reason, the area cov-
ered by the subnets that do not have wireless links to the sink
node is lost.

B. Uniformity

Uniformly distributed-sensor nodes spend energy more
evenly through the WSN than sensor nodes with an irregular
topology. When the distances between nodes become similar,
each node can utilize its resources efficiently with the minimum
use of its power and an increased throughput, due to reduction
of the interferences between nodes. So, uniformity of network
topology can be used as a good estimator for the expected
system lifetime. Also, fewer nodes are required to cover an ROI
when nodes are more evenly distributed.

Uniformity can be defined as the average local standard de-
viation of the distances between nodes

where
is the total number of nodes;
is the number of neighbors of the th node;
is the distance between th and th nodes;
is the mean of internodal distances between the th
node and its neighbors.

In the calculation of local uniformity at the th node, only
neighboring nodes that reside within its cR are considered.
The uniformity measure is a local measure and is computed
locally because each node has access to local information only.
A smaller value of means that nodes are more uniformly
distributed in the ROI. In uniformly distributed networks,
internodal distances are almost the same; the expected energy
consumption per communication as well as the expected life-
time of each node is almost the same if the nodes were identical
and have the same amount of energy initially. Therefore, it is
expected to have full energy utilization at each node and longer
system lifetime for uniformly distributed networks.
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C. Time

The time spent for deployment [9] is also important in many
time-critical applications, such as search-and-rescue and dis-
aster recovery operations. Mostly, the required time depends
on the complexity of the reasoning and optimization algorithm
and physical time for the movement of nodes. The total time
elapsed is defined here as the time elapsed until all the nodes
reach their final locations. This paper focuses on the time spent
for deployment itself and not on data-transmission delays from
a source node to a destination node that is commonly used for
network-performance evaluation and its quality of service.

D. Distance

The average distance traveled [9] by each node is related to
the energy required for its movement. So, the expected distance
traveled is important for the estimation of energy (fuel) required
when each node has a limited energy supply. The variance of the
distance traveled is also important to determine the fairness of
the deployment algorithm and for system energy utilization. If
the variance of distance traveled is large, the variance of energy
remaining also is large. The nodes that have less energy than
other nodes exhaust their energy early. Early dead nodes result
in a loss of coverage and the remaining nodes may require an
increased transmission range or a longer routing path.

IV. ALGORITHMS

In this paper, three different deployment methods are pre-
sented. The first method operates in a peer-to-peer mode, where
each node is considered to be equal. The second method is a syn-
ergistic combination of the peer-to-peer method with a cluster-
based method. Clustering, a hierarchical networking concept, is
employed in many WSN scenarios to take advantage of local
information and to reduce energy consumption. Finally, an en-
ergy-efficient deployment algorithm based on VDs is proposed.

A. Distributed Self-Spreading Algorithm (DSSA)

The peer to peer algorithm which is called the DSSA is in-
spired by the equilibrium of molecules, which minimizes molec-
ular electronic energy and internuclear repulsion. Each particle
determines its own lowest energy point in a distributed manner
and its resulting spacing from the other particles is almost the
same. While deploying a WSN using mobile nodes, one ob-
serves that one has an analogous problem. If sensors are located
too close to each other, the gain in coverage from additional sen-
sors is not high. On the contrary, if sensors are located too far
from each other, the coverage regions may not overlap and may
cause a partitioning of the network. Both situations are similar to
internuclear repulsion and attractions between molecules. Op-
timal spacing between sensors in the sense of coverage can be
found by a process similar to the equilibrium of molecules.

To begin with, a specified number of nodes are deployed ran-
domly in a given region, for instance, inside a rectangle. The
sR and cR are assumed to be given. Each node can sense or de-
tect an event within its sR and any pair of nodes within their
cR can communicate with each other. This communication is
needed for finding neighborhoods, obtaining locations of nodes

Fig. 2. Pseudocode for the DSSA.

in the neighborhood, and transmitting and forwarding sensed
data. The neighborhood of a node is defined here as nodes within
its cR. The pseudocode of the algorithm is given in Fig. 2. This
distributed algorithm is executed at each node . The algorithm
contains four parts.
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1) Initialization: In the initialization part, the values of cR,
sR, and the initial node locations are specified. The cR and
sR are assumed to be given. Initial node locations are spec-
ified in terms of a vector that contains the longitude component
and the latitude component of each node location, and is as-
sumed to follow a random distribution. Extension to higher di-
mensions is possible by adding more components in the position
vector. A quantity called expected density, which is a rough es-
timate of the desired density, is required in the algorithm. This
can be calculated by using cR cR , where
is the number of nodes, cR is the cR of each node, and is the
area of the ROI. Thus, expected density is the average number
of nodes required to cover the entire area when these nodes are
deployed uniformly. Initial local density of a node is equal
to the number of nodes within its cR. These densities will be
used when decisions regarding positions of nodes are made.

2) Partial Force Calculation: The concept of force is intro-
duced to define the movement of nodes during the deployment
process. The force is dependent on not only the distance be-
tween the nodes but also the current local density. The force
corresponding to high local density is greater than the force cor-
responding to low local density. The force from a node that is
closer is greater than that from a node that is farther, which is
similar to the movements of the particles in physics that follow
Coulomb’s Law.

A force function is defined which satisfies the following
conditions.

i) Inverse relation: , when , where
and are node separations from the origin. The node

under consideration is assumed to be at the origin.
ii) Upper bound: .
iii) Lower bound: , where cR, is the node

separation and cR is the communication range of each
node.

Condition (i) is the same as in physics, but conditions (ii)
and (iii) are included to modify the model to incorporate the
notion of locality. In other words, a limiting function is applied
via conditions (ii) and (iii).

The partial force at time step on the th node from the th
node that is in the neighborhood of the th node is calculated to
be a repulsive force as

cR (1)

where
stands for the location of the th node at time step ;
stands for the local density of the th node at time
step .

The density factor , which is defined as the ratio of
the local density and the square of the expected density
at each node, is small in sparse regions and is large in dense re-
gions. Its inclusion in the force function expedites the process
of node spreading. Also, internodal distance affects the par-
tial force inversely. Closely located nodes impose larger partial
forces and nodes that are far apart induce smaller partial forces
on each other. The magnitude of the partial force exerted by a

Fig. 3. Illustration of nodal movement.

Fig. 4. Illustration of nodal movement in the presence of a failed node.

pair of nodes on each other are the same with the only difference
that the directions are opposite to each other.

After adding all the partial forces at the current node location,
each node decides its next movement. This process provides
a local decision, which includes the consideration of its local
situation, such as the locations of the neighboring nodes and
dead node(s), if any. The local information is collected from the
nodes that are within the cR and that information is used for
the calculation of the local density at each node. Each node’s
movement is decided by the combined force at that node due to
nodes in its neighborhood.

3) Oscillation Check: An important issue is determining
when a node should stop its movement. Two stopping criteria
are introduced in the DSSA. If a node moves back and forth
between almost the same locations many times, this node is
regarded to be in the oscillation state. By examining the history
of its movement, each node can determine if oscillations are
going on. One counts the number of oscillations and if this
oscillation count is over the oscillation limit ,
the movement of that node is stopped at the center of gravity
of the oscillating points.

4) Stability Check: If a node moves less than threshold for
the time duration , this node can be con-
sidered to have reached the stable status and that node stops its
movement. This stopping criterion is useful for stationary nodes
because of either exhausted fuel or broken mobile units and also
for the nodes that have reached the stable status.

To illustrate the algorithm, examples of nodal movements are
shown in Figs. 3 and 4.

In Fig. 3, the next movement of node A is considered. Nodes
B–E are its neighboring nodes within its cR. The partial forces

, and from nodes B–E on A are calculated by (1).
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Then the total (resultant) force F on A can be obtained by just
adding partial forces on A, i.e., . Note
that this addition includes both magnitude and direction, i.e., it
is a vector addition. Node A will move to the new position A
as shown. Node C is the closest node to A among neighboring
nodes, so their spacing should be increased. As one can see,
partial force dominates the total force F and A moves away
from C.

When sensor nodes are deployed in a remote and hostile re-
gion, some nodes can be adversely affected during and after de-
ployment. Some nodes can lose their mobility and other nodes
can lose their communication functionality. So, a robust deploy-
ment method that can overcome these situations is needed. The
first algorithm exhibits this kind of robustness. First, when a
sensor node loses its mobility, that sensor node does not move
and is considered to be an early stopped node. However, this
node can still be used as a static node in the sensor network.
Neighboring nodes, if they can move, may still improve the ir-
regular topology. Second, when a sensor node loses its com-
munication capability, that sensor node is of no use in a sensor
network. In that case, neighboring nodes may move to the loca-
tions so that the uncovered region can be covered by them. This
case is illustrated in Fig. 4.

The node positions are the same as in the previous example.
Suppose node C is broken during the random deployment pe-
riod and it cannot use its communication unit. Then, neigh-
boring nodes including node A and disregard this broken node
during the calculations of their next movements. The largest
partial force in the previous example is now excluded, i.e.,

. The next position for node A is A and
the lost coverage from the loss of node C can be recovered by
node A. Since the movement of each node is only affected by the
current status of neighboring nodes, each node adapts to envi-
ronment changes, such as node failures, various terrain shapes,
etc., and changes its position in an autonomous manner to max-
imize coverage and uniformity.

B. Intelligent Deployment and Clustering Algorithm (IDCA)

In many WSN scenarios, clustering is employed to take ad-
vantage of local information and to reduce energy consumption.
By introduction of local clustering [12], [15] during the deploy-
ment process, it is possible to improve the energy-consumption
characteristics of sensor nodes. Each node decides its own mode
to be either in a clustering or peer-to-peer mode based on its
local environment, such as the local density and the remaining
energy level in a distributed and adaptive manner. We call this
algorithm the IDCA. The pseudocode of the algorithm is given
in Fig. 5. This distributed algorithm is executed at each node .
The IDCA also contains four parts, like the DSSA.

1) Initialization: The same as the DSSA algorithm.
2) Mode Determination and Partial Force Calculation: In-

tuitively, sensor nodes in a dense region need to move to a sparse
region to improve coverage and connectivity of a sensor net-
work. Node movement and also the corresponding energy con-
sumption is expected in both sparse and dense regions. Nodes
in a region with the correct node density do not need to move
and spend their energy to improve the performance in terms of Fig. 5. Pseudocode for the IDCA.
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uniformity. The reason is that frequent movements of neigh-
boring nodes may degrade existing uniformity and the energy
spent to improve uniformity is simply wasted. By delaying the
movement of sensor nodes in a region with correct node density
until nodal movements stabilize to some extent, inefficient en-
ergy usage of those sensor nodes can be improved.

Based on the relation between the local density ( ) and the
expected density , the mode at a node is determined. If is
close to the expected density , the node selects the clustering
mode. Nodes in regions that have desired density levels are not
expected to move much to improve coverage and/or uniformity
of sensor nodes. A sensor node in such regions determines its
movement based on its remaining energy level relative to its
neighbors. To begin with, partial force in the clustering mode
is calculated by using (1) as used in the DSSA algorithm. Then,
this partial force is modified by its rank based on its energy level
in the neighborhood. The remaining energies of neighboring
nodes are rank ordered. If a sensor node has the rank among

nodes in the neighborhood, the energy factor is and the
partial force calculated by (1) is multiplied by this factor. If the
remaining energy level is low, the partial force of the node will
be smaller than that used in DSSA based on its energy factor
in its neighborhood. The node in this situation saves its energy
and contributes less to WSN performance improvement. If the
remaining energy level is relatively high among the nodes in the
neighborhood, the partial force is determined according to its
rank in its neighborhood. The node in this situation uses its en-
ergy more and contributes more for performance improvement
of the WSN. This energy consideration in the clustering mode
reduces the variation of the remaining energy among sensor
nodes. If of a sensor node at any time is different than at
the current location, this node selects the peer-to-peer mode and
partial force calculation is done by using (1).

3) Oscillation and Stability Checks: Same as the DSSA al-
gorithm. In this paper, the same stopping criteria are used for
both modes: peer to peer mode and clustering mode. However,
IDCA algorithm may use different local metrics and stopping
criteria in a clustering mode.

C. VD-Based Deployment Algorithm (VDDA)

Many researchers have demonstrated the importance and use-
fulness of VDs in various fields, such as mathematics, compu-
tational geometry, biology, chemistry, geography, communica-
tions, and coding theory [1], [29]. Given some number of points
called generators or sites in the ROI, their corresponding VD
divides the region according to the nearest-neighbor rule. Each
given point (a site or generator) is associated with the subre-
gion consisting of any points in the ROI that are closest to it. If
these points (generators or sites) are assumed to be sensor loca-
tions and the subregions defined by the corresponding Voronoi
regions are covered by the sensor in the subregion, one has a
possible solution to the deployment problem. A deployment al-
gorithm based on the notion of Voronoi regions is developed. In
this paper, the goal is to have the Voronoi region corresponding
to a sensor to be coincident with the coverage area defined by
the sensor model. The Voronoi region corresponding to a sensor
at a certain time instance is considered as the desired solution
in terms of coverage. At the same time, each sensor has its

coverage defined by the sensor model. If there is any discrep-
ancy between the current sensor coverage and the corresponding
Voronoi region, action needs to be taken to align the two by
sensor movement and resulting changes in topology. When the
two are aligned within predefined tolerance, nodal movements
will be halted and the resulting solution will be accepted. We
call this the VDDA. The pseudocode of the algorithm is given
in Fig. 6. This distributed algorithm is executed at each node .

1) Initialization: In this part, the values of the cR, the sR,
and the initial node locations are specified. Initial energy
for the th node is specified and each node is assumed to
have the same amount of energy in the beginning. Energy con-
sumption for different activities is specified. Energy consump-
tion for movement of the th node is specified in terms of
defined as the cost for movement per unit distance. The total
cost for movement of the th node is equal to the product of
and the distance. Energy consumption per unit time for com-
munication by the th node is denoted by and is a function
of the largest distance between itself and its neighbors. Energy
consumption per unit time for sensing and computation by the
th node is assumed to have a fixed cost.

In order to determine the degree to which each node achieves
coverage in terms of energy efficiency, a node utility metric is
considered. The node utility metric of the th node at time
step is defined as

where
represents the effective area covered by the th node at
time step ;
represents the estimated lifetime of the th node at time
step .

The node utility metric indicates how well the node is utilized
to sense over its effective area during its lifetime.

The local VD is used to calculate the effective area of each
node. First, the initial local VD is obtained using and
cR. For all the points in the Voronoi region corresponding to
the th node , the nearest sensor node is the th node. The
sensing area of the th node is the circular area centered at
with the radius sR. Then the initial effective area is obtained
by the intersection of the Voronoi region of the th node and the
sensing area of the th node. The effective area of the th node
means the area covered by the th node based on the nearest
node concept. Each node has only local information from the
neighboring nodes. The node can calculate its VD with the in-
formation of the neighbors. When a different cR is used, the size
of the neighborhood is different and the VD is also different.

The estimated lifetime of th node at time step is de-
fined as

where
stands for the energy remaining at the th node after
time step ;
stands for the energy consumption per unit distance
for movement of the th node at time step ;
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Fig. 6. Pseudocode for the VDDA.

stands for the distance moved by the th node be-
tween time step and time step ;
stands for the energy consumption per unit time due
to communication by the th node;
stands for the energy consumption per unit time for
sensing and computation by the th node.

The node utility metric is used to decide energy-efficient
movements by each node.

2) Finding the Best Energy-Utilization Point: In this part,
the best energy-utilization point of each node is obtained by
comparing utility gains for potential movement to different pos-
sible node locations. Moving from the current location to dif-
ferent node locations will incur a different energy cost for move-
ment and the resulting node topology may or may not reduce
the communication cost. Because the search space is infinite
when continuous coordinates are considered, the reduction of
search space is necessary to some extent. In this paper, local
VDs are used to reduce the search space. Due to the nearest
neighbor relation of VDs, the Voronoi region of the th node will
be more likely covered by the th node than any other nodes. In
this sense, the local Voronoi region can be considered as the es-
timated or desired coverage by the local node. Moving to the
centroid of the Voronoi region can be beneficial in terms of
coverage and/or uniformity. The centroid of the Voronoi region
is obtained by using the Matlab function ployarea. Also, the
center of the Voronoi range, which is defined as the midpoint
of maximum and minimum along the and coordinates in
the Voronoi region, can be used to guide the search. The search
space is reduced to several points linearly spaced, starting from
the current location to the centroid of the Voronoi region, and
from there, to the center of the Voronoi range. For these points,
the node utility metric is evaluated and the best action is de-
termined. Because the best solution is kept during the search
process, a locally optimal solution is obtained after the search
process. After finding the best energy-utilization point for each
node, actual movement of each node occurs at a single time to
save energy.

V. EXPERIMENTAL RESULTS

The performance of the heuristic algorithms in the paper is
evaluated by simulation. In the experiment, 30 randomly placed
nodes in a region of size 10 10 are used to run the DSSA, the
IDCA, and the VDDA. The sR and cR used in the experiment
are 2 and 4 m, respectively.

In Fig. 7, the node locations and coverage of the initial
random deployment before running the algorithms are shown.
Tiny circles represent the positions of nodes and small (shaded)
and large circles are used to show the sR and cR of the nodes,
respectively. Sensor information may be collected within the sR
and communications between nodes are possible within the cR.
Communications are possible between nodes that are connected
by a line in the figure. As seen in Fig. 7, some parts of the re-
gion cannot be covered by the randomly dispersed nodes, even
though there are sufficient nodes in the given ROI. The coverage
is obtained by adding up small areas that are considered in the
sR of any nodes, not considering the connectivity between the
areas. It is possible that the areas are not connected. In that
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Fig. 7. Initial distribution of sensor nodes.

Fig. 8. Final node distribution after running DSSA.

case, the actual coverage that can be reported to the user is the
area that is connected to the sink node, not the arithmetic sum
of disconnected areas. In this particular example, the network
is not fully connected, so the actual coverage is much smaller
than just adding the coverages of the disconnected covered
regions. Similar situations can occur when random deployment
is employed, regardless of the number of sensors used for
deployment. The calculated coverage is more than 85% in
Fig. 7, but the actual coverage is well below 50%, because the
network is partitioned in two parts. This situation is exactly the
case where topology improvement is required.

Fig. 8 shows the node locations and coverage after running
the DSSA. The ROI is fully covered after running the algo-
rithm. The parameter values used in this simulation run are:

Fig. 9. Sensor-node movements when DSSA is applied.

stable status limit 5, oscillation limit 5, and
threshold for oscillation and stable status 0.1522. Now, the
network is fully connected and also covers the entire ROI. Note
that the spatial node distribution is more uniform than the initial
random distribution shown in Fig. 7.

Fig. 9 shows the actual paths of individual nodes as they
moved from their initial locations to their final locations using
DSSA. Blank circles represent the initial locations and filled cir-
cles indicate the final locations. For the initial distribution of
Fig. 7, each node moves a distance of 3.8485 on average and
the standard deviation of distance traveled is 1.6148. When the
average distance traveled is small, the corresponding energy for
locomotion is small. Also, when the standard deviation of dis-
tance traveled is small, the variation in energy remaining at each
node is not significant and a longer system lifetime with full cov-
erage can be expected.

For the purpose of comparison, a simulated annealing-based
algorithm (SABA) was also used for topology improvement.
The SABA is known as a good solution of many combinato-
rial optimization problems. To implement a SABA for topology
improvement, four main design issues need to be considered.
These are: the definition of the neighborhood, move operator,
local energy calculation, and annealing schedule. The definition
of neighborhood used here is the same as for DSSA, i.e., it is
set equal to the cR. This concept of neighborhood is reasonable
because each node can only reach the neighboring node using
single hop communication. The move operator is chosen to be a
random movement within the neighborhood. Local energy cal-
culation is done by adding up the subforces in the neighbor-
hood just like in our DSSA. An exponential cooling schedule
is used as the annealing schedule for efficiency as in [13]. In
SABA, if the energy of the proposed solution is
less than that of the old solution , the proposed solution
is accepted as the new solution. Otherwise, the proposed solu-
tion is accepted with a certain probability , which is given by

, where is the energy and

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2010 at 09:38:22 EST from IEEE Xplore.  Restrictions apply. 



88 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 1, JANUARY 2005

Fig. 10. Final node distribution after running SABA.

Fig. 11. Node movements when SABA is applied.

is the current temperature. The parameters used are initial tem-
perature and the stopping criterion is three consecutive
failures in achieving the desired acceptance ratio, defined here
as the frequency of acceptance to the number of trials. The SA
used here is a modified version due to the considerations of time
and energy constraints to mobile node deployment as well as
the distributed nature of the algorithm. The SABA used in this
paper does not necessarily obtain the globally optimal solution.
The result after applying SABA is shown in Fig. 10.

Fig. 10 shows that SABA also works well for the initial distri-
bution shown in Fig. 7. The entire area is covered by 30 sensor
nodes and these nodes are well spread over the region. Fig. 11
shows how individual nodes move from initial locations to final
locations in SABA. For the initial distribution of Fig. 7, each
node moved a distance of 46.4697 on an average and the stan-
dard deviation of distance traveled is 14.5264. Compared with
DSSA, SABA involves more travel distance on an average until
convergence and the corresponding energy required is much
greater than that of DSSA. Because the standard deviation of

Fig. 12. Final node distribution after running IDCA.

Fig. 13. Sensor node movements when IDCA is applied.

travel distance is also large, the system lifetime with full cov-
erage attained by SABA is expected to be shorter than DSSA.

The result after applying the IDCA is shown in Fig. 12.
Fig. 12 shows that IDCA also works well for the initial distri-
bution shown in Fig. 7. The entire area is covered by 30 sensor
nodes and these nodes are well spread over the region.

Fig. 13 shows how individual nodes move from their initial
locations to final locations in IDCA. For the initial distribution
of Fig. 7, each node moved a distance of 1.866 on average and
the standard deviation of distance traveled is 0.984 09. Com-
pared with DSSA, IDCA involves less travel distance on av-
erage until convergence and the corresponding energy required
is much less than that of DSSA. Note that the path lengths
between starting positions and ending positions in Fig. 13 are
shorter than those in Fig. 9. Because the standard deviation of
travel distance is also small, the system lifetime with full cov-
erage attained by IDCA is expected to be longer than DSSA.

The result after applying the VDDA can be seen in Fig. 14,
which shows that VDDA also works well for the initial distri-
bution shown in Fig. 7. The entire area is covered by 30 sensor
nodes and these nodes are well spread over the region.
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Fig. 14. Final node distribution after running VDDA.

Fig. 15. Sensor node movements when VDDA is applied.

Fig. 15 shows how individual nodes move from their initial
locations to final locations in VDDA. For the initial distribution
of Fig. 7, each node moved a distance of 1.5498 on an average
and the standard deviation of distance traveled is 0.671 87. Com-
pared with DSSA and IDCA, VDDA involves less travel dis-
tance on average until convergence and the corresponding en-
ergy required is much less than those of DSSA and IDCA. Note
that the path lengths between starting positions and ending posi-
tions in Fig. 15 are shorter than those in Figs. 9 and 13. Because
the standard deviation of travel distance is also small, the system
lifetime with full coverage attained by VDDA is expected to be
longer than DSSA and IDCA.

Next, the performances of DSSA, SABA, IDCA, and VDDA
are evaluated in terms of the metrics presented in Section III.
Coverage, uniformity, time, and distance until convergence for
different algorithms are compared here. Results are presented
in Figs. 16–19. These results are obtained for different number
of nodes dispersed over a fixed ROI of size 10 10, i.e., for
different node densities to examine the relation between node
densities and the performance metrics. The number of nodes

Fig. 16. Coverage versus network size.

Fig. 17. Uniformity versus network size.

varies from 20 to 50 and results are averaged over 100 runs
(initial random distributions) for each node density.

Fig. 16 shows the improvement in coverage area from the ini-
tial random deployment for SABA, DSSA, IDCA, and VDDA.
All four algorithms exhibit a similar performance over different
network sizes. The coverage achieved by all the algorithms in-
creases as the network size goes up. As the number of nodes in-
creases, the improvement in coverage diminishes. Even though
the average coverage of random dispersion reaches about 99%
at high node density and this number may appear satisfactory
for many application requirements, random deployment may
not guarantee the intended goal of all the applications. More-
over, even if random deployment can cover 99% of the ROI,
there is a possibility of improvement in the uniformity of in-
ternodal distance to improve the lifetime of a sensor network.
As indicated earlier, the standard deviation of internodal dis-
tances is employed as the metric for uniformity of the networks.
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Fig. 18. Termination time versus network size.

Fig. 19. Distance traveled versus network size.

Fig. 17 shows the reduction in the standard deviation from the
initial random deployment case. DSSA, IDCA, and VDDA ob-
tain better uniformity than the initial one and DSSA outperforms
IDCA slightly. Though SABA also obtains better uniformity
than the initial one, DSSA, IDCA, and VDDA still outperform
it. The improvement in uniformity saturates as network density
increases.

Fig. 18 shows that IDCA leads to faster deployment than the
DSSA at high node densities on average. Termination time is
measured in the number of iterations until the algorithms stop.
Both DSSA and IDCA outperform SABA on average. Also, the
variation in termination times of DSSA and IDCA is less than
that of SABA over a wide range of number of nodes. This means
that both algorithms are less sensitive to the number of nodes,
i.e., network density in terms of termination time for deploy-
ment than SABA. VDDA takes much longer to terminate than
the other algorithm.

Fig. 20. Distance traveled versus network size (zoomed in).

Fig. 19 shows the mean distance traveled to reach the final
locations for deployment. DSSA and IDCA require much
less travel distance than SABA. The performance of VDDA
is the best among the four algorithms in terms of distance
traveled. This distance is related to the required energy (fuel)
for deployment.

A zoomed-in version of the mean distance traveled for DSSA,
IDCA, and VDDA is shown in Fig. 20. VDDA requires less
mean distance traveled than DSSA and IDCA, so VDDA saves
more energy for the movement of sensors than the other al-
gorithms. Though DSSA and VDDA have similar coverages
as seen in Fig. 16, VDDA needs a longer time to converge as
seen in Fig. 18, VDDA requires less energy for the movement
of nodes than DSSA as shown in Fig. 20, and VDDA can ob-
tain more uniformly distributed node topology than DSSA as
seen in Fig. 17. Therefore, VDDA is more energy efficient than
DSSA in general. Also, it is observed that the required energy as
well as the distance traveled at different node densities is almost
constant, especially in IDCA. Thus, the required energy (fuel)
is quite insensitive to network density in IDCA. This can make
the planning of energy consumption during deployment easier
over a wide range of network densities.

As seen in Figs. 16–20, 25–40 nodes are required to attain
acceptable performance for the problem considered here. When
too few nodes are used, it is unable to obtain full coverage over
the ROI. When too many nodes are used, there is not much gain
in coverage improvement because of the diminishing marginal
gain in terms of coverage, though more uniform distribution still
can be obtained. With the number of nodes in this range, the re-
quired time to converge is almost the same for all the algorithms.
Because the variation in time required to converge and the travel
distance is smaller over this range of node densities, it is easier
to estimate the required energy for deployment. Extensive ex-
periments on nonhomogeneous nodes, nonrectangular regions,
realization of nonuniform target distribution, and robustness of
the algorithms are conducted and results are available in [8].

The performance of the algorithms in this paper is not com-
pared with those in [10], [25], and [28] because the assump-
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tions are different. In [10], additional equipment is used to de-
tect other nodes and obstacles. Moreover, nodes are initially de-
ployed over a compact region and then are spread out. In [25],
it is assumed that there are insufficient robots in a physically
bounded region. In [28], it is assumed that global information
regarding other nodes is available.

Experiments using different values for sR and cR were con-
ducted and similar performances are observed. The algorithms
were simulated in environments that are not rectangular and the
performances are similar to those of rectangular regions. These
results are not included in this paper due to length considera-
tions. Results are available in [8].

VI. SUMMARY

The deployment problem for mobile WSN is considered in
this paper. A ROI needs to be covered by a given number of
nodes with limited sensing and cR. A random distribution of
nodes over the ROI is assumed as the initial node distribution.
Though many scenarios adopt random deployment for practical
reasons, such as deployment cost and time, random deploy-
ment may not provide a uniform distribution, which is desir-
able for a longer system lifetime over the ROI. In this paper, a
number of distributed algorithms for the deployment of mobile
nodes are proposed to improve an irregular initial deployment
of nodes. A peer-to-peer algorithm analogous to the equilib-
rium of molecules and an enhanced intelligent energy-efficient
deployment algorithm for cluster-based WSN by a synergistic
combination of cluster structuring and peer-to-peer deployment
scheme are proposed. A distributed algorithm using VDs based
on local computation is also proposed. After employing these
algorithms, the ROI is covered by more uniformly distributed
nodes. While developing these algorithms, one should consider
factors such as density of nodes, memory constraints, local-
ization errors, and scalability of mobile nodes (network size).
Through mobility and locationing ability of nodes, these algo-
rithms provide a way to avoid expensive redeployment process.
This postdeployment idea is quite useful for many situations, es-
pecially when a large fraction of nodes are destroyed or broken
during deployment or operation in a hostile situation, or where
initial distribution is quite uneven and when human intervention
for redeployment is too costly or too risky. The performance of
these algorithms is determined by the percentage of region cov-
ered, computational/deployment time, the mean distance trav-
eled required for deployment, and uniformity of the networks.
Simulation results show that the proposed algorithms success-
fully obtain a more uniform distribution from initial uneven dis-
tributions in an energy-efficient manner.

In this paper, only one-hop neighbors were included while
making the decision regarding next nodal movement. However,
better solutions in terms of energy efficiency may be found when
a wider neighborhood is used. Computation cost, time delay,
energy consumption, and tradeoffs between them for different
neighborhood sizes will be the main issues to be considered
in this direction. This will require the inclusion of multihop
neighbors. Also, the relation between cluster-size and neighbor-
hood size will need to be established for energy saving during
deployment.

In practice, a WSN is deployed over large regions. The ROI
can be divided into multiple sub-ROIs for easy deployment, or-
ganization, and management. Hierarchical deployment schemes
may be investigated to handle the scalability issue in WSNs. The
determination of the size of sub-ROI and their corresponding
density and edge effects due to the division of the ROI are worth
pursuing. The effect of uncertainty in sensor-node locations on
the performance of our algorithms is another area for further
investigation.
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