IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 1

A Factorization Approach to Evaluating
Simultaneous Influence Diagrams

Weihong Zhang and Qiang Ji, Senior Member, IEEE

Abstract—Evaluating an influence diagram (ID) is a challeng-
ing problem because its complexity increases exponentially in
the number of decision nodes in the diagram. In this paper, we
examine the problem for a special class of IDs where multiple
decisions must be made simultaneously. We describe a brief theory
that factorizes out the computations common to all policies in
evaluating them. Our evaluation approach conducts these com-
putations once and uses them across all policies. We identify the
ID structures for which the approach can achieve savings. We
show that the approach can be used to efficiently recompute the
optimal policy of an ID when its structure or parameters change.
Finally, we demonstrate the superior performance of the approach
by simulation studies and a military planning example.

Index Terms—Algorithm, decision making under uncertainty,
graphical model, influence diagram (ID), military analysis.

I. INTRODUCTION

N INFLUENCE diagram (ID) is a plausible graphical

model for decision making under uncertainty [1]. An ID
comprises of decision nodes, random nodes, value nodes, and
the probabilistic relations among these nodes. An ID is a more
compact representation of a decision tree, which is a simple tool
for decision analysis [2].

Given an ID, a policy prescribes an action choice for each
decision node. Evaluating a policy is to compute the expected
value of the ID under the policy. Evaluating an ID is to find
the optimal policy that maximizes the expected value of the
ID. A generic approach to evaluating an ID has to enumerate
all policies, compare the expected utilities under them, and
choose the optimal one. However, the number of policies grows
exponentially with the number of decision nodes. This renders
the approaches for general ID evaluation very inefficient and
infeasible for large IDs. Consequently, it is advisable to study
efficient algorithms for special IDs.

Most of the previous approaches assume that there exists a
linear ordering among the decision nodes. This ordering implies
that the choice of a decision node is known to the decision
maker when he/she chooses the actions for the successive
decision nodes (e.g., see [13]). For a decision node, this linear

Manuscript received February 19, 2004; revised July 20, 2004 and
December 22, 2004. The work was supported in part by the Air Force Office
of Scientific Research (AFOSR) under Grant F49620-03-1-0160. Part of the
work for this project was also supported by the Air Force Research Laboratory
(AFRL)/Rome summer visiting faculty program. This paper was recommended
by Associate Editor Yang.

The authors are with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 USA.

Digital Object Identifier 10.1109/TSMCA.2005.855753

ordering usually can be exploited to decompose the ID into one
fraction prior to the node and the other fraction posterior to the
node. The choice for the decision node can be made using the
fraction posterior to the node. The procedure repeats for each
decision node.

In this paper, we examine the ID evaluation problem for a
special class of IDs in which decision nodes have no parents.
Essentially, an ID with this property assumes no precedence
relationship among decision nodes. In other words, one has to
determine the choices for all decision nodes simultaneously.
For this reason, such an ID is said to be simultaneous. The si-
multaneity assumption prevails in real-world problem domains.
For instance, a military planner must select among a number
of available actions to achieve his/her overall goal success; a
business owner must consider multiple elements in order to
maximize his/her monetary profit.

In evaluating a simultaneous ID, we exploit the assumption
and divide the ID into two fractions, calling them the upstream
and downstream. Roughly, the upstream consists of decision
nodes and their children nodes through which the decisions
propagate their impacts on the ID. Informally, these child
nodes are called interface nodes. The downstream consists of
the interface nodes and their succeeding nodes. We present
a representation theorem, showing that the expected value of
a value node under a policy can be represented as the sum
of some intermediate quantities weighted by the probabilities
determined by the policy. These intermediate quantities involve
only the downstream. The factorization approach we proposed
computes them once but uses them across all policies. The
computational gain brought by the approach depends on the
size of the downstream. Usually, larger downstream size im-
plies more savings.

We organize the paper as follows. In the next section, we
discuss related work to this research. We then introduce IDs
and the evaluation problem. In Section IV, we describe the
representation theorem and develop the factorization approach.
In Section V, we discuss two extensions of the approach: how
it can be adapted to network structure/parameter changes and
how it can be used in planning over time. We report empirical
results on simulation studies and a military planning example
in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Since IDs were introduced by Howard and Matheson [1],
a variety of approaches have been proposed to find the opti-
mal policy of a given ID. To mitigate the exponential growth

1083-4427/$20.00 © 2005 IEEE

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

problem of the policy number in the number of decision nodes,
researchers have studied several special ID classes and pro-
posed efficient approaches exploiting their specific problem
characteristics. We give a brief survey of these IDs and their
solutions.

A. Regular and No-Forgetting IDs

To some extent, most IDs that have been studied assume
a precedence ordering of the decision nodes. A regular ID
assumes that there is a directed path containing all decision
nodes; a no-forgetting ID assumes that each decision node and
its parents are also parents of the successive decision nodes; and
a stepwise decomposable ID assumes that the parents of each
decision node divide the ID into two separate fractions. These
assumptions are different from ours, which requires the actions
to be chosen simultaneously. There exist direct and indirect
approaches evaluating a regular no-forgetting ID. A direct
approach works on the ID and evaluates it directly. Shachter [3]
proposed an algorithm that evaluates an ID by applying a series
of value-preserving reductions. A value-preserving reduction is
an operation that can transform an ID into another one with
the same expected value. Specifically, Shachter identified the
following four reductions arc reversal, barren-node removal,
random-node removal, and decision-node removal. An indirect
approach first transforms an ID into an intermediate struc-
ture whose optimal policy (or value) remains the same as in
the original ID. It then evaluates the intermediate structure
and obtains the optimal policy. For instance, Howard and
Matheson discussed a way to transform an ID into a decision-
tree network and to compute an optimal policy from the deci-
sion tree. In transforming an ID into a decision-tree network, a
basic operation is arc reversal [1], [3]. Since a no-forgetting ID
must be stepwise decomposable, stepwise decomposability is
more general than no-forgetting.

In most ID evaluation approaches, the ordering of decision
nodes is an important information source in decision making
and therefore, is exploited to evaluate the optimal decision
for decision nodes [4]-[6]. A stepwise decomposable ID can
be evaluated by a divide-and-conquer approach. The approach
deals with one decision node at a time [7]. For each decision
node, its parental set separates an ID into two parts—a body and
a tail. The tail is a simple ID with only one decision node. The
body’s value node is a new value node whose value function
is obtained by evaluating the tail. In evaluating a stepwise
decomposable ID, the approach begins with a leaf decision
node and repeats the decomposition/evaluation procedure for
the preceding decision nodes. In evaluating the tail with only
one single decision node, the problem is reduced to that of
computing posterior probabilities in a Bayesian network.
Hence, the approach uses probabilistic inference techniques to
evaluate an ID. Cooper [8] initiated the research in this direc-
tion. He gave a recursive formula for computing the maximal
expected utilities and optimal policies of IDs. Shachter and
Peot [9] showed that the problem of ID evaluation can be
reduced to a series of probabilistic inferences. Zhang [13]
described an algorithm that induces much easier probabilistic
inferences than those in [8] and [9].

B. PFartial IDs

There also exists research work that relaxed the regularity or
no-forgetting assumption. The specific ID types include partial
IDs, unconstrained IDs and limited memory ID (LIMID), which
is a compact representation of IDs. A partial ID is an ID that
allows a non-total ordering of decision nodes [10]. Because
the solution to a partial ID depends on the temporal ordering
of the decisions, it is of interest to find the conditions iden-
tifying a class of partial IDs whose solution is independent
of the legal evaluation ordering. Based on the concept of
d-connectivity, Nielsen and Jensen presented an algorithm de-
termining whether or not a partial ID represents well-defined
scenarios, and they also addressed the problem of whether all
admissible orderings yield the same optimal strategy.

An unconstrained ID is an ID where the order of decision
nodes and the observable random nodes is not determined
[11]. For an unconstrained ID, it is of interest to determine
the order of decision nodes and information on which set of
nodes is necessary for decision making in a decision node.
For this purpose, a set of rules have been developed in order
to determine the choice of the next decision node, given the
current information. Such a decision choice may be dependent
on the specific information from the past.

Another recently proposed ID is called LIMID, which
violates the no-forgetting assumption [12]. In contrast to the
regular and no-forgetting assumption, the assumption behind a
LIMID is that only requisite information for the computation
of optimal policies is depicted in the graphical representation.
Two properties pertaining to LIMIDs are: 1) any ID can be
converted to a LIMID; and 2) the converted LIMID is more
compact than the original ID in the sense that only requisite
information is depicted in the LIMID for computing an optimal
policy. By these properties, one may convert an ID to its
LIMID version and solve the LIMID instead of the original
ID. This optimal policy is also optimal in the original ID. The
algorithm solving a LIMID exploits the fact that the entire de-
cision problem can be partitioned into a set of smaller decision
problems, each of which has one decision node only. This is
analogous to the divide-and-conquer approach [13].

C. Simultaneous IDs

From its root definition, an ID does not impose a prece-
dence ordering of the decision nodes. As an example, there
are military applications that need to choose multiple actions
simultaneously. A simultaneous ID is suitable for this situation.
We exploit this assumption and divide a simultaneous ID into
the upstream and the downstream fractions. The decomposition
takes the random and value nodes as interface nodes between
the upstream and the downstream. The computations involv-
ing the downstream fraction can be precomputed and reused
across all policies in evaluating them. This computation-sharing
schema can greatly accelerate the procedure of finding the
optimal policy for a given ID, as indicated in our theoretical
and empirical analysis.

Technically, the factorization approach has some conceptual
similarities to the probabilistic inference-based algorithm [13].

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 3

Both algorithms divide the ID into two fractions. However,
there are apparent differences. In [13], the separation of an ID
relies on a single decision node. With respect to a decision node,
roughly, the body contains the predecessors of the decision
nodes, while the tail contains the successors. The choice of the
decision node is evaluated by the tail part. This is quite different
from our factorization approach, where the separation relies on
the set of interface nodes. The set of the interface nodes sepa-
rates an ID into two fractions: roughly, the upstream contains
the predecessors of all interface nodes, while the downstream
contains the successors. This difference in solution techniques
stems from the difference in assumption—the probabilistic
inference algorithm works with a regular ID that specifies a
linear order among decision nodes, whereas the factorization
algorithm works with a simultaneous ID that assumes no order-
ing among decision nodes.

III. INFLUENCE DIAGRAM

Mathematically, an ID 7 is a directed acyclic graph consist-
ing of three types of nodes and the links among these nodes [1].

1) Its node set is partitioned into a set of random nodes),
a set of decision nodes X', and a set of value nodes U. A
value node cannot have children. The links characterize
the conditional dependence among the nodes in the ID.
Specifically, links to a random node indicate the proba-
bilistic dependence of the node on its parents; links to
a decision node indicate the information available to the
planner at the time the planner must choose a decision
for it; and links to a value node indicate the functional
dependencies.

We will adopt the following notational conventions.
We will use bold-typed letters such as Z to denote a set of
variables and capital letters such as Z to denote a variable
in the set. Each random or decision node Z is associated
with a set ()7, denoting the set of its possible states. The
set {27 is called the domain of node Z. An element in 2
is denoted by a low-case letter z. For any node Z, we use
7(Z) to denote its parent set. For any subset Z' C Y U X,
we use {2z to denote the Cartesian product I1zcz/ Q5.
For convenience, we shall interchangeably use a node and
a variable. Without loss of generality, we assume that all
the nodes are binary throughout this paper.

2) For each decision or random node Z, given an assign-
ment of w(Z), the distribution P(Z|n(Z)) specifies the
probability of Z being in each state of the node Z. Such a
distribution is called a conditional probability table (CPT)
in the case that the domain of the variable Z is a finite set.

3) For each value node U, gy is a value function gy :
Q@) — R, where R denotes the set of the real numbers.

To avoid unnecessary notations, we define the (optimal)

policy concept only for a simultaneous ID." A policy, denoted
by 4, specifies one action choice for each decision node in X'
Hence, a policy § can be denoted by (41, ...,d,), where §;
belongs to the domain of X; for each 1.

IFor general IDs, the definition of an (optimal) policy can be found in,
e.g., [6].

Given a policy 6, a probability Ps can be defined over the
random nodes and decision nodes as follows:

Ps(V, &) =y ey P (Y|r(Y)) ILL, P5(X) (M

where P(Y|n(Y)) is specified in the definition of Z, while
Ps(X;) is equal to 1.0 if X; = ¢;, and 0.0 otherwise.

The expectation of the value node U under policy J, denoted
by Es[U], is defined as

EslU] =) Ps (n(U)) gv (x(U)).)

w(U)

The expected value Es of Z under the policy § is the sum
Es[U] over all value nodes U in U, i.e.,

Es = Z E;s[U]. 3)

Ueu

For simplicity, Fs is also called the expected value of policy §.
Evaluating a policy 6 means to compute its expected value. The
maximum of Ej; over all policies is the optimal (expected) value
of Z. An optimal policy is the policy that achieves the optimal
expected value. To evaluate an ID is to find an optimal policy
and to compute its optimal expected value.

IV. THE FACTORIZATION APPROACH

In this section, we describe the representation theorem and
the factorization approach.

A. The Idea

From its definition, an ID is a network structure consisting
of decision nodes, random nodes, and value nodes. Among
them, in determining the expected value of the ID, a decision
node plays a different role from a random or a value node. The
choices of a decision node can affect the expected value of the
ID through changing the CPTs of its child random nodes, or
through changing the value functions of its child value nodes
(note that a decision node cannot have another decision node
as child in a simultaneous ID). In this sense, a node, if it is a
child of a decision node, serves as an interface through which
the choices of decision nodes may affect the value of the ID.
Such a node is called an interface node. All interface nodes
constitute an interface set. Collectively, an interface set serves
as an interface of an ID through which policies can affect the
expected value of the ID. Consequently, an ID can be divided
into two fractions: the upstream fraction, which includes the
interface nodes and the nodes “preceding” them, and the down-
stream fraction, which includes the interface nodes and the
nodes “succeeding” the interface nodes.

Example: We use the ID in Fig. 1 to informally illustrate
these concepts. The ID has two decision nodes { X7, X5}, five
random nodes {4, B,C, D, H}, and one value node U. The
interface set Vi, is {4, C'} since they have parental decision
nodes. The upstream is { X1, X5, A, B, C'}, which consists of
two interface nodes A and C, node X; preceding node A,
and nodes B and X, preceding node C. The downstream is

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

X1

X2

Fig. 1. ID to illustrate the representation theorem.

{A,C,H, D, U}, which consists of interface nodes A and C,
the nodes H, D, U succeeding to the interface nodes. [|

Interestingly, corresponding to the structural separation that
an ID can be divided into two fractions, the expected value of
a value node under a policy breaks into two fractions, each of
which involving only the upstream or the downstream of the ID.

B. The Theorem

We formalize the above idea in this section. For the sake
of simplicity, throughout the paper, unless explicitly stated, we
assume that: 1) the ID has only one value node; and 2) the value
node has no decision node as its parent. We also note that our
results in this paper generalize to the IDs with multiple value
nodes and with value nodes having parental decision nodes. We
relax these assumptions at the end of this section.

We begin by defining several concepts. A random node Y
is an interface node if its parent set has at least one decision
variable, i.e., 7(Y) N x # 0. The interface set of an ID is the
set of all interface nodes. Due to the above assumptions, the
interface set contains only random nodes; for this reason, we
denote the set by)i,. The upstream of the ID includes the
interface set and all ancestors of the nodes in the interface.
By this definition, in addition to the interface random nodes
and decision nodes, the upstream may contain the random-node
ancestors of the interface nodes. These ancestral nodes must be
included because they, together with decision nodes, determine
the CPTs of the interface nodes. These ancestral random nodes
form a set denoted by).

Given an ID, we can efficiently identify its upstream using
a queuing mechanism. We initialize a queue to be the interface
set Vi, (it can be readily built by checking whether there is
a parental decision node for every node in the ID) and the
upstream Z,,, to be empty. At each step, a node is removed
from the queue and added to Z,,, if it is not in Z,,,. The parents
of the node, if not present in Z,, thus far, are added to the
queue. The procedure terminates when the queue is empty.
When it terminates, the set Z,,, becomes the upstream set. The
procedure must terminate after a finite number of steps because
an ID is a directed acyclic graph.

The upstream can be partitioned into three sets: the set X
of decision nodes, interface set);,, and the set), of random-
node ancestors of interface nodes. Given a policy 4, we define

a function f5 from Qy, to the real line R. For notations, we
let m be the number of nodes in the set Vi,, Y;1™ be a short
notation of {Y;1 ... ¥/™}, and y.™ be an assignment to all

interface variables, i.e., an element of Qy-1:m
mn

F5 (™) = D Ty ey Bs (VIm(Y) T Ps(X5) - ()
Yelo

where Iy cy,uy, Ps(Y|7(Y))II", Ps(X;) is the joint proba-
bility distribution of the variables in X,)y, and)i,, given
policy 6. Hence, f5(Y;1™) is the conditional probability that
the interface Y;1™ = yli™ occurs upon the policy §. For con-
venience, we call them interface probabilities.

In contrast to the upstream, the downstream of an ID is the
set consisting of all the interface nodes and their descendants.
The downstream contains the value node, the interface nodes,
and the random nodes that do not belong to the upstream.
We use); to denote the set of noninterface random nodes in
the downstream. Note that the random nodes in the interface
set belong to both the upstream and the downstream. For an
assignment y,:™ of the set Y;1'™ and the value node U, we can

m
define a function as follows;

fou (™) = Y Hyey, P (Y|x(Y)) gu (r(U)). (5)
Yey

To see that fi, ;7 is a function of Y;1™, we note that the inter-
face variables may appear in 7(Y) for Y € ;. Given an
assignment y:™ of Y1, fi, iy (yL™) is the expected utility
conditioned on the assigned interface y.™. These quantities
are called interface utilities for convenience. Since 7(Y") for
Y in Y; must belong to the downstream, Ps(Y|7(Y)) is inde-
pendent of policy d. Consequently, these utilities are inde-
pendent of policy 4.

Theorem 1: Given a policy ¢ and a value node U, the ex-
pected value of the node U under policy &

>

Lim
Yin EQYQ,"”

Es[U] = s (™) - finw (™) - (6)

Proof: We show that FEs[U] can be rewritten as the sum
of the interface utility fi, v weighted by the probability fs over
all interfaces

EsU) =) Ps (x(U)) gu (x(U) (a)

w(U)

ST OyeyP (YVia(Y)) T2, Ps(X;)

~(U) | 25
x gu (7(U)) (b)

S 3 Y Dyepu, P(YIR(Y))

YeVin YEV YEWN
x Hyey, P (Y|x(Y)) i, Ps(Xi)gu (7(U)) ()

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 5

= Z Z HYGyouyinP(Yﬂ—(Y))
YeVin LYEY,
X [> Tyey, P(Y|r(Y)) gu (x(U)))
Yen
= Z fs (yllnm) fin,u (y}n’”). (e)

1im
Yt EQYiL;m

Step (a) is true by (2). At step (b), YV/#(U) is the
difference set of)V and 7w(U). This step is true by in-
serting (1) into (2). Step (c) follows from the fact that
{m(U),Y/m(U)} and {Vy, Vin, V1 } are two partitions of the set
Y. At step (d), we break the distribution IIy ¢y P(Y |7 (Y)) x
I, Ps(X;) into two fractions Iyey,uy, P(Y|7(Y)) and
Hye, P(Y|r(Y))gu(w(U)). At step (e), we replace the
two fractions with the definitions of the interface utilities
and interface probabilities.]

By the theorem, given a policy d and a value node U, the
expected value of the node under the policy can be represented
as the sum of the multiplications of the interface utilities and
corresponding interface probabilities.

Example (Continued): For the ID in Fig. 1, we show how to
represent Es[U] for the value node U and a given policy 0. Let
the policy 6 be (61, d2), where §; is the decision choice of X;
for ¢ = 1, 2. By definition

Ul=3_ > P(A816:) P(B|A)P(C|BSy)

H ABCD

x P(D|C)P(H|AD)II, Ps(X)gu (H).

The two functions are defined as follows.

C) :ZP(A\5152)P(
B

finv(A,C) =Y P(H|AD)P(D|C)gu (H).
HD

B|A)P(C|Bs2)II;_, P5(X;)

It can be verified that E5[U]=>_ 4 o f5(A,C) finu(A4,C).1

We examine the assumptions we made at the beginning of
this section. First, we have assumed that there is only one
value node. In case of multiple value nodes, we may apply the
representation theorem to each node. The expected value of a
policy is the additive sum of the expected values of all value
nodes under the policy.

Second, we have assumed that the value node has no decision
nodes as its parents. In the other case that the value node has a
decision node as its parents, the functions f5; and fi, can be
defined as follows, such that the theorem holds

fso (V™) = Y Hyeyum, Ps (Yr(Y))
Yedo
x I Ps(Xi)gu (m(U))
fin (Vik™) = Y Tyey, Ps (Ym(Y)).

Ye);

TABLE 1
FACTORIZATION APPROACH TO ID EVALUATION

1. Pre-compute the quantities f;,,y (y1:™) for all yi™ in QYl m
2. For each policy

2.1 compute f5(y}™) for each assignment of Y1 m

2.2 compute FEj [UT by Equation (6)
3. Return the policy that maximizes Es[U]

Therefore, we can lift the assumption that the value node has
no decision node as parents. In this case, U is also called an
interface node, but it belongs to the upstream only. The reason
is that, by definition, a value node cannot have children and
therefore cannot produce impact on the downstream.? Note
that f5 changes to fs ¢/, since the value node is considered in
computing the quantities relevant to the upstream. Interestingly,
it can be proven that f;,,(= 1.0) is a constant. To see why, let
us assume that the size of)); be k. We enumerate the set)); as
{Y{, ..., Y{} such that a node’s parents appear after the node
in the set. In computing fi,(Y;1™), we can sequentially sum
out the variables in)); in the enumerated order. Ultimately, we
have f, = 1.0.

C. The Algorithm

By the representation theorem, the expected value of a policy
is represented as the sum of interface utilities weighted by the
corresponding interface probabilities. The interface utilities are
independent of the individual policies, whereas the interface
probabilities are dependent on the policies. Therefore, the in-
terface utilities can be factored out, i.e., they can be calculated
once and reused across all the policies.

This is the idea behind our factorization approach, which
is described in Table I. The factored-out computations are
calculated once at line 1. They are used for all policies at line
2.2. Note that the procedure generalizes to IDs with multiple
value nodes.

D. Complexity Analysis

It is of interest to compare the approach and the generic
brute-forced approach that evaluates a policy directly by com-
bining (1) and (2). Let n be the number of decision nodes.
Thus, the size of the policy space is 2". Let the complexity of
evaluating one policy be C'. The complexity C' breaks into three
pieces: computing f5, computing fi, v, and computing E5[U]
by (6). We denote them, respectively, by Cy, Cs, and Cs. To
evaluate all policies, the generic approach has complexity 2" C),

e., 2"(Cy + Cy + C3). In contrast, since the factorization
approach computes fi, ;7 only once but uses them 2" times, its
complexity is 2"(C7 + Cs) + Cs. A good measure to predict
the computational gain is the size of the downstream, i.e.,
the number of nodes in it. In one extreme, if the downstream
contains only the interface nodes and the value nodes (thus, C5
is a constant), the two approaches have the same complexity. In
the other extreme, if the downstream contains far more nodes

2Note that this is different from random nodes having parental decision
nodes. Such a random node belongs to both the upstream and the downstream.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

time 0

Fig. 2. Dynamic ID model.

than the upstream (i.e., C35 > Cy 4+ C5), the computational
gain is significant.

E. Bounding the Optimal Expected Value

We show that the interface utilities computed in the factor-
ization approach can be used to derive both an upper and a
lower bound of the optimal value of the ID. These bounds have
significant implications in practical planning.

We define ii:, u and fi;U to be the largest and the smallest
one among all interface utilities, i.e.,

+ 3 1im

o = ot Smo (")

— s 1:
fin,U = 1111 fiILU (yinm)

YL EQy 1

where the max and min are taken over the domain of the
variables in Y;1". From the theorem, we see that f; ., (fi, /)
is the upper (lower) bound of the optimal value of the ID. These
bounds have significant importance in practice. Suppose, for
instance, that these bounds are available to a planner. In one
extreme, if the planner expects a utility that is larger than the
upper bound, he never bothers to evaluate all the policies and
finds the optimal one because even the best policy provides less
than he expects. In this case, he needs to redesign the network
structure or parameters such that the performance of the ID
can be improved. In the other extreme, if the planner expects a
utility that is less than the lower bound, again he never bothers
to evaluate all the policies and chooses the optimal one because
any policy can provide more than he expects. In this case, he
can pick any policy and execute it.

We note that from the computational point of view, comput-
ing these bounds is easier than evaluating the ID. There are
two reasons. First, as discussed earlier, computing these bounds
involves only the downstream of the ID, whereas evaluating
an ID involves its entire structure. If the downstream contains
much fewer variables than the upstream, the interface utilities
(and also the bounds) can be obtained efficiently. Second,
computing these bounds avoid enumerating all the policies and
calculating their expected values.

Finally, the tightness of the bounds depends on the structure
of an ID, the CPTs of random nodes, and the value functions of
value nodes. It is difficult to characterize a general condition to
determine the tightness of the bounds. In our experiments, we

time t+1

empirically show that these bounds are reasonably tight for the
tested problems.

V. EXTENSIONS TO THE FACTORIZATION APPROACH

In this section, we discuss two extensions to the factoriza-
tion approach. These extensions deal with reconstructing the
policies as the network structure/parameters undergo changes.
There are two perspectives. First, at one decision step, the
network might change such as more actions being available for
a planner’s choice, more value nodes needed consideration, and
so on. Second, the network might dynamically alter its structure
or parameters as time goes by. For example, if a subgoal is
successfully accomplished at one step, it can be removed from
the network in the subsequent steps.

A. Network Structure/Parameter Changes

The principle for the factorization approach to accommo-
date structure or parameter changes is as follows. First, if
the changes involve only the upstream of an ID, the inter-
face utilities do not need to be recomputed and can still be
shared in evaluating the ID. Specifically, these changes include
addition or removal of decision/random/value nodes and also
the alternation of CPTs and value functions in the upstream.
Second, if the changes involve only the downstream of the
ID, the approach needs to reconstruct the interface utilities.
Fortunately, the interface probabilities are preserved and the
calculations for them can be saved. Third, if the changes involve
not only the upstream but also the downstream, the approach
needs to recompute both the interface utilities and the interface
probabilities.

B. Planning Over Time

In realistic applications, network parameters may change
over time. In this case, we can use a dynamic ID to model
the conditional dependencies among nodes over time. In this
section, we show how the factorization approach can be used to
reconstruct the policies on a step-by-step basis for dynamic IDs.

To facilitate our discussions, we extend the example in Fig. 1
to a dynamic ID. We assume that the variable H evolves over
time and let H; denote H at step t. The dynamic ID is drawn in
Fig. 2. In contrast, the ID in Fig. 1 is said to be static since the
multiple decisions are made at one time step.

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 7

The dynamic ID has two prominent features. First, at a single
step, the decision problem can be modeled as a static ID. In
addition to the nodes and links in Fig. 1, the node H;;; at
step ¢t + 1 has one more parent node H;. Second, the intertem-
poral link between two consecutive nodes carries the historic
information about the sequence of performed policies. For step
n + 1, the information can be summarized by a probability
distribution of H; conditioned on the history [14].

For a dynamic ID, we are interested in optimal planning on
the step-by-step basis. The problem is formulated as: Given
an initial probability distribution P(Hy), at step ¢ + 1, how
to efficiently find the policy o[= (d1,. .., 0,) Where n is the
number of decision nodes] that maximizes Es[Up, , ,|? To solve
the problem, we show: 1) how to select the optimal policy at
step t + 1, given the probability distribution P(H;); and 2) how
to sequentially update the probability distribution P(H; 1)
from P(H,), given a policy ¢ at the previous step. After these
two questions are settled, we may choose the optimal policy as
follows. At step ¢ + 1, we first choose the optimal policy for
the step and then update the probability P(H;y1) from P(H;).
The procedure repeats at each step.

To answer the first question, we introduce the concept of
an augmented interface node and an augmented interface set.
We call the node H; an augmented interface node of the ID at
step ¢t + 1 since the node H; can produce impact on the network
via altering its probability distribution. In this sense, it is an
interface node.? The augmented interface set consists of)i, as
before and the node H,. The downstream of the ID at step ¢ 4 1
remains the same as that of the static ID. Likewise, we may
define the two functions fs and fianHf,H' Therefore, we can
use the factorization approach to solve the planning problem
over time. The computations involving fin,UHHl are factored
out. Note that these interface utilities are shared for all policies
at each decision step. For the ID in Fig. 2, we can define the
following functions for the ID:

f§(A7 Ca Ht)

— P(H,) S P(Al5162) P(B|A)P(C| &), P5(X:)
B
fin,UHt (Av Cv Ht)

= Y P(H;41|ADH,)P(D|C)gu (Hy41).
Hii 1D

It can be verified that Es[Un,,,] =>4 c p, f5(A,C, Hy) -
Fin U, (A, C, Hy).

To answer the second question, we show how to efficiently
compute P(Hy11), given a distribution P(H;) and the policy
0 performed at step t. We introduce a technique such that the
procedure of computing P(H;41) can be conducted similar to
that of computing E5[Ug, . ,]. Suppose that H,; can take on
two values A(true) and —h(false). We first show how to calculate

3Previously, we defined an interface node to be a node that has parental
decision nodes since the choices of decision nodes can affect its CPTs and
in turn, the expected value of the ID. In contrast, the node H; is called an
augmented interface node since it can change its probability distribution and
thus, affect the expected value of the ID.

the probability of H;; being true. Let V be a value node that
differs from Ug, , , only in its value function. Specifically, gy is
1.0 if its parent H,;, is true; it is 0.0 otherwise. For simplicity,
let H;1 = h(—h) denote the event that the hypothesis Hy 1 is
true (false). We prove that E5[V] = Ps(Hy11 = h).
Proposition 1: Es[V] = Ps(Hi1 = h).
Proof:

EslV] = Z Ps(He+1)gv (Hey1)
Hyyq
=Ps(Hiy1 = h)gv (Hipr = h)
+ Ps(Hit1 = —h)gv (Hiy1 = —h)
:Pg(Ht+1 = h)

In the last step, we use the definition of the value function gy .l

To calculate the probability of H;,; being false, we may
define gy as follows: It is 1.0 if its parent Hyy; is false; it is
0.0 otherwise. If we define two functions f5 and fi, v/, we see
that the computational steps for Es[V] are the same as those for
computing E5[Up, ., |. Hence, computing P(H; 1) does not
add much overhead to ID evaluation.

It is interesting to compare the generic approach and the
factorization approach in the context of the dynamic ID. Let
the number of decision steps be 7'. Recall that the complexity
of computing fs is C, the complexity of computing fin,UHt+1
is ('3, and the complexity of computing E5[Ug, .,] is C. Since
(1 takes constant time, it can be ignored. For one decision
step, the factorization approach has the complexity 2" Cy + C'3
while the generic approach has the complexity 2™(Cy + C'3).
For T steps, the complexity of the factorization approach is
2"T'Cy 4+ ('3 [note that this does not include the overhead
of computing P(H;11)], while the complexity of the generic
approach is 2"T(Cy + C3). If C3 > Cy, the factorization
approach can be extremely efficient.

VI. EXPERIMENTS

In this section, we report our experiments on both simulation
studies and a military planning example. In our experiments,
we wrote Matlab-V6.5 codes and ran them on a laptop with a
2.0-GHz central processing unit (CPU) under Windows XP. We
compare the factorization approach against the generic brute-
forced approach. We chose the generic approach because we
were not aware of specific algorithms for evaluating simulta-
neous IDs. For convenience, we refer to the two algorithms
as evalCS (named after computation sharing) and evalBF
(named after brute forced).

A. Simulation Studies

To thoroughly evaluate the performance of the factorization
approach, we conducted simulated studies on the ID in the
left chart of Fig. 3, which is similar to the military planning
examples in [15]. It is referred to as the static ID in the rest
of this section. The CPTs are randomly generated. The value
functions for value nodes are manually specified.

Specifically, our experiments are designed to: 1) evaluate
the performances of the factorization approach for static and

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

— evélCé
---- evalBF

107

10+

Fig. 3. Test example is shown in the left chart, while the right is its variant for comparative studies.
5
10 ———————
. — evalCS
% 4| ---- evalBF
S 10 -
? .-
] -
SR L
o 10 P
£
=, .-
> .-
7 10 .-
5 -
® A
= 10
l_

3 4 5 6 7 8 9 10 11 12 13 14
Number of decision variables

Fig. 4. Performance comparison of evalBF and evalCs.

dynamic IDs; 2) show the tightness of bounds derived from
the interface utilities; 3) demonstrate how the computational
gain achieved by the approach varies with different network
structures; and 4) demonstrate the computational gain by
adapting the approach to account for newly added decisions
and value nodes.

1) Performances of the Factorization Approach: To see how
the performances of the algorithms vary with the number of
decision nodes, we fix the number of random nodes at each
level at four and vary the number of decision nodes. Thus, the
static ID with n decision nodes has additionally ten random
nodes and n + 1 value nodes. We ran evalBF and evalCS
for seven problems with n = 3,5, ...,13. The timing data are
presented in the left chart of Fig. 4. The chart gives the total
CPU seconds that the algorithms took for each of the problems.
Note that the vertical direction is drawn in log scale. The
solid (dashed) curve is for evalCS (evalBF). It can be seen
that evalCs is considerably more efficient than evalBF. For
instance, from our data, for n = 9, to evaluate 512 policies,

Total CPU time (logscale)

1 2 3 4 5 6 7 8 9 10
Time steps for problem n=9

evalcCs took 3.51 s while evalBF, 646.74 s; for n = 13, to
evaluate 8192 policies, evalCs used 46.32 s while evalBF,
9284.05 s.

To quantitatively characterize how much savings the factor-
ization procedure can bring about, we use the timing results
of evalCS to predict the performance of evalBF. Recall
that the complexity of evaluating a policy breaks into three
fractions C, C3, and Cs. We ignore C] since it is a constant.
For each problem, we estimate C's by the actual seconds Cs
of computing fin v, , and Cy by C’Q as (the total CPU time —
() /(the number of policies). The complexity of evalBF is
predicted by 2"(Cy + Cs3). We found that these estimations are
almost the same as the actual timing results of evalBF. This
suggests the effectiveness of our complexity analysis.

We also tested the algorithms over the dynamic ID in Fig. 5,
which is an extension of the left chart of Fig. 3.

Initially, the probability of the node H being false is set to
1.0. Its probability is updated at each decision step. We ran
both algorithms for up to ten decision steps. We showed the

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 9

Fig. 5. Dynamic influence diagram.

total CPU time for the ID with nine decision nodes in the right
chart of Fig. 4. The chart gives the total CPU seconds for both
algorithms against the time steps. Note that again the vertical
direction is drawn in log scale. It can be seen that the CPU
time linearly increases with the elapsed time for evalBF while
its increase is negligible for evalCs. This is not a surprising
observation. In evalBF, all policies are evaluated at each step.
The time cost for all steps remains the same. Hence, the increase
is linear. From our data, evalBF uses about 1300 s to evaluate
all 512 (2%) policies at each step. However, in evalCs, the
interface utilities are computed only once at the first step. So,
we observe that at the first step, evalCs takes about 2.66 s
to compute these utilities; thereafter, each step takes about only
10 s to evaluate all 512 policies. The increase is negligible when
compared against that in evalBF.

2) Tightness of Bounds: To show the tightness of the upper
and lower bounds of the optimal expected value, in Fig. 6, we
plot the optimal value (the middle curve) and these bounds
(the upper and lower curves) for the static IDs with 3, 5, .. .,13
decision nodes. We see that these bounds are reasonably tight
for the tested problems. For example, for n = 7, the optimal
value is 871.47 while the bounds are 722.91 and 936.637.
Although it is difficult to quantitatively analyze the properties
of these bounds, these experiments show they can be tight at
least for these tested problems.

3) Computational Gain Under Network-Structure Changes:
To demonstrate how the computational gain of evalCs varies
with different network structures, we run evalCS over the
static ID and a modified version of it. The modified ID is
obtained as follows: Every link from X; to le is redirected
to sz. The resulting ID is shown in the right chart of Fig. 3.
Its upstream is X UYY, , UYE ~ UUy,, whereas its down-
stream is Vi, U{H}U{Uy}, where Uy, means the set
of value nodes, and Y7, means the set of nodes Y}, ie.,
YY.,, = {Y1,..., Y, } fori =1, 2, 3. Compared with that of

1500

[2]}

©

51000,

I}

Keo)

©

]

©

-§ 500+

[}

w —— lower bound

optimal value

0 ---- upper bound
3 4 5 6 7 8 9 10 11 12 13 14

Number of decision variables

Fig. 6. Lower and upper bounds obtained from the interface utilities.

the static ID, the downstream of the modified ID contains fewer
random nodes. We expect: 1) evalCs is still more efficient
than evalBF in the modified ID, since its downstream contains
a number of random nodes; and 2) evalCS achieves less
savings in modified ID than it does in the original ID.

The experiments presented in Fig. 7 confirm these expecta-
tions. First, the left chart plots the CPU seconds (in log scale)
that evalCs and evalBF take for the modified IDs with a dif-
ferent number of decision variables. It can be seen that evalCS
is more efficient. Second, the right chart plots the magnitudes
of the savings brought by evalCS. For each approach, the
saving magnitude is measured by the quotient of the total time
of evalBF and that of evalCs. The magnitudes are drawn in
the vertical direction. For a modified ID, evalCs is about 14
times faster than evalBF. For the original IDs, the magnitudes
vary with the number of their decision nodes. We see that the
computational savings brought by evalCs are more significant
for IDs whose downstream contains more nodes.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

-
o
(5l

— evalCS
---- evalBF

~

- —_
o o
w
\
\
\
\
\

—
o
)
\
\
\

-
\
\

Total CPU time (logscale)
=

10°

3 4 5 6 7 8 9 10 11 12 13 14
Number of decision variables

Fig. 7. Computational gains versus network structure.
10° :
— Cst »
R B
2 BF1
3 -~ BF
2 1o
3 10 ¢ e
[%) 2 l,""/v s
210 - L
o =
ST L
$ 10t
E o
G107
3 45 6 7 8 9 10 11 12 13 14
Number of decision variables
Fig. 8.

the total/replanning time for the factorization approach.

4) Computational Gain Under Network-Parameter
Changes: We also conducted experiments to show how
the factorization approach achieves computational savings as
the network changes. For this purpose, given the static ID,
we first evaluate it (the planning phase), then add more nodes
to the ID and reevaluate it (the replanning phase). We like
to compare both the replanning time and total time of the
factorization approach against that of the generic approach.

In one experiment, we first evaluate a static ID with n
decision nodes. We then add two decision nodes to the ID and
evaluate the modified ID. Every newly added node has a link
from itself to every le node. The timing results in log scale
are presented in the left chart of Fig. 8. In the chart, the curve
corresponding to CS1 (BF1) depicts the replanning time for
the factorization (generic) approach, whereas the curve corre-
sponding to CS (BF) depicts the total time similarly. We see
that for the tested problems, the factorization approach achieves
considerable savings in replanning when more decision nodes
are added. For instance, for the ID with nine decision nodes,
the factorization and generic approach, respectively, takes 9.80
and 2313.94 s. These savings are achieved through sharing
the interface utilities computed during the evaluation of the
original ID. Since the factorization approach takes much less
time in both evaluating and reevaluating the ID, its total time is
considerably less than that used by the generic approach.

In the other experiment, we evaluate the ID and then add one
more value node for replanning. The added value node has a

250 ————

— original ID
---- modified ID

& 200¢

‘®

(o))

o 150+

9

©

51001

Q

S

/o)

O 50t

5 6 7 8 9 10 11 12 13
Number of decision variables

0 L
3 4

10° ‘
— CS1

T ol CS .
2 BF1
S 104 BF Pt
(2] -
8. 3 T
=10
= P
g P
8 10°
3 .
» e
=Plos
O 0)

3 45 6 7 8 9 10 11 12 13 14
Number of decision variables

Replanning for added action/value nodes. In both charts, the curves from the top and bottom plot the total/replanning time for the generic approach, and

link from every node Yj2 for j =1,...,4. In computing the
expected value of the added value node, we still use the factor-
ization approach. In reevaluating an ID, we do not recompute
the expected value of the existing value node. The timing results
in log scale are collected in the right chart of Fig. 8. The legends
read similar to those in the left chart. It can be seen that the
factorization approach can achieve great savings in replanning.
The reason is obvious: The factorized computations are saved
in computing the expected value of the newly added value node.
By taking advantage of shared computations in evaluating two
value nodes, the total time used by the factorization approach is
considerably less than that by the generic approach.

B. A Military Planning Example

We applied the factorization approach to a hypothetical
military planning example, which is illustrated in Fig. 9.
The overall military goal is to win a war or to bring a
tyrant to justice. The goal is represented by a Hypothesis
node, which is on the top of the figure. There are 12 prim-
itive actions, namely destroy C2, destroy Radars,

.., operate special force, which are on the bottom
side. Performing an action has direct effects of specific pur-
pose. For instance, if the action destroy Radars is
performed, the EW/GCIRadars is destroyed with a high
probability. These effects alter the overall goal through
altering the low-level subgoals. For instance, the status

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS

destroy_R
adars

destroy_Commu
nications

Legends:

Territory_occupation

Lo
S

Commander_surrender

“ommander_in_cus

tody

Special_force
propaganda bodyguard

operate_[special
force

T

launch_gro
und_attack

- capturc_bo
launch_broadcasting dp, L:‘n;

& o

TADS: integrated air defense system

C2: Command & control

EW/GCI: early warning/ground control interception

Fig. 9. Static ID illustrating a military planning problem.

of C2 (command and control), EW/GCIRadars and
Communications facilities, and Air strike determine
the workability of the integrated air defense system (IADS)
and the strength of the enemy air force. In turn, the
workability of IADS system and the strength of the en-
emy air force determine the loss of Air superiority.
The Air superiority, Territory occupation, and
Commander surrender are three subgoals determining
the overall goal success. Without loss of generality, we as-
sume all nodes are binary. In the example, each decision node
is associated with a value node encoding the cost of perform-
ing the action, and the hypothesis node is associated with a
value node encoding the utility of goal success. The optimal
policy needs to balance the utility of goal success and cost of
performing actions.

We designed a reasonable set of CPTs and value
functions. For the Hypothesis node, if all the subgoals
Air superiority, Territory occupation, and
Command_ surrender are achieved, the overall goal
is successfully achieved. If one of the subgoals is to be
achieved, the probability of the overall success is decreased
by 0.3; however, if none of the subgoals is achieved, the
overall goal fails with certainty. Similarly, for the subgoal
Air superiority, the two influencing factors are IADS
and Air force. If the IADS system works well and
Alr force is strong, Alr superiority is true for the
enemy air force; if either the IADS system works poorly or
Air force is weak, the probability of Air superiority
being true is decreased by 0.5. Other CPTs for

Territory occupation and Command surrender
are set analogously to those for Air superiority. A
similar strategy is used in parameterizing the nodes IADS,
Air force, Artillery, Ground force, Morale, and
Commander in custody. In determining the CPTs for
random nodes that are immediate children of the decision
nodes, we assume that an action achieves its intended effect
with probability 0.9. For example, a destroy Radars
decision will destroy the EW/GCI radars with probability
0.9. To complete the ID definition, we also assigned value
functions. If the goal is successfully achieved, the reward is
1000; otherwise, the cost, i.e., a negative reward, is 500. For
other decision nodes, if a ground attack is launched, the cost
is 150; if the special force operation is performed, its cost is
100; if the commander decides to capture the bodyguards of
the tyrant, the operating cost is 80; if an air strike is launched,
the cost is 50; for any other actions, their operating cost is 20.
Our primary interest is in the performance of the factorization
algorithm. From our data, to evaluate the ID, the factorization
algorithm took 45 s, while the brute-forced algorithm took
9012 s. Hence, the computational saving is tremendous. We
can explain the performance difference by the ID structure—its
downstream contains a large number of nodes: all random
nodes and the value node associated with the goal. Since its
downstream contains far more random nodes than its upstream,
the approach is expected to be significantly more efficient.
Our secondary interest is concerned with the optimal policy.
The optimal policy is the one that performs only air strike
and special force operation. The expected value of the ID

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

is 561.98, and the probability of goal success is 0.81. We note
that the optimal policy excludes “launching a ground attack,”
although it is the action that is most likely to lead to goal
success. One possible reason, as explained earlier, is that the
action is excluded due to the high operating cost of performing
the action.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied a special ID class, namely simul-
taneous IDs, where multiple decisions need to be made at
one time step. We intended to make two contributions. First,
we examined a simultaneous ID and studied its theoretical
properties. We showed that such an ID can be decomposed
into an upstream fraction and a downstream fraction, and that
the expected value of a value node under a policy can be
represented as the sum of interface utilities that involve only the
downstream fraction, weighted by the corresponding interface
probabilities that involve only the upstream fraction. The inter-
face utilities naturally provide an upper and lower bound of the
optimal value of the ID. Second, we proposed a novel factoriza-
tion algorithm to evaluate a simultaneous ID. The interface util-
ities are independent of the individual policies; therefore, they
can be calculated once but used across all policies in evaluating
them. We also extend the factorization approach to a dynamic
ID. The algorithm has been tested on simulation studies and
a military planning example. Our experiments showed that the
factorization algorithm is significantly more efficient than the
generic algorithm in evaluating a simultaneous ID.

To further speed up ID evaluating, one future direction is
to combine the factorization approach with the approaches
of reducing the search space. In this paper, we address one
difficulty in ID evaluation, i.e., evaluating individual policies.
Another difficulty in ID evaluation is that the policy space
contains exponentially many polices and one needs to evaluate
all of them in order to find the optimal one. The ID evaluation
process can be accelerated if the technique in this paper can be
integrated with the approaches of reducing the search space.

ACKNOWLEDGMENT

The authors would like to thank J. Lemmer, D. Gossink, and
J. Dussault from AFRL/Rome for introducing the problem to
us and for numerous technical exchanges on the related issues.
The authors are grateful to three anonymous reviewers for their
insightful comments in improving the paper. The authors are
also grateful to W. Liao and Z. Zhu for insightful discussions.

REFERENCES

[1] R. Howard and J. Matheson, “Influence diagrams,” in The Principles
and Applications of Decision Analysis, R. Howard and J. Matheson, Eds.
Menlo Park, CA: Strategic Decisions Group, 1984, pp. 719-762.

[2] H. Raiffa, Decision Analysis. Reading, MA: Addison-Wesley, 1968.

[3] R. D. Shachter, “Evaluating influence diagrams,” Oper. Res., vol. 34,
no. 6, pp. 871-882, 1986.

[4] P. P. Shenoy, “Valuation-based systems for Bayesian decision analysis,”
Oper. Res., vol. 40, no. 3, pp. 463-484, 1992.

[5] E Jensen, F. V. Jensen, and S. L. Dittmer, “From influence diagram to
junction trees,” in Proc. 10th Conf. Uncertainty Artificial Intelligence,
Seattle, WA, 1994, pp. 367-373.

[6] R. Qi and D. Poole, “A new method for influence diagram evaluation,”
Comput. Intell., vol. 11, no. 1, pp. 1-34, 1995.

[71 N. L. Zhang and D. Poole, “Stepwise-decomposable influence dia-
gram,” in Proc. 3rd Int. Conf. Principles Knowledge Representation and
Reasoning, Cambridge, MA, 1992, pp. 141-152.

[8] G.FE. Cooper, “A method for using belief networks as influence diagrams,”
in Proc. 4th Workshop Uncertainty Artificial Intelligence, St. Paul, MN,
1988, pp. 55-63.

[9] R. Shachter and M. Peot, “Decision making using probabilistic infer-
ence methods,” in Proc. 8th Annu. Conf. Uncertainty Artificial Intelli-
gence (UAI), Stanford, CA. San Mateo, CA: Morgan Kaufmann, 1992,
pp- 276-283.

[10] T. Nielsen and F. Jensen, “Well-defined decision scenarios,” in Proc.
15th Conf. Uncertainty Artificial Intelligence, Stockholm, Sweden, 1999,
pp. 502-511.

[11] E Jensen and M. Vomlelova, “Unconstrained influence diagrams,” in
Proc. 18th Conf. Uncertainty Artificial Intelligence, Edmonton, AB,
Canada, 2002, pp. 234-241.

[12] S. L. Lauritzen and D. Nilsson, “Representing and solving decision
problems with limited information,” Manage. Sci., vol. 47, no. 9,
pp- 1238-1251, 2001.

[13] N. L. Zhang, “Probabilistic inferences in influence diagrams,” in Proc.
14th Conf. Uncertainty Artificial Intelligence, Madison, WI, 1998,
pp. 514-522.

[14] K.J. Astrom, “Optimal control of Markov decision processes with incom-
plete state estimation,” J. Math. Anal. Appl., vol. 10, no. 3, pp. 174-205,
1965.

[15] U. Kuter, D. Nau, and J. F. Lemmer, “Interactive planning under un-
certainty with causal modeling and analysis,” Dept. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. CS-TR-4434, 2003.

Weihong Zhang received the Ph.D. degree in com-
puter science from The Hong Kong University of
Science and Technology, Kowloon, Hong Kong,
in 2001.

He then worked as a Postdoc Researcher with the
Department of Computer Science and Engineering,
Washington University, Saint Louis, MO. He is cur-
rently a Postdoc Researcher with the Department
of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY. He has
conducted research in artificial intelligence, proba-
bilistic inferences and decision making under uncertainty, graphical models and
their applications in sensor networks and human—computer interaction. He has
published more than 10 papers in peer-reviewed journals and conferences.

Qiang Ji (5'92-M’98-SM’04) received the Ph.D.
degree in electrical engineering from the University
of Washington in 1998.

He is currently an Associate Professor with the
Department of Electrical, Computer, and Systems
Engineering at Rensselaer Polytechnic Institute,
Troy, NY. His areas of research include computer
vision, probabilistic reasoning for decision mak-
ing and information fusion, pattern recognition, and
robotics. He has published more than 70 papers
in peer-reviewed journals and conferences. His re-
search has been funded by local and federal government agencies in-
cluding National Science Foundation (NSF), National Institutes of Health
(NIH), Air Force Office of Scientific Research (AFOSR), Office of Naval
Research (ONR), Defense Advanced Research Projects Agency (DARPA),
and Army Research Office (ARO) and by private companies including
Boeing and Honda. His latest research focuses on face detection and recog-
nition, facial-expression analysis, image segmentation, object tracking, user
affect modeling and recognition, and active information fusion for decision
making under uncertainty.

