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Abstract—Several continuous manufacturing processes use sto-
chastic texture images for quality control and monitoring. Large
amounts of pictorial data are acquired, providing important in-
formation about both the materials produced and the manufac-
turing processes involved. However, it is often difficult to measure
objectively the similarity among industrial stochastic images or
to discriminate between texture images of stochastic materials
with distinct properties. Nowadays, the degree of discrimination
required by industrial processes often goes beyond the limits
of human visual perception. This paper proposes to model this
specific class of textures as colored noise and presents a new
approach for multiresolution stochastic texture representation and
discrimination in industry (e.g., nonwoven textiles and paper). The
wavelet transform is used to represent stochastic texture images in
multiple resolutions and to describe them using local orientation
and density variability as features. Based on this representation,
a multiresolution distance measure for stochastic textures is pro-
posed, and industrial applications of the method and experimental
results are reported. The conclusions include ideas for future
work.

Index Terms—Anisotropy, colored noise, industrial quality con-
trol, maintenance, nonwoven textiles, stochastic textures, wavelets.

I. INTRODUCTION

MODERN computer-based control systems are able to
collect large amounts of information in industry, display

it to operators, and store it [1]. However, decisions are often
made by operators on an ad hoc basis with little computer
support, whereas the stored process data could also be used in
tasks such as 1) automatic analysis and interpretation of process
operational data (either in real time or over the operational
history); 2) development of intelligent state-based methods for
process monitoring, control, and diagnosis; and 3) data mining
and knowledge discovery in manufacturing, for purposes such
as maintenance and training.

In several industrial continuous processes, static and dy-
namic stochastic texture images are acquired and used in quality
control. In particular, stochastic texture images are used in man-
ufacture of foil-like materials such as nonwoven textiles, paper,
polymer membranes, conductor, and semiconductor coatings.
Important information can be extracted from these gray-level
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images, representing spatial density variations of such materi-
als. In general, these images contain a composition of stochastic
features at various scales, resulting from local clumping and
aligning of constituent matter with varying degree of regularity.

Possible benefits from the analysis of such stochastic textures
include: 1) interpretation of temporal process operational data
based on texture formation anisotropy; 2) system diagnosis and
monitoring by accessing the image collection in terms of local
spatial density variation, as well as other textural features; and
3) a posteriori data analysis to reveal influential factors. For
example, the early detection of patterns in temporal and/or
spatial variability is a common problem in nonwoven textiles
manufacturing, which can be approached by multiresolution
stochastic texture analysis, as we will detail later.

Often, industrial machine operators try to evaluate stochastic
texture images visually and estimate the manufacturing process
condition using their experience in the field. This empirical
approach is subjective and prone to failure, mainly because
human vision is limited in terms of its ability to distinguish
between stochastic textures [2]–[4]. Despite advances in texture
representation and classification over the past three decades [3],
[5]–[7], the problem of stochastic texture feature interpretation
and classification remains a challenge for researchers [8] and
for a large segment of industry [2]; this is mostly because
in several practical situations, stochastic texture analysis and
classification must outperform visual texture discrimination and
match industrial needs.

A variety of methods has been proposed for extracting tex-
ture features from textured images, e.g., geometric, random
field, fractal, and signal processing models for textures. Most
recent works on textures tend to concentrate on two areas,
namely: 1) multichannel filtering theory and 2) statistical mod-
eling [5]. A substantial part of the work on multichannel filter-
ing theory is inspired by neurophysiological principles [9]. On
the other hand, statistical modeling focuses on characterizing
textures as probability distributions and using statistical theory
to formulate and solve texture processing problems mathemat-
ically. Wavelet-based texture characterization can integrate the
above two aspects and has attracted attention recently because
of its usefulness in several important applications, such as
texture classification [6], [10] and texture segmentation [11].
These approaches have been found more effective than other
methods based on second-order statistics or random fields,
which analyze textures at a single resolution [5], [12]. Sev-
eral approaches have been proposed to extract features in the
wavelet domain with application in texture analysis. Often,
the extracted texture features are wavelet energy signatures,
which have been found useful for texture classification. The
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second-order statistics of the wavelet transform (WT) have also
been used to improve the accuracy of texture characterization
[13]. Higher order dependencies of wavelet coefficients have
been recently studied in the context of general statistical image
modeling [14] and for texture analysis [5], [11], [15], [16].

A substantial amount of work has been done in texture analy-
sis in the wavelet domain (e.g., focusing on textures found in
nature, arts, or design). However, little attention has been given
to industrial stochastic textures (e.g., textures of nonwoven
textiles and paper). Therefore, most of the methods were pro-
posed for texture analysis in general but were not designed for
the specific problem of stochastic texture analysis in industry,
where the texture visual appearance is similar to noise. For
example, in some of the approaches mentioned above, feature
extraction is carried out assuming subband independence at
each resolution (e.g., [6], [10], and [12]), which is not verified
experimentally, as discussed later. Other methods perform regu-
lar energy sampling in the wavelet domain (e.g., [17]), but reg-
ular patterns are rarely found in industrial stochastic textures.
Also, the methods based on higher order statistics generally do
not make explicit relevant stochastic texture features that are
important for industrial applications (where process conditions
are estimated based on specific texture parameters) (e.g., [5],
[11], and [16]).

Some researchers have suggested explicit feature dimensions
for texture discrimination [17], [18]. In fact, directionality (i.e.,
texture anisotropy) is useful for stochastic texture analysis,
and some methods have been proposed for estimating local
variability and anisotropy in stochastic textures at one particular
resolution [2]. These methods are unable to capture texture
stochastic features at various scales, which can be relevant for
industrial stochastic texture discrimination.

In this paper, industrial stochastic textures are modeled as
colored noise,1 and a multiresolution scheme for industrial
stochastic texture representation and analysis is proposed. We
begin by describing how we model industrial stochastic textures
and how we measure the image gradients at multiple resolu-
tions using wavelets. Based on the wavelet decomposition, the
grayscale distribution and texture anisotropy are measured at
multiple resolutions. Next, a multiresolution distance measure
for stochastic textures is introduced. Finally, we present some
applications in industry, experimental results, and conclusions.

II. TEXTURE GRADIENTS IN MULTIPLE

RESOLUTIONS USING WAVELETS

Our method relies on texture gradients and gray-level dis-
tributions at multiple resolutions. The main reason for empha-
sizing such features is that gradients and gray levels constitute
supplementary measures for stochastic texture analysis at each
resolution. It implies that we may assume the gradient features
as independent of the gray levels and vice versa, which is
a desirable feature in industry. For example, industrial mate-
rials such as nonwoven textiles and paper may be produced
with different mass densities (thicknesses), i.e., different gray-

1Estimation in colored noise fields using high-order statistics has been
discussed by Mendel [19] and by Cohen and Francos [20].

level statistics, but with similar spatial variability properties,
i.e., similar formation anisotropy. Also, different industrial sto-
chastic materials can present distinct mass density and spatial
variability statistics.

To estimate the local gradients in multiple resolutions, we ap-
ply the undecimated two-dimensional WT proposed by Mallat
and Zhong [21]. This WT requires calculation of two detail
images, using one smoothing function φ(x, y) and two wavelets
ψi(x, y). The dilation of these functions are denoted by [21]

φs(x, y) =
1
s2
φ(
x

s
,
y

s
)

ψi
s(x, y) =

1
s2
ψi(

x

s
,
y

s
), i = 1, 2 (1)

and the dyadic WT f(x, y), at a scale s = 2j , has two detail
components given by

W i
2jf(x, y) = (f ∗ ψi

2j )(x, y), i = 1, 2 (2)

and one low-pass component given by

S2jf(x, y) = (f ∗ φ2j )(x, y). (3)

The coefficients W 1
2jf(x, y) and W 2

2jf(x, y) represent the de-
tails in the x and y directions, respectively. Thus, the image
gradient at the resolution 2j can be approximated by [14], [21]

W2jf(x, y) =
(
W 1

2jf(x, y)

W 2
2jf(x, y)

)
. (4)

Since we are dealing with digital images f [n,m], we
use the discrete version of the WT [21], and the discrete
wavelet coefficients are denoted in this paper by W i

2jf [n,m],
for i = 1, 2.

Local gradient magnitudes and orientations can be obtained
at scale j based on W 1

2jf [n,m] and W 2
2jf [n,m], for j =

1, 2, . . . , J [14], [21]. In particular, the edge orientation will
be used later in our discussion and is given by the gradient
direction, which is expressed by

θ2jf [n,m] = arctan
(
W 2

2jf [n,m]
W 1

2jf [n,m]

)
. (5)

III. REPRESENTING INDUSTRIAL STOCHASTIC

TEXTURES IN MULTIPLE RESOLUTIONS

Since it can be difficult to discriminate industrial stochastic
textures visually, this paper focuses on stochastic texture fea-
tures that could facilitate the texture interpretation in industrial
applications. We are also interested in stochastic texture fea-
tures that could be used to discriminate and classify distinct
process conditions.2 In other words, we are interested in the

2One or more samples can be used as reference images to indicate a particular
process condition.
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Fig. 1. Normal plots of stochastic texture image examples (β-radiographs). (a) Headbox handsheet. (b) Sample from a Fourdrinier former. (c) Sample from a
gap former. (d) Tissue paper sample.

scenario where the user provides an industrial stochastic texture
image as a signature of a particular process condition, and a
classification method returns the most similar image from a
collection of images previously stored (i.e., images representing
different process conditions). The stored and the user-provided
texture images are represented by our texture features and are
compared using a multiple resolution distance measure to be
described later.

After applying the WT, we obtain the wavelet coefficients
S2jf [n,m], W 1

2jf [n,m] and W 2
2jf [n,m], for j = 1, 2, . . . , J ,

where J is the number of scales. These wavelet coefficients
are used to represent industrial stochastic textures at multiple
resolutions, making explicit important texture features such as
directionality and local gray-level variability.

Industrial stochastic textures such as nonwoven textiles and
paper are textures characterized by nearly random gray-level
spatial variability, which often present spatial correlations per-
sisting over short, medium, or long ranges. The stochastic
nature and correlation patterns of these textures originate in the
stochastic fiber entanglements and alignments that take place
during the nonwoven and paper-forming process [4].

The gray-level (i.e., local density) distribution in these tex-
tures can be modeled as a Gaussian process, with some de-

viation from normality at the end of the distribution tails
[as illustrated in Fig. 1(a)–(d) using four industrial stochastic
texture images].3 In this paper, we model the stochastic texture
patterns by Gaussian colored noise, where each texture pattern
has a characteristic mean and spatial correlation [22].

We therefore model the input texture image f(x, y) as
Gaussian colored noise ε(x, y) with standard deviation σ and
assume that this process is ergodic. Since the WT is a linear
transform, the dyadic WT ε(x, y), or WT ε (using a sim-
pler notation), at a scale s = 2j , has two detail components
given by

U i
j = W i

2j ε =
(
ε ∗ ψi

2j

)
, i = 1, 2 (6)

and one low-pass component given by

Zj = S2j ε = (ε ∗ φ2j ) (7)

3Only one set of four normal plots is illustrated in Fig. 1, but similar plots
were observed in the other samples tested.
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where W i
2j ε and S2j ε also are modeled as Gaussian colored

noise processes, their standard deviations being σUi
j

and σZj
.

The indexes i = 1, 2 correspond to the x direction and y
direction, respectively.

Consequently, U1
j and U2

j are jointly Gaussian distributed
with probability density function (pdf) [23], i.e.,
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where ρ12 is the correlation coefficient of U1
j and U2

j .
As before, since we are dealing with digital images ε[n,m],

we use the discrete version of the WT [21], and the discrete
wavelet coefficients are denoted in this paper by W i

2j ε[n,m],
for i = 1, 2, and S2j ε[n,m].

A. Texture Directionality in Multiple Resolutions

Texture directionality, i.e., anisotropy, is an important pa-
rameter in the manufacture of foil-like materials. It correlates
well with several mechanical and transport properties of such
materials, as well as with commonly monitored manufacturing
variables. It has already been shown that the distribution of
angles θ2j ε[n,m] over all pixels [n,m] represents structural
anisotropy [2]. In the case when all angles θε are equally
probable, the sample is isotropic.

In this paper, the occurrences of the coefficients W 1
2j ε[n,m]

and W 2
2j ε[n,m] are approximated by Gaussian distributions.

The normal plots in Fig. 2(c) and (d) show that the Gaussian
model can represent a wide range of wavelet coefficient val-
ues in stochastic textures, with some deviation from Gaussian
occurring in the tails of the distribution. This experimental
evidence was confirmed in a large-sample test set. It was
also verified that, in general, wavelet coefficients associated
with the same image position [m,n] in different subbands
(i.e., W 1

2j ε[n,m] and W 2
2j ε[n,m]) at the same resolution 2j are

correlated (i.e., are not independent). Therefore, we represent
the joint distribution of wavelet coefficients by a bivariate
Gaussian G12

2j (W 1
2j ε[n,m],W 2

2j ε[n,m]), denoted simply by
G12

j . The isoprobability curves of the bivariate Gaussian G12
j

are typically elliptic for anisotropic samples and tend to be
circular for samples that are isotropic.

The joint coefficient distribution G12
j determines two orthog-

onal axes of extremal variance that coincide with the directions
of the eigenvectors vmax and vmin of the covariance matrix.
To estimate the covariance matrix at resolution 2j , denote
the means of the coefficients W 1

2j ε and W 2
2j ε by µ1 and µ2,

respectively. Due to the fact that signals have finite length, and
also to the precision of the arithmetic, µ1 and/or µ2 is not

necessarily zero. The covariance matrix is then calculated as
follows:

C2j =E
[(
W k

2j ε− µk

) (
W l

2j ε− µl

)T ]

=
[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
(9)

where k = 1, 2, l = 1, 2, ρ12 is the correlation coefficient of
W 1

2j ε and W 2
2j ε, and σ1 and σ2 are the standard deviations of

W 1
2j ε and W 2

2j ε, respectively.
To measure quantitatively the distribution eccentricity, we

calculate the eigenvectors vmax and vmin from (9) and their
corresponding eigenvalues λmax and λmin. The eigenvalues
λmax and λmin define the semiaxes of a Gaussian ellipse
aligned with the eigenvector directions. The eccentricity e of
this ellipse is given by the ratio of the eigenvalues, i.e.,

e =
λmax

λmin
(10)

and provides an estimate for the texture anisotropy at scale
2j . For example, the measured eccentricity e is 1.008 for the
isotropic sample in Fig. 2(a) and 1.227 for the anisotropic
sample in Fig. 2(b).

It should be noticed that, at certain resolutions, the spatial
texture image gradients may be higher than in others. This will
be reflected in the covariance matrices with larger elements
and will help in texture discrimination. The main orientation
of the texture at resolution 2j is given by the direction of
vmax, and the stronger the orientation (i.e., anisotropy) at 2j ,
the more dominant is vmax. Orientation may vary at different
resolutions.

B. Texture Gray-Level Variability in Multiple Resolutions

The texture gray-level variability in multiple resolutions
encodes important information about local density variability
and, consequently, about the material structural homogeneity.
In fact, local homogeneity is considered an important quality
parameter of foil-like materials (e.g., nonwoven textiles and
paper), namely the sample formation often referred in the
specialized literature [4].

As discussed in Section III-A, the stochastic texture image
coefficients Zj = S2j ε, for j = 1, 2, . . . , J , are modeled as
Gaussian colored noise [see the normal plots in Fig. 2(e) and
(f)]. As a consequence, the distribution of coefficient values Zj

is represented by a Gaussian pdf, i.e.,

Gj(Zj) =
1√

2πσ2
Zj

e
−0.5

[
(Zj−µZj

)

σZj

]2
(11)

where µZj
and σZj

are the mean and standard deviation of the
gray levels at scale 2j , respectively.
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Fig. 2. Comparative results for isotropic and anisotropic test samples. Stochastic texture images (β-radiographs). (a) Nearly isotropic. (b) Anisotropic. Normal
plots of coefficients W i, i = 1, 2. (c) Nearly isotropic. (d) Anisotropic. Normal plots of coefficients S. (e) Nearly isotropic. (f) Anisotropic. Histogram equalization
was applied to the images to improve their visualization.

Therefore, at each resolution, our stochastic texture represen-
tation consists of the bivariate Gaussian joint coefficient dis-
tribution G12

j , encoding coefficient correlation and anisotropy
information, and the univariate Gaussian distribution Gj , en-
coding gray-level variability, as illustrated in Fig. 3. Stochas-
tic textures may vary in anisotropy, gray-level variability, or
both, at different resolutions, and a wide range of industrial
stochastic textures can be represented in terms of these features.

A distance measure to compare these texture representations is
introduced next.

IV. CLASSIFICATION USING A DISTANCE MEASURE

OF STOCHASTIC TEXTURES

The problem of classifying industrial stochastic texture im-
ages can be formulated as a multiple hypothesis (i.e., classes)
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Fig. 3. Comparative results for isotropic and anisotropic test samples. Joint coefficient W i, i = 1, 2 (gradient) value distributions. (a) Nearly isotropic.
(b) Anisotropic. Coefficient S distributions. (c) Nearly isotropic. (d) Anisotropic.

testing problem, where we choose the best among T possible
hypotheses {H1,H2, . . . , Ht, . . . , HT }. In our approach, at
each resolution 2j , a stochastic texture image ε is represented
in the WT domain by its coefficient distributions G12

j and
Gj . Under these circumstances, Do and Vetterli [10] showed
that the Kullback–Leibler distance ranks the hypotheses Ht,
or classifies the textures, consistently with the maximum-
likelihood rule.

Our distance measure between stochastic textures therefore
follows directly. The Kullback–Leibler distance between two
bivariate Gaussian distributions G(M1,C1) and G(M2,C2) is
given by [24]

DGauss2 (G(M1,C1), G(M2,C2))

=
1
2

log (det(C2)/det(C1)) +
1
2

trace(C1C−1
2 )

+ (M1 − M2)T C−1
2 (M1 − M2) − nd

2
(12)

where M1 and M2 are the means of the bivariate distributions,
C1 and C2 are the covariance matrices, and det(C) denotes the
matrix determinant. Note that C1 and C2 are nd × nd matrices,
and M1 and M2 are 1 × nd vectors (here, nd = 2). On the other

hand, the Kullback–Leibler distance between two univariate
Gaussian distributions G(µ1, σ1) and G(µ2, σ2) is

DGauss (G(µ1, σ1), G(µ2, σ2))

=
1
2

(
log
(
σ2

σ1

)2

+
(
µ1 − µ2

σ2

)2

+
(
σ1

σ2

)2

+ 1

)
(13)

where µ1, σ1, µ2, and σ2 are the Gaussian parameters of
the textures, respectively. In this paper, we use a symmetrical
version of the Kullback–Leibler distance, i.e.,

DGauss2s =DGauss2 (G(M1,C1), G(M2,C2))

+ DGauss2 (G(M2,C2), G(M1,C1)) (14)

DGausss =DGauss (G(µ1, σ1), G(µ2, σ2))

+ DGauss (G(µ2, σ2), G(µ1, σ1)) . (15)

The Kullback–Leibler distance has some desirable proper-
ties. Its convexity guarantees that a minimum exists, and to
calculate the Kullback–Leibler distance from multiple scales,
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i.e., feature sets representing different wavelet subbands, we
can use the “chain rule” [25], i.e.,

p(V1, V2, . . . , Vn) = p(V1|V2 . . . Vn)

× p(V2|V3 . . . Vn) . . . p(Vn−1|Vn)p(Vn) (16)

where p(V1, V2, . . . , Vn) is a joint pdf with n marginal pdfs
p(V1), . . . , p(Vn).

It can be shown that the symmetrical Kullback–Leibler dis-
tance between two joint pdfs pa and pb

Ds
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
= D

(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
+D

(
pb(V1, V2, . . . , Vn), pa(V1, V2, . . . , Vn)

)
(17)

has the average distance between marginals as a lower bound
(see the Appendix for details), i.e.,

Ds
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
≥ 1

n

∑
i=1,...,n

[
D
(
pa(Vi), pb(Vi)

)
+D

(
pb(Vi), pa(Vi)

)]
. (18)

This distance lower bound provides a feature space contrac-
tive mapping and can be interpreted as a simpler version of the
“full distance” (17). Samples not assigned to a given class c
[i.e., because class c is not the “nearest” class according to the
distance lower bound in (18)] will not be assigned to class c
even if the full distance is used. In other words, the distance
lower bound provides a simpler distance measure for sample
classification and guarantees no false dismissals [26]. Later, the
classification accuracy obtained by the distance lower bound
will be discussed.

The variables V1, V2, . . . , Vn represent different wavelet
subbands. If the same n subbands are used to classify all
samples, the factor 1/n is a multiplying constant affecting
equally all sample-to-class distances and may be dropped with-
out changing the classification results. In this case, the joint
Kullback–Leibler distance is approximated simply by the sum
of n subband feature set distances, i.e.,

Ds
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
	

∑
i=1,...,n

D
(
pa(Vi), pb(Vi)

)
+D

(
pb(Vi), pa(Vi)

)
. (19)

Also, it shall be observed that different texture features do
not necessarily carry the same weight in stochastic texture
discrimination. Considering that D(pa, pb) ≥ 0, relevances can
be assigned to the different features Vi by imposing weights αi

to the feature set distances D(pa(Vi), pb(Vi)) in the distance

sum (deforming the feature space).4 For example, suppose that
two distinct feature sets are used for texture discrimination.
If one of them is more relevant to achieve better tex-
ture discrimination, then its weight α1 should be higher in
the distance sum (i.e., α1 > α2). In this case, (19) is modified
and written as

Ds
p

(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
	 α1

∑
i=1,...,n1

[
D
(
pa(Vi), pb(Vi)

)
+D

(
pb(Vi), pa(Vi)

)]

+ α2

∑
i=n1+1,...,n

[
D
(
pa(Vi), pb(Vi)

)
+D

(
pb(Vi), pa(Vi)

)]

	 α1D
s
(
pa
1 , p

b
1

)
+ α2D

s
(
pa
2 , p

b
2

)
. (20)

Let us introduce our model in the context of the discussion
above. As mentioned in Section II, at each scale, the feature
sets associated with gray levels (i.e., Zj) and with gradients
(i.e., U i

j , i = 1, 2) are approximated by orthogonal (i.e., inde-
pendent) components of our stochastic texture representation.
This approximation is justified on the basis of experimental
evidence. Azimifar et al. [27] concluded that the majority
of wavelet coefficients corresponding to random fields have
correlations very close to zero (i.e., are uncorrelated) across
and within scales, but some orientation subband coefficients
are strongly correlated across scales or within a particular
scale but across orientation subbands. In particular, in our
experiments with industrial stochastic textures, we observed
that scaling and orientation subband coefficients present very
low correlation across and within scales (i.e., Zj and U i

j , i =
1, 2, are approximately uncorrelated).5 In this case, a lower
bound can be obtained in terms of p(Zj) and p(U12

j ), which
are univariate and bivariate Gaussian distributions, respectively
(see the Appendix for details).

Finally, the proposed multiresolution stochastic texture
distance measure is

Dj ≡
J∑

j=1

(
(1 − α)Dj

Gauss2s + αDj
Gausss

)
(21)

where Dj
Gauss2s and Dj

Gausss are the Kullback–Leibler dis-
tances between bivariate Gaussian and univariate Gaussian
distributions at each resolution j, and α (∈ [0, 1]) is a parameter
that controls the weights attributed to Dj

Gauss2s and Dj
Gausss .

The weights of the gray-level and gradient representation com-
ponents can be adjusted by the parameter α, and this parameter
is chosen to maximize correct texture class discrimination.
Therefore, at each resolution j, anisotropy is reflected in the
distance between bivariate Gaussians Dj

Gauss2s (i.e., gradient
orientations) and grayscale variability in the distance between
univariate Gaussians Dj

Gausss (i.e., gray-level distributions).

4In (19), all n individual features carry the same weight in the distance sum,
and α1 = α2 = · · · = αn = 1.

5In our experiments, the maximum positive/negative correlation measured
between Z and U i, i = 1, 2, across scales was 0.001, and within the same
scale, it was 0.004.
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In the next section, we discuss some applications of our
multiresolution stochastic texture representation, as well as the
efficacy of our stochastic texture distance measure.

V. APPLICATIONS AND EXPERIMENTAL RESULTS

Industrial stochastic texture images are widely used in the
manufacture of foil-like stochastic materials such as nonwoven
textiles, paper, polymer membranes, conductor, and semicon-
ductor coatings. In the case of nonwovens and paper, these ma-
terials are formed on a moving web by a process similar to the
filtration of a fiber suspension, with some stochastic dynamics.
Nowadays, to obtain higher productivity, the forming web tends
to be several meters wide and moves along the machine direc-
tion at speeds of 400 m/min (or higher) [28]. Consequently,
paper and nonwoven textiles have a definite “grain” caused by
the greater orientation of fibers in the machine direction and by
the stress/strain imposed during pressing and drying, in a later
stage of manufacture. Therefore, the physical properties of such
materials are usually anisotropic, and variations exist in the
makeup of fibers and in fiber orientation along and across the
moving web (i.e., along the moving web orthogonal direction,
CD, and along the machine direction, MD) [28]. The ratio
between physical properties measured along the MD and CD
directions is often used in industrial laboratory quality tests and
is known as the “MD-to-CD ratio.”

Experienced machine operators often make an effort to use
visual clues for grading samples, which are usually collected
at different machine locations. For example, the spatial mass
distribution in a sample (i.e., formation) is graded based on
the sample texture visual appearance, estimating how “cloudy,”
“grainy,” or “oriented” the sample texture looks. This is illus-
trated in Fig. 4(a) and (b), where sample 1 looks more cloudy
than sample 29, sample 30 looks more grainy than sample 32,
and samples 31–35 look more oriented than the other samples.
A substantial amount of experience and intuition (subjective
appearance evaluation) is used in this visual evaluation. Dur-
ing the past two decades, objective and automated testing of
nonwoven materials has become a new trend in industry. An
example of this new trend is the popular “TSI/TSO” orientation
test [28], which estimates fiber orientation by measuring the
sound speed along different sample directions. All the orienta-
tion tests mentioned above are destructive or require contact
with the sample. Nondestructive and noncontact testing has
been a challenge for researchers [1], [2], [4].

To test whether our texture representation is sensitive enough
to capture forming condition fluctuations, which occur com-
monly in regular production, we used 20 sets of 11 samples
equally spaced along CD (i.e., 15 cm2 each, spaced 50 cm from
each other). Ten sample sets represent standard operating condi-
tions, and ten of them represent deviations from standard oper-
ating conditions (i.e., were obtained before stopping production
for maintenance). The central parts of these samples were im-
aged using a scanner with transparency unit, obtaining images
with 400 × 400 pixels, with nearly 0.3 × 0.3 mm2/pixel. Three
consecutive dyadic scales were used (2j , for j = 1, 2, 3) for
texture analysis. Our experiments aimed at evaluating web uni-
formity and ranking samples by their anisotropy. We estimated

Fig. 4. Sample images of the 35 stochastic texture classes used in the exper-
iments (β-radiographs). (a) Plate 1, showing one sample per class. (b) Plate 2,
showing one sample per class (the samples are different of those displayed in
Plate 1). Histogram equalization was applied to the images to improve their
visualization.

anisotropy based on the middle scale (i.e., j = 2) and (10). We
found that our approach tends to correlate well with anisotropy
measurements based on the tensile test6 (coefficient of corre-
lation r = 0.9059). Also, we found that the sample rankings
based on the anisotropy measured with our method and with
the tensile test tend to correlate well (r = 0.8844). Our texture
analysis correlates less well with TSI/TSO measurements along
CD (i.e., r = 0.7825). For the stochastic texture classification
experiments, we used a standard stochastic texture industrial
database, as detailed next.

6The orientation of paper and nonwoven textiles can be determined by testing
the mechanical resistance to tearing in the MD and CD (i.e., tensile strength
test); the resistance to tearing usually is less in the MD.
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A. Stochastic Texture Classification for Process
Condition Analysis

To illustrate the performance of our approach in sto-
chastic industrial texture classification, we used 315 distinct
β-radiographic images of nonwoven textile and paper sam-
ples, obtained from a standard industrial image database [29].
We chose samples from a variety of forming machines, with
different furnish and grammage7 (e.g., among the 315 samples,
we have samples of headbox handsheets, repulped machine
sheets, standard handsheets, board handsheets, gap formers,
Fourdrinier formers, speedformers, tissue papers, and glass-
fiber mats). All these images have a resolution 140 × 140 pix-
els, with a spatial resolution of 0.2 × 0.2 mm2/pixel [29]. We
selected nine samples of each type, where each type of texture
indicates a particular production condition (i.e., specific oper-
ating parameters and furnish), with a total of 35 classes (i.e.,
texture types). Typical samples of the 35 classes are displayed
in Fig. 4. The sample textures representing different operating
conditions were classified, and the system condition could
be identified. Potentially, this approach could help nonwoven
textile industry operators identify the current system condition,
instead of relying on ad hoc stochastic texture interpretation
methods.

In our classification experiments, we compared our approach,
denoted here as G2G, KL [i.e., (21)], with the representation
of wavelet coefficients by generalized Gaussians (i.e., GG,
KL), using the optimal multiresolution texture distance pro-
posed by Do and Vetterli [10].8 The other approaches tested
were as follows: 1) G2G,Euclid., i.e., bivariate and univariate
Gaussians used as in our approach, with the Euclidean distance
applied to a seven-dimensional parameter space representing
the Gaussians; 2) GHist, Euclid., i.e., a Gaussian univariate
modeling the gray levels, using the Euclidean distance ap-
plied to a two-dimensional parameter space representing the
Gaussians; and 3) other approaches, such as Gabor filters and
gray-tone spatial dependence (GTSD) matrices. In our problem,
the classification accuracies obtained with Gabor filters and
GTSD matrices were poorer than G2G,Euclid., and their re-
sults are not considered further in our discussion. Table I shows
the percentage of correct classification obtained experimentally,
indicating that our approach gives the best correct classification
rate for the 315 samples (and 35 classes) using α = 0.3 (i.e.,
the best classification results were obtained with α = 0.3).
The other stochastic texture representation and classification
approaches performed less well in tests, as shown in Table I.
Therefore, besides providing an explicit representation of im-
portant stochastic texture features for texture analysis (e.g.,
anisotropy and local gray-level variability), our approach offers
good performance compared with other approaches for texture
representation and classification.

Our simplified distance measure of stochastic textures shown
in (21) applies the distance lower bound concept, as discussed

7Grammage is defined as mass density in grams per square meter.
8Their multiresolution texture representation is based on the generalized

Gaussian density and the Kullback–Leibler distance. Comparing with other
methods found in our literature review, Do and Vetterli’s approach provided
the best classification results using our data set.

TABLE I
MEASURED CORRECT CLASSIFICATION RATE FOR THE 315 SAMPLES

BELONGING TO THE 35 TEXTURE CLASSES ILLUSTRATED IN FIG. 4,
INTEGRATING THREE SCALES: G2G, KL IS OUR APPROACH,

I.E., BIVARIATE AND UNIVARIATE GAUSSIANS AND KULLBACK–LEIBLER

DISTANCE; GG, KL IS THE APPROACH OF GENERALIZED GAUSSIANS

AND KULLBACK–LEIBLER DISTANCE [10]; G2G, Euclid. IS THE

APPROACH OF BIVARIATE AND UNIVARIATE GAUSSIANS AND EUCLIDEAN

DISTANCE; GHist, Euclid. IS THE APPROACH OF GAUSSIAN

MODELS FOR GRAY LEVELS AND EUCLIDEAN DISTANCE

earlier. Recall that the full Kullback–Leibler distance Ds
full (17)

considers the correlations between subband features at scales
j1 (∈ [1, J ]) and j2 (∈ [1, J ]), i.e., ρ(Zj1 , Zj2), ρ(Zj1 , U

1
j2

),
ρ(Zj1 , U

2
j2

), ρ(U1
j1
, U1

j2
), ρ(U2

j1
, U2

j2
), and ρ(U1

j1
, U2

j2
). How-

ever, our distance lower bound Ds
LB (21) is obtained by

simplifications of Ds
full: 1) the feature sets U1,2 and Z are

assumed to be uncorrelated because they generally have very
small correlation; and 2) the feature sets Z, U1, and U2 are
assumed to be uncorrelated across scales, i.e., their across-scale
correlations are discarded because ρ(Zj1 , Zj2), ρ(U

1
j1
, U1

j2
),

and ρ(U2
j1
, U2

j2
), j1 �= j2, are strong and do not vary much

for stochastic textures in general, providing little discrimi-
nation information. Therefore, Ds

full > Ds
LB is expected. We

conducted experiments using the set of 315 stochastic textures
to clarify the relationship between the full distance Ds

full and
the distance lower bound Ds

LB. These experiments confirmed
that the relationship between Ds

full and Ds
LB varies for different

stochastic texture samples (i.e., changing U1, U2, Z, and their
correlations), as expected from our theoretical developments.
We measured strong across-scale correlations for the same sub-
band features ρ(Zj1 , Zj2), ρ(U

1
j1
, U1

j2
), and ρ(U2

j1
, U2

j2
) (i.e.,

0.94 for Z, and 0.81 for U1 and U2, in average; the measured
standard deviations of the correlation values were 0.015 and
0.03, respectively). However, at the same scale j, we measured
small correlations ρ(U1

j , U2
j ) (i.e., 0.01 in average) and even

smaller correlations ρ(Zj , U
1
j ) and ρ(Zj , U

2
j ) (i.e., 0.002 in

average).9 In all our experiments, Ds
full > Ds

LB, and the ratio
Ds

full/D
s
LB varied from a minimum of 48.55 to a maximum of

2935.5 for different textures, reaching 289.79 in average. Our
approach obtains correct classification in 94% of the 315 sam-
ples tested (belonging to the 35 classes), as indicated in Table I,
and produces no false dismissals. However, the full distance
may discriminate more accurately the 6% of the texture samples
that are incorrectly classified by our simplified approach, at a
higher computational cost.

9At the same scale, correlation ρ(U1
j , U2

j ) suggests anisotropy, and ρ(U1
j ,

U2
j ) usually is small for stochastic textures.
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B. Evaluation of the Forming Condition Homogeneity
Across the Web

Given a set of industrial stochastic texture images, the dis-
tances between pairs of textures using (21) can be described
by a gamma pdf, as detailed next. The family of gamma pdf is
given by

{
p(x; τ, ν) =

(ν
τ

)ν xν−1

Γ(ν)
e−

ν
τ x|ν, τ ∈ R+

}
, x ∈ R+

(22)

so the space of parameters is topologically R+ ×R+. The
gamma pdf is a member of the exponential family, and it
includes as a special case (ν = 1) the exponential distribution
itself. Recently, Hwang and Hu [30] proved for n ≥ 3 indepen-
dent positive random variables xi, with a common continuous
pdf g and i = 1, 2, . . . , n, that having the sample means x̄i

and the sample coefficients of variation cvi = Sxi
/x̄i indepen-

dently distributed implies that g is a gamma distribution.10 This
is equivalent to saying that given n data sets collected inde-
pendently, and represented by the variables x1, x2, . . . , xn, the
underlying distribution g is gamma if the sample means x̄i and
sample standard deviations Sxi

are linearly related (i.e., present
a high correlation coefficient). Now, considering n sets of
stochastic texture samples obtained independently, and repre-
sented by their intraset sample distances {d1}, {d2}, . . . , {dn},
the common distribution of intraset sample distances gd is
gamma if the set distance means d̄i are linearly related to the
set distance standard deviations Sdi

. The adequacy of the gd

gamma model can be improved when the number of scales
J is increased. The 35 classes of stochastic textures used in
our experiments are represented in Fig. 5(b), which shows that
intraclass sample distance means and standard deviations can
be considered as linearly related (i.e., r = 0.99).11 Therefore,
for each class p, we assume that intraclass sample distance
distribution is gamma and represent this distribution by the
gamma parameters νp and τp.

In day-to-day industrial practice, production and systems
maintenance are performed constantly. However, relatively low
cost and objective methods of stochastic texture analysis for
evaluating the forming conditions across the forming web
are now in demand. The early identification of changes in
production machine parameters and the early detection of
faulty operating conditions provide important information for
diagnosing system faults and for maintenance. These manu-
facturing systems are stochastic, and their fluctuations and
irregularities are constantly monitored by sampling and testing
at several locations across the forming web [28]. Our approach
for stochastic texture representation can be used to evaluate the
forming condition uniformity in manufacturing machines, as
detailed next.

10In this case, cvi = Sxi/x̄i = c, where c is a constant.
11Cross-tabulating cvi × x̄i, it was verified that p(cvi, x̄i) � p(cvi) ·

p(x̄i). The chi-square test for independence of lines and columns resulted in
χ2 = 26.5 and a test significance level ps = 0.33, suggesting independence
of lines and columns.

Fig. 5. Classification and web uniformity testing results. (a) Plot of
the parameters (ν, τ) (dots: homogeneous/normal operation; crosses: inho-
mogeneous/abnormal operation). (b) Distance mean × standard deviation
(coefficient of correlation = 0.99).

Homogeneous forming conditions across the forming web
generate homogeneous texture sample sets, whose intersam-
ple distance distributions are clustered (i.e., the samples col-
lected across the web present small statistical differences from
each other and form a cluster in feature space). This can be
evaluated from the point of view of the gamma family, where
the parameter ν indicates clustering if ν < 1, and ν indicates
randomness if ν 	 1 (i.e., when the samples collected across
the web present significant statistical differences and do not
form a cluster in feature space).12 The homogeneity of the set
of collected texture samples can be evaluated based on ν and
τ parameters of the intersample distance distribution. Similar
conclusions apply to the uniformity of the forming conditions
used to produce such samples. Fig. 5(a) illustrates this concept,
showing a plot of the parameters (ν, τ) for 20 distinct operating
conditions. Each forming condition is represented by a set of

12The parameter ν > 1 indicates dispersion in feature space, which is not
relevant to our present discussion.
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11 samples equally spaced, taken across the forming web; ten of
these sets correspond to standard operating conditions, and ten
of them indicate nonstandard operating conditions (adding up to
a total of 220 samples). The nonstandard data have ν closer to
1 and are represented by “crosses” in Fig. 5(a). In this case, the
sample inhomogeneity is substantial, which is indicated by the
high variability of intersample distances (i.e., their low degree
of clustering with ν → 1). The data interpretation suggests
nonuniform operating conditions across the forming web, and
that maintenance is presently required. On the other hand, the
standard data sets are represented by “dots” in Fig. 5(a) and
showed a high degree of intersample distance clustering, char-
acterized by ν � 1 (in our experiments, ν ≤ 0.3). Therefore,
our experiments indicate the potential of using the parameters
(ν, τ) as a tool to discriminate objectively between regular
and deviant operating conditions during systems operation, at
a relative low cost.

VI. CONCLUDING REMARKS

To summarize, stochastic texture images are acquired in large
quantities in continuous industrial processes and encode im-
portant quality and process information. Moreover, the texture
analysis methods required by some industrial processes must
be objective because, often, texture discrimination exceeds the
limits of human visual perception. Therefore, analyzing and
classifying industrial stochastic textures are often challenging
tasks.

The preliminary experimental results obtained by our ap-
proach were encouraging. Our stochastic texture representation
can lead to new industrial applications, such as: 1) stochastic
texture classification in industrial problems, where our method
showed higher accuracy than other approaches, and 2) low-
cost evaluation of production machine calibrations using sto-
chastic texture images collected across the forming web. Our
texture features tend to correlate well with industrial laboratory
(manual) tests. However, more extensive testing is needed to
achieve higher confidence levels in noncontact methods for
obtaining anisotropy estimates, similar to those obtained in
physical laboratory tests.

As future work, we intend to develop further our anisotropy
detection approach to explore the dynamics of formation
anisotropy. Also, we intend to study the influence of different
scale weighting schemes and use our approach as a support
for data mining operations in stochastic data repositories, with
application in preventative maintenance and personnel training.

APPENDIX

KULLBACK–LEIBLER DISTANCE LOWER

BOUNDS FOR JOINT PDFS

The Kullback–Leibler distance between two joint pdfs, i.e.,
pa and pb, is given by [10]

D
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
= D

(
pa(V1|V2 . . . Vn), pb(V1|V2 . . . Vn)

)
+ · · ·

+D
(
pa(Vn−1|Vn), pb(Vn−1|Vn)

)
+D

(
pa(Vn), pb(Vn)

)
.

(23)

Exchanging the variables V1, V2, . . . , Vn in n circu-
lar shifts, we obtain n joint probability functions that
are equivalent in their representation of joint events:
pΨ(V1, V2, . . . , Vn), pΨ(Vn, V1, . . . , Vn−1), . . . , pΨ(Vn, Vn−1,
. . . , V1), where Ψ = a, b. Now, adding the n Kullback–Leibler
distances between joint probability functions pa and pb whose
shifted variables correspond, and then rearranging terms, gives

D
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
=

1
n

[
D
(
pa(V1|V2 . . . Vn), pb(V1|V2 . . . Vn)

)
+ · · ·

+D
(
pa(Vn−1|Vn), pb(Vn−1|Vn)

)
+D

(
pa(Vn), pb(Vn)

)
+ · · ·

+D (pa(Vn|V1V2 . . . Vn−1),

pb(Vn|V1V2 . . . Vn−1)
)

+ · · ·
+D

(
pa(Vn−2|Vn−1), pb(Vn−2|Vn−1)

)
+D

(
pa(Vn−1), pb(Vn−1)

)
+ · · · + · · ·

+D (pa(V2|V3V4 . . . VnV1) ,

pb(V2|V3V4 . . . VnV1) + · · ·
+D

(
pa(Vn|V1), pb(Vn|V1)

)
+D

(
pa(V1), pb(V1)

)]
. (24)

Since D(pa, pb) ≥ 0, we obtain

D
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
≥ 1

n

[
D
(
pa(V1), pb(V1)

)
+D

(
pa(V2), pb(V2)

)
+ · · ·

+D
(
pa(Vn), pb(Vn)

)]
. (25)

Introducing the symmetric Kullback–Leibler distance in (23)
and (25), these are written respectively as

Ds
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
= D

(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
+D

(
pb(V1, V2, . . . , Vn), pa(V1, V2, . . . , Vn)

)
(26)

Ds
(
pa(V1, V2, . . . , Vn), pb(V1, V2, . . . , Vn)

)
≥ 1

n

[
D
(
pa(V1), pb(V1)

)
+D

(
pb(V1), pa(V1)

)
+D

(
pa(V2), pb(V2)

)
+D

(
pb(V2), pa(V2)

)
+ · · ·

+D
(
pa(Vn), pb(Vn)

)
+D

(
pb(Vn), pa(Vn)

)]
. (27)

In the context of this paper, the variables V1,...,n represent
U1

j , U2
j , and Zj , where j is the WT scale of analysis. Rear-

ranging the terms provided by the chain rule (16) and changing
variables, we have

p
(
Z1U

1
1U

2
1 . . . ZjU

1
j U

2
j . . . ZnU

1
nU

2
n

)
= p

(
Z1 . . . Zj . . . ZnU

12
1 . . . U12

j . . . U12
n

)
(28)
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where U12
j = U1

j U
2
j . Applying the chain rule, we have

p
(
Z1U

1
1U

2
1 . . . ZjU

1
j U

2
j . . . ZnU

1
nU

2
n

)
= p

(
Z1|Z2 . . . Zj . . . ZnU

12
1 . . . U12

j . . . U12
n

)
· · · ·
· p

(
Zn|U12

1 . . . U12
j . . . U12

n

)
· p

(
U12

1 |U12
2 . . . U12

j . . . U12
n

)
. . . p

(
U12

n−1|U12
n

)
p
(
U12

n

)
.

(29)

Replacing the variables Z ≡ Zi+1 . . . Zn and U ≡ U12
1 . . . U12

n

in (29) gives

p
(
Zi|Zi+1 . . . ZnU

12
1 . . . U12

n

)
= p(Zi|ZU) =

p(ZiZ|U)
p(Z|U)

(30)

also, assuming that Z, Zi are independent of U , we have

p(Zi|ZU) 	 p(ZiZ)
p(Z)

= p(Zi|Z). (31)

Therefore, (29) is expressed as

p
(
Z1U

1
1U

2
1 . . . ZjU

1
j U

2
j . . . ZnU

1
nU

2
n

)
= p(Z1|Z2 . . . Zn)p(Z2|Z3 . . . Zn)

· · · ·
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(
U12

1 . . . U12
n

)
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(
U12

1 . . . U12
n

)
. (32)

Then, the symmetrical Kullback–Leibler distance is

Ds
(
pa
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Z1U
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1U

2
1 . . . ZnU

1
nU

2
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)
, pb
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1
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2
n
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(
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(
U12
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(
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(33)

and the lower bound is

Ds
(
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(
Z1U

1
1U

2
1 . . . ZnU

1
nU

2
n

)
,

pb
(
Z1U

1
1U

2
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1
nU

2
n

))
≥ 1

n

∑
j=1,...,n

[
Ds
(
pa(Zj), pb(Zj)

)

+Ds
(
pa
(
U12

j

)
, pb
(
U12

j

))]
(34)

where p(Zj) and p(U12
j ) are univariate and bivariate Gaussian

distributions, respectively. This lower bound tends to be an
upper bound to (27), which only considers marginal probability
distributions.
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